DSpace Repository

Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host?

Show simple item record

dc.contributor.author Gager, Andrea B. en
dc.contributor.author Del Rosario Loaiza, Jose en
dc.contributor.author Deaborn, Donald C. en
dc.contributor.author Bermingham, Eldredge en
dc.date.accessioned 2011-02-09T20:03:18Z
dc.date.available 2011-02-09T20:03:18Z
dc.date.issued 2008
dc.identifier.citation Gager, Andrea B., Del Rosario Loaiza, Jose, Deaborn, Donald C., and Bermingham, Eldredge. 2008. "<a href="https%3A%2F%2Frepository.si.edu%2Fhandle%2F10088%2F11906">Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host?</a>." <em>Molecular ecology</em>. 17 (10):2552&ndash;2561. <a href="https://doi.org/10.1111/j.1365-294X.2008.03764.x">https://doi.org/10.1111/j.1365-294X.2008.03764.x</a> en
dc.identifier.issn 0962-1083
dc.identifier.uri http://hdl.handle.net/10088/11906
dc.description.abstract Abstract Many parasites show fidelity to a set of hosts in ecological time but not evolutionary time and the determinants of this pattern are poorly understood. Malarial parasites use vertebrate hosts for the asexual stage of their life cycle but use Dipteran hosts for the sexual stage. Despite the potential evolutionary importance of Dipteran hosts, little is known of their role in determining a parasite&#39;s access to vertebrate hosts. Here, we use an avian malarial system in Panama to explore whether mosquitoes act as an access filter that limits the range of vertebrate hosts used by particular parasite lineages. We amplified and sequenced Plasmodium mitochondrial DNA (mtDNA) from Turdus grayi (clay-coloured robin) and from mosquitoes at the same study site. We trapped and identified to species 123 141 female mosquitoes and completed polymerase chain reaction (PCR) screening for Plasmodium parasites in 435 pools of 20 mosquitoes per pool (8700 individuals total) spanning the 11 most common mosquito species. Our primers amplified nine Plasmodium lineages, whose sequences differed by 1.72%-10.0%. Phylogenetic analyses revealed partial clustering of lineages that co-occurred in mosquito hosts. However PAN3 and PAN6, the two primary parasite lineages of T. grayi, exhibited sequence divergence of 8.59% and did not cluster in the phylogeny. We detected these two lineages exclusively in mosquitoes from different genera - PAN3 was found only in Culex (Melanoconion) ocossa, and PAN6 was found only in Aedeomyia squamipennis. Furthermore, each of these two parasite lineages co-occurred in mosquitoes with other Plasmodium lineages that were not found in the vertebrate host T. grayi. Together, this evidence suggests that parasite-mosquito associations do not restrict the access of parasites to birds but instead may actually facilitate the switching of vertebrate hosts that occurs over evolutionary time. en
dc.relation.ispartof Molecular ecology en
dc.title Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? en
dc.type Journal Article en
dc.identifier.srbnumber 74271
dc.identifier.doi 10.1111/j.1365-294X.2008.03764.x
rft.jtitle Molecular ecology
rft.volume 17
rft.issue 10
rft.spage 2552
rft.epage 2561
dc.description.SIUnit Encyclopedia of Life en
dc.description.SIUnit Forces of Change en
dc.description.SIUnit STRI en
dc.citation.spage 2552
dc.citation.epage 2561


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics