Abstract:
Riparian wetlands are dynamic components of landscapes. Located between uplands and aquatic environments, riparian habitats intercept sediments and nutrients before they enter aquatic environments. They are a source of organic matter and nutrients to aquatic systems, and they provide important habitat for animals, often serving as corridors for the movement of animals between habitats in fragmented landscapes. In this project, we focused on the structure and function of riparian wetlands associated with headwater streams in Alaska that serve as nursery habitats for juvenile salmonids. We asked whether or not the structure and function of headwater wetlands differed between watersheds with and without nitrogen-fixing Alder (Alnus spp.). We found that the aboveground biomass of riparian vegetation was higher in the watershed with Alder, but the largest differences were in the litter layer and belowground where vegetation in the watershed with no Alder had significantly higher root biomass. Interstitial water chemistry also differed between the study sites with significantly higher inorganic N and significantly different characteristics of colored dissolved organic matter at the site with Alder on the watershed. The biomass of litter that hung over the creek bank was less at the site with Alder on the watershed and an in situ decomposition experiment showed significant differences between the two systems. Results of the research demonstrates that watershed characteristics can impact the ecology of headwater streams in ways that had not been previously recognized.