Advancing population ecology with integral projection models: a practical guide

dc.contributor.authorMerow, Cory
dc.contributor.authorDahlgren, Johan P.
dc.contributor.authorMetcalf, C. J.
dc.contributor.authorChilds, Dylan Z.
dc.contributor.authorEvans, Margaret E. K.
dc.contributor.authorJongejans, Eelke
dc.contributor.authorRecord, Sydne
dc.contributor.authorRees, Mark
dc.contributor.authorSalguero-Gómez, Roberto
dc.contributor.authorMcMahon, Sean M.
dc.date.accessioned2015-04-20T15:16:21Z
dc.date.available2015-04-20T15:16:21Z
dc.date.issued2014
dc.description.abstract* Integral projection models (IPMs) use information on how an individual's state influences its vital rates – survival, growth and reproduction – to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g. size or age) and covariates (e.g. environment). By combining regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population dynamics, species geographic distributions or life-history strategies. * Here, we review important resources for building IPMs and provide a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here, we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing biological patterns. We also present case studies illustrating how IPMs can be used to predict species' geographic distributions and life-history strategies. * IPMs can represent a wide range of life histories at any desired level of biological detail. Much of the strength of IPMs lies in the strength of regression models. Many subtleties arise when scaling from vital rate regressions to population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for matrix projection models.
dc.format.extent99–110
dc.identifier2041-210X
dc.identifier.citationMerow, Cory, Dahlgren, Johan P., Metcalf, C. J., Childs, Dylan Z., Evans, Margaret E. K., Jongejans, Eelke, Record, Sydne, Rees, Mark, Salguero-Gómez, Roberto, and McMahon, Sean M. 2014. "<a href="http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12146/abstract,http://onlinelibrary.wiley.com/store/10.1111/2041-210X.12146/asset/mee312146.pdf?v=1&t=hqs98gh8&s=0cd593ef5242a544fa06d665a89fcd13eb951c27,http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12146/abstract">Advancing population ecology with integral projection models: a practical guide</a>." <em>Methods in Ecology and Evolution</em>, 5, (2) 99–110. <a href="https://doi.org/10.1111/2041-210X.12146">https://doi.org/10.1111/2041-210X.12146</a>.
dc.identifier.issn2041-210X
dc.identifier.urihttp://hdl.handle.net/10088/26006
dc.relation.ispartofMethods in Ecology and Evolution 5 (2)
dc.titleAdvancing population ecology with integral projection models: a practical guide
dc.typearticle
sro.description.unitSERC
sro.identifier.doi10.1111/2041-210X.12146
sro.identifier.itemID118472
sro.identifier.refworksID60342
sro.identifier.urlhttp://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12146/abstract,http://onlinelibrary.wiley.com/store/10.1111/2041-210X.12146/asset/mee312146.pdf?v=1&t=hqs98gh8&s=0cd593ef5242a544fa06d665a89fcd13eb951c27,http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12146/abstract

Files

Collections