DSpace Repository

Landscape-level variation in disease susceptibility related to shallow-water hypoxia

Show simple item record

dc.contributor.author Breitburg, Denise L. en
dc.contributor.author Hondorp, Darryl en
dc.contributor.author Audemard, Corinne en
dc.contributor.author Carnegie, Ryan B. en
dc.contributor.author Burrell, Rebecca B. en
dc.contributor.author Trice, Mark en
dc.contributor.author Clark, Virginia en
dc.date.accessioned 2016-09-20T22:35:49Z
dc.date.available 2016-09-20T22:35:49Z
dc.date.issued 2015
dc.identifier.citation Breitburg, Denise L., Hondorp, Darryl, Audemard, Corinne, Carnegie, Ryan B., Burrell, Rebecca B., Trice, Mark, and Clark, Virginia. 2015. "<a href="https%3A%2F%2Frepository.si.edu%2Fhandle%2F10088%2F29383">Landscape-level variation in disease susceptibility related to shallow-water hypoxia</a>." <em>PloS One</em>. 10 (2):1&ndash;27. <a href="https://doi.org/10.1371/journal.pone.0116223">https://doi.org/10.1371/journal.pone.0116223</a> en
dc.identifier.issn 1932-6203
dc.identifier.uri https://hdl.handle.net/10088/29383
dc.description.abstract Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems. en
dc.relation.ispartof PloS One en
dc.title Landscape-level variation in disease susceptibility related to shallow-water hypoxia en
dc.type Journal Article en
dc.identifier.srbnumber 134273
dc.identifier.doi 10.1371/journal.pone.0116223
rft.jtitle PloS One
rft.volume 10
rft.issue 2
rft.spage 1
rft.epage 27
dc.description.SIUnit SERC en
dc.description.SIUnit Peer-reviewed en
dc.citation.spage 1
dc.citation.epage 27


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account