DSpace Repository

Germination responses to water potential in Neotropical pioneers suggest large-seeded species take more risks

Show simple item record

dc.contributor.author Daws, Matthew I. en
dc.contributor.author Crabtree, Lora M. en
dc.contributor.author Dalling, James W. en
dc.contributor.author Mullins, Christopher E. en
dc.contributor.author Burslem, David F. R. P. en
dc.date.accessioned 2011-04-21T16:39:00Z
dc.date.available 2011-04-21T16:39:00Z
dc.date.issued 2008
dc.identifier.citation Daws, Matthew I., Crabtree, Lora M., Dalling, James W., Mullins, Christopher E., and Burslem, David F. R. P. 2008. "<a href="https%3A%2F%2Frepository.si.edu%2Fhandle%2F10088%2F15886">Germination responses to water potential in Neotropical pioneers suggest large-seeded species take more risks</a>." <em>Annals of Botany</em>. 102 (6):945&ndash;951. <a href="https://doi.org/10.1093/aob/mcn186">https://doi.org/10.1093/aob/mcn186</a> en
dc.identifier.issn 0305-7364
dc.identifier.uri http://hdl.handle.net/10088/15886
dc.description.abstract Background and Aims: In neotropical forests, very small-seeded pioneer species ( mg seed mass) recruit preferentially in small tree fall gaps and at gap edges, but large-seeded pioneers do not. Since water availability is related to gap size, these differences in microsite preference may reflect in part species-specific differences in germination at reduced water potentials. Methods: For 14 neotropical pioneer species, the hypothesis is tested that small-seeded species, with shallow initial rooting depths, reduce the risks associated with desiccation by germinating more slowly and at higher water potentials than large-seeded species. Key Results: Germination occurred both more quickly and at lower water potentials with increasing seed mass. For example, Ochroma pyramidale (seed mass 5·5 mg) had a time to 50 % germination (T50) of 2·8 d and a median base potential for germination (b50) of 1·8 MPa while Clidemia quinquenervia (seed mass 0·017 mg) had a T50 of 17·6 d and b50 of 1·1 MPa. Conclusions: These data suggest that small-seeded species germinate only in comparatively moist microsites, such as small canopy gaps, which may reduce the risk of drought-induced mortality. Conversely, large-seeded species are able to germinate in the drier environment of large gaps, where they benefit by enhanced seedling growth in a high irradiance environment. The positive association of seed size and canopy gap size for optimal seedling establishment is maintained by differential germination responses to soil water availability coupled with the scaling of radicle growth rate and seed size, which collectively confer greater drought tolerance on large-seeded species. en
dc.relation.ispartof Annals of Botany en
dc.title Germination responses to water potential in Neotropical pioneers suggest large-seeded species take more risks en
dc.type Journal Article en
dc.identifier.srbnumber 76940
dc.identifier.doi 10.1093/aob/mcn186
rft.jtitle Annals of Botany
rft.volume 102
rft.issue 6
rft.spage 945
rft.epage 951
dc.description.SIUnit Panama, Neotropical forest en
dc.description.SIUnit STRI en
dc.citation.spage 945
dc.citation.epage 951


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account