Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction

dc.contributor.authorGarcía-Robledo, Carlos
dc.contributor.authorKuprewicz, Erin K.
dc.contributor.authorStaines, Charles L.
dc.contributor.authorErwin, Terry L.
dc.contributor.authorKress, W. John
dc.date.accessioned2016-02-23T13:30:21Z
dc.date.available2016-02-23T13:30:21Z
dc.date.issued2016
dc.description.abstractThe critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.
dc.format.extent680–685
dc.identifier0027-8424
dc.identifier.citationGarcía-Robledo, Carlos, Kuprewicz, Erin K., Staines, Charles L., Erwin, Terry L., and Kress, W. John. 2016. "<a href="https://repository.si.edu/handle/10088/28091">Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction</a>." <em>Proceedings of the National Academy of Sciences of the United States of America</em>, 113, (3) 680–685. <a href="https://doi.org/10.1073/pnas.1507681113">https://doi.org/10.1073/pnas.1507681113</a>.
dc.identifier.issn0027-8424
dc.identifier.urihttp://hdl.handle.net/10088/28091
dc.publisherNational Academy of Sciences (U.S.)
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America 113 (3)
dc.titleLimited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction
dc.typearticle
sro.description.unitNH-Botany
sro.description.unitNH-Entomology
sro.description.unitNMNH
sro.identifier.doi10.1073/pnas.1507681113
sro.identifier.itemID138713
sro.identifier.refworksID16639
sro.identifier.urlhttps://repository.si.edu/handle/10088/28091

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PNAS-2016-García-Robledo-1507681113.pdf
Size:
3.75 MB
Format:
Adobe Portable Document Format
Description: