DSpace Repository

Non-Markovian maximum likelihood estimation of autocorrelated movement processes

Show simple item record

dc.contributor.author Fleming, Christen H. en
dc.contributor.author Calabrese, Justin M. en
dc.contributor.author Mueller, Thomas en
dc.contributor.author Olson, Kirk A. en
dc.contributor.author Leimgruber, Peter en
dc.contributor.author Fagan, William F. en
dc.date.accessioned 2014-07-14T14:50:35Z
dc.date.available 2014-07-14T14:50:35Z
dc.date.issued 2014
dc.identifier.citation Fleming, Christen H., Calabrese, Justin M., Mueller, Thomas, Olson, Kirk A., Leimgruber, Peter, and Fagan, William F. 2014. "<a href="https://repository.si.edu/handle/10088/21946">Non-Markovian maximum likelihood estimation of autocorrelated movement processes</a>." <em>Methods in Ecology and Evolution</em>. 5 (5):462&ndash;472. <a href="https://doi.org/10.1111/2041-210X.12176">https://doi.org/10.1111/2041-210X.12176</a> en
dc.identifier.issn 2041-210X
dc.identifier.uri http://hdl.handle.net/10088/21946
dc.description.abstract 1.By viewing animal movement paths as realizations of a continuous stochastic process, we introduce a rigorous likelihood method for estimating the statistical parameters of movement processes. This method makes no assumption of a hidden Markov property, places no special emphasis on the sampling rate, is insensitive to irregular sampling and data gaps, can produce reasonable estimates with limited sample sizes, and can be used to assign AIC values to a vast array of qualitatively different models of animal movement at the individual and population levels. 2.To develop our approach, we consider the likelihood of the first two cumulants of stochastic processes, the mean and autocorrelation functions. Together, these measures provide a considerable degree of information regarding searching, foraging, migration, and other aspects of animal movement. As a specific example, we develop the likelihood analyses necessary to contrast performance of animal movement models based on Brownian motion, the Ornstein-Uhlenbeck process, and a generalization of the Ornstein-Uhlenbeck process that includes ballistic bouts. 3.We then show how our framework also provides a new and more accurate approach to home range estimation when compared to estimators that neglect autocorrelation in the movement path. 4.We apply our methods to a dataset on Mongolian gazelles (Procapra gutturosa) to identify the movement behaviors and their associated time and length scales that characterize the movement of each individual. Additionally, we show that gazelle annual ranges are vastly larger than those of other non-migratory ungulates. This article is protected by copyright. All rights reserved. en
dc.relation.ispartof Methods in Ecology and Evolution en
dc.title Non-Markovian maximum likelihood estimation of autocorrelated movement processes en
dc.type Journal Article en
dc.identifier.srbnumber 119182
dc.identifier.doi 10.1111/2041-210X.12176
rft.jtitle Methods in Ecology and Evolution
rft.volume 5
rft.issue 5
rft.spage 462
rft.epage 472
dc.description.SIUnit NZP en
dc.description.SIUnit Peer-reviewed en
dc.citation.spage 462
dc.citation.epage 472


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account