DSpace Repository

Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): the largest vertebrate skeletal element and its role in rorqual lunge feeding

Show simple item record

dc.contributor.author Pyenson, Nicholas D. en
dc.contributor.author Goldbogen, Jeremy A. en
dc.contributor.author Shadwick, Robert E. en
dc.date.accessioned 2014-02-26T20:49:27Z
dc.date.available 2014-02-26T20:49:27Z
dc.date.issued 2013
dc.identifier.citation Pyenson, Nicholas D., Goldbogen, Jeremy A., and Shadwick, Robert E. 2013. "<a href="https://repository.si.edu/handle/10088/21915">Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): the largest vertebrate skeletal element and its role in rorqual lunge feeding</a>." <em>Biological Journal of the Linnean Society</em>. 108 (3):586&ndash;599. <a href="https://doi.org/10.1111/j.1095-8312.2012.02032.x">https://doi.org/10.1111/j.1095-8312.2012.02032.x</a> en
dc.identifier.issn 0024-4066
dc.identifier.uri http://hdl.handle.net/10088/21915
dc.description.abstract Rorqual whales (crown Balaenopteridae) are unique among aquatic vertebrates in their ability to lunge feed. During a single lunge, rorquals rapidly engulf a large volume of prey-laden water at high speed, which they then filter to capture suspended prey. Engulfment biomechanics are mostly governed by the coordinated opening and closing of the mandibles at large gape angles, which differentially exposes the floor of the oral cavity to oncoming flow. The mouth area in rorquals is delimited by unfused bony mandibles that form kinetic linkages to each other and with the skull. The relative scale and morphology of these skeletal elements have profound consequences for the energetic efficiency of foraging in these gigantic predators. Here, we performed a morphometric study of rorqual mandibles using a data set derived from a survey of museum specimens. Across adult specimens of extant balaenopterids, mandibles range in size from ~1 6 m in length, and at their upper limit they represent the single largest osteological element of any vertebrate, living or extinct. Our analyses determined that rorqual mandibles exhibit positive allometry, whereby the relative size of these mandibles becomes greater with increasing body size. These robust scaling relationships allowed us to predict mandible length for fragmentary remains (e.g. incomplete and/or fossil specimens), as we demonstrated for two partial mandibles from the latest Miocene of California, USA, and for mandibles from previously described fossil balaenopterids. Furthermore, we showed the allometry of mandible length to body size in extant mysticetes, which hints at fundamental developmental constraints in mysticetes despite their ecomorphological differences in feeding styles. Lastly, we outlined how our findings can be used to test hypotheses about the antiquity and evolution of lunge feeding. © 2012 The Linnean Society of London en
dc.relation.ispartof Biological Journal of the Linnean Society en
dc.title Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): the largest vertebrate skeletal element and its role in rorqual lunge feeding en
dc.type Journal Article en
dc.identifier.srbnumber 114126
dc.identifier.doi 10.1111/j.1095-8312.2012.02032.x
rft.jtitle Biological Journal of the Linnean Society
rft.volume 108
rft.issue 3
rft.spage 586
rft.epage 599
dc.description.SIUnit NH-Paleobiology en
dc.description.SIUnit NMNH en
dc.description.SIUnit Peer-reviewed en
dc.citation.spage 586
dc.citation.epage 599


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics