Corrected 25 August 2006; see page 6 for details Science www.sciencemag.org/cgi/content/fiill/l 129237/DC1 ilAAAS Supporting Online Material for Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests? I ^ o "^ A I Vojtech Novotny, Pavel Drozd, Scott E. Miller, Miroslav Kulfan, Milan Janda, Yves Basset/ George D. Weiblen'' *To whom correspondence should be addressed. E-mail: novotny@entu.cas.cz Published 13 July 2006 on Science Express DOI: 10.1126/science. 1129237 This PDF file includes: Materials and Methods Figs. SI and S2 Tables SI and S2 References Appendices SI and S2 Supporting Online Material Material and Methods Study areas Herbivorous insects were studied in two temperate areas, Moravia and Slovakia in Central Europe, and one tropical area, Madang in Papua New Guinea. The Moravia study area in the Poodri Protected Area (18?03-13'E, 49?42-48'N, 200 m asL, Czech Republic) included three fragments of the primary floodplain forest (Rezavka, Polansky Les and Polanska Niva Natural Reserves, 300 ha in total) along a 20 km long section of the Odra River. The forest vegetation was dominated by Quercus, Ulmus, Tilia, Prunus and Fraxinus. The annual average temperature was 7-8.5?C, the annual average rainfall 600- 800 mm {SI). The Slovakia study area of 120 x 80 km between the Borska nizina Lowland and Hronska pahorkatina Hills (16?58'-18?38' E, 47?34-48' N, 100-350 m asL, Slovak Republic) included 15 study sites with lowland thermophillous oak and oak-hornbeam forests. The annual average temperature was 7-10?C, the annual average rainfall 550-900 mm (5*7). The Papua New Guinea study area in Madang Province (145?41-8' E, 5?08-14' S, 0-200 m asi.) included three study sites (Baitabag, Ohu, and Mis Villages) within a 10 x 20 km area, encompassing a mosaic of secondary and primary lowland hill forest. The annual average temperature was 26.5?C, and the annual average rainfall 3,600 mm {S2). Estimates of woody plant species richness per hectare in tropical and temperate forests were based on total enumeration of woody stems >10 cm in diameter at breast height (DBH) in one hectare plots. Published estimates from 36 tropical forest plots were assembled from the three major tropical regions (S3-S7). Eighteen temperate forest plots were drawn from the eastern deciduous forests of North America, which are among the most diverse temperate forests known (S3, S5, S8), and New Zealand (S9). Study plants In Moravia, we studied 14 locally common woody species, including both closely and distantly related species. The study species represented 85 ? 2.4% of the total forest basal area according to 62 plots 25 m X 25 m each, or 3.75 ha in total, where all plants > 5cm in diameter at breast height (DBH) were recorded. In Slovakia, eight woody species were studied. In Papua New Guinea, we used a phylogeny estimate for 60 locally common woody species (SIO) to select subsets of species with phylogenetic structure matching that of the Moravia and Slovakia study trees. Subsets matching Moravia included 19 ? 2.2% of the total basal area in the local New Guinea forest, estimated from 100 plots 20 m x 20 m, or four ha in total, where all plants > 5cm in DBH were recorded. The subset matching Slovakia included 9 ? 1.4% of the local basal area in New Guinea. Community phylogeny A phylogeny estimate for each temperate and tropical tree community sample was obtained by grafting less inclusive single-gene phylogenetic hypotheses into a more inclusive phylogeny of angiosperms based on three genes (Sll) as described in (5*70). Additional phylogenetic information was drawn from (S12-S14). The assembly of a community phylogeny can follow supertree methods (SI5) but one crucial difference is that only members of the community are retained in the supertree while all other lineages are pruned away. Phylogenetic branch lengths are also important to consideration for community samples. When branch lengths are assumed equal, using the number of intervening nodes as a proxy for phylogenetic distance, relationships between intensively sampled congeneric species are given the same weight as relationships among representatives of major clades. Branch length information can distinguish between these two very different cases, short distances between congenerics and long distances between members of major lineages. Branch lengths for community phylogenies of temperate trees were approximated from aligned DNA sequences encoding ribulose-l,5-bisphosphate carboxylase (rbcL). Sequences 1,380 base pairs in length were obtained from Genbank for each tree species and the closest available relative was substituted as indicated in Table SI when particular taxa were not available. Branch lengths were optimized on each community phylogeny under parsimony using PAUP* (SI6). The same approach was applied to estimate phylogenetic branch lengths for tropical tree community samples, except that there were an insufficient number of rbcL sequences in Genbank ior Ficus and Euphorbiaceae. Branch lengths were estimated for Ficus from the internal transcribed spacer region of nuclear ribosomal DNA (ITS) and for Euphorbiaceae from the ndhF gene encoding a subunit of NADH-plastoquinone oxidoreductase. ITS and ndhF branch lengths were scaled to the relative rate of change in rbcL compared between pairs of taxa. For example, the relative rate of ITS to rbcL was calculated by counting the absolute number of character differences in each gene between Ficus heterophylla and F. pumila. rbcL sequences for F. heterophylla (AF500351) and F. pumila (AF500352) differed by 12 substitutions compared to 36 substitutions in ITS, yielding a rate of 0.30 by which ITS branch lengths were multiplied to express them in rbcL units on the community phylogeny. The rate used for ndhF relative to rbcL was 0.52 as described in (5*70). We rescaled the branch lengths by these rates to approximate the phylogenetic distance between taxa sampled for genes with different rates of molecular divergence. Next we obtained a community phylogeny for which all distances from the root of the tree to the tips are equal, also known as an ultrametric tree. Ultrametricity is necessary to make direct comparisons of phylogenetic distance (as measured by rescaled molecular branch lengths) among pairs of host species distributed across the phylogeny. Each individual molecular dataset rejected a molecular clock assumption, so we applied nonparametric rate smoothing {SI 7) as implemented in the program TreeEdit {S18). Ultrametric distances between ancestral and descendant nodes from temperate and tropical community phylogenies were compared using TreeMap software {S19). Insect sampling In Moravia, all externally feeding folivorous insects were hand collected from the foliage of 14 tree species throughout the growing seasons during 1999-2001. Sampling effort amounted to 150 m of foliage inspected per tree species. All 14 tree species were sampled at each of the three study forests. In Slovakia, all externally feeding caterpillars (Lepidoptera) were sampled from 450 m of foliage inspected per tree species. For each tree species, 25 m of foliage were sampled on six days throughout the growing season. Each species was sampled during three growing seasons, either at three different sites, or at two sites with one site sampled in two different years. Sampling included 15 different sites and extended from 1978 to 2002 as described in detail previously {S20-S22). In Papua New Guinea, all externally feeding folivorous insects were hand collected from the foliage of 14 tree species. Each tree species was sampled for at least one year between 1994-2000. The sampling effort amounted to 1,500 m of foliage per tree species. All 14 tree species were sampled at each of the three study sites as described in (S23). Laboratory rearing procedures were identical for all three study areas. Each insect was provided with fresh leaves of the plant species from which it was collected and only those that fed were retained in the analyses. Larvae were identified to morphospecies and/or reared to adults. All insects assigned to morphospecies were later verified and identified by taxonomic specialists. Taxonomic methods for 2 Papua New Guinea material are detailed in (S23). Vouchers are deposited at the University of Ostrava, Ostrava (Moravia specimens), Comenius University, Bratislava (Slovakia specimens) and the National Agricultural Research Institute of Papua New Guinea, Bishop Museum, Honolulu and Smithsonian Institution, Washington (Papua New Guinea specimens). Pr?dation pressure on the foliage of the studied trees was assessed as the proportion of live baits, represented by Calliphora vicina fly larvae in Moravia and Microcerotermes biroi termite workers in Papua New Guinea, that were attacked by predators during 30 minutes of exposure on the foliage {S24). Twenty experiments, each including 30 baits exposed on a single tree, were conducted on each study tree species in Moravia and Papua New Guinea (Table S2). Data analysis Only feeding insects and host plant records supported by more than one feeding observation were included in the analysis in order to exclude tourists and marginal feeders. The number of species per 100 m of foliage was interpolated from the entire sample obtained for each tree species by rarefraction. Host speciflcity was measured as the number of study species used as hosts by a particular herbivorous species. This simple count of host species was appropriate given a nearly identical phylogenetic distribution of temperate and tropical study plants. Community similarity was assessed by the Chao-Sorensen index, a modification of the classical Sorensen index that corrects its bias due to incomplete sampling of communities, calculated by Estimates {S25). The similarity of herbivore communities was correlated with the phylogenetic distance of their host plants, for all pair-wise comparisons between the studied plant species. Phylogenetic distance was estimated as the absolute number of substitutions between pairs of species in the ultrametric tree using TreeEdit (SI8). The significance of the correlation between herbivore community similarity and host phylogenetic distance was evaluated with the Mantel test. The differences in species richness and density of herbivores between temperate and tropical trees were tested by t-test. Further, comparative analyses incorporating phylogenetic relationships of host plants were also performed because tropical and temperate tree species are not statistically independent. For the Moravia-New Guinea and Slovakia-New Guinea comparisons of species richness and abundance, supertrees combining temperate and tropical taxa were assembled. Molecular branch lengths were estimated and rate-smoothed under parsimony as described above. Phylogenetic generalized least squares (PGLS) regression analysis was performed using the program COMPARE (S26) with temperate versus tropical as a categorical predictor variable and herbivore species richness or abundance per host species as the response variable. The standard error of the regression slope was used to test the significance of differences between tropical and temperate herbivore communities as described in (S26). Supporting References SLA. G?tz, Atlas of the Czechoslovak Socialist Republic (Czechoslovak Academy of Sciences, Praha, 1966). 52. J. R. McAlpine, R. Keig, R. Falls, Climate of Papua New Guinea (CSIRO and Australian National Univ. Press, Canberra 1993). 53. E. G. Leigh, Tropical Forest Ecology: A View from Barro Colorado (Oxford Univ. Press, Oxford, 1999). 54. M. Oatham, B. M. Beehler, in Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and Old World Case Studies, F. Dallmeier, J. Comisky Eds. (Parthenon, Paris 1998), pp. 613-631. 3 55. M. F. Quigley, W. J. Pratt, Ecol. Monogr. 73, 87 (2003). 56. D. D. Wright, J. H. Jessen, P. Burke, H. Gomez de Silva Garza, Biotropica 29, 250 (1997). 57. G. D. Weiblen, Science in New Guinea 24, 23 (1998). 58. R. T. Busing, P. S. White, Oikos 78, 562 (1997). 59. P. J. Bellingham, G. H. Stewart, R. B. Allen, J. Veg. Sei. 10, 825 (1999). S10. G. D. Weiblen, C. O. Webb, V. Novotny, Y. Basset, S. E. Miller, Ecology 87, S62 (2006). SI 1. D. E. Soltis et al, Syst. Biol. 47, 32 (1998). 512. P. S. Manos, A. M. Stanford, Int. J. Plant Sei. 162, S77 (2001). 513. C. S. Campbell et al. Am. J. Bot. 82, 903 (1995). 514. C. O. Webb, M. J. Donoghue, Phylomatie: a database for applied phylogenetics, http://www.phylodiversity.net/phylomatic/(2006). 515. O. R. P. Bininda-Emonds, Phylogenetic supertrees: Combining information to reveal the tree of life (Springer, New York, 2004). 516. D. L. Swofford, Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, Sunderland, Massachusetts, 1998). 517. M. J. Sanderson, Mol. Biol. Evol. 14, 1218 (1997). 518. A. Rambaut, M. Charleston, TreeEdit: phylogenetic tree editor (Oxford Univ., Oxford, 2001). 519. R. D. M. Page, Syst. Biol. 45, 151 (1996). 520. M. Kulfan, Biolog?a (Bratislava) 46, 927 (1991). 521. M. Kulfan, M. Holecova, J. Fajcik, Biolog?a (Bratislava), in press (2006). 522. M. Kulfan, L. Septak, P. Degma, Biolog?a (Bratislava) 52, 247 (1997). 523. S. E. Miller, V. Novotny, Y. Basset, Proc. Entomol. Soc. Wash. 105, 1035 (2003). 524. V. Novotny et al, Aust. J. Ecol. 24, 477 (1999). 525. R. K. Colwell, Estimates : Statistical estimation of species richness and shared species from samples. Version 7.5 (URL , 2005). 526. E. P. Martins, COMPARE 4.6. Computer programs for the statistical analysis of comparative data (Dept. Biology, Indiana Univ., Bloomington, Indiana, 2003). 527. APGII, Bot. J. Linn. Soc. 141, 399 (2003). 528. M. J. Laidlaw, R. L. Kitching, K. Damas, R. Kiapranis, Biotropica 38, in press (2006). Corrected 25 August 2006 On page 2, in the second paragraph under "Study areas," "oak-hawthorn" has been changed to "oak-hornbeam." On page 5, reference S10 has been updated to include the volume and page numbers. Tables, Figures and Appendices Table SI. Woody plant species sampled for insect herbviores in temperate and tropical forests. Major clades, orders and families follow the Angiosperm Phylogeny Group classification (S27). DNA sequences retrieved from Genbank were used to estimate branch lengths on a community phylogeny for the set of tree species sampled at each study site. When DNA sequences were unavailable for a particular species, a sequence from a related species was substituted for the purpose of branch length estimation. Clade Order Family Species Genbank accession Temperate species Asterids Cornales Cornaceae Cornus sangu?nea L. L11215^ Asterias 1 Lam?ales Oleaceae Fraxinus excelsior L. AJ001766^ Asterids II Dipsacales Adoxaceae Sambucus nigra L. AF446928^ Eurosids 1 Fabales Fabaceae Robinia pseudoacacia L. U74220 Eurosids 1 F?gales Betulaceae Alnus glutinosa (L.) Gaertn. AY263926' Eurosids 1 F?gales Betulaceae Alnus incana Medik. X56618 Eurosids 1 F?gales Betulaceae Carpinus betulus L. AY263928 Eurosids 1 F?gales Betulaceae Corylus avellana L. AY263929 Eurosids 1 F?gales Fagaceae Fagus sylvatica L. L13340 Eurosids 1 F?gales Fagaceae Quercus cerris L. AB125017 Eurosids 1 F?gales Fagaceae Quercus petraea (Matt.) Liebl. AB125024 Eurosids 1 F?gales Fagaceae Quercus robur L. AB125025 Eurosids 1 Malphigiales Salicaceae Populus tr?mula L. AJ418827 Eurosids 1 Rosales Rosaceae Crataegus monogyna Jacq. U06799^ Eurosids 1 Rosales Rosaceae Prunus pad US L. AF411485 Eurosids 1 Rosales Rosaceae Prunus spinosa L. AF227904 Eurosids 1 Rosales Ulmaceae Ulmus glabra Huds. 086316^ Eurosids 1 Rosales Ulmaceae Ulmus laevis Pali. AF500337^ Eurosids II M?lvales Tiliaceae Tilia cordata Mili. AF022127^ Eurosids II Sapindales Sapindaceae Acer campestre L. L01881^ Tropical species Eurosids 1 Rosales Moraceae Artocarpus camansi Blanco AF500345^? Eurosids 1 Malphigiales Flacourtiaceae Gasearla erythrocarpa SIeum. AF206746^^ Eurosids 1 Rosales Ulmaceae Celtis philippensis Blanco D86309^^ Eurosids 1 Rosales Moraceae Ficus conocephalifolia Ridley AF165381 Eurosids 1 Rosales Moraceae Ficus copiosa Steud. AF165382 Eurosids 1 Rosales Moraceae Ficus dammaropsis Diels AF165383 Eurosids 1 Rosales Moraceae Ficus wassa Roxb. AF165418 Eurosids 1 Malphigiales Euphorbiaceae Homalanthus novoguineensis (Warb.) K. Schum. AY374315 Eurosids 1 Malphigiales Euphorbiaceae Macaranga aleuritoides F. Muell. AY374319 Eurosids 1 Malphigiales Euphorbiaceae Macaranga quadriglandulosa Warb. AY374318 Eurosids 1 Malphigiales Euphorbiaceae Mallotus mollissimus (Geisel.) A. Shaw AY374322 Euasterids II Apiales Araliaceae Osmoxylon sessiliflorum (Lauterb.) W. R. Philipson U50257" Eurosids 1 Malphigiales Euphorbiaceae Pimelodendron amboinicum Hassk. AY374324 Eurosids II Sapindales Sapindaceae Pometia pinnata Forster AJ40300^' Euasterids 1 Lam?ales Verbenaceae Premna obtusifolia R.Br. U28883^^ Eurosids 1 Fabales Fabaceae Pterocarpus indicus Willd. AF308721^^ Euasterids 1 Gentianales Rubiaceae Randia schumanniana Merrill & Perry AJ318456 Eurosids II M?lvales Malvaceae Sterculia schumanniana (Lauterb.) Mildbr. AJ233140^' 1 y Sequences substituted for study species not available in Genbank included Cornus florida L., Olea europaea L., Sambucus racemosa L., Alnus sinuata Rydb., Crataegus columbiana Howell, Ulmus parvifolia Jacq., Ulmus americana L., Tilia americana L., Acer saccharum Marsh., Artocarpus altilis (Parkinson) Fosberg, Casearia sylvestris Sw., Celtis sinensis Pers., Teraplasandra hawaiensis A. Gray, Talisia nervosa Radlk., Premna microphylla Turcz., Willardia mexicana Rose, and Sterculia ap?tala Druce. Table S2. Pr?dation pressure on the foliage of temperate and tropical tree species, reported as the percentage of live baits (out of 600 per tree species) attacked by predators (mostly ants) during 30- minute periods of exposure on the foliage. Pr?dation pressure is significantly different between temperate and tropical forests (t-test, P<0.001). Temperate species Pr?dation Tropical species Pr?dation Cornus sangu?nea 1.0 Osmoxylon sessiliflorum 25.2 Fraxinus excelsior 2.0 Premna obtusifolia 40.3 Sambucus nigra 0.8 Randia schumanniana 32.7 Populus tr?mula 1.8 Pterocarpus indicus 31.3 Padus avium 1.2 Celtis philippensis 20.2 Ulmus glabra 2.0 Ficus wassa 22.7 Ulmus laevis 0.8 Ficus dammaropsis 26.0 Alnus incana 1.0 Homalanthus novoguineensis 13.3 Alnus glutinosa 1.6 Pimelodendron amboinicum 12.7 Carpinus betulus 1.2 Macaranga quadriglandulosa 25.7 Corylus avelana 3.0 Macaranga aleuritoides 48.0 Quercus robur 2.6 Casearia erytiirocarpa 24.7 Tilia cordata 2.8 Sterculia schumanniana 33.5 Acer campestre 1.2 Pometia pinnata 40.5 Average 1.6 Average 28.3 Figure SI. The relationship between latitude and species richness of woody plants >10 cm DBH from 58 one-hectare plots worldwide, including our two study areas {S28, S4-S9, P. J. Bellingham, pers. comm, and references in S3). Woody plant species richness declined significantly with increasing latitude (R^ = 0 .624). 350 0 5 10 15 20 25 30 35 40 45 50 latitude Figure S2. Host specificity of Lepidoptera on temperate and tropical trees. The number of hosts among eight study species of trees (Fig. IC) is shown for Slovakia and New Guinea. The median host range of two temperate tree species per herbivore species was significantly different from the median host range of a single tropical tree species per herbivore (Mann-Whitney test, P<0.001). DU - D Temperate 50 - ? Tropical ^ 40 - ? 0 w 30 - 1?1 ? 20- 10 - 0 --L ,1 1,1 1,1 LJ 1 ,n ,n ,?, 12 3 4 5 6 No. of hosts Appendix SI. Taxonomy and abundance of herbivore species from Central Europe (Moravia and Slovakia). Morphospecies with unknown adult stages are marked with an asterisk. Morphospecies codes are used for unidentified species. Note that only Lepidoptera were studied in Slovakia. Order Family Species IVIor. Slov. Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop a Arctiidae a Bucculatricidae a Bucculatricidae a Bucculatricidae a Depressariidae a Drepanidae a Drepanidae a Drepanidae a Drepanidae a Drepanidae a Drepanidae a Gelechidae a Gelechidae a Gelechiidae a Gelechiidae a Gelechiidae a Gelechiidae a Gelechiidae a Gelechiidae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae Geometridae Hyphantria cunea (Drury) Bucculatrix albedinella (Zeller) Bucculatrix thoracella (Thunberg) Bucculatrix ulmella Zeller Semioscopis avellanella (Huebner) Drepana falcataria (Linnaeus) Ochropacha duplaris (Linnaeus) Polyploca ridens (Fabricius) Tefrtea sp.[TDREP001] Watsonalla binaria (Hufnagel) Watsonalla cultraria (Fabricius) Teleiodes luculellus (Huebner) Teleiodes paripunctellus (Thunberg) Anacampsis populella (Clerck) Gelechia scotinella Herrich-Schaeffer Pseudotelphusa scalella (Scopoli) Psoricoptera gibbosella (Zeller) Recurvar?a leucatella (Clerck) Teleiodes decorellus (Haworth) Agriopis aurantiana (Huebner) Agriopis bajar?a (Dennis et Schiffermueller) Agriopis leucophaearia (Dennis et Schiffermueller) Agriopis marginar?a (Fabricius) Aids repandata (Linnaeus) Alsophila acerar?a (Dennis et Schiffermueller) Alsophila aescularia (Dennis et Schiffermueller) Apeira syringaria (Linnaeus) Apocheima hispidarium (Dennis et Schiffermueller) Apocheima pilosarium (Dennis et Schiffermueller) Archiearis notha (Huebner) Ascotis selenaria (Dennis et Schiffermueller) Asthena albulata (Hufnagel) Asthena anseraria (Herrich-Schaeffer) Biston betularius (Linnaeus) Biston stratarius (Hufnagel) Cabera pusaria (Linnaeus) Campaea margaritata (Linnaeus) Chiasmia alternata (Dennis et Schiffermueller) Chlorissa viridata (Linnaeus) Chloroclysta miata (Linnaeus) Colotois pennaria (Linnaeus) Cyclophora albipunctata (Hufnagel) Cyclophora annularia (Fabricius) Cyclophora linear?a (Huebner) Cyclophora pendularia (Clerck) Cyclophora punctaria (Linnaeus) Cyclophora quercimontaria (Bastelberger) Cyclophora ruficiliaria (Herrich-Schaeffer) Cyclophora sp.* [TGEOM001] Ectropis crepuscularia (Dennis et Schiffermueller) 0 2 22 0 187 0 78 0 7 2 5 0 6 0 0 3 1 0 0 3 0 9 1 1 0 8 2 0 0 1 0 9 1 3 0 2 0 4 18 65 0 23 0 25 4 63 7 0 0 34 8 89 0 1 1 1 8 7 1 0 6 1 5 2 3 0 13 16 0 4 13 2 17 43 3 11 0 3 0 4 14 23 2 0 70 0 18 24 8 0 29 11 0 6 0 19 3 0 45 14 Appendix S1 Continuing Order Family Species IVIor. Slov. Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Geometridae a Gracillariidae a Gracillariidae a Gracillariidae a Gracillariidae a Gracillariidae a Lasiocampidae a Lasiocampidae a Lasiocampidae a Lasiocampidae a Limacodidae a Limacodidae a Lycaenidae a Lycaenidae a Lycaenidae a Lymantriidae a Lymantriidae a Lymantriidae Lymantriidae Electrophaes corylata (Thunberg) Ematurga atomaria (Linnaeus) Ennomos autumnarius (Werneburg) Ennomos erosarius (Dennis et Schiffermueller) Ennomos quercinarius (Hufnagel) Epirrita dilutata (Dennis et Schiffermueller) Erannis defoliaria (Clerck) Eupithecia dodoneata Guenee Eupithecia sp.* [TGEOM002] Hemithea aestivaria (Huebner) Hypomecis punctinalis (Scopoli) Hypomecis roborar?a (Dennis et Schiffermueller) Lomaspilis marginata (Linnaeus) Lomographa bimaculata (Fabricius) Lomographa temerata (Dennis et Schiffermueller) Lycia hirtaria (Clerck) Lycia pomonaria (Huebner) Melanchra persicar?ae (Linnaeus) Operophtera brumata (Linnaeus) Operophtera fagata (Scharfenberg) Parectropis similaria (Hufnagel) Per?batodes rhomboidar?us (Dennis et Schiff.) Plagodis dolabrar?a (Linnaeus) Plagodis pulverar?a (Linnaeus) Plemyria rubiginata (Dennis et Schiffermueller) Selenia dentaria (Fabricius) Selenia sp.* [TGEOM003] Selenia tetralunaria (Hufnagel) Tlieria rupicaprar?a (Dennis et Schiffermueller) Unidentified* [TGEOM004] Unidentified* [TGEOM005] Unidentified* [TGEOM006] Unidentified* [TGEOM007] Unidentified* [TGEOM008] Unidentified* [TGEOM009] Unidentified* [TGEOM010] Caloptilia betulicola (Hering) Caloptilia semifascia (Haworth) Caloptilia syringella (Fabricius) Parornix carpinella (Frey) Parornix devoniella (Stainton) Eriogaster catax (Linnaeus) Malacosoma neustria (Linnaeus) Poecilocampa populi (Linnaeus) Trichiura crataegi (Linnaeus) Apoda limacodes (Hufnagel) Heterog?nea asella (Dennis et Schiffermueller) Neozephyrus quercus (Linnaeus) Satyrium acaciae (Fabricius) Satyr?um pruni (Linnaeus) Calateara pudibunda (Linnaeus) Euproctis similis (Fuessly) Lymantria d/'spar (Linnaeus) Orgyia antigua (Linnaeus) 0 1 0 1 1 0 0 1 0 25 9 16 3 30 2 1 7 0 13 7 8 38 0 5 24 0 4 0 0 15 27 7 2 0 1 0 28 496 0 11 2 3 3 0 8 4 0 1 1 0 2 0 2 0 2 0 0 194 1 0 1 0 1 0 3 0 2 0 2 0 2 0 1 0 1 0 4 0 2 0 1 0 0 11 0 1 0 4 0 1 0 19 0 5 0 7 0 8 0 3 3 20 0 8 0 103 4 9 Appendix S1 Continuing Order Family Species IVIor. Slov. Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lepidop Lymantriidae Lymantriidae Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Noctuii Nolidae Nolidae Nolidae Nolidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae Notodontidae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae dae Orgyia recens (Huebner) Parocneria detrita (Esper) Acronicta megacephala (Dennis et Schiffermueller) Acronicta psi (Linnaeus) Acronicta sp. [TNOCT001] Acronicta tridens (Dennis et Schiffermueller) Agroclioia helvola (Linnaeus) Agroclioia litura (Linnaeus) Agroclioia macilenta (Huebner) Allopliyes oxyacantliae (Linnaeus) Ampliipyra pyramidea (Linnaeus) Asteroscopus sphinx (Hufnagel) Atetlimia centrago (Haworth) Braciiionyctia nubeculosa (Esper) Catocala fulminea (Scopoli) Conistra vaccinii (Linnaeus) Cosmia affinis (Linnaeus) Cosmia pyralina (Dennis et Schiffermueller) Cosmia trapezina (Linnaeus) Diciionia convergens (Dennis et Schiffermueller) Diloba caeruleocephala (Linnaeus) Dryobotodes monociiroma (Esper) Egira conspicillaris (Linnaeus) Eupsilia transversa (Hufnagel) ?Herminia grisealis (Dennis et Schiffermueller) Lacanobia oler?cea (Linnaeus) Lithophane consocia (Borkhausen) Lithophane ornitopus (Hufnagel) Mesogona acetosellae (Dennis et Schiffermueller) Minuacia lunaris (Dennis et Schiffermueller) Moma alpium (Osbeck) Orthosia cerasi (Fabricius) Orthosia cruda (Dennis et Schiffermueller) Orthosia gothica (Linnaeus) Orthosia incerta (Hufnagel) Orthosia miniosa (Dennis et Schiffermueller) Orthosia munda (Dennis et Schiffermueller) Unidentified* [TNOCT002] Unidentified* [TNOCT003] Unidentified* [TNOCT004] Unidentified* [TNOCT005] Unidentified* [TNOCT006] Xanthia aurago (Dennis et Schiffermueller) Bena bicolorana (Fuessly) Nola confusalis (Herrich-Schaeffer) Nycteola revayana (Scopoli) Pseudoips prasinanus (Linnaeus) Clostera curtula (Linnaeus) Clostera pigra (Hufnagel) Drymonia dodonaea (Dennis et Schiffermueller) Drymonia querna (Dennis et Schiffermueller) Drymonia ruficornis (Hufnagel) Furcula furcula (Clerck) Notodonta dromedarius (Linnaeus) 0 4 0 1 1 0 0 1 3 0 0 4 0 1 0 1 4 1 0 25 20 42 4 4 3 0 0 1 0 1 18 18 1 0 3 14 67 109 0 4 0 50 0 11 0 1 22 32 3 0 4 0 1 0 0 9 0 2 0 1 0 4 11 25 0 27 9 59 0 27 0 1 0 18 7 0 1 0 1 0 2 0 2 0 1 0 0 9 0 1 0 4 2 12 1 0 4 0 0 1 0 2 1 2 0 1 11 0 10 Appendix S1 Continuing Order Family Species IVIor. Slov. Lepidoptera Notodontidae Lepidoptera Notodontidae Lepidoptera Notodontidae Lepidoptera Notodontidae Lepidoptera Notodontidae Lepidoptera Notodontidae Lepidoptera Nympiialidae Lepidoptera Oecopiioridae Lepidoptera Oecopiioridae Lepidoptera Oecopiioridae Lepidoptera Pantiieidae Lepidoptera Psyciiidae Lepidoptera Psyciiidae Lepidoptera Psyciiidae Lepidoptera Psyciiidae Lepidoptera Pteropiioridae Lepidoptera Pyralidae Lepidoptera Pyralidae Lepidoptera Pyralidae Lepidoptera Pyralidae Lepidoptera Pyralidae Lepidoptera Pyralidae Lepidoptera Roeslerstammiidae Lepidoptera Saturniidae Lepidoptera Sphingidae Lepidoptera Sphingidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Lepidoptera Tortricidae Notodonta ziczac (Linnaeus) Phalera bucephala (Linnaeus) Pterostoma palpinum (Clerck) Ptilodon capucina (Linnaeus) Spatalia argentina (Dennis et Schiffermueller) Thaumetopoea processionea (Linnaeus) Polygonia c-album (Linnaeus) Carcina quercana (Fabricius) Diurnea fagella (Dennis et Schiffermueller) Diurnea lipsiella (Dennis et Schiffermueller) Colocasia coryli (Linnaeus) Apterona helicoidella (Vallot) Proutia betulina (Zeller) Psyche casta (Pallas) Sterrhopterix fusca (Haworth) Emmelina monodactyla (Linnaeus) Agrotera nemoralis (Scopoli) Conobathra repandana (Fabricius) Conobathra tumidana (Dennis et Schiffermueller) Phycita roborella (Dennis et Schiffermueller) Sitochroa verticalis (Linnaeus) Udeasp.MTPYRAOOl] Roeslerstammia erxlebella (Fabricius) Aglia tau (Linnaeus) Laothoe populi (Linnaeus) Mimas tiliae (Linnaeus) Acleris fimbriana (Thunberg) Acleris forssl