A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution

dc.contributor.authorKawahara, Akito Y.
dc.contributor.authorPlotkin, David
dc.contributor.authorOhshima, Issei
dc.contributor.authorLopez-Vaamonde, Carlos
dc.contributor.authorHoulihan, Peter R.
dc.contributor.authorBreinholt, Jesse W.
dc.contributor.authorKawakita, Atsushi
dc.contributor.authorXiao, Lei
dc.contributor.authorRegier, Jerome C.
dc.contributor.authorDavis, Donald R.
dc.contributor.authorKumata, Tosio
dc.contributor.authorSohn, Jae-Cheon
dc.contributor.authorDe Prins, Jurate
dc.contributor.authorMitter, Charles
dc.date.accessioned2016-11-16T20:05:02Z
dc.date.available2016-11-16T20:05:02Z
dc.date.issued2017
dc.description.abstractGracillariidae are one of the most diverse families of internally feeding insects, and many species are economically important. Study of this family has been hampered by lack of a robust and comprehensive phylogeny. In the present paper, we sequenced up to 22 genes in 96 gracillariid species, representing all previously recognized subfamilies and genus groups, plus 20 outgroups representing other families and superfamilies. Following objective identification and removal of two rogue taxa, two datasets were constructed: dataset 1, which included 12 loci totalling 9927 bp for 94 taxa, and dataset 2, which supplemented dataset 1 with 10 additional loci for 10 taxa, for a total of 22 loci and 16 167 bp. Maximum likelihood analyses strongly supported the monophyly of Gracillariidae and most previously recognized subfamilies and genus groups. On this basis, we propose a new classification consisting of eight subfamilies, four of which are newly recognized or resurrected: Acrocercopinae Kawahara & Ohshima subfam. n.; Gracillariinae Stainton; Lithocolletinae Stainton; Marmarinae Kawahara & Ohshima subfam. n.; Oecophyllembiinae Réal & Balachowsky; Parornichinae Kawahara & Ohshima subfam. n.; Ornixolinae Kuznetzov & Baryshnikova stat. rev.; and Phyllocnistinae Zeller. The subfamily Gracillariinae is restricted to the monophyletic group comprising Gracillaria Haworth and closely related genera. We also formally transfer Acrocercops scriptulata Meyrick to Ornixolinae and use the name Diphtheroptila Vári, creating Diphtheroptila scriptulata comb. n. An exploratory mapping of larval host-use traits on the phylogeny shows strong conservation of modes of leaf mining but much higher lability of associations with host plant orders and families, suggesting that host shifts could play a significant role in gracillariid diversification. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:942814A2-DE66-41D4-8AB6-FF0B18C87EDB.
dc.format.extent60–81
dc.identifier0307-6970
dc.identifier.citationKawahara, Akito Y., Plotkin, David, Ohshima, Issei, Lopez-Vaamonde, Carlos, Houlihan, Peter R., Breinholt, Jesse W., Kawakita, Atsushi, Xiao, Lei, Regier, Jerome C., Davis, Donald R., Kumata, Tosio, Sohn, Jae-Cheon, de Prins, Jurate, and Mitter, Charles. 2017. "<a href="https://repository.si.edu/handle/10088/30143">A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution</a>." <em>Systematic Entomology</em>, 42, (1) 60–81. <a href="https://doi.org/10.1111/syen.12210">https://doi.org/10.1111/syen.12210</a>.
dc.identifier.issn0307-6970
dc.identifier.urihttps://hdl.handle.net/10088/30143
dc.publisherWiley-Blackwell
dc.relation.ispartofSystematic Entomology 42 (1)
dc.titleA molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution
dc.typearticle
sro.description.unitNH-Entomology
sro.description.unitNMNH
sro.identifier.doi10.1111/syen.12210
sro.identifier.itemID140897
sro.identifier.refworksID46893
sro.identifier.urlhttps://repository.si.edu/handle/10088/30143
sro.publicationPlaceHoboken

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2017 KAWAHARA_et_al- Systematic_Entomology.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description: