SMITHSONIAN CONTRIBUTIONS to ASTROPHYSICS Smithsonian Institution Astrophysical Observatory Volume 9 [Whole Volume] Variable Stars in the Small Magellanic Cloud by Cecilia Payne-Gaposchkin and Sergei Gaposchkin Washington, D.C. Smithsonian Contributions to Astrophysics VOLUME 9 [Whole Volume] VARIABLE STARS IN THE SMALL MAGELLANIC CLOUD by CECILIA PAYNE-GAPOSCHKIN AND SERGEI GAPOSCHKIN SMITHSONIAN INSTITUTION Washington, D.C. 1966 Publications of the Aslrophysical Observatory This series, Smithsonian Contributions to Astrophysics, was inaugurated in 1956 to provide a proper communication for the results of research con- ducted at the Astrophysical Observatory of the Smithsonian Institution. Its purpose is the "increase and diffusion of knowledge" in the field of astro- physics, with particular emphasis on problems of the sun, the earth, and the solar system. Its pages are open to a limited number of papers by other investigators with whom we have common interests. Another series, Annals of the Astrophysical Observatory, was started in 1900 by the Observatory's first director, Samuel P. Langley, and was pub- lished about every 10 years. These quarto volumes, some of which are still available, record the history of the Observatory's researches and activities. The last volume (vol. 7) appeared in 1964. Many technical papers and volumes emanating from the Astrophysical Observatory have appeared in the Smithsonian Miscellaneous Collections. Among these are Smithsonian Physical Tables, Smithsonian Meteorological Tables, and World Weather Records. Additional information concerning these publications may be secured from the Smithsonian Press, Smithsonian Institution, Washington, D.C. FEED L. WHIPPLE, Director, Astrophysical Observatory, Smithsonian Institution. Cambridge, Mass. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington D. C. 20402 - Price $1.50 Contents Introduction 1 The Cepheid variables 2 Periods and light curves 2 Frequency of periods 3 Frequency of apparent magnitudes 3 The period-luminosity relation 4 Test for constancy of period 5 Stars with constant periods 6 Stars with irregular changes of period 6 Secular changes of period 7 Stars with periods less than one day 7 Relation between period and light curve 8 The W Virginis stars 9 The long-period variables 9 The irregular variables 10 General discussion 10 Acknowledgments 17 References 18 Abstract 20 Figures 21 Tables 130 m Variable Stars in the Small Magellanic Cloud Variable Stars in the Small Magellanic Cloud1 Cecilia Payne-Gaposchkin2 and Sergei Gaposchkin3 Introduction Sixty years ago Miss Leavitt (1906) noted that the region of the Small Magellanic Cloud is ex- ceedingly rich in variable stars, and published a list of coordinates and magnitudes for almost a thousand. Later studies of the region by Shapley and his collaborators brought the num- ber of published variables up to 1566. The present paper contains the results of a system- atic study of these stars on the available Harvard plates. Some proved to be duplicates, and 46 more variables were added in the course of the work. Table 1 enumerates the variables studied. Table 2 is a list of the published Harvard variables in the region, and of the newly dis- covered variables, arranged in order of HV number. Successive columns give the HV num- ber, the x and y coordinates (seconds of arc on Miss Leavitt's system), a coded list of refer- ences, and a coded summary of results (see end of table 2). Further notes are given for a few stars. Underlined entries under "Results" are taken from the published references. For HV 809 to 2234 and for HV 11212 to 12184 the first reference is to announcement of discovery without discussion. The other refer- ences cover determinations of periods and mag- nitudes, but no attempt is made to cover all later mention of the stars. Most of the variables 1 This work was carried out under a National Science Foun- dation Contract NSF-G22496. ' Professor of Astronomy, Harvard College Observatory, Cambridge, Mass. * Astronomer, Harvard College Observatory, Cambridge, Mags. from HV 12082 on were discovered on plates made with the 60-inch reflector, and many of these are too faint, or otherwise unsuitable, for study on the Bruce plates. Periods could be derived for about half of these stars, and vari- ability verified for about half of the remainder. Most of the others are not observed to vary ap- preciably on the Bruce plates, and should be studied with larger scale; too few 60-inch plates are available for effective discussion. The stars noted as "not measured" are: the four novae, some stars that lie outside the main body of the Cloud and therefore outside the field studied, a few close doubles, and a few that could not be successfully identified. The photographic material comprises over 500 plates taken with the 24-inch Bruce refrac- tor between 1898 and 1950, and about 30 plates taken with the ADH Baker-Schmidt telescope between 1952 and 1962. A few plates taken with the 8-inch Bache refractor from 1888 onward could be used for the brightest stars. Comparison stars were chosen in the vicinity of each variable, and the brightness was esti- mated in arbitrary steps relative to them. The comparison stars were selected and the step values assigned by Sergei Gaposchkin, who also made a large number of the estimates. The rest of the estimates were made under his direction. The periods were determined by C. Payne- Gaposchkin with the assistance of Barbara Russey. Previously published periods were ex- amined and (as seen from table 3) many were slightly corrected, but only a few were found to be grossly in error. When the period had been determined, the phases and mean light SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS curves were determined for all the measures by means of a program written by E. M. Gaposch- kin for the IBM 7094 computer. Means were formed for each set of ten successive phases. The brightness, which up to this point had been expressed in steps, was then converted into mag- nitudes. The magnitudes were based on the standards used by Arp (1958a, 1958b, 1959a, 1959b, 1960a) in his study of the Small Cloud. Table 3 summarizes the results. Successive columns give the HV number, the x and y co- ordinates, the previously published period (if any), the period found from the present ma- terial, Julian Day of normal maximum, ob- served maximum (M), minimum (m), and in- tegrated mean magnitudes (m), range (.4), mean magnitude reduced to mean intensity ( < m > ) , and the number of positive observa- tions. The number of estimates used was 557,- 624 but about 750,000 were made, since "not- visible" observations do not enter the means, and observations for stars for which no results were obtained are not tabulated. A preliminary study of the period-luminosity relation for the Cepheids showed that all stars in some regions (notably at the ends of the main axis) are systematically faint. Whether the effect is a result of absorption within the Cloud or of background effect on the estimates, it must be eliminated in a study of the true dispersion of the period-luminosity relation. In order to estimate the systematic effect, the field was divided into areas of 10' X10'. The slope of 2.25 log P derived by Arp (1960a) for the B period-luminosity curve was adopted, and the quantity +2.25 log P was computed for each Cepheid. The mean values of this quantity within the areas were then used to de- rive a grid of corrections to the magnitudes. The resulting corrections are given in the last column of table 4. Background effects may play a part in the magnitude deviations thus derived, but absorp- tion within the Small Cloud is probably the major factor. The deviations are negligible in the peripheral regions, and are greatest at the southern end of the axis, and again in a much smaller area at the northern end. They are not largest only in the areas of greatest star den- sity, and indeed suggest that a region of ap- parently low star density on the southern side of the main axis is actually produced by ab- sorption. If the deviations are the result of local absorption, the corrections here derived will reduce the systematic errors, but consider- able accidental errors will occur in regions where the correction is large, and will increase the apparent dispersion of the period-lumi- nosity relation. We shall return to the question in the general discussion. Shapley and Nail (1955, p. 835) noted a simi- lar effect and stated that "on the average, the median magnitudes of the ten long-period Ceph- eids in the wing lie above the mean period- magnitude curve for the Small Cloud . . ., the median magnitudes of the similar variables in the Cloud's nucleus lies below the curve. Per- haps we have here an indication of more than average dust in the main body of the Cloud. . . . But . . . a 'background' effect may con- tribute uncertainty to the photometry." The Cepheid variables PERIODS AND LIGHT CURVES.?Results for the Cepheid variables, arranged in order of period, are summarized in table 4. Successive columns give the HV number, the adopted period in days, its logarithm, maximal magnitude cor- rected for absorption (Mo), minimal magnitude corrected for absorption (m<>), amplitude in magnitudes (A), integrated mean magnitude at mean intensity corrected for absorption (o),a?oin magnitudes, interval from mini- mum to maximum in terms of period (M-m), the skewness(s), Ax and At in magnitudes, and the adopted correction for absorption (dm), (except for foreground stars). The parameters used for describing the light curve are illus- trated in figure 2: Ax and A2 are the amplitudes of the two schematic triangles into which the light curves have been divided; x0 is the inte- grated mean magnitude at mean intensity of the triangle whose amplitude is At, corrected for absorption; and s is the skewness as defined in the caption to figure 2. We note that the quantities (M-m) and s are independent of amplitude; Ax and A2 depend on both ampli- tude and skewness. The tabulated values of period are those that were used in computing the mean light curves; most of them are given to six figures, but only for the shortest periods WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD are they significant to six figures. The actual precision of the periods is discussed in connec- tion with table 10. The mean light curves of the intrinsic pe- riodic variables, arranged in order of period, are shown in figure 7. The magnitudes are those of table 3, unconnected for absorption. Intrinsic variables with periods less than a day are included in table 4 and in the figures, al- though many, as discussed below, are fore- ground stars. The curves that are drawn were the basis of the parameters given in table 4. The error of a plotted point is about iO^OS, and is largest at the faintest magnitudes. Humps in the light curves were drawn with special attention to the uncertainties of the plotted points. FREQUENCY OF PERIODS.?The frequencies of pe- riod and of logarithm of period for 1144 Ceph- eids and 11 stars with periods less than a day are shown in tables 5 and 6, and the data of table 6 are displayed in figure 1. The well-known preponderance of short pe- riods is enhanced by the results of our work, which has almost doubled the number of known Cepheids in the Small Cloud. More Cepheids are in fact now known in that system than in any other galaxy, including our own. The general features of the distribution?the high proportion of short periods and the pro- nounced double maximum?are probably repre- sentative of the Cepheid population of the Small Cloud. Two systematic effects, however, may be present: (1) the shortest periods may be under-represented, and (2) there may be dis- crimination against certain periods. No period was found for 125 stars that were observed to vary (see table 1) ; most of them are faint and vary rapidly. If these stars include the same proportion of Cepheids as the material in table 3, about 114 should be Cepheids. They would probably increase the number of very short pe- riods, and many are likely to belong to the small-range group with (M-m) >0.3. Sec- ondly, periods very near to an integral number of days are difficult to establish, and Cepheids or eclipsing stars with periods near a day (or half a day) may well have been missed. Pos- sibly the deficiency of four-day periods may be a similar spurious effect. The first of these systematic tendencies has probably raised the median period slightly above its true value. The deviations from the period-luminosity rela- tions for the shortest periods (see below) lead to a similar conclusion; namely, the faintest Cepheids are probably under-represented in our results, and these also tend to be the Cepheids of shortest period. The observed median periods for Cepheids with (M-m) less than and greater than 0.3 are 3.1 and 1.8 days, respectively; median values of log P for the same two groups are 0.49 and 0.26. More than half the Cepheids have periods less than three days, in sharp contrast to the galactic sample, as discussed later. The increased prominence of short periods shown by our results is illustrated by a com- parison with the data, based on 670 Cepheids in the Small Cloud, and tabulated by Shapley and Nail (1955). The percentages given by Shap- ley and Nail have baen converted to numbers of stars, and allowances made for six stars not covered by our measures (numbers indicated by asterisks have been diminished by 1, 2, and 3, respectively). We have excluded the 11 stars with periods under a day, since Shapley and Nail tabulated no such stars. We have more than doubled the known Ceph- eids with periods under two days; the propor- tional increase becomes small for the longest periods. Some Cepheids of short period prob- ably remain to be discovered, whereas the lists are more nearly complete for periods over ten days. Of the variables discovered during the present study, over 30 percent have periods under two days, even greater than the 28 per- cent in table 7, again suggesting that further discoveries will enhance the contribution of shorter periods. FREQUENCY OF APPARENT MAGNITUDES.?The frequency of < m > 0 is given in table 8 for 1151 Cepheids (mean magnitude could not be determined for the other four stars). The greatest number are in the magnitude interval 16.4 to 17.2. The decline for fainter magni- tudes is real, but would probably be less abrupt if the material for short periods were more com- plete. Like the period frequency, the magni- tude frequency has a double maximum. Our solution for the period-luminosity relation with SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS the corresponding material would lead to mag- nitudes 17.15 and 16.62 for the two maxima in the frequency of log P (table 6). Table 8 shows maxima near these magnitudes, which suggests that the double feature is real in both cases. THE PERIOD-LUMINOSITY RELATION.?Figure 6 shows the relation of logarithm of period to 0 and x0. Stars with (M-m) greater than 0.3 are shown by circles. The choice of stars with periods less than a day in these diagrams is discussed below. Least-squares solutions for the period-lumi- nosity relation are summarized in table 9. Only stars with periods over a day were included in the solutions, and the three W Virginis stars were omitted. Solution 1 represents all the material, except for a few stars whose periods were determined after it had been made; these stars would not change the results appreciably. It is the most general solution. However, we know that the group of Cepheids with "symmetrical" or "sinusoidal" light curves are systematically brighter than the rest, as discussed by Payne- Gaposchkin and Gaposchkin (1964). These stars are confined to the shorter periods, and their effect is to raise the zero point and de- crease the slope. Again, we consider that the data on the fainter Cepheids are incomplete. If there are more undiscovered faint Cepheids at shorter rather than at longer periods, the effect will again be to raise the zero point and decrease the slope. Solution 2 omits the stars with (M-m) greater than 0.3. Unless the effect of the systematic omission of faint Cepheids is large, this is prob- ably the most representative solution for the stars of the Small Cloud. Solution 3 repre- sents the stars with (M-m) >0.3 that were omitted from solution 2. The zero point is brighter by 0^51 in 0, by 0M8 in x0. The difference in slope between solutions 2 and 3 may not be significant. Figure 6 provides graphical evidence that the period-luminosity relation is not linear, and this effect is not produced by the group of stars with symmetrical light curves. In order to illustrate the departure from linearity, solutions 4 to 7 on table 9 were carried out for different ranges of period. Stars with values of (M-m) >0.3 were not included in these solutions. Solution 4, for periods less than eight days, shows a brighter zero point and a smaller slope than solution 1 (all the material) or solution 2 (all the mate- rial except that for "symmetrical" light curves). It is perhaps affected by incompleteness for faint stars of short period. Solution 5, which excludes periods less than three and greater than eight days, gives a fainter zero point and a greater slope than solution 4. Solutions 6 and 7, which represent stars with periods longer than 8 and 16 days, respectively, show progressively fainter zero points and pro- gressively greater slopes. Comparison of solu- tions 4, 5, 6, and 7 suggests that the zero point is fainter and the slope greater, when the period is longer. The implications of these differences will be discussed later. Solution 8 represents all stars with ampli- tudes greater than 1 ?25; its results are close to those for solution 2. Arp (1960a) has determined period-luminos- ity curves that are strictly comparable to ours, since they are referred to the same photographic standards: Solution Arp (69 stars) Solution 2 ? m > 0 ) Arp, large A (24 stars) Solution 8 ? m > 0 ) Zero point 17.70?0.10 17.63 ?0.01 17.45?0.10 17.58?0.03 Scale -2.23?0.10 -2.13?0.02 -2.25?0.10 -2.12?0.04 The larger value for the scale and the fainter zero point obtained by Arp in each case are to be understood by the fact that his stars were chosen to be uniformly distributed in period, whereas the shorter periods preponderate in our material and dominate our solutions. Actually our solu- tion 6 is the closest to that obtained by Arp. The value ?0.10 given by Arp are "estimated uncer- tainties/' whereas we have tabulated the prob- able errors derived from our least-squares solutions. The distribution of the residuals for the least- squares solutions can now be used to examine the dispersion of the period-luminosity relation. Table 10 assembles the data for solution 2 (0 and x0), solution 5 (0), and solu- WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD tion 8 ( < m > o). Columns 2 through 5 give the number of residuals in intervals of a tenth of a magnitude expressed as percentages for com- parison. The last four columns give the num- bers of residuals algebraically greater than values with increments of a tenth of a mag- nitude, again reduced to percentages for comparison. The distribution of all four sets of residuals is approximately Gaussian. The semi-inter- quartile ranges for all four sets are =0 "22, and they do not differ sensibly; we may therefore regard this value as representative for the dis- persion of the magnitude residuals from the period-luminosity curve. Possible contributors to the dispersion are (1) intrinsic spread of magnitude at a given period; (2) accidental error of magnitudes; (3) dispersion of absorption in the line of sight (we assume that our corrections for absorption have removed systematic effects due to this cause); (4) effect of undetected companions (probably minor); and (5) erroneous periods (probably not numerous). Of these contributors, no. (2) may be expected to show a Gaussian distribu- tion. No. (4) would have a systematic effect, which, if large, would produce a skew distribu- tion winch is not observed; the fact that the residuals from solution 8 (large amplitudes), which can scarcely be affected by unseen com- panions, show a similar distribution to the others indicates that this factor is not important. No. (3) is the most serious obstacle to deriving the true dispersion, for there is no reason to expect it to have a Gaussian distribution, and if our average absorption corrections are of the right order, it may produce some very large residuals. There is no reason to expect that no. (1), the intrinsic spread of magnitude at a given period will be Gaussian, or indeed to predict any form for it. The only statement that can be made at the present stage is that the observed frequency of the residuals is not compatible with a uni- formly filled square distribution. We shall return to this question in the section devoted to discussion. TEST FOR CONSTANCY OF PERIOD.?The material for many stars extends over more than 60 years, and provides a long baseline for the study of possible changes of period. Arp (1960a) has suggested, from a comparison between periods derived by him for 69 stars and the periods pre- viously published for these stars at Harvard, that appreciable secular changes can be detected. An investigation of possible changes of period was therefore undertaken. Times of maximum were discussed for each star chosen; the average interval between first and last maximum was 16,000 days, and about 25 maxima were used for each star. Phases of these maxima were calculated with the period that had been derived, and were expressed in the form: (p = Decimal part of (Observed J.D.- 2,400,000) /P, where y is the phase of maximum and P the period in days. If the adopted period is cor- rect,

the epoch count referred to the first date, and the residuals (O-C) calculated with the periods at the heads of the columns. The first period given is an adopted average. The other pe- riods are those found to represent the maxima over a certain range of epochs; the correspond- ing residuals are underlined. Two periods are given for HV 1553, four for HV 817. For HV 1553 the period was sensibly constant for nearly 900 epochs; for HV 817 the interval is nearer to 200 epochs. The behavior of these stars recalls that of HV 853, in the Large Magellanic Cloud, which lias been shown by Janes (1964) to change pe- riod erratically, swinging back and forth be- tween values that differ by about ten percent, but the proportional changes are much smaller. Tables 34 and 36 give the data for HV 837 and HV 1967, whose periods appear to vary er- ratically. Three trial periods are given to ob- tain the residuals for HV 837, but none of them is valid for an appreciable interval; there is a sharp break between epochs 183 and 265, sug- gesting a shortened period for a very short time. For HV 1967 the adopted period is chosen to give 918 epochs between the first and last normal maximum. Here again it is not pos- sible to represent any interval satisfactorily by a constant period. The number of epochs, counted from the first normal maximum with Arp's period, is given for comparison. It would strain the data too far to represent the maxima in terms of two successive, and differ- ent, secular changes of period, both of which would represent decreases. Secular changes of 'period.?Three stars whose maxima suggest secular changes of pe- riod are shown in tables 37 to 39. The one com- mon to our investigation and Arp's is HV 1695, for which he gave a period of 14*50?.05. The average period for the last tabulated interval is 14^5914, outside the limits of Arp's estimated error; the period is decreasing, as he thought it was. The period of HV 834 is increasing, that of H V 829 decreasing. We note that the values of the parabolic terms for these stars are not the same as those given in table 11. The stars that seemed to have appreciable parabolic terms were chosen for intensified study; additional maxima were obtained for early dates, and normal maxima were derived, instead of the individual observations at maximum used to de- rive the results of table 11. The distribution of changing periods among the stars investigated is as follows: stars irregular secular log P studied change change <1.0 42 0 0 20 2 1 21 2 0 >1.8<2.2 5 0 2 >2.2 1 0 0 It is difficult to discern a pattern in these re- sults. Observable changes are evidently con- fined to the longer periods, although equally large proportional changes would be more eas- ily detected for stars of shorter period, since the change in phase of maximum is propor- tional to the square of the number of elapsed epochs. In the section devoted to discussion we con- clude that the duration of the Cepheid stage is of the order of 108 years (3.6 X106 epochs) for stars with period 100 days. I t seems outside the bounds of possibility that the deduced secular changes of period could persist for this interval. The sporadic occurrence of sensible changes of period among the stars investigated suggests that changes of period may be an evanescent phenomenon, may operate in either direction, and perhaps become progressively more prob- able the longer the period. STARS WITH PERIODS LESS THAN ONE DAY.?Table 3 includes 42 stars with periods under a day. Some of these are certainly RR Lyrae stars of the foreground, but some may be Cloud mem- bers. In particular, it seems likely that some stars with large values of (M-m), nearly sym- metrical light curves, and small ranges, belong to the similar group that has been shown to lie about half a magnitude above the period-lumi- nosity curve defined by the rest of the Cepheids. On the basis of solutions 2 and 3 of table 9 we select the stars whose magnitudes show small deviations from the corresponding period- luminosity relation. On this basis the 11 stars of table 40 may be members of the Small Cloud. 8 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Dartayet and Dessy (1952) published a list of faint variables in the Small Cloud, of which three had periods less than a day, and expressed the opinion that these stars are true members of the system. In a later publication, Dessy (1959) tabulates 11 such stars, two Harvard variables and nine new discoveries. Most of these stars are too faint for effective study on our plates, but they were examined on some of the best plates for comparison with the Cordoba results. The data are given in table 41, which includes four Cordoba variables of longer period. The five stars CV 240, CV 270, CV 216, CV 152, and CV 233 are definitely members of the group of Cepheids with periods under a day; we may include CV 101 and CV 206 which, while variable, could not be analyzed by us be- cause of close companions. We are unable to verify the periods published by Dartayet and Dessy (1952) for CV 277, HV 11174, HV 12089, and CV 106; periods greater than a day are given for HV 11174 and HV 12089 in tables 3 and 4. Shapley (1953) stated that he had not verified the periods given by the Cordoba workers for CV 106, CV 233, and CV 270; we have, however, verified the two latter. The periods for all the stars with periods over a day were verified. When considered in the same way as the group of stars in table 40, six of the short-period Ceph- eids may be regarded as members of the Cloud; the seventh (CV 152) would, on this criterion, be a foreground star. Thirty-one stars in table 4 and one in table 41 are to be considered as foreground RR Lyrae stars. The two variables HV 810 and HV 814 are known to be associated with the globular cluster 47 Tucanae; HV 809, of simi- lar brightness but further from the cluster, may also be associated with it. Variable no. 12 of NGC 362 is a known member of that cluster. There remain 28 possible field RR Lyrae stars. Their distribution in apparent magnitude ( < m > , since absorption should not affect fore- ground stars) is as follows: [15m ]16m, 5; [16m 117", 19; [I7m,4. The area covered by our plates is about 43 square degrees; the galactic latitude is about 45?. A rough comparison may be made with the diagram given by Kinman and Wirtanen (1963) for the logarithm of the number of RR Lyrae stars per unit magnitude in 80 square degrees, reduced to the galactic pole. Our numbers correspond to 52 stars brighter than magnitude 15 in 80 square degrees; Kinman and Wirtanen's diagram implies about 35 RR Lyrae stars brighter than magnitude 17 toward the galactic pole. The numbers are not incom- patible. Seventeen of the variables of table 3 have asymmetric light curves; ten have sym- metrical light curves; some of the latter may belong to the disk population. The tentative separation of members and nonmembers must be examined by a comparison of colors, proper motions, and, if available, ra- dial velocities. The distribution of the stars of table 11 and the relevant stars of table 12 over the face of the Small Cloud conforms closely to that of stars with periods between one and two days. Some of the brighter stars with periods less than a day also fall within the ob- vious limits of the Cloud surface, although many are outside them. RELATION BETWEEN PERIOD AND LIGHT CURVE.? The relation between form of light curve and period has been discussed elsewhere by Payne- Gaposchkin and Gaposchkin (1964), and we confine ourselves to a summary. Hertzsprung (1926) pointed out that galactic Cepheids display a progression of form of light curve with period. We find a similar pro- gression among the Cepheids of the Small Cloud. The parameters used to describe the light curve have already been defined (fig. 2). The symmetrical light curves of small range are separated from the rest on the basis of the bi- modal distribution of (M-m). Stars with (M-m) greater than 0.30 are assigned to the former group; the zero point of their period- luminosity relation is brighter by about half a magnitude than that for the remainder of the stars (table 9). In the paper just cited it is shown that the parameters A, (M-m), s, At, A21 the rate of brightening (magnitudes per day), and Arp's "rate of rise" (phase interval for a rise of one magnitude) change systematically with period. The changes are reflected in progressive changes WHOLE VOLUME VARIABLE STABS IN SMALL MAGELLANIC CLOUD 9 in the form of the light curve, similar to those described by Hertzsprung for galactic Cepheids. The parameters of the light curve are also re- lated to deviations from the mean period-lumi- nosity curve. For periods less than ten days, the faintest stars of given period have the small- est amplitudes, as already noted by Arp (1960a). For stars with log P less than 0.6, skewness and (M-m) are not sensibly related to luminosity at a given period. For log P be- tween 0.6 and 0.9, the least luminous stars of given period have the smallest skewness and the largest (M-m). Therefore, the lines of constant skewness (which define light curves of similar shape) make an angle with the average period- luminosity curve (fig. 3). Thus the least lumi- nous stars of given period have light curves that resemble those of more luminous stars of shorter period. Attention has already been called by Payne-Gaposchkin (1959,1961) to the slant of the domains of similar light curves in the period-luminosity plane. T H E W VIRGINIS STARS.?Three stars in table 4 are marked as W Virginis stars. They fall far below the period-luminosity relation, their light curves are characteristic of the class, and they show unusually great scatter of the magnitudes about the mean curve. Data are summarized in table 42. The column headed dm gives the de- viation from solution 7 for the period-lumi- nosity curve. The mean of the three values places the stars 2?01 from the curve for the other Cepheids. We note that Baade and Swope (1963) find that four "population I I " variables in Messier 31 fall photographically 2.00 magnitudes below the period-luminosity relation. The period of ld166 quoted for HV 12901 in table 3 was an unpublished Harvard estimate. No period has previously been published for HV 1828. Although HV 206 is very close to the globular cluster NGC 362, it is regarded by Sawyer (1955) as probably a member of the Small Cloud, together with the nearby HV 212 and HV 214. Sawyer (1931, p. 6) noted "it is impossible to tell on the basis of the infrequent early observations [of HV 206] whether the period is changing or whether it actually has more irregularities than the later series show." This remark, and the form of the light curve, are in harmony with the behavior of a "popula- tion I I " variable. The star discussed by Tifft (1963) as a popu- lation I I variable near NGC 121 in the halo of the Small Cloud has a period of 1.430 days; Tifft places its < B > magnitude 1?2 below the period-luminosity curve; the deviation from the line defined by our solution 2 (table 9) is +1?1. It certainly lies outside the domain of the nor- mal Cepheids. The long-period variables Table 43 gives data for 24 long-period variables, of which 23 are probably members of the Cloud. In the foreground is HV 833 (and also HV 860 and HV 864, outside our field and not meas- ured). Eleven (marked with asterisks) were listed as long-period variables and members of the Cloud by Shapley and Nail (1951b); five (marked with two asterisks) were described by them as irregular or semiregular. The stars HV 1644, HV 1963, and HV 11401, though listed here with the long-period variables, are less reg- ular in behavior than the rest, and should per- haps be put with the semiregular variables of the next section. The median period is over 400 days, and there is a marked relation between period and bright- ness. For a period of 700 days the maximal magnitude is nearly as bright as 13, and at un- der 300 days it falls almost to magnitude 17. The progression of brightness with period is borne out by three variables (not studied by us) discovered and measured by Dartayet and Dessy (1952). Maximal magnitudes for CV 7, CV 12, and CV 37 (periods 279,200:, and 245 days, respectively) are given as 17.5, 17.5, and 17.1 on the "revised" Harvard scale; on the scale used by us they would be at least half a magnitude fainter. Three stars, all with periods under 300 days, are thus much fainter at maximum than the 17th magnitude. Galactic long-period variables are not known to display a period-luminosity relation; the faintest long-period variables in the Small Cloud seem to be comparable to the brightest galactic specimens. 10 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS The Irregular Variables Table 44 gives the data for 61 irregular vari- ables, of which 21 (marked with asterisks) were designated as irregular or semiregular by Shap- ley and Nail (1951b). All are probably mem- bers of the Small Cloud. The distribution of apparent magnitude at maximum is as follows: [12 ]13, 4; [13 ]14, 9; [14 ]15, 14; [15, 14; [15 ]16, 12; [16 ]17, 21; [17, 1. General Discussion The period-luminosity curve was first estab- lished by studies of the Magellanic Clouds, and the Small Cloud still remains the major source of data for this important relationship. There is a growing conviction that real differences of slope occur in different systems. We have ex- pressed the belief that the relationship in the Small Cloud is not linear. I t is clearly im- portant to examine the assumptions that underlie the specification of a period-luminosity relation, and to define such a relation without ambiguity. If differences of slope exist, it is meaningless to express the zero point as the magnitude at which an extrapolated linear relation reaches zero in log P, corresponding to a period of 1.00 day. No known stellar system contains many Cepheids at this period, and their scarcity in our own galaxy is notorious. To specifiy the re- lation it would be better to define the zero point by the magnitude attained by log P in the middle of the range of periods used?perhaps at the median value. The period-luminosity law would then have the form: m=m0 - x log (P/Pmed). The same procedure could be used when, as in table 10, the relation is found to differ over dif- ferent ranges of period. Theoretical or semitheoretical period-lumin- osity curves as given, for example, by Cox and Whitney (1958) and by Cox (1959) suggest that both zero point and slope can be expected to differ for stars that differ in composition. On the other hand, stars of different ages may very well differ considerably in composition, especially in systems where star production has been active or intermittent. There is no reason to assume that all systems have been alike in history. The periods of the Cepheids in the Small Cloud range from about a day to over 200 days, and their brightneas from fainter than the 17th to brighter than the 12th magnitude. The bright Cepheids of longest period must l)e very young compared to the faintest, even though the mass-luminosity relation may differ with possible differences of composition. Cepheids of the same age can occupy only a very limited section of the period-luminosity curve. If the stellar system in which they (xvur has been an "active" one, so that the youngest stars have undergone appreciable enrichment by heavy elements, the Cepheids of longest period will differ physically from the older, fainter Cepheids. The sections of the |>eriod-luminos- ity curve that the two groups of stars define will not necessarily be comparable. If there are local differencas of composition, even Cepheids of the same period may not be physically iden- tical, though they may be coeval. It would not therefore be surprising if systems that have evi- dently had different histories (e.g., Messier 31, the Large Cloud, the Small Cloud, and IC 1613) displayed period-luminosity curves that dif- fered in zero point, slope, dispersion, and lin- earity. In fact, the idea of a period-luminosity curve must be abandoned. On the basis of the known Cepheids in galac- tic clusters, an adopted mass-luminosity rela- tion for classical Cepheids, and an age of 75 million years for a five-day Cepheid, Young (1961) has derived the following formula for the age of a Cepheid, T7, in millions of years: log 7*= -0.714 log/>+2.57, where T is the interval since the star first reached the main sequence. Young considers that the age may be uncertain by a factor of two (or log T by ?0.3). On this basis the ages of the Cepheids of the Small Cloud range from about 4X108 years to about ten million years. The method used by Young assumes that the age of a Cepheid is a constant fraction of the age of the parent main sequence star, that the evolutionary tracks do not cross, and that the change in bolometric magnitude between the main sequence and the Cepheid region is the same for all stars (i.e., that the evolutionary WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 11 tracks have the same slope in the bolometric HR plane). A very rough test of the first assumption may be made by comparing the observed distribution of the luminosities of Cepheids (table 8) with the counts of stars in the Small Cloud published by de Vaucouleurs (1955). He estimates that there are 10,000 stars in the system brighter than 16m0 (old Harvard scale), and about 500 brighter than 14m3. An approximate reduc- tion to the scale used in the present paper changes the fainter limit to 16m45; the brighter limit was verified photoelectrically by de Vaucouleurs. Our tables show 464 Cepheids brighter than 16m45 and 22 brighter than 14m3, or 4.6 percent and 4.4 percent, respec- tively, of the total counts. From Young's formula and the period-lumi- nosity relation, the Cepheids brighter than 14m3 and 16m45 were formed, respectively, less than 3.5 X 107 and less than 1.61 X108 years ago. If all stars spend the same interval as Cepheids, the observed percentages should be nearly in the ratio of these times. If, on the other hand, all stars spend the same fraction of their lives as Cepheids, the percentages should be nearly equal, which they are. We conclude that the data are consistent with the second supposition, the one adopted by Young. The difference be- tween the two percentages does not exceed the uncertainty introduced by the approximate cor- rection applied to the scale of magnitudes. The true value of the percentage must be somewhat greater than 4.6, since our list of Cepheids down to 16m45 is certainly not com- plete. If we estimate that the number should be increased by ten percent, it would follow that of the stars brighter than a given magni- tude in the Small Cloud about five percent are Cepheids. The counts of stars by de Vaucouleurs do not, however, represent the luminosity function of the main sequence stars that can become Cepheids; they include stars of all colors and stages of evolution. Unless the existing color- magnitude diagrams are freed of foreground stars, it is difficult to estimate the correction that should be made to our percentages in order to obtain a figure for the actual duration of the Cepheid stage. 797-819 O--66 2 The composite color-magnitude diagram given by Arp (1961) shows stars brighter than the 16th magnitude distributed rather uni- formly in (B-V) from -0.4 to +1.6. If these diagrams were taken as representative of the population of the Cloud as a whole, if the Cepheid gap has a width in (B-V) of 0^3 as suggested by Arp (1960a), and if a star moved uniformly and horizontally in the color- luminosity plane, the correcting factor would be about 2.0/0.3*?6.7. However, this factor is certainly too large, even if a star moves uni- formly across the plane. Westerlund (1964) has shown that, at least in the wing, there are few stars of intermediate color, and while the true color-magnitude arrays probably differ in different regions it is likely that when they have been cleared of foreground stars, as was done by Woolley (1963) for the Large Cloud, many stars of intermediate color could be eliminated. A rough estimate suggests that the correcting factor should be about three, i.e., that about half the stars enumerated by de Vaucouleurs (1955) (after statistical correction for fore- ground) are still on the main sequence side of the Cepheid gap. From the above rough estimate we expect that the Cepheid stage occupies about 15 per- cent of the previous lifetime of a star that be- comes a Cepheid. The duration thus estimated ranges from 5.5 X107 years for a period of a day through 1.1 X107 years at ten days, and 2.1 X106 years at 100 days. An attempt was made by Jaschek and Rin- guelet (1959) to estimate the duration of the Cepheid stage for galactic Cepheids. By com- paring an estimated number of Cepheids in the Galaxy with an estimated number of parent main-sequence stars, they arrived, on roughly similar lines to the preceding, at an estimate of 2.5 X106 years for the mean life of a Cepheid. They recognized that the lifetime of a Cepheid will be dependent on its brightness, but made no allowance for the factor. From their esti- mated numbers, the mean life of a Cepheid = {(No. of Cepheids)/(No. of B stars)} x (Mean life of a B star) = {(3X104)/(1.8Xl06)}X(1.5X108)=2.5X106 years. All the data used are estimates and refer to large groups of stars, and it is difficult 12 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS to find a basis of comparison with our data. We may perhaps consider that the "mean life- time" refers to a galactic Cepheid of median period, i.e., about five days. The duration of the Cepheid stage for such a star in the Small Cloud would be 1.8 X107 years, differing by an order of magnitude from the result of Jaschek and Ringuelet. The difference is simply the result of a difference in the ratio of the adopted number of Cepheids to the adopted number of parent B stars: 1.7 percent for the Galaxy, 15 percent for the Small Cloud. In the Small Cloud we are on surer ground; the deduced ratio may be too large, but it can scarcely be smaller than five percent, which still differs sensibly from the number obtained for the Galaxy. The number of galactic Cepheids may be greater than 104, as estimated by Parenago (1953), but it is not likely to be as great as 105. Both the numbers of Cepheids and of B stars in the Galaxy certainly differ with location, and perhaps it is not possible to choose a significant average figure. There re- mains the possibility that the lifetime of a Small Cloud Cepheid is a greater fraction of its age than that of a galactic Cepheid. In his discus- sion of the luminosity function of the Small Cloud, Arp (1961, p. 818) suggests that "it may . . . be that the evolution of the initial main sequence is slower and that the evolution- ary depletion of the initial main sequence is less in the Cloud." If this were so, the formula given by Young (1961) would be inapplicable to the Cepheids of the Small Cloud, and all the ages would be multiplied by a factor. How- ever, unless the relative rates of development from the main sequence and across the Cepheid gap were also different from one another, the fraction of its lifetime occupied by a star's Cepheid stage would not be affected, and the discrepancy would still remain. A group of strictly coeval Cepheids would show some dispersion in period because of the duration of the Cepheid stage. An idea of this dispersion can be obtained from the group of Cepheids in NGC 1866 of the Large Cloud, de- scribed by Shapley and Nail (1951a). Exclud- ing the 12-day Cepheid HV 12186, the ratio of the largest to smallest period is 5.08/2.63 = 1.93; for stars within 10' of the cluster center it is 3.52/2.50 = 1.41. If we assume that the Ceph- eids of shortest period in the cluster have just begun to vary, while those of longest period are at the end of their careers, and that all are strictly coeval, we can use Young's formula to find the duration of the Cepheid stage from the difference in their ages. For period 5d08 the interval is 8X107 years, or 52 percent of the total age; for period 3d52 (stars within 10' of the center) the corresponding figures are 4 X107 years and 26 percent. But even within NGC 1866 the stars may not be strictly coeval. Herbig (1962) has pointed out the possibility that the members of some star clusters may have a considerable "spread- in-ages." But with our present data it is diffi- cult to know whether the necessary conditions exist in NGC 1866. If they do, both percent- ages obtained above are too large; the second is probably nearer to the truth, as it applies to the central region of the cluster. It should be noted that a group of coeval Cepheids will not have the same mean period- luminosity relation as a group of Cepheids with a variety of ages. The brightness probably de- clines as the star crosses the Cepheid gap as illustrated, for example, by Arp (1960b). Therefore the younger, longer-period stars will at any one time have moved further into the gap than those that have just begun to vary, and will therefore be systematically faint. The result will be to diminish the slope of the period- luminosity curve appreciably for a group of strictly coeval stars. The extreme range in log P represented by the stars used above in con- sidering NGC 1866 is about 0.3; over this inter- val the slope could be reduced by x log (Pi/Pz) ?dm, where x is the slope of the mean period-luminosity curve, Px and P2 the largest and smallest periods represented, and dm the width of the period-luminosity domain in mag- nitudes. Adopting #=2.13 from table 9, {PJ P2) = 1.93 for NGC 1866, and dm=0?62, we find, for the difference in magnitude over this period interval, 0m61?0m62=?0?01; the slope has disappeared, and the period-lumi- nosity curve is horizontal. The overall period- luminosity relation for a system in which star production has been steady could accord- ingly differ from that for a system in which star WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 13 production has proceeded in short bursts of limited duration. We have concluded that the available data are not inconsistent with the assumption that a star spends roughly a constant fraction of its time as a Cepheid. On this assumption the ratio of the number of Cepheids of a given age to that age will give a measure of the past rate of production of stars that are now Cepheids. The data are given in table 45; values of N are deduced from table 8. The values of N/T suggest that from 5X108 to 3 X 10" years ago the production was small and roughly uniform, that it began to increase thereafter, and rose until about 1.6X107 years ago, since when it has again been roughly uni- form and much greater than before. These con- clusions are similar to those reached by Arp (1960b, p. 114) from a study of color-magni- tude arrays for Small Cloud clusters: "Initial star formation in the Small Cloud was very, very small and . . . recently it has come up to a very large amount." Arp's "initial star forma- tion" refers, of course, to the genesis of the glob- ular clusters, much earlier than the earliest date in table 45. None of the stars now investigated belongs to this early epoch, about 109 years ago, but the faint globular clusters and the field RE Lyrae stars studied by Thackeray and Wesselink (1953) and by Thackeray (1958) attest to it. The rates of star formation within different time intervals given in table 45 refer, of course, to stars that differ in average luminosity, mass, and probably composition. Unless the time- dependence of the luminosity function (or mass function) and of the composition is known, these data can at best suggest past trends in star production. Wo now explore the relationship of Cepheids of different periods, and hence different ages, to other features of the system. Such features are the bright blue supergiants and the associated H I I regions, the emission-line stars, the glob- ular clusters, the blue or "open" clusters, the H I regions, and the variable stars of other types. A list of the brighter stars in the Small Cloud is given by Feast et al. (1960); their data are supplemented by Buscombe and Kennedy (1962). Emission-line stars have been tabu- lated by Henize (1956) and by Lindsay (1956). A special table of supergiant stars in the "wing" region is given by Westerlund et al. (1963). The distribution of these stars is shown in figure 4. Emission nebulosities are included in figure 4 on the basis of the tabulation of Westerlund and Henize (1963), based on Henize (1956) and Lindsay (1961). Compare also the list of Nail et al. (1953) and one outlying nebulosity noted by Westerlund and Henize (1963). These neb- ulosities define the regions of gas, which are clearly concentrated in the main axis and wing region. The distribution is even more strik- ingly shown by the direct picture of the H I I regions obtained by Rodgers (1959), the com- posite photograph reproduced by Johnson (1961), and the picture obtained by Courtes (1964) in the region of 6570A with a pass band of 10A. Another structural picture can be obtained from the clusters of the Small Cloud. We make use of the catalog given by Kron (1956) because it is the most uniform and permits a separation of the globular from the "open" clusters. The latter are shown in figure 4, since they represent a similar (though not necessarily identical) population. Three categories of "open" clus- ters are shown; those with bright blue stars, designated + + by Kron, those with blue stars, designated + , and those simply designated as B (blue). Many of these clusters, in all three categories, are noted as associated with emis- sion. Figure 4 shows the distribution over the face of the Cloud of clusters designated as "globular," or "globular?" by Kron. A few of the clusters in his catalog were not included in figure 4 for lack of the relevant data. Most of these clusters have been tabulated by Shapley and Wilson (1925), and many of them also by Lindsay (1958); it is difficult to assign the ad- ditional clusters of these three papers to one or another of the curves in figure 4. A rather similar structural picture emerges from the star counts made by de Vaucouleurs (1955) down to 14m3 and 16m0 photographic (contemporary Harvard scale, checked photo- electrically above 14m5). His equidensity con_ tours to the brighter limit resemble the distri- bution shown in figure 6. Those to the fainter limit, while still showing the same distribution 14 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS as a central core, tend toward a smoother ellip- tical distribution at the edges, which is more nearly like the "elliptical shape" shown in the infrared photograph reproduced by Johnson (1961). These equidensity contours based on counts of stars may be compared with the results of photoelectric surface photometry obtained by Elsasser (1958). His isophotes show the same inner structure, which is reflected in his equal- color contours. Especially notable is the simi- larity of Elsasser's isophotes to the equigradient contours of de Vaucouleurs (1955); both show an isolated "bright" area near O^ O?, -74?40'. A strong similarity with both is displayed by the isophotes for the 21-cm line given by Hind- man (1964), extending even to the isolated area just mentioned. These data have a direct bearing on the ques- tion of absorption within the Small Cloud. Shapley (1951, p. 137) regarded the Cloud as "essentially transparent," although he stated that "interstellar absorption in the inner section of the Cloud of two- or three-tenths of a magnitude is not out of the question." Wes- selink (1961a) on the other hand concluded from galaxy counts that the Small Cloud has a "normal dust content" and that local absorp- tions up to more than a magnitude may be pres- ent; he further concluded (1961b) that such a dust content is not incompatible with other evi- dence, such as the relatively small color excesses found by Feast et al. (1960). Walker's study (1963) of the interstellar feature at A. 4430 in stars of the Small Cloud may be similarly in- terpreted. Feast (1964) shows that the Rad- cliffe spectroscopic results give clear indications of reddening in both Clouds, corresponding to total absorptions of about one-third of a mag- nitude, and points out that the interstellar lines found in the spectra of members of both Clouds show both galactic and Cloud components. Kron and Mayall (1960) concluded that some Cloud objects are locally reddened and obscured. The most convincing suggestion that sensible absorptions must be allowed for comes, how- ever, from Hindman's (1964) 21-cm contours. By analogy with our own Galaxy we should ex- pect that there would be an association of dust with hydrogen gas, and that regions of greatest absorption would be in the same locations as regions of greatest gas density. A comparison of our derived absorptions (which were deter- mined empirically before the appearance of Hindman's paper) with his contours shows a striking general similarity, our greatest absorp- tion corrections coinciding with the areas of greatest hydrogen intensity. The immediate conclusion might be that the deduced absorp- tions are real, and not a systematic observa- tional effect. However, it is still possible that the magnitudes are systematically affected in regions of the highest star density, which (as a comparison with Blsasser's (1058) isophotes shows) also agree in a striking fashion with the 21-ein contours. The problem could l>e re- solved by determination of accurate color ex- cesses, but we have no material for an attack on this extremely difficult problem. We therefore present our absorption corrections as empirical and provisional, but express the belief that they are real, at least to a large extent. The bright B and A stars, the emission-line stars, the "open" clusters, the bright nebulosi- ties, the star counts, the surface photometry, and the neutral hydrogen all concur in marking out a region similar to the "Population I arm" sketched by Johnson (1961). We may con- clude that this limited portion of the Cloud con- tains most of the potential star-building ma- terial at the present time, and has been the scene of the formation of the youngest members of the system. The smooth elliptical distribution seen on all long-exposure photographs, and em- phasized in Johnson's infrared photograph, may be regarded as the volume within which the older stars of the system were formed; it also contains the globular clusters, the oldest observable members of all. The wing region is of special interest. I t was pointed out by Shapley (1940) that this ex- tension points in the direction of the Large Cloud. Shapley and Nail (1955) called atten- tion to the fact that many long-period Oepheids are found in the region, but none of short period, and suggested that the "wing" may be a "special entity." The exceptional character of the wing was emphasized by Westerlund (1961), who found the region of NGC 456,460, WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 15 and 465 to consist of a population of young blue stars and I I I I regions superimposed on a weak Population II . This finding was extended by Westerlund (1963) and by Westerlund et al. (1963) to include the whole wing, regarded as having a common evolutionary history; they assigned an age of less than 107 years on the basis of eight blue supergiants. A color-magni- tude diagram for the region of NGC 602 is given by Westerlund (1964), who suggests that the region contains a mass of H = 2X 105O, the stars a mass of 104O. De Vaucouleurs (1954) has attributed the wing to the tidal action of the Ivarge Cloud. Figure 4 shows the distribution over the face of the Cloud for Cepheids within 11 intervals in log P. The intervals of age, derived from Young's formula, are given in the legend. The following points should be noted. 1. The distribution for stars of longest pe- riod conforms most closely to the distribution of the bright stars, emission stars, nebulosity, "open" clusters, and neutral hydrogen. 2. The area covered by the variable stars grows progressively larger for shorter periods and finally approaches the elliptical distribu- tion shown in the infrared photograph. 3. The Cepheids with period less than a day that we consider (on the basis of luminosity) to be members of the Cloud occupy an area similar to that for stars with periods between one and two days. Many of the brighter "non- members" lie outside these boundaries. 4. The three W Virginis stars lie within the elliptical area, but they are not concentrated as are the normal Cepheids of similar period. 5. The Cepheids in the wing area are all of period greater than about seven days (corre- sponding to an age of less than 108 years) and most of them have periods greater than 15 days (age less than 5.5 X107 years). None, however, has a period over 35 days (corresponding to an age of 3 X107 years). Thus on the basis of the Cepheids we deduce an age at least three times as great as that assigned by Westerlund et al. (1963) to the wing. This is not far outside the uncertainty assigned by Young to his formula. Probably, however, the wing was in process of formation for an interval of about 5 X107 years, and the Cepheids are rather older than the blue supergiants. Ishida (1961) has called attention to some of the same tendencies on the basis of the data previously published at Harvard for the Ceph- eids then known. Arp (1959b, p. 258) stated that "the region of star formation has been displaced nonconcentrically" on the basis of his studies of clusters of the Small Cloud; our analysis of the distribution of Cepheids of dif- ferent periods substantiates his conclusion. His result, that the ages of star clusters in the Cloud span a large interval of time, is also in harmony with our conclusions from the distri- bution of the Cepheids. Rodgers (1959, p. 49) described the Small Cloud as "a highly distorted one-arm spiral structure," and Johnson (1961) suggested that the second arm is viewed lengthwise. There is in fact little evidence of a second arm distinct from the main axis, but we note that HV 817, a long-period Cepheid that is both bright and exceptionally blue, lies in the direction in which a second arm might be expected, if it were sym- metrically situated. If the Large Cloud has played a part in the production of the wing, the Small Cloud does not seem to have had a recognizable reciprocal effect; no evidence now exists of a similar wing extending from the Large Cloud in the direc- tion of the Small, though a wing extending from the Large Cloud toward the Galaxy has been suggested by de Vaucouleurs (1954). Our present knowledge (admittedly incomplete) does not indicate that the period frequency in the Large Cloud is at all like that in the Small Cloud. Shapley and McKibben (1940) found a median period of 4d42 for all known Ceph- eids in the Large Cloud, as against 3d75 and 2d70 for the body of the Small Cloud and its "border" regions, respectively. The data given by Shapley and Nail (1955) lead to median pe- riods of 3d25 and 4d35 respectively, for the Small and Large Clouds, and the median period from our own data for the Small Cloud is less than three days. The median period for galac- tic Cepheids brighter than the 10th apparent magnitude, as deduced by Shapley and McKib- ben from contemporary material, is over six days. Although the last figure is obviously 16 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS subject to observational selection, it would be difficult to reconcile the observed differences, and we regard them as real, though quantita- tively uncertain; the Cepheid population of the Large Cloud is intermediate between those of the Small Cloud and the Galaxy. Reasoning similar to that used for the Small Cloud would bring us to the conclusion that ac- tive star formation, leading to the formation of the contemporary Cepheids, began more re- cently in the Large Cloud than in the Small. We note that Hodge (1959) concluded from his study of the star clusters in the Large Cloud that there have been two main epochs of star formation in that system, one about 109 years ago, another about 2X10T years ago. The median period 4d35 given above would corre spond, on Young's formula, to an age of 1.3 X108 years. The interval 2X107 years would cor- respond to Cepheids with periods of 60 days; actually the known periods for the Large Cloud show a secondary maximum between 20 and 50 days. Speculation about the history of Cepheid formation in the Large Cloud must clearly await a more complete study of all the variable stars in that system, of their distribution across its face, and of their relationship to its struc- tural features. We now examine the bearing of our data on the history of a Cepheid as it passes through the variability domain. We regard the follow- ing as having been established. 1. A relation exists between logarithm of period and luminosity, not necessarily linear. 2. The period-luminosity relation has an appreciable dispersion in luminosity at any one period, and in log P at any one luminosity. Arp (1960a) obtained standard deviations of ?0m28 and ?(T15 for all 69 stars and for stars of large amplitude, respectively, at any one period. We obtain a standard deviation of ?0m31 from solution 2, table 9. When con- verted into log P by means of the relevant slopes of the period-luminosity relation, we find stand- ard deviations of ?0.63 and ?0.34 in log P for Arp's two samples, and ?0.66 from our own. 3. Does a Cepheid develop with constant period across the gap? This conclusion was drawn by Arp (1960a) from his studies of clus- ters in the Small Cloud. We note, however, that even if the duration of the Cepheid stage is 15 percent of the total age of the Cepheid, and if the Cepheid developed during this inter- val at constant brightness and increased its period by a factor of four, the corresponding secular change of period would still be too small to be detected from existing material, and there- fore our failure to establish secular changes of period neither strengthens nor weakens Arp's conclusion. 4. The width of the Cepheid gap in (B - V) is about O^, as deduced by Arp (1960a); the star develops with increasing (B-V). It should accordingly grow progressively fainter even in F, and more so in /?, and hence photographically (since constant period implies constant size un- less there is mass loss, for which we have no evidence). Thus the stars at the upj>er edge of the period-luminosity domain should be the youngest of a given period, those at the lower edge the oldest, if the period remains constant. The changing properties of a star between the upper and lower limits of the period-lumi- nosity domain therefore mirror the changes that take place as a Cepheid develops. Arp (1960b, p. 101) has argued that "the Cepheids with the smaller amplitudes [come] from the edges of the gap where their luminosity for that period is either much higher or much lower than for the same period in the center of the gap." The data derived by Payne-Gaposchkin and Ga- poschkin (1964) from the present material are in harmony with this statement; the mean amplitude is somewhat smaller at the upper edge of the period-luminosity domain than near the middle of it, and considerably smaller at the lower edge. Furthermore, the skewness, s, reaches its highest value near the middle of the domain, and is smallest at the lower edge. The skewness of the light curve is presumably a measure of the extent to which the pulsation is "driven," and shows how this factor affects the behavior of the star as it crosses the gap. We might expect that the rate of progress of the star across the gap would be indicated by the frequency distribution of the amplitudes. Table 46 presents the data for all stars; those with sinusoidal curves are tabulated separately. As maximum amplitude varies with period, the data for a limited range of period (2* to 3d) are WHOLE VOLUME VARIABLE STABS IN SMALL MAGELLANIC CLOUD 17 added for comparison. We note that the amplitudes are well determined, since system- atic errors in the magnitudes and uncertainties in the absorption corrections can scarcely affect them. If anything, the number of small ampli- tudes would be increased by the presence of unresolved companions. Median amplitude for all the stars with (M-m) <0.3 is about lml, and this is true also for the sample with periods between two and three days; for the sinusoidal curves it is about 0a&. All three distributions are approximately symmetrical about the median; very large and very small amplitudes are equally uncommon. Small amplitudes must be depleted by obser- vational selection, and it is difficult to evaluate the corrections that should be made to allow for this effect. From our experience with the ma- terial we should have estimated that all stars with amplitudes over about 0m75 would have an equal chance of discovery, and this is certainly true for amplitudes of lm0, where the numbers have already begun to fall off. If stars crossed the gap at a uniform rate and if their amplitudes changed steadily, we should expect a large excess of small amplitudes, but it is difficult to p.void the impression that there is, on the contrary, a deficiency of amplitudes between lm0 and 0m75. We might conclude that (contrary to our belief) observational selection has cut down the numbers of dis- covered stars with amplitudes less than lml. In that case there would be more undiscovered Cepheids below this limit than are at present known. However, we maintain that our data are correct in showing a maximum frequency at an intermediate amplitude. In that case the amplitude does not change steadily as the star crosses the gap, and/or maximal amplitude is not the same for all stars (not even for all stars of the same period). If the dying away of amplitude is a damping phenomenon, the amplitude itself, which is a logarithmic quantity, is the correct measure of the decay of the pulsation. If on the other hand we transform the amplitudes into inten- sity ratios, we encounter the same problem, though in less exaggerated form. The defi- ciency of low-intensity ratios might be referred to incompleteness (it sets in at about / / /0=2.25, corresponding to an amplitude of about 0?8). However, the number of large-intensity ratios now seems excessive. We should again suspect that maximal amplitude differs from star to star. We note that the median amplitude for the sinusoidal stars is 0m6, and if selection has al- ready become a serious factor in discovery at 0m8, these stars must be extremely numerous; perhaps as numerous as the "normal" Cepheids. The discussion in the present paper is limited to empirical considerations. Comparison with current theoretical work is postponed to a later communication. Acknowledgments The measurements were made under the super- vision of Sergei Gaposchkin, by Alison S. Brooks, Karena Brooks, Raymond Craig Ches- ter, Judd S. Conway, Amy T. Doherty, Louise A. Doherty, Elizabeth D. Dole, Jay A. Frogel, Judith H. Haller, Kristel Fox Heinemann, Kenneth Janes, Adriane Aldrich Kalnajs, Ste- ven Kilston, Mary C. Kopko, Beatrice Koret- sky, Barbara Russey, Ruth Ann Spivak, and Pamela G. Webb. The program for the study of period changes was written by Barbara Russey and William Russey; that for the least-squares solutions, by Barbara Russey and Peter Gaposchkin. The diagrams of the light curves have been drawn by John and Katherine Haramundanis. We are greatly indebted to E. M. Gaposch- kin, who wrote the program for the reduction of the observations. Especial thanks are due to Barbara Russey, who coordinated the work, supervised the re- ductions, assisted in the preparation of the manuscript, and typed the main tables. 18 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS References AKP, H. C. 1958a. Southern hemisphere photometry, I I : Pho- toelectric measures of bright stars. As- tron. Journ., vol. 63, pp. 118-127. 1958b. Southern hemisphere photometry, I I I : The color-magnitude diagram of NGC 419 and the adjoining field in the Small Magel- lanic Cloud. Astron. Journ., vol. 63, pp. 273-282. 1959a. Southern hemisphere photometry, VI: The color-magnitude diagram of NGC 458 and the adjoining region of the Small Magellanic Cloud. Astron. Journ., vol. 64, pp. 175-182. 1959b. Southern hemisphere photometry, VII: The color-magnitude diagram of NGC 330 and the adjoining region of the Small Magellanic Cloud. Astron. Journ., vol. 64. pp. 254-258. 1960a. Southern hemisphere photometry, VIII: Cepheids in the Small Magellanic Cloud. Astron. Journ., vol. 65, pp. 404 411. 1960b. Intrinsic variables and stellar evolution. Symp. on Stellar Evolution, La Plata Obs-, Argentina, pp. 87-117. 1961. Stellar content of galaxies. Science, vol. 134, pp. 810-819. BAADE, W., and SWOPE, H. H. 1963. Variable star field 96' south preceding the nucleus of the Andromeda galaxy. As- tron. Journ., vol. 68, pp. 435-470. BUSCOMBE, W., and KENNEDY, P. M. 1962. Supergiant B stars in the Small Magellanic Cloud. Journ. Roy. Astron. Soc. Canada, vol. 56, pp. 113-123. COTJBTES, G. 1964. Regions H II dans les nuages de Magellan et les galaxies proches. In The Galaxy and the Magellanic Clouds, IAU-URSI Symp., no. 20, Australian Acad. Sci., Can- berra, pp. 278-283. Cox, J. P. 1969. Stellar pulsation, V: A semi theoretical period-luminosity relation for Cepheids with radiative envelopes. Astrophys. Journ., vol. 130, pp. 296-307. Cox, J. P. and WHITNEY, C. 1958. Stellar pulsation, IV: A semitheoretical period-luminosity relation for classical Cepheids. Astrophys. Journ., vol. 127, pp. 561-572. DABTATET, M. and DESSY, J. L. 1952. Studies of variables in the Magellanic Clouds, I : Twenty new faint variables in a region in the Small Cloud. Astro- phys. Journ., vol. 115, pp. 279-283. DESSY, J. L. 1959. Estudios sobre las variables de las nubes de Magallanes, I I I : Posici6n y color de trescientos veinticinco nuevas variables en la region "a" de la Nube Menor con un estudio estadistico sobre las mismas. Bol. del Institute Matematica, Astrono- mia y Fisica, Univ. Nacional de Cordoba, Argentina, vol. 1, pp. 1-10. ELSASSEB, H. 1958. Lichtelektrische Flaehenphotometrie der Magellanschen Wolken: Die kleine Ma- gellansche Wolke. Z. Astrophys., vol. 45, pp. 24-34. FEAST, M. W. 1964. Spectroscopic work in the Magellanic Clouds: NGC 330 in the SMC. In The Galaxy and the Magellanic Clouds, IAU- URSI Symp., no. 20, Australian Acad. Sci., Canberra, pp. 330-334. FEAST, M. W.; THACKERAY, A. D.; and WESSELINK, A. J. 1960. The brightest stars in the Magellanic Clouds. Monthly Notices Roy. Astron. Soc., vol. 121, pp. 337-385. HENIZE, K. G. 1956. Catalogues of Ha-emission stars and nebulae in the Magellanic Clouds. As- trophys. Journ. Suppl., vol. 2, no. 22, pp. 315-344. HEBBIG, G. H. 1962. Spectral classification of faint members of the Hyades and Pleiades and the dating problem in galactic clusters. Astrophys. Journ., vol. 135, pp. 736-747. HEETZSPBUNO, E. 1926. On the relation between period and form of the lightcurve of variable stars of the 8 Cephei type. Bull. Astron. Inst Nether- lands, vol. 3, pp. 115-120. HINDMAN, J. V. 1964. Notes on the structure of the SMC as ob- served in 21-cm line radiation from neutral hydrogen. In The Galaxy and the Magellanic Clouds, IAU-URSI Symp., no. 20, Australian Acad. Sci., Can- berra, pp. 255-261. HODGE, P. W. 1959. Studies of the Large Magellanic Cloud. Doctoral thesis, Harvard Univ., 137 pp. I sir IDA, K. 1961. The distribution of interstellar matter and stars, I I : The Small Magellanic Cloud. Publ. Astron. Soc. Japan, vol. 13, pp. 87- 93. JANES, K. A. 1964. Period changes of the Cepheid variable HV 953. Astron. Journ., vol. 69, pp. 131- 132. WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 19 JABCHEK, C. O. R., and RINGUELET, A. 1959. Note on the evolution of the Cepheids. Z. Astrophys., vol. 48, pp. 22-27. JOHNSON, H. M. 1961. The structure of the Small Magellanic Cloud. Publ. Astron. Soc. Pacific, vol. 73, pp. 20-29. KIN MAN. T. 1)., and WIRTANEN, C. A. 1963. Preliminary results of an RR Lyrae star survey with the Lick 20-inch astrograph. Astrophys. Journ., vol. 137, pp. 698-699. KRON, G. E. 1956. Star clusters in the Small Magellanic Cloud, I : Identification of 69 clusters. Publ. Astron. Soc. Pacific, vol. 68, pp. 125-130. KRON. G. E., and MAYALL, N. U. 1960. Photoelectric photometry of galactic and extrafialactic star c l u s t e r s . Astron. Journ., vol. 65, pp. 581-620. LEAVITT, H. S. 1906. 1777 variables in the Magellanic Clouds. Ann. Harvard Coll. Obs., vol. 60, pp. 87-108. LINDSAY, E. M. 1956. A catalogue of stellar-like emission objects in the Small Magellanic Cloud. Monthly Notices Roy. Astron. Soc., vol. 116, pp. 649-658. 1958. The cluster system of the Small Magellanic Cloud. Monthly Notices Roy. Astron. Soc., vol. 118, pp. 172-182. 1961. A new catalogue of emission-line stars and planetary nebulae in the Small Magel- lanic Cloud. Astron. Journ., vol. 66, pp. 169-185. NAIL, V. McK.; WHITNEY, C. A.; and WADE, C. M. 1953. Magellanic Clouds, IX: The nebulosities of the Small Cloud. Proc. Nat. Acad. Sci., vol. 39, pp. 1168-1176. PARENAGO, P. Pfc 1953. Der Bau der Galaxis. Abh. Sowjet. Astron. Astrophys., vol. 3, pp. 1-113. PAYNE-GAPOSCHKIN, C. 1959. Cepheid variables and the period-luminos- ity relation. Journ. Washington Acad. Sci., vol. 49, pp. 333-350. Also Harvard Reprint Series I, no. 536. 1961. On the dispersion in the period luminosity relation. Vistas in Astron., vol. 4, pp. 184-189. PAYNE-GAPOBCHKIN, C, and GAPOSCHKIN, S. 1966. Relation of light curve to period for Cepheids in the Small Magellanic Cloud. Vistas in Astron. [in press.] RODGERS, A. W. 1959. The large scale distribution of hydrogen emission in the Small Magellanic Cloud. Observatory, vol. 79, pp. 49-51. SAWYER, H. B. 1931. Periods and light curves of thirty-two var- iable stars in the globular clusters NGC 362, 6121, and 6397. Circ. Harvard Coll. Obs., no. 366, 36 pp. 1955. A second catalogue of variable stars in globular clusters comprising 1,421 en- tries. Publ. David Dunlap Obs., Univ. Toronto Press, vol. 2, pp. 35-93. SHAPLEY, H. 1940. An extension of the Small Magellanic Cloud. Bull. Harvard ColL Obs., no. 914, pp. 8-9. 1951. Magellanic Clouds, I : Transparency. Proc. Nat. Acad. Sci., vol. 37, pp. 133-138. 1953. Magellanic Clouds, VIII: On the popula- tion characteristics of the two Clouds. Proc. Nat. Acad. Sci., vol. 39, pp. 1161- 1168. SHAPLEY, H., and MCKIBREN, V. 1940. Galactic and extragalactic studies, V: The period frequency of classical Cepheids in the Magellanic Clouds. Proc. Nat. Acad. Sci., vol. 26, pp. 105-115. SHAPLEY, H., and NAIL, V. McK. 1951a. NGC 1866 and the Magellanic Cloud var- iables. Astron. Journ., vol. 55, pp. 249- 251. 1951b. Magellanic Clouds, II: Supergiant red variable stars in the Small Cloud. Proc. Nat Acad. Sci., vol. 37, pp. 138-145. 1955. Magellanic Clouds, XVII: Seven notes on the Cepheid variables. Proc. Nat. Acad. Sci., vol. 41, pp. 829-836. SHAPLEY, H., and WILSON, H. H. 1925. The Magellanic Clouds, V: The absolute magnitudes and linear diameters of 108 diffuse nebulae. Circ. Harvard Coll. Obs., no. 275, 5 pp. Also the Magellanic Clouds, VI: Positions and descriptions of 170 nebulae in the Small Cloud. Circ. Harvard Coll. Obs., no. 276, 4 pp. THACKERAY, A. D. 1958. Periods and light-curves of variable stars in NGC 121. Monthly Notices Roy. Astron. Soc., vol. 118, pp. 117-124. THACKERAY, A. D. and WESBELINK, A. J. 1953. Distances of the Magellanic Clouds. Nature, vol. 171, p. 693. TIFFT, W. G. 1963. Magellanic Cloud investigations, I : The region of NGC 121. Monthly Notices Roy. Astron. Soc., vol. 125, pp. 199-260. VAUCOULEUB8, G. DE 1954. The Magellanic Clouds and the galaxy, II. Observatory, vol. 74, pp. 158-164. 1955. Studies of Magellanic Clouds, II: Dimen- sions and structure of the Small Cloud. Astron. Journ., vol. 60, pp. 219-230. 20 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS WALKER, G. A. H. 1963. Photoelectric measures of the 4430 A diffuse interstellar band. Monthly Notices Roy. Astron. Soc., vol. 125, pp. 141-167. WESSELINK, A. J. 1961a. The dust content of the Small Magellanic Cloud from counts of nebulae. Monthly Notices Roy. Astron. Soc., vol. 122, pp. 503-507. 1961b. Absorption and reddening in the Magel- lanic Clouds. Monthly Notices Roy. Astron. Soc., vol. 122, pp. 509-512. WESTERLUND, B. E. 1961. The distribution of stars in an outlying part of the Small Magellanic Cloud. Ann. Uppsala Obs., vol. 5, no. 2, 17 pp. 1963. The distribution of stars in the wing of the Small Magellanic Cloud, the region of NGC 602. Monthly Notices Roy. Astron. Soc., vol. 127, pp. 429-448. 1964. The wing of the Small Magellanic Cloud. In The Galaxy and the Magellanic Clouds, IAU-URSI Symp., no. 20, Australian Acad. Sci., Canberra, pp. 342-346. WESTEBLUND, B. E.; DANZIOEB, I. J., and GRAHAM, J. 1963. Supergiant stars in the wing of the Small Magellanic Cloud. Observatory, vol. 83, pp. 74-79. WESTERLUND, B. E., and HENIZE, K. G. 1963. A small emission nebula in the wing of the Small Magellanic Cloud. Publ. Astron. Soc. Pacific, vol. 75, pp. 332-335. WOOLLEY, R. v. D. R. 1963. Studies in the Magellanic Clouds, VI: Mag- nitudes and proper motions in variable field I, LMC. Bull. Roy. Obs., no. 66, pp. 265-297. YOUNG, A. T. 1961. Stellar kinematics and spiral arms. Doc- toral thesis, Harvard Univ., 98 pp. Abstract The variable stars discovered at Harvard in the Small Magellanic Cloud are studied on Harvard plates. Results have been obtained for about 1300 sttrs. The overwhelming majority (91 percent) are Oepheids. Cepheid variables?periods range from about a day to over 200 days. The well-known preponderance of short periods is found to be even greater than previously supposed. Least-squares solutions for the period- luminosity relation show a departure from linearity. Stars with symmetrical light curves of small range show a relation parallel to that for asymmetric curves, about half a magnitude brighter. The intrinsic dispersion of the period-luminosity relation is found to be ?0"?3(p.e.). The parameters that describe the light curves (amplitude, skewness, rate of rise) are related to period, and to deviation from the mean period-luminosity curve. Detailed study of the periods of 96 Cepheids shows no significant secular change of period for any star of period less than 12 days. Six stars of greater period have variable periods. A few of the intrinsic variables with period less than a day in the region of the Cloud are probably members of the system; the remainder are foreground RR Lyrae stars. The distribution of Cepheids over the face of the Cloud changes with period. Three W Virginis stars are members of the system. The distribution of absorption within the Oloud, inferred from systematic departures from the period- luminosity relation, is similar to that of the H I regions observed by radio techniques. Long-period variables?all but one of the 24 long-period variables are Cloud members. They show a period- luminosity relation. Their distribution is similar to that of Cepheids of period about ten days. Sixty-two irregular variables are probably all members of the Oloud. Of the 34 eclipsing stars, all but one are members of the Cloud. They will be discussed by one of us in another publication. It is inferred that all stars spend about the same fraction of their life as Cepheids. The duration of the Cepheid stage is estimated. The amplitude frequency leads to the conclusion that the pulsations are "driven" within the Cepheid gap, and are small outside it. Maximal amplitude is probably not the same for all Cepheids. WHOLE VOLUME VARIABLE STARS EN SMALL MAGELLANIC CLOUD r-5 0 .5 LO 21 Z5 FIGURE 1.?Frequency of log P in intervals of 0.05. The cross-hatched area refers to stars with (M)^03 FIGURE 2.?Parameters of the light curve. The parameters A, A\, At, and (M-m) are labeled. A, Ai, and Aj are ex- pressed in magnitudes, (M-m) in percentage of the period. The skewness, /, is the ratio of the triangles wyz/toxy, or xw/xz. The rate of brightening is AJP(M-m) where P is the period in days. The rate of rise is (M~m)/A. <-M-m 5.0 .5 .6 FIGURE 3.?Lines of constant skewness, s, for log P between 0.6 and 0.9. The mean period-luminosity curve is shown by a heavy line; broken lines define a dispersion of ?0?6. The lines of constant s are labeled and define domains in which the light curves have similar shapes. Note that the slope of the lines increases with period. Ordinate and abscissa are photographic magnitude and logarithm of period. 1 6 . O h 17.Oh 22 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 25 20 15 10 5 0/25 20 15 10 5 0 / 2 5 20 15 10 5 O 2 0 I 5 I 0 2 0 I 5 I 0 2 0 I 5 I 0 2 0 I 0 2 0 E,N b o o c 2 0 , I 8 , I 6 , 1 4 1 1 0 8,0 7 >* I 0 H h 0 4 I 3 H 1 1 0 ? I 8C 1 2 , 1 0 0 6 H h 0 3 o-8 ' - I 4 0 0 , - 0 0 1 2 , I 3,1 4 I 2 I 5 0 9 H 1 1 1- 0 5 1 1 h 0 2 -( 1- GC ? + . # . 25 20 15 10 5 0/25 20 15 10 5 0/25 20 15 10 5 0 FIGURE 4.?Distribution over the face of the Small Cloud of blue stars, nebulosities, star clusters, and Cepheid variables. The coordinate system, in units of 100", is that of Miss Leavitt, and is the same for each section of the diagram. (See following page for explanation.) WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 23 ? . . . _ ? . . * ? . ? . . ? ? * ? 4 ? ? - ? ' ; ??'.' v ? ? . ' - ? ? ? . * ' ? ? - - . ? ? ' ; " - ? ft* ? * ' ?^?j'jfti'jf' ? * ? - .. ? * ? ' ? " f ? ? ' ? ? ? FIGURE 5.?The Small Magellanic Cloud. The coordinate grid is the same as that for figure 4. The two globular clusters, 47 Tucanae and NGC 362, are foreground objects. FIGURE 4?Legend?Continued . . 1. Emission line stars (small dots), blue supergiants (large dots) and bright nebulae (arc es). , R (ATc\**\ 2. Blue clusters from the catalog of Kron (1956). Clusters designated + + by Kron (large^dott); + (small dots), B (arcles). 3. The brightest Cepheids: < ? > o = 1 2 - to 13- (large dots); 13- to 14- (medium dots); 14- to IS- small dots). 4. Cepheids with log P>2.0 (largest dots); 1.8 to 2.0; 1.6 to 1.8; 1.4 to 1.6 (dots of progressively smaller size). 5. Cepheids with log P=1.2 to 1.4 (large dots); 1.0 to 1.2 (small dots). 6. Cepheids with log P=0.9 to 1.0. 7. Cepheids with log P=0.8 to 0.9 (large dots); 0.7 to 0.8 (small dots). 8. Cepheids with log P = 0.6 to 0.7. . . . . ? ? u I\M 9. Cepheids with log P=0.S to 0.6. (In this diagram and through no. 14, circles denote stars with (M-m) 10. Cepheids with log ^=0.4 to 0.5. 11. Cepheids with log P=0.3 to 0.4. 12. Cepheids with log P=0.2 to 0.3. 13. Cepheids with log P=0.l to 0.2. . . . 14. Cepheids with log P=0.0 to 0.1 (large dots, circles); <0.0 (small dots, arc es). 15. Clusters designated "globular" and "globular?" by Kron (large and small dots). Values of the age, T, calculated from Young's formula for various groups of Cepheids, are: logP T {years) log P Zty"*rs) log P >2.0 <1.?XHF 1.0 7.2X1? 0.4 2.0 1.4XKF 0.9 8.5XUF 0.3 1.8 2.0XHP 0.8 lp? 0.2 1.6 2.7X10* 0.7 1.2X10? 0.1 1.4 3.7XHF 0.6 1.4X101 ^0.0 2 S.2XKF 0.5 1.6X10" <0.0 Circled crosses, W Virginis stars; crosses, T (years) 1.9X 10s 2.3X108 2.7X 10s 3.2X 10s 3.7X10* >3.7X1O? 24 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS I 7 - 0 4 - 0 2 0 0 0 2 0 4 0 6 0 8" 1 0 1 2 1 4 1 1 6 1 8 2 O 2 2 2 4 I 8 FIGURE 6.?Penod-lummosity relation. Ordinates, < m > 0 (above, scale to left); x0 (below, scale to the right). Abscissae, log P. The lines labeled A, B, C represent Solutions 2, 3 and 7 of Table 9 for < m > 0 ; D, E, F represent Solutions 2, 3, and 7 forx*. Crosses denote W Virginis stars. WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 25 15 8 16 2 4 4 4 0 4 8 > * * HV 8 1 4 ?v*' 3 7 1 ^ . 6 7 7 6 0 4 / \ - ? ? * 1 2 9 4 9 / ? 4 74 / 13 6 14 0 7 8 8 6 0 4 Vi"~\ HV *\* ? 1 1 3 6 8 / ^ ? 4 8 4 . L 6 7 1 7 1 7 6 0 4 8 / \ r \ HV ? / \ 0 ? 1 4 4 6 > V 4 9 7 / A 7 7 1 7 0 4 8 _*^ . HV . ^ V \ o 182 1 - , 5 0 2 yT ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 27 16 6 " 17 0 6 0 - 6 4 - I 6 I 6 I 6 I 7 I 6 I 6 I 6 3 6 14 0 " 4 4 " 17 8 " 18 2 7 8 6 0 f x. ?1 1 2 8 97 8 8 .7. 0 4 8 7 * \ HV 0 A 3 27 ]? 7 2 6 / 16 4 16 8 " FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?66 3 28 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 8 " 17 2 7 6 " 16 6 " 17 0 " 17 2 1 7 - 6 1 6 6 17 0 7 ? 1 7 2 6 HV 11436 /^*^v#04 7 yC v^ ? 17 0 - 17 0 - 17 4 - 16 4 - 16 8 " 17 2 - 17 6 18 0 17 0 - 17 4 - 7 8 1 8 6 0 4 ? ? ? I V HV 1 V ' \ r ? ? ? 6 1 7 1 7 6 0 4 / ? \ HV 1 1 1 97 / ^ 073 / 7 4 - 7 8 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 16 6 17 0 - 7 8 - 6 6 - 17 0 - 17 2 " I 7 6 17 0 - 17 4 - 17 0 - 17 4 - 17 8 " 7 2 7 6 - 17 2 17 6 7 7 1 8 4 8 2 / \ ' 11260 f\ 187 / / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 30 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 2 - 17 6 - 17 2 17 6 - 8 0 - 17 4 - 7 8 - 6 7 7 6 0 4 A . HV ? J \ ' -._J Sv^ ?/ ? \ 10 3 6 5 *t 2 58 / 16 6 - 17 0 - 7 7 8 2 6 0 1 V ' 1 2 0 8 9 f 2 70 / ?-y^? ? ^ ^ ? 17 4 - 17 8 - 18 2 - 16 8 - 17 2 - 16 6 - 17 0 - 17 4 - 17 8 - 17 2 - 17 6 - 7 7 1 8 1 8 2 6 0 4 A HVJ A, I 7 *v^ f 1 2 1 1 4 / 2 8 0 f ? ? ? * / 17 2 - 17 6 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 31 16 6 - 17 0 - 17 4 - 17 4 - 7 8 - 6 6 0 4 HV 1 1 5 1 7 2 9 5 ?*?**SVi 17 8 - 8 2 - 18 6 - 16 8 - 17 2 - 7 6 - 8 0 - 6 6 1 7 4 8 2 - HV 1 1 1 208 J 300 r .... J? 7 1 7 1 8 4 8 2 f\ HV I \ ' - i~?~r ' ' 1 14 5 1 /?? 308 / ? I 7 I 7 17 6 - 18 0 - 16 8 - 17 2 - 2 6 HV 1 3 9 6 7 7 7 0 4 8 / # V HV / V ' 1772 f \ ?32 1 f 16 8 - 17 2 - I 7 7 6 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 32 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 6- 18 0- 18 4- 7 2 - 17 6 - 18 0 - 17 8- 18 2- 18 6- 17 0- 17 4- 17 8- 16 6- 17 0- 7 6- 18 0- 8 4- 7 6 18 0 HV 1133 359 / / 7 7 2 6 HV ?J ^ 15 13 17 0 17 4- 17 8- 17 4 - 17 8 - 8 2 - 6 7 fl 2 6 A r \ H v ' / V ?? - A 152 3 LV 36 7 / . . / 8 0- 8 4- 17 0- 17 4- 17 8- FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 33 I 6 6 17 0 I 7 4 17 8 17 6 - 18 0 - 16 6 - 1 7 0 - 1 7 - 4 - 1 7 8 - 17 6 - 18 0 - 1 7 1 8 7 ? 7 6 0 2 6 t \ H V ? J v j . 1 3 5 9 J 390 t .. ? - ...V 14 95 ,-?. 390 / "?--?2?""^ ? 6 1 7 1 7 1 7 6 ? 0 4 8 - - ? , J T HV 1 985 1 \ \ 1 3 9 1 1 V J? 17 0 17 8 17 0 17 8 16 6 17 0 I 5 8 16 2 6 6 17 2 17 6 18 0 1 7 - 4 17 8 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 34 SMITHSONIAN CONTRIBUTIONS TO AOTROPHY8ICS 16 6 17 0 17 4 7 ? 6 18 0 17 2 17 6 16 8 17 2 17 6 16 6 17 0 7 4 7 8 I 6 0 16 4 6 8 17 2 7 1 7 1 7 1 8 0 4 8 2 - - A\ \ H V 1 1 1 4 t 1 4 2 2 8 17 8 - 18 2 - 17 8 - 18 2 - 7 0 - 17 4 - 6 6 - 17 0 - 7 4 - 7 1 7 1 7 0 4 8 A / \ H V 2 IK ' ?? t . . / .47 r\ 4 3 0 / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 35 7 7 7 0 4 8 A ? \ " : / ? 1 3 8 9 / 4 39 / ? ? V 7 0 - 17 4 - 17 2 17-6 16 6 17 0 7 4 7 8 17 2 17 6 17 2 17 6 18 0 17 6 18 0 r 2 7 6 8 0 - \ HV 18 94 \ . 1 4 4 5 \ 17 0 - 1 7 - 4 - 17 8 - 7 2 - 17 6 - 18 0 - 16 6 17 0 - 6 1 7 1 7 8 2 6 - t \ 1 \ HV/ V '/ \ f 6 15 > ? 450 / 7 1 7 1 7 0 4 8 / \ / \ H V f\ 930 / ? 4 5 5 L FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 36 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 0 - 17 4 - 7 2 17 6 16 6 17 0 17 4 17 8 7 2 - 17 6 - 7 1 7 4 8 /V HV 1 200 J\ 4 6 7 . / ? * * 7 1 7 1 7 0 4 8 - - ? ? J ^ H V 1 1 4 7 3 \ r 1 4 7 2 J H V I 2 9 2 3 1 4 7 4 7 1 7 0 4 HV \ i i i i 4 9 ? a 7 5 1 * ?? ? / / ~*?r*?J 6 6 1 7 1 7 2 6 0 4 / \ HV / X- ? ? / ? \ 1 1 400 / 4 9 1 j I ;? j 17 4 - 17 8 - 17 6 - 18 0 - 17 8 17 2 - 17 6 - 18 0 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 37 17 4 17 8 17 4 7 8 17 0 17 4 17 0 17 4 7 8 8 2 / *V HV 1 1 2 98 / / V ' ' 508 / 6 8 - 7 2 - 17 6 - 164 - 16 8 - 17 0 - 17 4 - 7 2 17 6 16 8 - 17 2 - 16 6 - 17 0 - 6 6 - 17 0 - 7 4 - 17 6 - 18 0 - 7 6 - 18 0 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 38 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 8 - 17 2 - 17 4 - 17 8 - 18 2 - 17 6 - 18 0 - ? J v 1 1 3 6 7 -?-A ..,?? f 1 5 3 2 1 7 - 6 - 18 0 - 17 2 - 7 6 - I 7 0 I 7 4 I 7 8 17 8 - 18 2 - 17 8 - 18 2 - 17 8 - 17 8 - 18 2 - 7 0 7 4 7 8 ? r\ r ^ \ H V 1 8 3 7 j ' \ 1 5 4 8 17 8 - 8 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 39 I 7 8 I 7 2 17 6 16 8 - 17 2 - I 6 6 17 0 17 6 - 18 0 - 17 8 - 18 2 - 17 4 - 17 8 - 17 2 - 17 6 -_ _'_ 17 4 - 17 8 - 18 2 - 17 6 - 18 0 - 6 7 8 2 1 X. ' 12 1 7 2 / k 6 0 3 / 7 1 7 1 7 0 4 8 ? / ^V 1 \ . H V / V ' ^ 1 1 3 9 8 i 5 9 5 / 17 6 - 18 0 - 17 0 - 17 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 40 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 1 6 1 7 4 8 2 ' f\V ? {1 9 9 76 11 6 7 8 2 HV 1 1 9 8 18 -S^ 17 4 - 17 8 - 6 8 - 17 2 - 16 8 - 17 2 - 17 6 - 16 6 - 17 0 - 17 4 - 17 2 17 6 17 6 - 18 0 - 16 6 - 17 0 - 17 2 - 17 6 - 17 2 - 17 6 " 16 6 - 17 0 - 17 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 41 16 4 - 16 8 - 1 7 1 7 7 0 4 8 \ HV / X . ' 1 8 6 7 / 648 t 16 8 - 17 2 - 6 1 7 1 7 6 0 4 A A. i ?J V 1 4 3 6 f 65 6 6 6 4 8 HV 177 7 6 5 6 17 0 - 17 4 - 7 1 7 4 8 f\ HV 1 1 1 6 1 f 6 6 1 I ? f 6 1 7 1 7 B 2 6 I A ^ f 1 0 3 6 8 I 662 r ? ? 17 2 - 17 6 - 7 ? 7 ? 0 4 / * \ HV 1 928 ' / \ . " ? " A i 1 6 1 6 2 6 Ai \I \ . ..../ v ? ? 7 N * HV 1 ? ? 7 5 6 5 ? * 1 ?? .? ?/ 7 1 7 ? 0 ? 4 / \ HV / *^ ' 2 8 9 9 1 662 / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 42 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 6 - 17 0 - 17 8 - 18 2 - 17 2 - 17 6 - 18 0 - 6 8 - 17 2 - 16 4 16 8 17 2 7 7 2 6 \ HV 1 939 / - 668 I 16 8 - 17 2 - 16 6 - 17 0 - 7 7 2 6 / K HV 11242 f ? 6 6 9 / 7 7 4 8 ? ? y V^ 1 1 3 5 9 ? 6 7 9 / 7 1 7 1 7 0 4 8 / \ H V J V i r 7 6 6 1 680 / 1 6 1 7 8 2 HV 1 7 7 4 6 8 2 v ^ ^ ? / ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 43 16 8 - 17 2 - 17 6 - 16 2 - 16 6 - 17 0 - 17 4 - 7 7 2 6 1A HV \ ' K 1 3 8 0 \*< ? 6 9 9 I * ? # ? t r - . _?-^ 7 7 7 0 4 8 " ft / \ HV A 1 1 1 34 / \ ?T. , / \ 16 8 17 2 18 0 18 4 HV I 2 9 I 8 I 707 17 8 - 17 0 - 17 4 - 17 8 - 17 2 - 17 4 - 6 6 - 17 0 - 17 4 - 17 0 - 17 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?66 44 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 8 - 1 7 - 2 - 17 6 - 7 7 2 6 " / \ . HV / \ ' 1344 / \. 730 / \ 7 8 6 0 ? ^ ?? 'J ^ 1 3 98 732 k 16 4 - 16 8 17 2 - 7 1 7 1 8 4 8 2 1 V H V ?J V 11168 / \734 J \ 7 1 7 1 8 2 6 0 T *\ H V 1 13 6 3 / \ 1 7 3 7 17 8 18 2 I 7 0 I 6 8 I 7 2 17 0 17 4 16 2 16 6 17 4 17 8 6 7 7 6 0 4 / V HV ' / \ ' A 173 2 i "? 754 1 V FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 45 17 6 18 0 17 0 - 17 4 - 16 8 - 17 2 " 7 1 7 2 6 1 1 1 9 5 .A 758 J * # / 6 7 1 7 8 2 6 f * r \ HV 1656 f \ 758 / ? ? 17 4 - 17 8 - 16 4 - 16 8 - 17 2 - 17 6 - 16 8 - 7 2 - 17 0 - 17 4 - 17 6 - 18 0 " 6 1 7 8 2 f\ HV 1 754 111 r / 7 7 8 4 8 2 - J\ ? \ : A 12 137 / \ FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 46 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 2 - 17 6 - 17 4 - 7 8 - 16 6 - 17 0 - 17 4 17 8 17 0 - 1 7 - 4 . 7 8 - 16 2 - 16 6 - 16 4 - 16 8 - 16 6 I 7 0 17 4 I 6 4 16 8 16 8 - 17 2 - 7 7 1 8 2 6 0 > V HV - / \ ^ ; j 114 6 0 'jf\ 7 8 7 f \ . ? * 6 6 7 4 8 2 / ? * n v - ^ 115 00 ^ * 789 j / 7 7 1 7 0 4 8 / * \ H V 1 13 8 4 / v 1796 ? ? A f FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 47 16 8 - 17 2 - 16 4 - 16 8 - 17 6 - 18 0 - 17 8 - 18 2 - 17 0 - 17 4 - 6 7 7 6 0 4 ? ? XT ? \. 7 ' N . H V 2/ V ? 146 / *802 / 17 6 18 0 16 0 16 4 HV 12 1 4 3 1 - 8 0 6 17 0 - 1 7 - 8 - 17 0 17 4 17 8 - 16 6 - 17 0 - 16 2 - 16 6 - 17 0 1 7 - 4 1 6 - 2 - 1 6 - 6 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 48 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 0 - 17 4 - 17 8 - 17 4 17 8 17 6 18 0 7 7 7 8 0 4 8 2 A ? / v ": ? -J x ~ A * 1 9 0 4 J \ 8 5 8 / 7 7 ? 1 7 0 4 8 ? / v - ?/ "^ 1990 AV ?842 7 \ . / * 17 2 17 6 18 0 7 7 7 0 4 8 - / V ' -J ^^ 112 2 6 j ' \ 85 3 f V / 17 0 - 16 4 - 16 8 - 1 7 - 2 - 7 6 - 6 7 ? 8 2 1 1 67 855 f 6 7 7 8 8 2 6 0 A\V HV \ 1 1 1 1 8 1 8 6 0 / \ 7 7 7 0 4 8 HV 1 2947 869 / . / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 49 16 4 - 16 8 - 17 2 " 17 0 - 17 4 - 17 8 - 18 2 - 6 7 7 7 6 - 0 - 4 - 8 - I \ f \ / ? 9 H V 1 1 4 4 6 8 7 2 ^ / 7 7 / 0 4 ? " / \ HV ? / \ ' 1506 f \ ? 8 8 6 i V 18 0 I 8 4 17 2 - 1 7 - 6 - 16 4 - 16 8 - 17 6 - 18 0 - 6 7 7 8 2 6 / HV i ? x? 12175 n 8 7 6 / r / 6 7 1 7 6 0 4 / \ H V 12088 / \ ? 89. r\ 7 7 0 4 HV 1 036 1 89 5 7 7 ? 0 4 ?J H V 1 1 1 479 879 A 16 8 - FIGURE 7.? T^he mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 50 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 1 6 1 7 4 8 2 H V 7 ^v? mr ? \ ? 17 1 3 897 yf* I 6 8 I- I 7 2 h 16 4 16 8 17 2 h I 7 6 h 18 Oh I 7 ? 0 h I 7 4 I- I 7 8 Y 6 1 7 ? 1 7 I 8 8 2 6 0 y \ - / \ H: A 1 1 1 48 / ^ 9 02 J * -?!? . 7 16 6 h I 7 0 h I 6 6 I- 17 0 k I 7 4 U I 7 8 1- 6 6 7 1 7 2 6 0 4 r ? / t j * f * ?J \ H V 84 1 1 909 j ? / ^ \ J 7 1 7 7 0 4 " / \ . ?V ? 14 4 7 J ''\- 9 12 / ^ Jr 7 7 4 8 jfV? HV i i 9 * - ? i 18 rv. 1 4 / I 7 0 I- I 7 4 h I 7 8 (- FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 51 16 8 - 17 2 - 17 6 - 18 0 - 1 5 - 4 16 2 7 7 7 0 4 8 / HV 1 1 1 1 9 f 92 7 / / 1 6 6 1 7 ? 4 8 2 7 ? \ ' - / N- 112 09 ?^^- 9 2 8 / . ? ? / 6 4 - 16 8 - 17 2 - 17 6 - 17 0 - 16 8 - 17 2 - 17 6 - 1 7 1 8 ? 6 0 a r v HV / ** i A.1 565 1 \ ?9 36 / 1 7 ? 1 7 2 6 12 1 4 2 937 f ? # ?? 1 7 - 2 17 6 17 2 - 17 6 - 18 0 - 1 6 1 6- 1 7 ? 1 7 4 8 2 6 / \ HV 1 1 488 / / ^ * 1 - 9 4 2 V - . / \ . , / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 52 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 1 7 1 7 1 7 0 4 8 1 \ HV r 1 504 / 946 1 "*? * ? 17 2 - 7 6 - 17 8 - 6 4 - 16 8 - 1 7 - 2 - 6 7 7 7 6 0 4 8 A r V Hv / \ ' A 19 9 9 f j 967 / I 7 ? 1 7 1 7 0 4 8 - / \ ' / 11342 1 956 i 6 2 - 16 6 - 17 0 - 17 4 - 17 8 6 1 6 1 7 ? 7 ? 4 8 2 6 / \ H V 1 796 / 960 |i 7 7 2 6 r A MVVV 1420 { 970 f / 17 2 - 1 7 - 6 - 6 c . 7 ? 1 7 ? 4 Q 2 6 - - / ' \ ' * 10384 / 972 I FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 53 6 1 7 1 7 1 8 8 2 6 0 ftV HV 1" / \ ' A18 39 / J 979 t 16 8 - 17 2 - 7 6 - 16 6 - 17 0 - 6 6 4 8 HV 1 9 1 6 996 . ^ 6 7 7 1 7 6 0 4 8 / \ H V / \ ' 1 1 1 74 9 9 7 ? ? A / I ?J 16 6 - 17 0 - 17 4 - 17 0 17 4 16 8 - 17 2 - 17 8 18 2 6 7 7 8 8 2 6 0 K K J \ HV1330 j J \ 2 001 I / ^ V / 16 8 1 7 - 2 17 6 18 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 54 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 6 17 0 - 7 4 - 17 2 7 6 1 7 - 6 18 0 1 7 - 6 - 18 0 - 1 7 - 6 18 0 HV I 1 2 6 4 2 0 0 7 6 6 7 4 8 2 *y* HV \ 2 1953 ?< 00 7 / 6 1 6 1 7 ? 4 8 2 / \ HV i X . 2 12942 / X ?008 f 7 7 7 0 4 8 / V HV 7 > 2 7 iV 13 67 Oil f / 16 8 - 1 7 2 - 16 2 - 16 6 " 17 2 - 17 6 - ?C^^^. 2 0 2 2 / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 55 17 0 - 7 4 - 7 7 4 8 HV V^>? 2 1 5 4 9 02 6 V * A 1 6 1 7 1 7 7 6 0 4 8 1 \ HVi \ 2 r 10380 t 030 J . i ? 17 0 - 1 7 - 4 - 16 6 - 17 0 - 16 6 - 17 0 - 7 4 - 1 6 1 6 1 7 7 2 6 0 4 M / r \ HVI2O82 t \ \ 2 03 7 1 6 1 7 1 7 8 2 6 / \ H V / x 2 / 1 800 / 038 / 17 0 - 17 4 - 6 4 - 16 8 - 17 2 - 16 6 - 17 0 - 17 4 - 17 8 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 56 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 4 17 8 HV I I 3 7 6 2 060 6 1 6 ? 1 7 ? 1 7 2 6 0 4 1 \ 1 2 9 5 3 060 I ? ? 17 6 - 18 0 - 1 6 - 2 - 6 6 - 6 7 7 8 2 ? 6 / X^ HV - / X- 2 1 604 / ? 072 / ? ?? 7 1 6 - 8 - 1 7 - 2 - 17 2 - 18 0 - 16 6 17 0 6 8 - 1 7 2 - 17 6 - 8 - 0 - 16 8 17 2 - 17 0 - 7 4 - 17 8 - 6 1 7 1 7 ? 8 2 6 r f /\ I HV 1 96 4 f \ 2 O 9 2 / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 57 16 8 - 7 2 - 7 6 - 8 0 - 18 4 - 1 7 - 2 - 17 6 - 6 7 7 8 2 6 A 7 ifc H V / X 2 1 762 f 107 / 16 8 - 17 2 - 7 6 - 6 2 - 6 6 - 17 0 - 17 4 - 17 8 - 7 ? 2 - 17 6 - 16 0 - 16 8 " 7 2 " 7 1 7 2 6 / * \ H V ' 441 #*** 56 f 6 1 6 - 1 7 1 7 1 7 2 6 0 4 8 / \ H V ' i V 2 V f/ M 9 4 r 1 42 I 6 1 6 1 7 1 7 1 7 2 6 0 ? 4 8 wf \ HV2099 1 \ 2 1 60 1 V J 1 *\ r ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 58 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 1 7 1 7 1 8 8 2 ? 6 0 A A / V H V 1 5 1 1 / / \ ^ 2 1 60 / / \ . / 16 4 - 16 8 - 17 2 - 17 6 - 6 1 6 1 6 1 7 1 7 ? 0 4 8 2 6 \ HVI / V 2 1 V L ?V ? - ? ?#*^ ? A 789 / \ 161 I 16 8 - 17 2 - 7 6 - 18 0 - 7 ? 2 17 6 - 18 0 - I 6 4 16 6 I 7 0 16 2 - 16 6 - 17 0 - 17 4 - 6 0 - 16 4 - 16 8 - 1 7 - 2 - 17 6 - 18 0 - 18 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 59 6 1 R 1 6 7 0 4 8 2 / \ . H V 2 O 9 5 7 / * ^ V 2 2 2 2 / / % . / ? ? 6 7 7 7 6 0 4 8 f\ / A - H V I / \ * / *^ "^^ r 13 72 / 2 42 I 16 8 - 1 7 - 2 - 17 6 " 6 6 7 4 8 2 f \ H v / \ 2 A 1 594 7 \ 22 7 / 1 7 1 7 8 2 6 0 / \ HV 1 f Y 2 A. 2 3 2 7 16 0 - 16 4 - 1 6 - 2 - 16 6 - 1 7 0 - 1 7 - 4 - 1 7 - 4 - 7 8 - 1 8 - 2 - 1 6 - 8 - 17 2 - 6 6 1 7 7 2 6 0 4 / \ "? A r 1 803 / 236 | 6 1 7 1 7 6 ? 0 4 H V 1 ^~y W i vL 2 8 1 7 2 50 y? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?66 5 60 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 1 6 - 2 16 6 6 6 - 17 0 - 7 4 - 6 6 6 0 4 8 / *\* / \ HV2 / \ 2 12 8 / 26 8 A 1 5 1 6 1 6 1 6 7 6 ? 0 4 8 2 A. / i % HV2167 / 2 2 73 1 6 1 7 1 7 8 2 6 A. / # \ H V 1 / V 2 8 0 5 / ?^ 2 79 Z *? 7 16 4 16 8 1 7 2 17 6 16 6 17 0 17 0 17 8 16 0 16 4 16 8 7 2 17 6 1 6 - 8 17 2 17 6 18 0 HV I 12 02 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 61 16 2 - 16 6 - 17 0 - 17 4 - 1 6 1 6 7 4 8 2 / \ 2 h1 6 6 0 1 J 330 / I 1 7 1 7 8 2 6 0 m / \ 7 \ H V ' 1 \ 2f * \ 4 9 7 f 31 1 / / 17 2 - 17 6 - 6 6 7 7 4 8 2 6 I \ H V ' h 1 3 7 4 3 2 0 6 8 - 7 2 - 1 7 6 - 1 6 - 2 - 6 6 - 17 0 - 17 4 - 6 6 1 7 1 7 4 8 2 6 AJ ^ ? . \ H V I I V 2 ? 8 33 / 3 2 7 / ? ? 5 8 6 2 6 6 17 0 7 4 A A J \ HV11198 i 1 \ 2 354 1 ! \ \ . [ i N 1 1 7 1 7 1 8 4 8 2 A ^ V HV 1 1 4 1 8 A 358 / ? ? ? J FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 62 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 6 - 18 0 - 16 6 17 0 17 4 16 6 - 17 0 - 17 4 - 15 4 - 15 8 - 16 2 - 16 6 - 17 0 - 6 7 7 6 0 4 r \ H v' / \ . 2 6 8 7 1 3 9 6 / I 7 17 6 . 17 4 - 17 8 - 18 2 6 1 7 7 8 2 6 - ? \ HV S? 2 f 1 4 2 4 I 392 I . . . . / 6 2 6 6 7 0 7 4 I \ . 2 ? \ -J ^ A 120 1 1 \ 40 3 / 5 6 6 8 2 6 u > 7 V HVI H0376 / ^ T 5 ^ 407 / * FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 63 I 6 6 17 0 I 7 4 16 4 16 8 17 2 17 6 18 0 16 4 16 8 17-2 17 6 5 6 6 1 7 1 7 8 2 6 0 4 f\ ft f \ r * J \ H V 2 I 0 7 1 \ 2 4 11 6 6 1 7 4 8 2 / iv H V 1 2 1 4 if 1 56 A? 1 2 / / 5 6 16 0 16 4 16 8 17 2 5 6 16 0 6 4 16 8 7 2 16 8 17 2 17 2 17 6- 18 0 - 16 6 17 0 17 4 17 8 HV I 9 7 I FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 64 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 2 16 6 17 0 17 4 17 8 15 8- 16 2 17 0- 17 4- 16 0 6 4 16 8 17 2 17 0 17 4 17 8 6 1 6 - 4 8 HV ***^\^ 2 19 55 457 V ^ ^ 6 1 7 1 7 1 7 1 8 6 0 4 8 2 ? ? * f \ HV.4,4 | \ 1 \ 2 4 59 / / S / - / \ r . / 16 2 - 16 6 - I 7 0 L 16 0- 16 4- 16 8- 16 2 16 6 17 0 17 4 6 7 7 6 0 4 f V HV / X 2 A 136 1 J ? 4 7 4 J FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 65 6 6 7 7 4 8 2 6 r fs h 1 \ HVI0 382 1/ X 2 475 / / V / 16 6 17 0 17 4 16 2 - 16 6 - 6 1 6 4 8 H V1 0 370 4 7 7 s/fi?' ? ** ^ ^ 6 6 7 4 8 2 A J ^ H V 1 / \ ^ 4 4 8 4 7 9 I 1 6 6 1 7 2 6 0 HV /AV_ 2 1 760 48 1 ^ \ 16 4 - 16 8 - 6 7 ? 7 ? 1 7 6 0 4 8 / V HV \ z f M . ... / > ft. 1 8 8 7 / ?50 3 I1 16 0 - 16 4 - 16 8 - 6 6 1 7 1 7 2 6 0 4 | V HV2 1 N- 2 / \,# * 7 ? r 1 66 f 509 16 6 - 17 0 - 17 4 - 17 8 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 66 16 8 - 17 2 I 7 I 6 17 0 I 7 I 6 16 6 17 0 1 5 - 6 16 0 6 4 I 6 I 6 16 4 16 8 1 7 - 2 1 6 - 2 1 6 6 17 0 17 4 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 0 17 4 17 8 16 0 16 4 16 8 17-2 17 6 16 6 17 0 17 4 15 8 16 2 16-6 17 0 17 0 17 4 17 8 16 2 16 6 FIGURE 7?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME 16 4 " 16 8 " 17 2 " VARIABLE STARS IN SMALL MAGELLANIC CLOUD 16-2 16 6 17 0 17 4 67 e 6 1 6 7 0 4 8 2 f V HV 1 \ Z 1 9 2 3 f ? 5 6 6 fj 6 7 1 7 8 8 2 6 0 A / j \ H V 1 9 6 9 J / ^ w 2 5 7 0 / / ^ V / 5 8- 16 2 - 16 6- 15-4- 15-8- 16 2 - 6 6- 15 6 6 0 16 4 16 8 16 6 17 0 17 8 15 6 16 0 16-4 16 8 17 2 16 8 17 2 17 6 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 68 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 2 - 16 6 - 17 0 17 2 17 6 16 8 17 2 17 6 15 8 16 2 16 6 17 0 17 4 17 8 16 8 17 2 15 6 16-0 16 4 16-8 17 2 HV I 2 92 9 2 602 16 0 16 4 - 16 8 - 17 2 - 6 7 8 2 i ^v 2 1 5 6 8 r+ ? 6 3 7 / 6 7 7 1 7 ? 6 0 4 8 A f I ^- HV 1 3 76 I \ 2 6 3 8 L V I FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 69 6 6 1 6 ? 1 7 0 4 8 2 A ' / \ ? .?J V A 9 17 r ?y 644 J 17 4 - 17 8 - 16 0 - 16 4 - 16 8 - 17 2 - 17 6 - 1 5 - 4 - 1 5 - 8 - 16 2 - 16 6 - 6 1 7 1 7 6 0 4 - / \ 2 1931 y^< 6 9 1 ? / 6 0 16 4 - 6 8 - 7 2 - i ? t 7 ? 1 7 1 8 0 4 8 2 A 1 \ HVI 1 \ 2 ? / A 1 3 3 2 / ^ 707 f %?? . / 7 ? 1 7 ? 1 8 2 6 0 ? /\. H V ' 7 \ . 2 1 N, / *^_ ? ? ii5i j O y 708 / / 6 6 6 0 4 8 ^-^ HV 1 600 ?*>*-. 5 1 6 1 6 1 7 1 7 1 7 8 2 6 0 4 8 \ \ H V I f V 2 ? V. ? 7 ^ - 1 1 7 1 \ 14 I ^ 1 1 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 70 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 8 16 2 16 6 17 0 1 7 - 4 6 0 16 4 16 8 I 7 I 6 6 4 6 8 6 4 6 8 17 2 17 6 15 8 1 6 - 2 16 6 17 0 17 4 16 2 - 16 6 - 16 8 - 17 2 - 17 6 - I 5 6 I 6 0 16 4 16 4 - 16 8 - 17 2 - 17 6 - 18 0 7 7 7 0 4 8 / \ H V ^ / X 2J ^ 14 5 8 /?V 74 9 t ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 71 15 6 - 16 0 - 16 4 - 16 8 - 17 2 - 16 6 17 0 1 7 - 4 I 7 2 1 7 6 I 6 0 I 6 0 16 4 16 8 17 2 17 0 1 7 - 4 17 8 6 6 7 4 8 CVJ / V HV2 ? V 2 -J N 149 j \ 7 6 9 I 6 6 7 4 8 CVJ rv HV ? / ^ 1629 r \ 769 / 6 6 - 17 0 - 17 4 - 6 7 7 6 0 4 w Y HV 1 ?V 2 ? 1135 7 6 9 r/ 6 7 8 2 HV f^SV 2 1 1 1 5 7 6 9 f* 6 6 7 7 ? 4 8 2 6 1 V HV2080 / f V 2 7 7 8 1 I \ / ?w ^ ? w 16 0 - 6 4 - 16 8 " FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 72 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 6 17 0 17 4 6 O 6 4 6 8 17 2 16 0 16 4 16 8 17 2 7 6 6 1 7 1 7 7 6 0 4 8 / V HV / V 2 ? / v . - . ?/ ^ 1 8 5 2 A ? 8 0 7 / 16 6 - 6 6 1 7 1 7 2 6 0 4 I T H v / \ 2 / X ? ? 1 7 5 3 8 17 I / I 6 6 17 0 7 8 6 1 6 1 7 2 6 0 HV ? 1 2 9 5 5 8 2 5 .*"?*?** 5 6 6 7 8 2 6 0 N f / ? \ H V 1 8 0 9 1 / \ . 2 82 5 T / ^ S - ^ 1 5 6 1 6 1 6 6 0 4 8 ? 1 \ 2 \ 9 4 2 f 84 1 7 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 73 16 0 - 16 4 - 16 4 16 8 17 2 17 6 16 4 16 8 5 8 16 2 6 6 17 0 16 4 - 6 8 - 7 2 - 16 6 - 17 0 - 17 4 - 16 0 16 4 16 8 16 8 1 7 2 HV I I 1 8 5 2 8 6 2 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 74 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 7 7 8 2 6 /V. HV i ^V. 2 / ? 184 1 jT 867 f 6 6 6 0 4 8 HV 1 1 4 9 1 5 4 - 15 8 - 16 2 - 15 6 - 16 0 - 16 4 - 16 8 - 17 0 17 4 15 8 16 2 16 6 17 0 7 1 7 0 4 HV 1 /"W 2 ? 507 876 f\ 5 6- 16 0- 16 4 - 16 8- 16 0 16 4 - 16 8- 17 2 - 6 1 6 1 7 1 7 4 8 2 6 / A H V 2 / \ 165 I \ 886 J # / 16 4 - 16 8- 17 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 75 6 I 6 7 4 8 2 1 \ H VV 2 540 890 Af 6 6 6 0 4 8 1 \ HV / \ 2 1 5 7 5 J 904 k 6 1 6 1 6 1 7 0 4 8 2 /*V H V 2 1 2 6 /*V 7 \ 2 903 j / V / 16 6 - 17 0 - 17 4 - 16 4 - 16 8 - 17 2 - 17 6 - 6 6 7 7 2 6 0 4 [\ HV \ 2 4 60 l\ 9 12 J j 5 1 5 1 6 ? 1 6 1 6 2 6 0 4 8 i\ r I \ HV 2 2 1 0 f \ 2 9 19 1 1 \ 1 1 X I FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?06 76 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 6 7 2 6 0 / x 2 1947 A . 937 / V 6 7 7 1 7 6 0 4 8 7 \ 2 i i 1 3 6 r ^ 94 2 .7 / 5 5 4 8 H V 2 1 5 5 2 9 4 4 5 1 6 1 6 1 7 1 7 6 6 8 2 6 0 4 4 8 Jk A / V HV1 6 1 6 I T \. 2 - 9 4 4 | HV10369 y ^ \ ^ 2 948 ^ f V ; 1 6 1 6 7 ? 4 8 2 HV / ^ \ . 2 - 1 1 5 3 0 949 J* / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 77 1 6 0 I 6 4 I 6 8 16 0 16 4 I 6 8 16 2 16 6 I 7 0 1 5 6 16 0 16 4 1 6 - 8 1 6 4 16 8 1 7 2 1 5 - 6 1 6 0 1 6 - 4 1 6 8 H V I 1 4 9 9 H V I 6 I I H V I 1 2 7 8 1 6 ? 7 ? 1 7 ? 8 2 6 A . HVI 7 \ 2/ X. 14 50 J! 972 ?* 3 / \ . . ? * 11283 008 1 / 5 8 6 2 16 6 1 7 0 17 4 f \ HV2079 f \ \ 3 00 7 / - 1 15 6- 16 0- 16 4 - 15 2 15-6 16 0 6 4 16 8 7 2 1 \ HV2 I \ 3 - v A 173 1 \ 03 1 f 6 6 7 2 6 0 A HV / v 3/ \* 1038 1 yS 008 j \ / 6 8- 17 2- 17 6- 18 0- 16 8- 17 2- 17 6- 18 0- 16 4- I 6 8 - ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 80 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 5 2 15-6 16 0 16 4 16 8 16 2 6 6 17 0 17 4 16 O f I 6 4 I- I 6 8 r- 17 2h 16 0 16 4 16 8 I 7 2 16 6 17 0 17 4 I 5 8 I 6 2 I 6 6 17 0 16 0 16 4 16 8 7 7 1 8 4 8 2 N HV / V 3 ". / ^ 1 1 1 2 7 J 048 / ?-_. . / 1 6 1 6 1 6 1 7 1 6 ? 0 4 8 2 6 6 1 7 8 2 HV / * v 37 ^ V7 ? 1662 /^ 050 / * 17 0 17-4 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 81 16 2 - 16 6 - 17 0 - 17 4 - 5 6 6 6 7 ? 6 0 4 8 2 A A J V HV103 73 1 ^ 1 \ 3 074 I 1 \ 1 - / H* / 16 2 " 16 6 " 17 0 " 17 4 - 16 2 - 16 6 - 17 0 - 16 0 - 16 4 - 6 6 7 ? 7 ? 4 - 8 - 2 - 6 - / N? 3 074 / / X / 17 0 - 17 4 - 5 6 6 6 0 4 7\ 3 J ' K _ ? X 1 872 ^^~*\ 088 I 1 6 7 7 6 0 4 /*V H V 1 / \ 3 ? 1132 f* 089 / ? > 5 5 6 1 6 7 4 8 2 6 0 j \ HVI X 3 ? / ^ ? v ? f 920 T 099 / ? 1 ? FIGURE 7.? T^he mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 82 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 5 1 6 1 6 - 8 2 6 A H V / \ 3 / \ - / Nv 1 1 204 A 0 9 9 / \f I 5 6 U I 6 0 \- 16 4 1- 6 1 7 1 7 1 8 ? 8 2 6 0 i \ HV1780 j ^ 1 V 3 10 1 / - / x^ ^^ / 6 1 6 1 7 1 6 1 6 1 7 1 7 4 8 2 4 8 2 6 1 \ HV r \ 3 / \ . HV 3 1 1 1 A 1 8 7 5 / 103 / ? 7 1X 163 I X 2 3 f / 15 8 16 2 I 7 0 I 7 2 17 6 I 8 0 I 6 0 I 6 8 17 2 16 8 17 2 17 6 16 7 ? 6 0 / \ HV I \ ^ 3 / ^*V^ 12 16 f 114 / 6 7 7 8 2 6 / ? \ H V 1 /? V ?? 4 5 0 /?\ 143 r 7 7 0 4 ^ v HVI / ^ ^ 3 ? 14 29 . 146 A FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 83 7 8 6 6 1 6 1 7 7 6 0 0 4 8 2 6 u H V 1 A 1 307 14 9 / .\ f H V 2 0 3 4 / 3 156 | X. / 16 2 - 16 6 - 17 0 - 17 0 - 6 6 7 6 0 ?/'X 3 0358 y?^159 -A * 5 2 - 15 6 - 16 0 - 16 4 - 16 4 - 16 8 - 1 7 - 2 - 5 6 6 7 8 2 6 0 1 \ HV2 1 \ 3 ' A. 154 / \ 192 / > / 5 6 - 16 0 - 16 4 - 16 8 - 6 6 7 ? 4 8 2 A H V ? 12 109 /* 168 / / 6 1 6 7 4 8 2 / \ H V / v 3 - / v ? 1 908 J\ ? 206 / ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 84 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16-4 16 8 17 2 17 6 18 0 17-4 17-8 17 0 17 4 16 4 16 8 17 2 16 0 16 4 16 8 17-2 15-6 16 0 16 4 16 8 17 2 16 4 - 16 8- 17 2 - 6 6 7 7 4 8 2 6 - \ H V 1 \ . 3 \ r 4 6 9 [ 22 3 J 1 6 1 6 1 7 7 4 8 2 6 A A / \ T;;:9 / ? 1 5 ? 1 5 1 6 1 6 1 7 7 4 8 2 6 0 4 ft r I %. H V 2 O 5 I [ / \ 3 22 5 r \ r / ^ S N < * # IJ *#^^~T J FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 85 1 5 - 4 I 5 8 I 6 2 16 6 16 4 16 8 17 2 17 6 16 4- 16 8 - 17 2 - 15 4 15 8 16 2 16 6 17 0 16 4 16 8 17 2 17 6 17 0 16 8 7 2 16 6 17 0 16 0 16 4 16 8 17 2 17 6 18 0 16 2 16 6 17 0 1 6 - 4 ? 16 8 17 2 17 6 H V I 7 I 6 3 267 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 86 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 2 16 6 17 Oh 17 eh 1 6 1 6 7 7 2 6 0 4 r \ H v I V 3 29 13 i 2 77 / ? / ? *?*??_# _7 I 6 ? 2 U 16 6 t- 17 4k 6 6 7 7 4 8 2 6 / % HV 1 _ \ 3 (\ 889 3 2 7 I ? I 5 2 h I 5 6 h I 6 4 h I 6 8 h 1 7 - 2 1 - 7 6h 5 6 6 7 8 2 6 0 j \ H V 1 9 70 1 1 ^ 3 336 1 ? / H. / 6 7 6 0 HV 1 830 298 ^ ^ " V 1 6 1 7 8 2 H V2 /--V^^ .3 Y? ? ^^^~ 1 48 3 17 * ? 5 5 1 6 1 6 1 7 4 8 2 6 0 - VJ % H V 1 1 \ 3 ? 746 J 33 8 / ? ? FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 87 16 0 I 6 4 15 6 I 6 0 I 6 4 I 6 6 H V 2 I 6 0 I 7 0 17 8 16 2 I 6 6 17 0 6 6 6 7 0 4 8 2 IV ? I V ?J ^ 550 i 360 1 15 8 - 16 2 - 16 6 - 17 0 - 17 4 - 15 6 - 16 0 - 1 6 - 4 - 16 2 16 6 15 8 16 2 16 6 17 0 15 2 15 6 I 6 8 P 17 2 - 17 6 - 1 8 0 b FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 88 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 6 7 7 2 6 0 4 I V HV 1 \ 3 J ^ I 5 0 8 / 3 7 2 / 6 7 7 7 6 0 4 8 L \ H V / \ 3 I 574 I 3 8 7 f ?J 5 6 6 6 7 6 0 4 8 2 / A* Hv / V 3 1 6 6 3 1 ? 3 9 1 j 16 0 I 6 4 I 6 8 I 6 2 16 6 17 0 I 6 6 17 0 17 4 - 16 0 - 16 4 - 16 8 - 6 6 7 1 7 2 6 0 4 i \ HV / v 3 I \ . 1 6 8 8 J ^ ? 3 9 2 t1 6 1 6 2 6 HV 1 1 2 0 6 3 9 9 y T * 1 6 1 7 1 5 1 5 6 6 6 0 4 8 2 6 T\ HV2 1 3 8 f \ J *^sj 3 4 3 7 / ? I \ HV 1 9 8 3 I [ V 3 4 3 8 / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 89 16 2 - 16 6 - 17 0 - 15 6 - 15 6 - 16 0 - 1 6 - 4 - 15 8 - 16 2 - 16 4 I 6 17 2 16 2 16 6 17 0 17 4 6 4 16 8 17 2 15 2 15 6 16 0 16 4 6 8 5 6 16 0 16 4 16 8 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 90 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 6 1 6 1 7 1 7 1 7 2 6 0 4 8 I \ HV 1 4 22 i r \ 3 500 / I \ J " J X ^ _ ^ J 5 6 1 6 6 6 0 4 8 j \ H V 2i \ . 3 1 83 f ^ 53 7 / / 6 6 7 2 6 0 A* / \ H V ? / K. 3 ? / ^ 1 2 1 3 1 > ' ? 504 / -w? ? / 6 6 6 7 0 4 8 2 J \ H V I 8 8 8 / / \ 3 509 j / ' ^ V , / 16 2 - 16 6 - 17 0 - 6 6 7 7 4 8 2 6 A / \ HV / \ 3 A 03 83 / 53 1 / / 16 6 - 17 0 - I 7 4- - 16 2 - 16 6 - 15 8 - 16 2 - 16 6 - 16 8 - 17 2 - 17 6 - 17 2 - 17 6 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STAR'S IN SMALL MAGELLANIC CLOUD 91 16 0 - 16 4 - 16 8 - 17 2 - 15 6 - 16 0 - 17 2 - 16 4 P 16 8 - 1 7 - 2 - 16 2 - 16 6 - 17 0 - 16 2 - 16 4 - 17 0 - 16 6 - 17 0 - 17 4 - 5 ? 1 6 1 6 8 2 6 ? - H V I ? 3 8 4 A^S! 620 J+ \ I 6 2 - I 6 6 - I 7 0 - 5 6 6 7 8 2 6 0 j \ 3 ? / v ^ ? A.534 j \ 642 f / I 5 4 - I 5 8 - I 6 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?66 7 92 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 5 5 1 6 1 6 1 6 2 6 0 4 8 f \ HV i \ 3 * / * r\ 804 f ? 666 / / I 5 8 I 6 2 5 6 6 6 6 0 4 8 A J \f i? H v ? / \. 3 r 63 1 667 / 5 2 5 6 16 0 1 6 4 1 6 8 ? f\ f\ J .V H V 2 1 8 5 J ? \ 16 0 - 16 4 - 16 8 - 17 2 - I 7 6 L 1 7 - 2 - 17 6 - 16 0 - 16 4 - 6 8 - J \ H V 1 3 3 7\ 3 6 76 ^ 6 6 6 7 0 4 8 2 * ' / V A 44 5 j 6 92 i 16 2 - 16 6 - 17 0 - 17 4 : . 5 6 6 6 7 b 0 4 8 2 n n f \ HV 1 4 5 3 | / \ 3 6 9 9 - I \^ j FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 93 15 6 16 0 16 4 I 6 8 16 8 17 2 I 6 4 16 8 17 2 16 0 16 4 16 8 1 6 1 6 1 6 7 5 6 6 0 4 ? 8 2 8 2 6 f?\ H v ' 7 2 8 7 ^ / ^V ' " ? / ? ? ? ? j \ HVI 8 6 6 1 \ / # \ ^ 3 7 2 4 / 16 4 16 8 16 4 16 8 17 2 17-6 16 8 17 2 16 8 17 2 17 6 16 2 16 6 17 0 16 4 16 8 17 2 16 6- 17 0 - 17 4 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 94 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 0 15 4 15 8 16 2 16 0 16 4 16 8 15 2 15 6 16 0 16 4 16 8 17-2 15-4 15-8 16 2 16 6 16-4 16 8 17 2 6 6 7 1 7 4 8 2 6 r \ Hv i / v 3 352 f V 809 I 6 1 6 6 7 0 4 8 2 / X. 3 r 15 1 / 8 11 > 6 6 6 7 0 4 8 2 / V 5 10 ^ 7 10 / 825 j 16 6 - 17 0 - 17 4 - 15 6- 16 0 - 16 4 - 6 8- FIGURE 7.?^The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VABIABLE STARS IN SMALL MAGELLANIC CLOUD 95 7 7 ? 7 0 4 8 ? J V ^ 1483 P< 832 / I 6 I 6 I 6 I 7 I 7 I 5 I 6 I 6 I 7 I 7 16 0- 16 4 - 6 8- 17-2- 16 6- 17 0- 17 4 - 15 4 - 5 8- 16 2 - 16-6- 16 2 - 16 6- 17 0 - 17 4 - 6 ? 2 - 16 6- 17 0- 7 4- 15 6- 16 0- 16 4- 16 8- 17 2- FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 96 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 17 0- 7 ? 8 - 5 6 6 7 8 2 6 ? 0 f \ t H V 1 6 94 J ^ / ?^ 3 9 3 4 / ' ? / ^ * < L ' / 17 0 - 1 7 - 8 - 6 1 6 I 6 1 7 1 7 0 4 8 2 ? 6 J \ HV 1 5 8 0 1 j \ 3 94 1 1 \ 6 2 - 16 6- 17 0 - 17 4 - 16 0- 16 4 16 8 17 2 15 8 16 2 16 6 16 0 16 4 - 16 8 17 2 17 6 15 8 16 2 16 6 17 0 16 0 16 4 16 8 17 2 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 97 15 8 - 16 2 - 5 6 6 6 6 0 4 8 A A / * \ . H V 1 7 9 5 / Vy / \ . 4 0 7 9 / ? j ^S^_. / 1 6 - 2 ? 6 6 - 17 0 - 17 0 - 1 7 - 4 - 1 7 - 8 - 8 2 - 1 6 - 8 - 1 7 - 2 - 16 8 - 17 2 - 1 7 - 6 - 8 0 - 17 2 - 1 6 1 6 4 8 ^ HV ?/^"V^ 4 J ^V!7 ^^**- 1 474 16 0 y? w FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 6 16 0 16 4 17 0 17 4 17 8 16 2 16 6 17 0 15 8 16 2 16 6 17 0 15 6 16 0 16 4 16 8 16 4 16 8 17 0 17 4 17 8 18 2 14 6 15 0 15 4 15 8 16-2 16 6 17 2 17 6 18 0 15 8 16 2 16 6 17 0 15 4 15 8 16 2 16 6 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STAR'S IN SMALL MAGELLANIC CLOUD 99 15 6 16 0 16 4 16 8 15 8 16 2 16 6 17 0 15 6 16 0 16 4 16 8 15 2 15 6 16 0 16 4 17 0 17 4 17 8 17-2 17-6 6 6 6 7 ? 0 4 8 2 A A / V* HV842 / j ^?" 4 2 8 9 I 15 6 - 16 0 - 16 4 - 6 8 - 6 8 - 17 2 - 1 5 1 5 1 6 6 4 8 2 6 A./ *\ - i \ * - m f HV 4 576 [ ^ 336 i / 16 2 - 6 6- 17 0 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 100 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 8- 16 2 16 6 17 0 6 2 - 16 6 17 0 17-4 16 6 17 0 17 4 16 4 16 8 17 2 15-8 16-2 16 6 16 8 17-2 17 6 180 16 0 - 16 4 - 16 8 - 16 6- 17 0- 7 4- 5 6 6 6 6 0 4 8 / \ 7/ \ - J v 740 / 4 12 j 1 4 1 5 1 5 1 6 6 8 2 6 0 4 J \* H V86 1 / 1 \ 4 4 13 J / \ . / - / \.^^ jf 1 6 2 - 1 6 - 6 - 17 0 - 17 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STAR'S IN SMALL MAGELLANIC CLOUD 101 16 2 16 6 17 0 16 4 16 8 17 2 5 4 15 8 16 2 16 6 16 2 16 6 17 0 16 6 17 0 7 4 16 0 16 4 16 8 17 2 16 6 17 0 7 ? 4 X H V 1 1 *S* 4 r 406 506 1 15 8 - 16 2 - 16 6 - 17 0 - 17 4 - 5 1 5 6 1 6 7 ? 4 8 2 6 0 4 \ H V ?J ? 425 / 547 I 1 6 - 4 - 6 8 - 17 2 - 15 6 - 16 0 - 1 6 - 4 - 6 8 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 102 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 6 16 0 16 4 16 8 15 8 6 2 16 6 5 6 16 0 16 8 1 6 - 4 ' 16 8 7 2 16 4 16 8 17 2 16 4 16 8 17 2 16 8 - 17 2 - I 7 6 t 15 8- 16 2 - 6 6- 17 0 - 16 6 I 7 0 15 6- 16 0 - 16 4 - 16 2 16 6 17 0 15-6 16 0 16 4 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 103 1 5 5 6 6 4 8 2 6 A r / ~*J A \ H V 2 1 2 9 j \ \ . 4 7 2 9 / " ^ V / 5 6 6 8 2 6 7 \ HV A7 8 5 J 7 2 9 / r 6 6 - 17 0 - 17 4 - 16 2 - 16 6- 17 0 - 1 5 5 1 6 1 6 4 8 2 6 / N y H V 1 8 9 9 / 1 XV 4 7 6 0 / - / \. J 5 5 6 6 2 6 0 4 1 \ . HV2 / T 4/ V. 1 64 I 769 / / 16 6- 17 0- 16 2 16 6 17 0 17 4 17 0 17-4 15 6 16 0 .16 4 16 8 15-8 16 2 16 6 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 104 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 16 4 - 16 8 - 1 7 - 2 - 1 7 6 " 1 5 ? 6 6 7 8 2 6 0 7 \ HV2 / \ . ? / ^ s 125 / 844 / / 16 2 - 16 6 - 17 0 - 6 6 1 6 7 0 4 8 2 / \ r 593 A 846 y / 6 7 6 ? 0 >-V HVI ?/ V. . 4 ? * / ^ ^ 683 /*"*V 85 7 ?>4 15 0 15 4 15 8 16 2 15 6 16 0 I 6 4 17 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 105 15 6 - 16 0 - 16 4 - 4 5 5 5 6 6 0 4 8 2 f\ fI \ ij \ . H V 1 6 7 1 j 1 \ 4 ? 900 1 1 \ 1 5 5 1 5 6 6 0 4 8 2 6 A / V * HV / \ 4 A / 82 7 /9 1 j / 6 fi 6 0 4 8 J \ HV2 / ^v 4 ?\ 145 f > i94 1 7 15 8 - 16 2 - 6 6 - 17 0 - 15 6 - 16 0 - 16 4 - 16 8 - 7 2 - 1 5 1 5 6 6 7 4 8 ? 2 6 0 - A A / * V / / \ H V 1 55 5 I [ \ 4 942 1 / ?^#? j ? ? ? * 4 5 5 1 6 1 6 1 6 8 2 6 0 4 8 tx \ \ 909 I 947 i V. ..J FIGURE 7.? T^he mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 106 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS I 5 2 |- 15 6 16 0 16 4 16 8 15 8 16 2 16 6 17 0 16 0 16 4 16 8 16 4- 16 8 17 2 17 6 16 4- 16 8 17 2 17 6 6 6 6 0 4 8 1 ^ v 5 1 992 / 0 4 8 1 5 6h 16 0 h I 6 4 h 6 8 (- 16 0 16 4 16 8 15 2 15 6 16 0 16 4 6 6 7 7 2 6 0 4 / ? y H v i / \ . / ^ ^ 92 7 / 0 8 4 / / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 107 16 2 16 6 17 0 17 4 17 8 15 4 15 8 16 2 16 6 15 8 16 2 16 4 1 6 - 8 17 2 H V2 2 I I 16 0 - 1 6 - 4 - 16 8 - 17 2 - 17 6 - 6 6 17 0 17 4 16 0 16 4 16 8 1 6 - 2 16 6 17 0 16 4 16 8 16 2 6 6 1 5 - 8 16 2 16 6 15 8 16 2 6 6 17 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 707-819 O??6 8 108 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 5 1 6 1 6 ? 8 2 6 / V H V ' ? / V 5 ? J ^ N 633 j 200 / 16 0- 16 4 - 16 8 - 1 7 - 2 - 15 4 - 5 5 6 2 6 0 / i^. H V 1 / x 5 r\ 982 /it 224 / 15 4 - I 5 8 16 2 16 6 5 6 1 6 6 6 0 4 8 f \ H V 1 ? 7 v. 646 f 2 33 2 / 15 2 - 15 6 - 16 0 - 16 4 - 6 8 - 17 0 15 6 16 0 16 4 16 8 16 4 16 8 17 2 16 4 16 8 17 2 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 109 1 6 7 7 6 0 4 8.8 f^ 45 8 J" 5 6 6 8 2 6 ? t A-H V5 ? 1811 / " 4 6 9 J" 5 5 5 6 6 0 4 8 2 6 A / \* HV1 / \ 5 ' 6 18 f 649 | / / 15 8 - 16 2 - 16 6 - 17 0 - 17 4 - 16 2 - 16 6 - 17 0 - 1 5 - 8 - 16 2 - 16 6 - 16 2 - 16 6 - 5 6 6 0 S\ H v i / * V^ ? 5 929 ,/S 584 / ' 6 6 6 7 0 4 8 2 A L \ H V 1 / #\* 5 / \ w ^ 416 / 662 / / 6 6 1 7 1 7 2 6 0 ? 4 4 \ H V 1 / \ 5 563 / 665 /i FIGURE 7.? T^he mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 110 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 8 16 2 16 6 17 0 17-4 15-8 16 2 16 6 17 0 16 6 17 0 17 4 14-8 15-2 5 6 16 0 6 4 6 6 15 4- 15 8- 16 2b 15 8 16 2 16 6 17 0 5 5 6 1 6 1 6 2 6 0 4 8 I \ i 1 X H V I 5 0 3 1 j T 5 8 0 3 / / \ / 'J ^W 5 6 1 6 8 2 6 / V HV / \ 5 / ^ \ - y v? 1 4 3 4 / ? 8 3 3 / ? ? 17 0 1 6 1 6 6 0 ? 4 8 l'\ HVI7 X ^ 5 L jtt ? 7 ' ^ < L ? / 5 3 7 / ? 84 2 T FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 111 16 6 - 17 0 - 15 4 - 15 8 - 16 2 - 16 6 - 16 4 - 16 8 - I 7 2 L 1 6 1 6 1 6 7 0 4 8 2 r * \ H V 2 1 4 4 / / \ 5 942 / / ^ * \ / 6 6 7 7 4 8 2 6 A Aj \ HVI 50? /" \ / \ . 5 ? 94 9 / ? / \ . / 15-2 15-6 16 0 16 4 16 8 17 2 17-6 18 0 15 4 15 8 16 2 16 6 15 4 15 8 16 2 16 0 16 4 16 8 16 8 17 2 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 112 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 15 2 15 6 16 0 15 6 16 0 16 4 16 8 15 0 15 4 15 8 16 2 16 6 17 0 16 4 16 8 17 2 15 8 16 2 16 6 17 0 15 2 15 6 16 0 16 4 15 8 I 6 6 I 7 0 I 6 6 17 0 17 4 15 8- 16 2 - 16 6- 16 2 16 6 17 0 15 8 16 2 16 6 17 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STABS IN SMALL MAGELLANIC CLOUD 113 1 6 6 7 2 6 0 . r v v HVI / *^v 6 ? J \ 1 1 93 J^^K 427 *? 15 2- 15 6- 6 0- 16 4- 1 4 1 5 1 5 1 5 6 6 0 4 8 2 f *\ HV2 / * \ . 6 / ^ ^ * 1 42 J 4 90 / / / 6 7 ? 1 7 6 0 4 f\* HVI ? / > ^ 6 A4 12 A 4 6 3 J 5 5 1 6 1 6 4 8 2 6 A \ . H V ' % \ 6 A94 5 7 4 6 8 ?/ 6 2- 16 6- 17 0- 7 8- 5 4- 5 8- 16 2- 16 6- 16 0- 16-4 ? 16 8- 6 0- 164 - 16 8- 16 0 16 4 16 8 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 114 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 5 6 6 1 7 8 2 6 0 / \ H V I 1 \ 6 1112 / 6 11 / 15 8 - ,16 2 - 16 6 - 16 6 - 15 0 - 1 5 - 4 - 15 8 - 16 2 - 16 0 - 16 4 16 8 1 5 6 - 8 2 ^ *?^, H v 1 3 2 4 6 6 3 > ^ 17 2 16 0 16 4 14 6 15 0 - 15 4 15 8 I 5 4 15-8 16 2 16 6 15 8 - 16 2 - 6 6 1 6 0 ? 4 8 / <\ HVI / % * * 775 / ? 8 10 J 17 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME 15 6 16 0 16 4 15 4 15 8 16 0 16 4 16 8 15 8 16 2 15 8 16 2 14 8 15 2 15-6 16 0 16 8 17 2 15-8 16-2 VARIABLE STARS IN SMALL MAGELLANIC CLOUD 15 2 15 6 16 0 1 6 - 4 15 8 16 2 16 6 15 6 16 0 16 4 115 15 2 - 15 6- 16 0 - 16-4- 5 4 - 15 8- 6 6 6 ? 0 4 R f* A^. H V 1 - f V^ 599 / * ? * * 4 98 J FIGURE 7.? T^he mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 116 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14 8 - 15-2 15 6 15 8 16 2 16 2 16 6 16 2 16-6 17 0 15 0 15-4 15-8 15 4 15 8 16-2 16 6 17 0 15 6 16 0 16-4 HV I 2 940 16 2 - I 6 6 17 0 14 8 15 2 15 6 16 0 15 4 I 5 8 15 2 - 15 6- 16 0 - 16 4 16 8 15-6 16 0 16 4 16 8 15 8 16 2 FIGURE 7.?The mean light cuives of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE 8TARS IN SMALL MAGELLANIC CLOUD 117 17 0 17 4 17 8 14-8 15 2 15 6 16 0 5 6 16 0 16 4 15 2 15 6 6 0 15-4 15 8 16 2 16 0 16 4 16 8 5 ? 4 5 8 I 6 I 5 16 2 I 6 I 6 1 6 - 6 15 8 16 2 - 16 6 17 0 I 7 I 5 0 - 15 4 1 5 - 8 16 2 1 5 - 2 1 5 - 6 16 0 15 6 16 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 118 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14 8 15 2 15 6 16 0 15 0 15 4 I 5 8 16 2 17 0 17 4 1 7 - 8 15 4 15 8 16 2 15 0 15 4 15 8 16 2 16 6 17 0 14 8- 15 2- 15 6- 16 0- 15 0- 15 4- 15 8- 16 2- 15 2- 15 6- 16 0- 16 4 - 15-2- 15 6- 16 0- 15 4 15 8 16 0- 16 4- FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 119 14 4 - 14 8 - 5 2 - 15 2- 15 6" 16 0 - 6 6- l 7 0 t 15 2 - 15 6 - 16 0 - 5 5 1 6 6 2 6 0 4 J \ HV. J \ '0 - ? L K 4 2 6 1 438 J 1 5 1 5 1 6 2 6 0 - f H V 2 2 2 9 7 ? y 1 0 - 4 4 8 / 15 2 15 6 16 0 15 0 15 4 15 8 16 2 15 0 15 4 15 8 16 2 15-8 16 2 15-2 15 6 16 0 15 6 16 0 16-4 - 16 8- 7 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 120 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14 2 - 14 6 - 15 0 - 15 4 - 15 6 - 16 0 - 16 4 - 1 4 5 5 5 6 0 4 8 / \? H V 2 2 O I J V / \ 1 1 - 2 5 2 J -f \ I 5 5 5 6 0 ? 4 8 2 - /^ A " j 630 / 40 1 y V 14 6 - 15 0 15 4 5 8 15 0 - 15 4 - 15 8 - 16 2 - 16 6 - 17 0 - 4 4 b 5 2 6 0 4 A / / V \ HV857 - A / / ^ \ 1 1 98 2 / ? 4 5 5 5 1 6 6 0 4 8 ? 2 J \. HVI / W l2 ; \ A 68 2 J 14 9 % A /> 4 5 5 1 5 6 0 4 8 A. A - \ H V 8 5 6 / \ 12 155 J >. J FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 121 15 4 15 8 I 6 2 16 6 1 5 - 4 15 8 16 2 15 8 16 2 16 0 16 4 16 8 17 2 14 2 14 6 15 0 15 4 14 2 1 4 - 6 15 0 14 6- 5 0 - 15 4 - 15 8 - 6 2 4 ? 8 - 15 2 - 15 6 - 16 0 - 5 2 - 15 6- 16 0 - 1 4 - 8 - 15 2 - 5 6 6 6 0 4 f \ HVI \ : l 3 ?r \ 464 At 295 J \ FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 122 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14 6 15 0 15 4 15 8 14 6 15 0 15 4 14 6 15 0 15 4 15 0 15 4 15 8 16 2 16 6 15 6 16 0 16 4 15 0 15 4 15 8 4 4 5 2 6 0 J\\ HV 1 / V '3 93 3 T** 7 80 / 5 1 6 1 6 1 7 8 2 6 0 7 * *r H v' / * . 1 4 y* * 4 54 7 06 8 / / 14 8- 15 2 - 15 6- 1 5 1 5 6 6 6 2 6 0 4 8 / \ . HV1996 / ? r \ , A' 14 6 - 15 0 - 15 4 - 15 8 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLT}ME VARIABLE STABS IN SMALL MAGELLANIC CLOUD 123 5 6 6 6 6 0 4 8 ? ? ? / X # H V I 3 8 6 I / \ 1 4 - 4 2 8 / / \ J 5 5 5 6 0 4 8 CM " A * \ HV843 1 \ ? 14 7 14 h 1 4 1 5 1 5 5 6 0 4 8 1 \ . HVI v '4 5 7 9 T 5 7 3 / / 17 0 7 8 4 2 14 6 5 0 5 4 15 8 6 2 T HV2088 \ 14 578 ? N \ . /V 144- 4 8 - 15 2 - 5 6 - 1 5 1 5 1 5 6 0 ?A 8 2 i Je H V I 4 4 2 2 8 7 14 6 - 15 0 " 1 5 - 4 - 5 8 - I 4 ? 8 F 15 2 - 15 6 - 6 0 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 797-819 O?66 9 124 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14 6- 15 0- 15 4 - 15 8- 15 0- 15 4 - 15 8- 16 2 - 4 4 1 5 1 5 4 8 2 6 I \ HV,328 I / "V. 15 8 4 0 / 5 5 5 6 0 4 8 2 I *y H V I t /? \ '5 - / X A 48 1 / 65 1 J 4 4 5 1 5 ! 5 1 6 2 6 0 4 8 2 ? ? y f\ fi \1 \ HV854 7 *j \ 1 6 953 1 X y 4 4 5 1 5 4 8 2 6 ? ? 1 , \ H V 1 7 87 ? / ? ^ y 16 196 - \ \ v J^ 5 5 6 1 6 1 6 2 6 0 4 8 / \ H V ' J \ 15 kA 48 2 / ^ 827 / / 15 0- 15 4 - 15 8- 16 2 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 125 14 6 15 0 15 4 5 8 6 4 I 6 8 17 2 15 6 16 0 6 4 16 8 3 6 4 ? O 14 4 14 8 4 8 5 2 5 6 16 0 6 7 7 7 6 0 ? 4 8 I V HVI J ^ ? * 1 7 828 f 1 95 I / 3 1 4 1 4 8 2 6 / X. 17 925 / 1 99 / I 5 8 F 6 2 - 1 6 - 6 - 14 4 - 14 8 - 15 2 - 4 5 5 5 6 0 4 8 I \ HVI I \ ' 8 ' J \ 884 f 116 fJ FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 126 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 13 6 - 14 0 14 8 - 4 5 5 1 6 1 6 8 2 6 0 4 \ HVIV2 m_ ^ 5 2 2 f 1 4 3 J 14 6 - 15 0 - 15 4 - 14 2 " 14 6 " 15 0 " 15 4 - 15 8 - 13 6 I 4 0 14 2 - 14 6 - 15 0 - 15 4 - 4 5 5 1 5 1 6 1 6 6 0 4 8 ? 2 6 J ?* V H V I 5 4 3 [ / V 20 4 54 j - \ \ j - J \ J 5 5 6 6 1 6 2 6 0 4 8 ? \ r V H v ' / V 24 / V / \ , / i i 2 9 r 4 7 7 / / / FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STABS IN SMALL MAGELLANIC CLOUD 127 13 8 1 4 - 2 4 6 5 O 14 4 14 8 15 2 15 6 6 0 1 \ 1 * # \ \ HV22O5 V 25 43 2 1 *\ 1 1 Y 14 6 - 15 0 - 5 4 - 5 ? 8 - 1 3 1 4 1 4 1 4 1 5 5 6 0 4 8 2 6 \ I \ HV863 I 1 V 28 962 I - I \ I ?vJ *%J 5 ?> 1 6 1 6 2 6 0 4 1 \* H V1 0 3 5 3 i / ** \ 2 7 2 2 8 / - / X. / 1 3 - 8 - 14 2 - 14 6 - 1 5 0 - 1 4 - 8 - 5 2 - 15 6 - 16 0 - 14 2 - 4 6 - 15 0 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 128 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 14-6 15 0 15 4 15 8 16 2 14 8 15 2 15 6 13 8 14 2 14 6 15 0 15 4 14 0 14 4 14 8 15 2 15 6 14 0 14 4 14 8 14 4 - 13 6- 14 0- 14 4 - 14 8- 4 2 4 6 5 0 15 4 - - ' \ \ . H V 8 6 5 \ 33 3 26 13 8- 14 2- 14 6- 15 0 - 14 2- 14 6- 15 0- 15 4 - FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 129 14 0 4 8 13 0 13-4 13-8 4 2 13 2 13 6 14 0 13 4 13 8 14 2 14 6 12 4 12 8 13 2 13 6 14 0 13 2 13 6 12 4 12 8 13 2 12 8 3 2 13 6 14 0 14 4 4 8 15-2 12-4 12 8 13 2 HV82 I 1 1 8 - 12 2 12 6 I 3 0 FIGURE 7.?The mean light curves of the intrinsic periodic variables arranged in order of period.?Continued 130 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 1.?List of variables studied Harvard variables previously announced 1566 New Harvard variables (this paper) 46 Duplications ? 20 Total stars investigated 1592 Cepheids (including P < l d ) 1186 Long-period variables 24 Irregular variables 62 Eclipsing stars 34 Total (table 2) 1306 Variable, no period found- Variability doubtful Not variable Too faint for study Not measured. TotaL- 125 60 51 11 39 288 TABLE 2.?List of Harvard variables CODING FOB RESULTS C Cepheid (including Pjk *jk 1 q v i m i. i d k i 3. 1 U 1 a 3. a u a d k a a m a m a m a i. 3. U a a m a m a s a m a a s a a a a a m a m a m a m Results C C C C C C E C V? C C C C C C C E* C C c V? C V? C C C C c c c c V * I c c c c c* c V c c c c c nv C c c c c c c c n m V* C C C C C C C C C C L C V I n m * n m C C c c c c 134 TABLE 2.?List of Harvard variables.?Continued HV 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 X 13591 13593 13603 13606 13607 13613 13623 13624 13630 13634 13635 13640 13654 13666 13681 13692 13726 13726 13732 13741 13743 13747 13766 13771 13795 13812 13814 13824 13835 13844 13854 13856 13858 13867 13868 13893 13896 13898 13910 13919 13923 13926 13926 13935 13937 13946 13953 13967 13968 13980 13982 13983 13986 14027 14042 14046 14046 14054 14068 14071 14075 14085 14090 14093 14122 14125 14127 14133 14134 14139 14144 14146 14149 14168 14178 14191 14192 14193 y 8489 a 13434 a 12658 a 9766 a 9009 a 11673 a 10051 a 6538 a Reference 1 m d k m 7905 a d k 9155 a 7906 i 10519 i J k d k i b d k 9703 a 11504 a j k v 9609 a 76 59 a 7194 i 8074 11645 ; 10055 < 11462 i 8335 8114 9074 13686 7154 7484 9206 13825 6025 12156 10326 7267 11286 7160 9244 7532 11946 4760 8654 11117 7755 9166 9019 9285 10014 7343 9084 14789 7514 8499 7194 12834 8746 12444 9534 12266 14254 8790 9393 7722 7311 13204 6699 9386 10874 9176 8353 10140 10078 7525 10184 5603 10492 9618 10984 13701 8122 i m i m i m i m i m 1 q i i j k i i m i t a. m a a m a a m a a d k o p v a m a m a m a a m a m a m a a a m a g k a a m a a m a u a d k v a m a d k v a a m a m o p a a a m v a a m a m a m a a q a a a a m a m a a m a m a m Results C C C C C C C C C C E C C* C C c c c c c c c c c c c c c V? c E c* V C C c c c c c c c c* c c c c c c c c c c c c c c c c* c V ? c c c c c c I c c c V c c c c c c HV 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 18 30 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 X 14201 14208 14212 14235 142 36 14237 14245 14247 14264 1426 5 14268 142 74 142 76 14286 14292 14295 142 97 14331 14395 143S3 14355 14360 14361 14366 14374 14375 14408 14408 14417 14424 1442 5 14428 14439 14444 14445 14453 14461 14462 14471 14515 14515 14536 14538 14548 145 52 14562 14593 14616 14626 14645 146 57 14664 14666 14673 14682 14685 14694 14694 14703 14706 14713 14724 14744 14754 14764 14774 14775 14794 14805 14813 14826 14826 14831 14835 14835 14836 14846 14847 y 12772 ? 10618 a 11592 a 9144 a 10168 a 9019 a 9872 a 9097 i 10343 i 8988 < 7836 : 9066 i 4022 8915 7917 7794 . 12032 10624 12034 6028 10154 9640 7700 7387 8975 6173 9626 1 1672 8103 8464 6784 9774 9826 9489 6522 8425 6694 7556 8345 7415 12265 12333 6 582 8762 8904 8765 13199 7347 6654 11578 6397 12992 9404 8234 15095 7426 9784 11377 7774 11314 15059 7281 14984 8796 10718 10673 8266 11155 12128" 7585 6244 10720 9551 7275 15844 11765 9636 6884 Reference m v d k i n m i n i m i m o p i m i in i 1 i d k v i in i d k v i i in i m d in a j k m a d k v a in a m a a a a m a a m a a a m a a d k a d k v a a m a a m a m o p v a a a dk v a a a a m a a a s a m a a m v a g a a g k a a k v a m a m a t a j k v a a a j a a a g k a j k v a a Results C V C C c c c c: c c V C * c c c c: r* c c c c* c* V ? c c: c: c: c c c c c c* c c c c c c c c c c c c c c V ? c E c nv* c c c L C c c c V c* c c c c E c c c I c c c c c c 135 TABLE 2.?List of Harvard variables.?Continued HV 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 192 3 1924 192 5 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 X 14859 14871 14879 14888 14894 14904 14906 14909 14951 14980 14984 14999 15002 15004 1 5007 15014 15021 15023 15026 1 5041 1 5045 1 5074 15079 15086 1 5088 1 5090 15093 1 5100 151 14 15114 15114 15126 15129 15140 15144 15154 15164 15165 15167 15191 15194 15206 15214 15224 15226 15226 15234 15237 15240 15241 15258 15271 15281 152 92 15295 15308 15310 15327 15332 15338 15344 15355 15356 15356 15360 15394 15397 15397 15399 15406 15406 15417 15425 15436 15438 15474 15477 15497 y 71 54 a 7242 a 8824 a 14051 a 12540 a 13494 a 6312 a 6314 a 7004 a 56 30 a 15083 -. 13586 i Reference J k ni m v m v m g k i m v 7653 a 8589 a 14301 a 7746 a 1 1024 a q v 6385 a 12164 a m v 15486 a R k 14906 i 9553 ; 7394 7400 ; 7714 7514 i g k 6626 a 9106 a 6701 a 7673 a 9053 a j k 8223 a 14918 a g k 9583 a j k 7174 a 9514 11763 7895 10474 9677 9382 8887 1302 5 10008 8592 9090 12454 13381 10115 6828 9985 8684 8255 7504 7630 11224 8800 6845 12964 8817 10009 90 50 8054 12925 7998 9640 10347 11614 10684 10672 10672 14567 11105 7321 7266 11898 10365 8545 i i m v i i j k v i j k i i 1 i m v i i i i j k v i m v i i a a i a a i m i 1 i m v a a a. m v a r a a i j k v a i j k s a m i g k a m a t v y a s a 1 Results C c c c c c V c V C C C C c c V c c c c c c c c c V c c c c c c c c V c* c c c c* c c c* c c c* c c* c c c c* c c c c c c c c c c c c c c c c c c c c c V c E* L c HV 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 X 15500 15534 15537 15546 15550 15554 15567 15567 15586 15586 15610 15624 15639 15649 15656 15668 15673 15712 15715 15718 15723 15725 15728 15740 15743 15750 15752 15754 15764 15785 15814 15830 15833 15844 15865 15875 15886 15893 15914 15946 15956 15966 15973 15976 15981 15984 16014 16016 16032 16054 16055 16066 16084 16092 16107 16108 16115 16116 16119 16119 16126 16134 16154 16160 16185 16190 16195 16200 16206 16207 16224 16233 16242 16254 16262 16291 16292 16302 y Reference 1062 4 a m 1 1626 a m v 1242 5 i 12724 ; 6969 : 13732 i 5683 ; 11301 < 7402 ; 11204 6556 < 14292 i j k v i m i m l m i m i m v i k 9473 a 12586 a m v 10030 8771 11206 i i i m v 1492 5 a g k 13715 7381 8214 11004 13150 6706 13763 6732 8055 4793 6134 11552 9213 9386 6333 12365 13820 11766 8214 13015 13986 10579 13484 7045 9313 8093 7146 9820 8062 7684 13554 13366 14776 11665 12832 8683 1 1707 7444 11878 12364 7452 8864 7557 10653 11392 8042 10138 8484 11343 7907 10062 6954 11586 7807 6865 9852 13824 10534 10637 9784 i m i i i m v i i i i i k i m i m v i jk a a j t a m a m v a a d 1 m v a ? q i n a i i a i a a a m a m v a gk i j t a j k o p v a d k a m v a a m v a q v a a d k a a m a m v a a m a d k a m o p a a a a q v a a a a a m a m a Results C C C C C C C* C* c c* c c I c c c c c c c c V c c V? c V? c c* c c c c E c c c c* V? c nv* C V? C C C I c c c c E C C C C C C c c c c c c c c c I V? c c c c c c c* c* c 136 TABLE 2.?List of Harvard variables.?Continued HV 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 X 16322 16324 16331 16342 16352 16360 16360 16366 16368 16386 16400 16403 16405 16413 16414 16437 16456 16478 16486 16504 16504 16505 16506 16532 16546 16574 16605 16619 16644 16644 16645 16646 16650 16662 16684 16689 16694 16703 16705 16715 16724 16733 16742 16749 16779 16784 16799 16804 16806 16808 16820 16824 16825 16827 16843 16845 16866 12881 16876 16906 16908 16922 16922 16931 16948 16961 16964 16965 16969 16991 17004 17011 17012 17034 17034 17049 17054 17054 y 13454 7305 13975 12721 8033 11846 12578 7345 9468 8589 1 3208 13284 14575 1 1258 13234 12 744 13345 11400 10244 9284 13178 10526 9966 10166 12 727 14204 10308 9915 4281 7771 10408 13004 9324 13614 9085 15713 10884 8678 10203 7644 7269 7566 13754 8236 11182 14526 8916 9406 5634 12632 9673 5426 10375 8074 8336 12871 7413 6953 9161 15132 8131 11642 12544 10426 14447 11327 13124 13444 4915 10164 10452 14436 14235 6234 13006 9048 10614 13027 Reference a r a a m a m v a a a m v a a d k a d k o p a o p a a k a a a a a j k o p v a a a o p v a j k s v a a n a a k a a a a a a a d k a o p a d k a g k a a d k a o p a a a j s a o p a d k a a k a d k a a j n r a t y a a a a d k a d k a a a a d k a g r a d k o p a a s a a k a a a a a s a a 1 a a k a a d k a q a Results C * C C C * C V C C c c c c c c* c c c c c c c c c I* c c c c V V? V? V C c c c c c c c V I c c c c c c c* E c V c c c c c c* c c* c c I I c* c c c c L c c c c V? c c c HV 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 21 31 21 32 2133 2134 21 35 21 36 2137 2138 21 39 2140 2141 2142 214$ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2154 21 54 21 55 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 X 1706 3 1706 5 17070 17074 17085 17093 1 7104 17108 17119 171 36 17148 17153 17177 17184 17194 17204 17245 1 7259 1 7264 172 94 17297 17303 17305 1732H 173 34 17335 17346 17347 17373 17394 17407 17413 17429 17468 17503 17507 17517 17523 17528 17543 17545 17582 17585 17585 17591 1762 3 17624 17634 17644 17651 17655 17667 17695 17706 17737 17748 17749 17774 17775 17776 17811 17842 17844 17846 17847 17859 17871 17945 17946 17958 18010 18097 18103 18132 18166 18203 18266 18292 y 10509 1 3338 9048 14912 91 14 10305 1 262 J 12055 1 3914 10772 14804 9105 9982 9924 9108 1424? 9104 I055H 12526 3766 9164 14794 9575 7851 8865 9220 9123 9076 14393 13934 14246 12082 10846 9744 9178 14807 9606 15495 9928 11582 1382 5 9664 8615 10799 13531 12606 10071 13477 14496 1 5414 842 3 12204 14324 14395 14668 11744 6965 9168 14454 11164 10664 11104 14649 7410 13865 14455 10335 132 70 10618 10518 12773 9554 9721 13999 9904 9922 7894 13683 Reference a r a q a d k a k o p a d k a a o p a o p a a a k a d k a a r a d k a k a d k a a a k a . i V a a a d k . i a d k a d k a k a a k a a a a a a a g k a a a a a d k a a a a a a k a g k a a a 1 a k a a a k a a a a a a a k a a a a a j k a a a a a a j r s x a a k a R.-sults <;* c c c c c c c c c c c c c c c c(. c c c c <; c c c c <: c; V? C c V? C c c c c c c c c c c c c c c c c I c c c c V? c c c c V c c c c c c c c c V c c c c c c c 137 TABLE 2.?List of Harvard variables.?Continued HV 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 3610 4075 6320 6323 6334 6346 6354 6357 8008 8009 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 X 18298 18323 18338 18386 18386 18443 18513 18596 18615 18757 18774 18774 18846 18914 19034 19101 191 34 191 37 19205 19313 19314 194 56 19512 19604 19865 19943 201 58 20374 20661 20893 21018 21764 22120 22155 23178 23438 14809 10992 11241 11370 11445 11700 12096 12417 126 72 13359 14736 15201 152 46 15273 15381 15573 16004 16143 16332 16692 16765 16929 16947 16947 16992 17043 17139 17199 17211 17643 18219 18591 19539 y 14005 141 54 12444 9775 131 33 14295 6044 11161 1 3400 9824 6361 13394 10442 12149 13420 14174 4889 13836 9194 9207 1 342 5 8547 13333 8905 7166 10324 3833 7129 4305 10639 5414 8985 7120 7113 4830 10574 8606 8286 7875 8595 11379 8397 11055 9645 9261 9519 14991 9099 14487 14586 4461 14934 5086 4362 5679 4989 5895 14334 14439 15069 14832 14655 4956 14994 6348 6438 6264 7236 9993 Reference a a a j k a j k a a a k a a a t a j k a a a a a a k a a k a k a a J t a a j k a j k a j k a k u a t y a k u a s a j k u a j k a j k u a j s a j k u a j r c z h h h h h h dd dd k k k k k k k k J k k jk k o p k k k k k k k k k k k k k k k k k k k k Results C C C C C C C C C E C C C V C I c c c c c E c c c c c E C I c c c I c* c* n m * n m * * n m * * * * * * C * c c c c c c c * * c c c c c* c c c c c * c c c c c c c c c c H V 10385 10386 11112 11113 11114 11115 11116 11117 11118 11119 1 1 120 11121 1 1 122 11 123 11 124 1 1 125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 1 1136 11137 11138 11139 11140 11141 11142 1 1143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 1 1 171 11172 11173 11174 11175 11176 1 1177 11178 11179 11180 11181 11182 11183 11184 11185 1 1186 11187 X 23535 5226 5820 67 38 8967 10365 10416 10430 10510 10531 10728 10735 10740 10839 10908 1092 5 10926 1 1059 1 1090 11118 11197 1 1238 11298 1 1370 11465 11481 11496 1 1515 11607 11693 1 1745 11748 11768 11770 11783 11880 11906 11932 11943 11974 11990 12063 12132 12156 12223 12300 12360 12373 12393 12408 12452 12486 12510 12511 12615 12633 12641 12644 12647 12705 12832 12923 12939 12942 13038 13248 13248 13344 13368 13377 13500 13659 13842 13887 14C76 14078 14112 y 9207 4920 3894 4581 5130 7713 8100 9273 8836 9084 8715 7959 8430 9078 5466 9188 8955 9350 9290 8544 8705 8100 8388 10770 9034 7808 9120 9096 8682 8908 8913 8508 8909 9146 7784 7458 8752 8486 7829 7448 7990 7552 5859 8700 8976 9096 12804 8856 9192 6108 8768 8013 1629 8204 8262 9318 7583 8447 8940 12897 8812 8309 881 5 9522 9564 4416 12216 8481 4692 8895 8370 12252 13284 8559 8190 8643 14016 Reference k k u m u m u m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m s m m m m m m m m m m m m m m m m m m m m m m m m m v m n m m m m Results C n m C c c c c c c c c c c c c c c c c c c c c c c c c c c c c* * c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c * c c c V?* 138 TABLE 2.?List oj Harvard variables.?Continued HV 1 1 188 111 89 11190 11191 11192 11 193 11 194 1 1195 11 196 11 197 11198 11199 11200 11201 11202 11203 1 1204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 112 56 11257 11258 11259 11260 11261 11262 11263 11264 11265 X 14146 14293 144 36 14445 14586 14610 14712 14767 14883 15654 15714 15792 15846 15849 15924 15963 16164 16299 16326 16623 16797 16860 3462 42 30 4494 4632 4782 5388 5748 5796 6006 6471 6825 7014 7098 7098 7542 7554 7722 7968 8064 8958 9177 9186 9261 9315 9396 9747 9762 9768 9813 9828 9840 9945 10104 10123 10176 10187 10437 10470 10542 10633 10650 10730 10794 10824 10854 10869 10896 10937 10962 10995 10998 11063 11072 11088 y 8380 9612 13727 13755 13086 12378 8520 9087 89 34 13 392 12192 12960 6102 12327 9564 10830 10326 10845 12828 10242 11985 13860 142 32 6204 6114 6798 6390 6384 7458 5985 6966 5805 5529 7215 5058 17478 12168 6330 6882 17634 6918 9684 9567 10332 7834 6639 10128 6201 9465 8907 7665 8796 12162 6264 14394 5249 9822 8627 9062 2754 8256 9050 9129 7691 13836 7638 8298 6711 10458 6735 10389 8789 8556 8058 9454 10020 Reference m m m m m v m v m m m m n v m v m v m m m m m m m o p v m m ni m u m u n r n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n u n n n n n n n n n s n t n n Results C V? C C C c c c c c c c c c c c c c c c c nm nm C* V? V nv C V? nv nv nv nv C L nv nv C V? V? C C V? nv C C C nv C C C C nm C V nv C I V C I nm* C I C nv n m V C c c c n m * I C c nv HV 11266 1267 1 1268 1 1269 11270 11271 11272 11273 11274 1 1275 1 1276 11277 1 1278 11279 1 1280 11281 11282 1 1283 11284 11285 11286 11287 11288 1 1289 1 1290 11291 11292 11293 1 1294 1 1295 11296 11297 11298 1 1299 1 1300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 X 1 1 129 1 1 148 1 1157 11193 1 1193 11212 1 1220 1 1274 1 1283 1 1292 1 1 306 1 1306 11328 11382 1 1 394 1 1466 11478 1 1494 11514 11520 1 1 535 1 1628 1 1632 1 1646 1 1682 11794 11810 11811 11825 11829 1 1868 11942 11948 11987 12005 12036 12042 12090 12099 12126 12149 12170 12172 12204 12232 12239 12271 12303 12306 12330 12333 12372 12376 12376 12394 12406 12438 12441 12493 12498 12513 12535 12564 12591 12597 12660 12670 12 744 12786 12788 12821 12858 12986 13051 13059 13070 13086 13096 y 8783 8280 81 31 654 i 10368 9055 10170 4872 10182 10188 8202 8919 10542 8990 9389 10566 10323 8371 9378 8280 9381 10182 9058 9387 6582 8277 7883 7767 9198 9324 1 3074 921 7 8123 8100 8634 7826 8324 1 3890 9360 1 1055 9436 7910 7790 9648 7492 8580 9039 7977 11976 9702 10779 8142 7398 8906 8830 11289 9687 10803 8786 7400 14313 8123 8451 9327 13662 14793 7995 7745 19002 9368 8392 8829 9040 9749 942 5 10226 12990 9081 Reference n n n n n n n n n n n ii n n n b n n n n t n n n n n n n n n n n s n n u n u n u n n t n n s n n n n u n t n n n n n n n t n n n n n n t n n n n n n n n s n n n n n n n n n n n n n q n Results nv V V V? V c: V C I C V c c V 1 V V C F. n\ C~ C V C nv V I nni* V? 1. C c; c: C c: E C L C nv C C E V? V? c f f nv E nv n m V nv C E V V C V nv C V L I V? C nv nv C V? I c c V c c V 139 TABLE 2.?List of Harvard variables.?-Continued HV 1 1 344 1 1 345 1 1 346 1 1347 1 1 348 11 349 1 1350 1 1351 1 1352 1 1353 1 1 354 1 1 355 11356 11357 1 1358 1 1 359 1 1 360 11361 11362 1 1 363 11364 11365 1 1 366 11367 1 1 368 1 1 369 11370 1 1371 11 372 11373 11374 11375 11376 11377 11378 11379 1 1380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 1 1410 1 1411 1 1412 11413 1 1414 11415 11416 11417 11418 11419 11420 11421 X 13098 13128 131 30 1 3148 13158 13200 13205 13206 13233 13234 13287 132 90 132 96 13302 13317 13323 13335 13344 13344 13354 13400 13440 13473 13500 13518 13518 13 566 13576 13578 13596 13599 13600 13602 13602 13641 13651 13651 13657 13662 13712 13717 13724 13731 13743 13748 13773 13960 13991 14000 14003 14044 14100 14137 14134 14157 14160 14163 14193 14193 14212 1422 5 14246 142 52 14278 14289 14322 14352 14392 14319 14337 14366 14421 14442 14455 14460 14472 1447 3 14508 y 92 76 9294 10166 10356 10965 7908 10310 12738 6210 10391 9186 9228 8751 13122 10912 9723 82 38 9394 10604 9942 10812 13284 11658 14010 9931 11064 9198 12092 10456 11508 9764 12901 7182 12861 10692 9660 10824 10717 8135 10812 10939 9582 6210 9457 8995 9993 9952 10142 10589 92 58 9910 15528 10166 10466 10443 12901 10944 9318 11544 10049 9948 9363 9942 9580 7740 6432 8244 9725 10484 10169 10521 9838 6957 9404 9739 7926 10114 6702 Reference n n t n n n n n n n n n n n n q n q n n n n n n n q n n n n q n n n n s n n n n q n n t n n n n n n n n n n n n n n n n n q n n q n n q n s n s n n n n n n n n n n n n q n n n s n n n n Results v E V? C V nv C I C V V V V? C C C V V V C V C L C C C C V C I C C C c c E V C V C C C c nm C I C V V V C nv C I c V? C L I V C IV r? C C C n m C C V E HV 1422 142 3 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 11434 11435 11436 1 1437 11438 11439 11440 11441 1 1442 11443 1 1444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 X 14598 14622 14634 14673 14676 14679 14687 1470 5 14715 14726 14751 14790 14814 14818 14844 14850 14864 14867 14872 14875 14880 14943 14969 15078 15000 15042 15069 15102 15104 15147 15159 15168 15177 15186 15222 15252 15208 15294 15312 15337 15357 15378 15393 15423 1542 5 15436 15489 15522 15525 15 546 15582 15585 15603 15615 15626 15630 15630 15696 15729 15757 15810 15870 15927 1592 7 16044 16179 16329 16338 16440 16440 16584 16622 16638 16650 16704 16841 16860 16860 y 8124 13830 11694 1462 5 6261 9564 9760 9149 16731 9760 9477 5604 7797 10500 8988 6300 9055 9801 9344 8871 14328 14964 8836 15132 4422 8922 6450 1486 5 9916 7407 6864 8988 8784 12363 13404 12945 12650 6227 9660 9675 9045 14292 9438 9858 9822 9243 9900 4416 10554 6900 14652 9096 9321 10896 10651 5610 9477 8340 7893 9665 9216 11865 10860 14244 8571 8817 9522 8034 8772 11073 8028 15306 9720 6600 7710 7807 8691 9294 Reference n n s n n n n s n n n n n n n n n n n n n n n n n n n n n n n n n n n n s n n n q n n n n n n n s n n n n n s n n n n n n n n n n n n n q n q n n n n n n n n n n n n n n n Results nv I V I C L V C nv V V* V?* V C C V? C V V C nm C V V c C V? V? C C L nv V? I * V? _ *C* V C V * C I I c V V? V I V? C C n m nv V nv C C V? V C C C c c c c c c c c nv c c c c c c 797-819 O?? 140 TABLE 2.?List oj Harvard variables.?Continued HV 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 1 1530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 X 16908 16926 16959 16974 17136 17139 17142 17154 17205 17235 172 38 17304 17334 17343 17394 17397 17508 17694 17880 17934 17943 18018 18060 18138 18186 18318 18402 18492 18504 18528 18570 18606 18720 18729 18822 18903 18972 18987 19026 19122 19161 19221 19350 19653 19662 19788 22146 10980 11340 11466 11580 11670 11712 11802 12018 12048 12048 12090 12144 12144 12192 12234 12288 12288 12312 12348 12 348 12372 12402 12432 12516 12534 12552 12606 y 13773 14358 13068 9108 8700 9477 7641 5820 6690 10899 6846 12444 14613 6045 7008 14550 11757 12468 5748 9933 101 19 9546 14526 11616 10431 12762 3768 13230 13062 132 42 14109 12720 11472 7038 13281 11304 5001 9999 11037 10782 10338 10284 11850 7647 11922 14910 9267 10044 11034 10014 10200 11052 11598 10956 16032 10332 11568 10320 10422 10608 10510 10134 9918 12012 11748 102 30 11424 10368 10776 10170 10098 10092 10440 10848 Reference n q n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n s n n n n q q q q q q q q q q q q q q q q q q q q q t q q q q q q r Results C I C v *nrn v v V nv V I C V v V V? c I C C C V? C c V V? C C V C I c V C i C I V? I C C C V? C I I n m n m n m n m C n m C v* V V C c c c c c V n m * V? C C nv C C E f V V? C C c HV 12109 12110 12111 12112 12113 12114 121 1 5 12116 12117 12118 121 19 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 121 33 121 34 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12899 12900 X 12636 12696 12702 12732 12810 12828 12846 12870 12 906 12906 12912 12948 12948 12966 13092 13122 1 3158 1 3212 13224 1 32 30 1 3242 13266 1 3257 1 3278 1 3 302 1 3350 1 3368 1 3 380 1 3440 1 3488 1 3518 1 3626 13674 1 3698 13776 13788 13842 13848 13866 13932 13968 14034 14046 14052 140 52 14064 14094 14112 14136 14178 14190 142 50 14292 14298 14442 14502 14502 14508 14550 14688 14802 15006 15042 15078 15084 15198 15408 15432 15444 15654 15702 15768 15792 15834 15924 16002 3618 5358 y 1 1 568 9672 10200 10572 1 1658 9852 10788 10554 10854 1 1970 10771 10104 10488 12156 10872 1 1238 102 72 9858 1 1214 10446 1 1 172 10200 1 1289 1 12 52 1006 8 1 1652 12588 10512 10038 10494 10008 1 1 394 10260 1 102 8 9942 1 1052 11448 1 1766 11406 11832 11370 10938 12198 11442 12144 11070 11172 11478 10758 12384 10884 11772 12036 11562 12288 11238 11916 12066 12048 11424 11814 11706 11418 12138 11664 10758 11592 11358 12600 11496 12042 12258 11088 10854 11028 11292 5418 4500 Reference q q q q q q <\ 17. 53 17. 86 16. 15 16. 21 17. 56 17. 46 17. 35 17. 74 15. 92 17. 12 16. 50 17.21 16.56 17. 16 17. 12 16. 05 17. 32 16. 98 17. 15 17. 86 18. 05 16. 31 17. 94 16. 72 17. 19 15. 95 16.45 17.46 15. 80 16.'67 15. 67 16. 94 17. 14 17. 12 17. 17 17. 11 17.66 17. 83 17. 43 15. 90 17.28 16. 58 16. 67 16. 76 17. 99 17. 82 15. 07 17. 14 13. 24 17. 31 Obs. 497 328 501 481 279 163 367 381 487 521 478 521 289 420 402 352 511 516 465 345 461 360 203 512 516 339 450 357 512 532 346 528 414 524 525 504 487 461 516 389 233 340 344 500 502 449 444 418 502 299 352 523 516 555 452 148 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 1500 11142 1501 1502 11143 11144 15 03 1504 1505 830 11145 1506 1507 12088 1508 11292 11295 1509 1510 1511 1512 1513 1514 11296 12 926* 11146 1515 1516 1517 1583 1519 11147 1520 1521 831 1522 11148 1523 11297 11149 832 11298 1525 1526 1527 1528 11150 1529 11299 11151 11300 1530 1531 1532 12089 X 11712 11748 11749 11764 11768 11770 11771 11779 11781 11782 11783 11784 11802 11802 11805 11810 11829 11843 11845 11847 11849 11853 11859 11868 11869 11880 11880 11886 11890 11894 11905 11906 11914 11922 11926 11928 11932 11934 11942 11943 11943 11948 11955 11957 11971 11971 11974 11981 11987 11990 12005 12006 12006 12013 12018 y 6566 8508 9005 11845 8909 9146 10125 8653 12212 6843 7784 11355 6917 10956 6979 7883 9324 7850 15900 10780 7094 11282 7483 13 074 6512 7458 11225 6513 11181 7068 9279 8752 9846 10414 6774 8166 8486 103 87 9217 7829 10143 8123 6637 6847 9056 11495 7448 6792 8100 7990 8634 6407 6,675 8936 10632 Published 1. 27. 1. 3. 1. 1. 3. 1. 571. 6. 0. 2. 1. 5. 1. 1. 4. 1. 6. 10. 22. 1. 1. 1. 1, 7 2 1 2 1 4285 4 2 902 0744 94869 P Period 5. 1. 27. 3. 1. 3. 5. 1. 25122001. 1905 87502 02 820: 4. 3. 1. 2. 1. 3. 565. 6. 5708566 0. 16088 36142 12 06 820 44324 501 5742 384 4 154 . 9030 , 8911 , 5576 . 5097 .23 . 3821 . 5515 . 7086 . 9193 2. 6. 1. 5. 3. 18. 1. 1. 1. 1. 6. 4. 1. 6. 10. 4. 22. 1. 3. 1. 1. 1. 4. 5. 7, 2 2 1 2 1 3 5 1 1 949796 428525 406271 545848 290208 074443 803359 946370 251220 350607 190287 886248 876680 891453 372966 Irr. 02 818213 570857 160859 546816 361420 119096 072054 613655E 820141 140726 504662 443249 084428 500673 574201 384758 427528 173919 14355 902969 .858813 .891206 .558969 Irr. .508145 .384541 .087583 .228515 .3 04647 .382121 Irr. .551542 .708452 .962502 .037925 .112082 .920399 .270844 Normal Maxima 26572. 31625. 34300. 13861. 29870. 26308. 31796. 28776. 32846. 16727. 29881. 16760. 14604. 31701. 23340. 33563 23290. 33104. 29585. 29849. 30528. 34682. 29681. 34685. 29938. 32142. 30578. 23320. 26689. 28065. 29585. 29926. 26929. 34685. 26508. 30578. 34299. 32034. 26689. 28783, 29811 23682 26945 26571 26502 31796 26929 29585 27750 29484 29906 29926 516 631 306 607 451 461 310 476 275 653 44 9 614 612 458 586 707 622 264 488 640 42 9 36 9 415 243 259 513 599 282 301 264 333 624 466 640 . 503 .297 , 503 ,282 . 395 .606 . 813 .391 .493 .647 . 310 .624 . 264 .478 .460 . 385 . 240 M 16. 16. 14. 16. 17. 16. 15. 16. 17. 16. 16. 16. 17. 16. 16. 17. 15. 15. 15. 16. 15. 17. 15. 16. 17. 16. 17. 17. 16. 16. 15. 17. 16. 15. 17. 14. 16. 15. 17. 17. 14. 17. 16. 16. 16. 17. 16. 16, 17, 17. 17, 16 16 16 17 35 79 75 09 10 40 16 96 09 24 88 80 08 68: 10 10 10 8 9 82 72 92 18 97 25 68 94 12 1 1 53 74 94 60 17 18 00 75 57 96 40 53 . 13 .65 , 70 , 16 . 00 . 19 . 57 .43 .46 . 14 . 30 . 84 .62 . 80 . 23 m 17. 18. 16. 16. 18. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 18. 17. 17. 18. 17. 17. 17. 18. 17. 16. 18. 16. 17. 16. 18. [18. 14. 18, 17, 17, 17, 17 17 18 18 18 17 17 17 18 18 64 27 16 79 00: 75 12 94 74 64 46 80 71 J6 64 95 74 14 7 9 96 02 64 08 00 13 46 70 20: 87 45 22 52 02 04 04 36 89 98 , 13 , 4 . 75 . 50 . 99 . 88 . 06 . 77 . 33 .28 . 39 . 00 . 95 . 94 . 55 . 06 . 12 m 17. 17. 15. 16. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 16.! 16. 17. 16. 1 7. 16. 16. 17. 17. 17. 17. 17. 16. 18. 16. 15. 17. 15. 17. 16. 17. 17. 18. 17. 17. 16. 17. 17. 18, 17, 17. 17 17 17 17 IK 94 38 53 54: 26 54 53 48 24 2 8 47 52 13 22 5 8 55 6 J 6 5 41 67 77 2 9 48 77 47 18 70 01 71 58 72 62 52 68 83 82 32 . 58 35 , 74 , 56 . 15 . 12 .67 . 75 . 62 . 14 . 57 . 77 A 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0. 2. 1. 0. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 1. 1. 1, 0, 0, 1, 0 0, 0 1 0 1 0 2<> 48 41 7 0 90: 3 5 96 98 6 5 40 58 00 6 5 68: 54 MS 6 4 2S ')7 24 10 46 1 1 75 45 52 58 09: 34 71 28 92 85 86 04 61 32 02 73 .62 . 85 . 29 , 72 . 06 . 58 . 76 . 85 . 93 . 86 .65 . 10 . 93 .26 . 89 (m) 17. 17. 15. 16. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 16. 16. 1 7. 16. 17. 16. 16. 17. 17. 17. 17. 17. 16. 17. 16. 15. 17. 15. 1.7. 16. 17. 17. 18. 17. 17. 16. 17. 17, 18 17. 17 17 17 17 17 09 84 2>? 48 49: 17 41 46 44 15 24 40 48 OH 1 1 50 47 55 SK 5K 62 72 26 44 70 38 1 3 61 95 65 52 66 51 43 61 78 75: ,26 .49 . 23 .67 . 52 . 10 .06 .61 . 71 . 54 . 07 .49 . 71 Obs. 401 4 05 554 484 333 5H0 514 5 02 578 492 166 2 96 46') 524 4K5 167 299 485 468 4 01 512 5H9 49 5 489 47M 410 386 182 275 507 498 239 499 512 475 533 430 490 263 193 533 272 496 432 517 340 432 3 04 319 320 357 483 523 273 207 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 149 TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV Published P Period Normal Maxima M ( m) Obs. 12927* 11301 1533 11302 1534 1535 12090 12091 1536 1537 11152 1538 1539 1540 1541 12092 11303 1542 10358 1 1304 1543 1544 1545 1546 1547 1548 1549 1550 1551 11153 12093 11306 1552 1553 11154 1554 11307 1555 11308 11155 833 1557 11311 1558 1559 1560 1561 1562 1563 1564 12097 12098 11156 1565 1566 12024 12036 12040 12042 12 044 12048 12048 12048 12055 12063 12063 12072 12076 12076 12086 12090 12090 12095 12096 12099 12106 12107 12110 12116 12116 12119 12121 12125 12126 12132 12144 12149 12154 12156 12156 12162 12170 12171 12172 12223 12233 12233 12239 12247 12279 12280 12284 12284 12286 12286 12288 12288 12300 12311 12324 7041 7826 8773 8324 7235 6665 10332 11568 8213 5931 7552 6487 6205 6975 8297 10320 13890 12748 11055 9360 7540 8498 8994 8133 10356 10596 6754 8717 7066 5859 10422 9436 9640 8037 8700 6403 7910 10944 7790 8976 20164 7273 8580 9275 10104 8975 7926 9494 6386 8905 9918 12012 9096 7566 6326 1. 16. 1. 4. 5. 4. 19. 1. 540 3. 2 0. 3. 2. 2. 3. 1. 1. 12. 2. 3, 4. 3 1 228 1 1 15 6 4 5 2 2 1 27665E 45 49606 787 8418 2845 335 49554 3. 1. 16. 1. 3. 2. 1. 1. 4. 5. 4. 2. 4. 2. 19. 1. 533. 17798 461 94 5857 7988 367827 6034 28163 V39 ,4215 .1498 . 9273 .2868: .4383 . 8 ; . 9028 .77177: .50 .473 . 388 .25 .36526 .40930 .9369: 1. 3. 1. 20. 3. 2. 2. 1. 7. 2. 3. 4. 1. 1. 1. 3. 12. 2. 1. 3. 4. 3. 1. 239. 1 1. 1 5 15 6 4 5 5 2 1 2 1 4 252551 276650E 435021 371704 642337 062948 496128 170326 786655 842213 284600 544633 212814 890675 326884 495513 87 319185 159687 418273 454500 939403 581644 548317 874579 350077 026096 360949 496747 604173 281473 685201 948901 543274* .421604 ,799775 ,149805 .942396 .286803E .438301 .92 .902801 .389389 .771764 .953409E .509166 .473372 .388255 .665369 .254004 .365257 .193612 .412790 .936813 .313878 3 0663.265 31799. 291 28804. 28034. 31712. 34682. 29868. 29843. 30619. 32031. 26511. 28034. 32441. 32052. 32846. 26956. 29958 26331. 29100. 34689. 24402. 31625. 26331. 23751. 29926. 29843. 16727. 33129. 26632. 34300. 26547. 24433. 27786. 26303. 32878. 32861. 21813. 26329. 33073. 24359 30970. 24462. 32031. 24408, 29074. 32880 32845 31976 32509 30619 32845 29787 25892 29871 379 526 374 378 460 597 350 595 653 526 399 381 275 392 335 560 263 678 631 335 559 538 597 653 642 395 306 584 677 361 401 396 253 786 .300 ,647 , 373 .659 ,595 .793 . 651 .399 .251 .647 .259 . 350 .251 .639 . 327 .460 16. 17. 15. 17. 15. 17. 17. 17. 16. 15. 17. 17. 17. 16. 14. 17. 15. 16. 16. 17. 14. 16. 16. 16. 17. 15. 17. 15. 16. 17. 17. 16. 16. 16. 60 22 61 90 74 55 69 16 10 88 01 05 17 46 66 41 20 68 12 50 85 98 50 90 88 82 32 93 54 60 48 64 26 02 16.41 17. 17. 15. 17. 17. 11. 16, 17, 16, 16, 14, 16 15 16 14 17 17 16 17 16 59 ,62 29 ,45 . 00 .20 . 23 . 58 .86 .64 . 87 .26 . 99 . 19 .65 . 53 . 85 . 40 . 47 . 91 17. 17. 16. 18. 17. 18. 18. 17. 17. 16. 17. 17. 18. 17. 15. 18. [18. 17. 16. 18. 16. 17. 17. 17. 18. 16. 17. 17. 17. 18. 17. 17. 17. 17. 17. 18. 18. 16. 17. 17, [17, 17, 18. 17. 17 16 18 16 17 15 : 18 [18 17 18 17 54 67 94 42 02 18 39 54 48 90 65 79 15 46 54 25 00 20: 90 26 68 88 98 85 66 28 87 47 52 14: 90 86 49 20 56 .23 , 06 , 90 , 79 . 50: . 70 . 86 . 20 . 80 . 33 . 06 . 08 . 98 .46 .46 . 24: .4 . 10 . 34 .25 17. 16.' 18. 16. 17. 18. 17. 17. 16. 17. 17. 17. 17. 15. 17. 17. 16. 17. 15. 17. 17. 17. 18. 16. 17. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17. 16. 17. 16. 18, 17. 15 17 16 16 15 17 18 16 18 17 31 29 27 66 92 12 34 05 54 43 62 75 24 12 93 07 58 76 75 50 35 54 44 07 63 04 18 91 73 49 08 79 24 99 88 30 34: . 57 . 00 , 51 . 52 . 33 . 60 . 99 .26 . 89: .20: . 87 . 00 . 11 0. 0. 1. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 0. 0. ]6. 0. 0 0, 0 1 1 0 1 0 0 ] 0 0 0 0 94 45 33 52 28 63 70 38 38 01 64 74 98 00 88 84 80 52: 78 76 83 90 48 95 78 46 55 54 98 54: 42 22 23 18 15 64 ,44 ,61 , 34 .50: . 50 . 63 .62 . 94 .69 . 19 . 92 .99 . 27 . 81 .68 . 55 . 70 . 87 . 34 17. 16.' 18. 16. 17. 18. 17. 16. 16. 17. 17. 17. 17. 15. 17. 17. 16. 17. 15. 17. 17. 17. 18. 16. 17. 16. 17. 17. 17. 17. 17. 16. 17. 17. 17. 16. 17, . 16 17 17 15 17 16 16 15 : 17 18 16 17 17 25 20 24 55 88 07 31 96 47 39 57 68 17 06 87 04 53 71 63 44 25 48 39 04 59 34 1 1 87 70 41 00 71 17 , 94 , 85 , 19 . 31: . 53 . 96 .45 . 44 .21 . 53 . 91 . 21 . 84: . 15: . 82 .94 . 09 500 444 523 337 473 400 191 375 472 522 447 436 481 502 493 315 308 443 491 194 530 413 300 298 426 512 506 3 82 508 224 440 280 503 536 478 303 273 487 485 346 225 5 02 337 339 518 51 0 432 483 508 529 253 185 491 369 483 150 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 11315 1567 1568 12100 12101 11157 12928* 1569 12102 11158 1570 11159 11320 1571 1572 11321 11160 10359 1573 1574 11161 1575 11162 1576 1577 1578 1579 1580 1581 11324 1582 11163 11164 1584 1585 12106 1586 11327 1587 1588 12107 834 1589 1590 1592 1593 11329 1594 1595 12108 11165 1597 11166 12929* 12109 X 12330 12342 12344 12348 12348 12360 12364 12367 12372 12373 12384 12393 12394 12397 12406 12406 12408 12417 12434 12444 12452 12466 12468 12471 12475 12480 12483 12484 12488 12493 12495 12510 12511 12519 12534 12534 12534 12535 12540 12544 12552 12555 12564 12566 12579 12591 12591 12603 12606 12606 12615 12626 12633 12634 12636 y 9702 7629 16633 10230 11424 12804 8826 10947 10368 8856 9264 9192 8830 11537 6657 11289 6108 9645 9378 10789 6768 11322 8013 8755 6645 14724 8451 7586 6813 8786 11735 1629 82 04 8465 7359 10092 10416 8123 10703 7804 10440 11451 9194 11506 9113 6824 9327 7232 4849 10848 8262 12759 9318 7985 11568 Published P 2. 2. 2. 64. 9. 1. 3. 5. 2. 2. 2. 1. 1. 3. 1. 2. 2. 4. 1. 14. 3. 4. 7. 3. 1. 3. 3. 2. 5. 1. 73. 8. 1. 7, 388. 15 4 4 1 00335E 00302 63775 85 47006 04318E 2518 7215 07318: 6018 08597 48292 898 38782 6612 89979 7612 34794 888397 58 94610 V6146: 68 1123 8664 969 7442 Irr. 4194 59018 .40359 . 5 , 333 ,98565 . 53 .05 : .60 . 357 .19275 .37784 2. 2. 2. 1. 1. 68. 4. 9. 1. 3. 5. 2. 1. 2. 4. 2. 1. 1. 3. 1. 2. 2. 4. 3. 1. 14. 3. 4. 1. 7. 3. 1. 3. 3. 2. 2. 2. 5. 1, 73. 8. 1. 7 4 S90 2 0 15 4 4 1 2 3 Period 003334E 00302 637709 459004 907298 9085 168230 525624 043197E 251800 721871 073063 598271 601802 838280 087309E 482934 897825 Irr. 387867 661201 904684 761200 336307 248895 888397 573011 941244 461876 313907 681495 112379 866406 968207 739800 003811 Irr. ,222217 ,419333 ,590184 .403556 . 589* .332986 985652 .534092 .846347 .227757 .547478 .610365 .356862 .192749E .377264 .602804 .168306 Normal Maxima 25850. 34690. 29484. 29870. 26626. 24408. 31712. 23320. 32003. 16753. 25850. 30885. 29896. 32504. 29791. 26565. 23751. 32142. 32880. 24461. 29958. 30523. 24824. 23320. 25893. 24331. 31738. 34685. 31006. 32861. 26945. 29811. 293 319 460 451 464 793 374 599 648 625 393 633 402 261 62 3 502 5 59 259 265 641 3 06 640 624 599 497 824 367 312 291 343 391 606 34690. 267 31398.246 24408. 32034. 32879. 16760. 29100. 24418. 34299. 29872. 27664. 23344 29906. 29926. 24380. 26559. 31655. 32004. 31710. 34690. 793 461 275 780 560 727 274 455 414 327 283 . 743 .611 . 524 , 637 .455 . 370 15. 16. 16. 16. 16. 13. 15. 15. 16. 16. 15. 16. 17. 17. 16. 16. 17. 16. 16. 16. 17. 15. 17. 15. 16. 16. 14. 15. 16. 17, 15, 16, 17, 15. 16. 16. 16 17 16 16 17 12 15 16 15 16 15 16 15 14 16 16 16 16 16 M 88 79 76 88 77 18 60 17 62 83 81 66 13 18 41 31 00 65 23 52 16 99 21 33 72 .46 . 63 . 94 . 12 , 62 . 82 .46 . 06 , 77 . 75 . 57 .42 . 58 . 34 . 92 . 20 .47 .60 . 84 . 40 . 04 . 76 . 30 . 93 . 50 .60 .96 . 85 . 90 . 36 rr 16. 18. 17. 17. 17. 13. 16. 16. 17. 17. 17. 17. [17. 17. 17. 16. 17. 17. 17. 17. 17. 16. 18. 16. 17. 16. 15. 17. 17. 18. 16. 17. 17. 16. 17. 17. 17. 18. 18. 17. 17. 13. 16. 17. 16. 17. 17. 17. 16. 15. 17. 17. 17. 17. 17. 1 68 16 34 70 22 90 52: 42 03 37: 14 38 6? 82 58 97 ?0 27 40 77 84 89 09 58 66 90 97 80 26 20 38 68 92 74 42 38 38 35: 10 62 94 40 66 57 06 22 80 40 83 76 40 86 86 55 ,23 17. 17. 17. 16. 13. 16. 15. 17. 16. 17. 17. 17. 17. 17. 16. 17. 17. 16. 17. 16. 17. 16. 15. 17, 16, 17, 16. 17. 17. 16. 17. 17. 18 17 17 17 13 16 17 15 16 17 16 15 17 17 17 16 m 87 17 34 99 58 25: 94 15 73 04 42:] 60 15 57 98 44 65 ,64 , 87 . 21 , 35 , 70 , 46 , 21 . 83 . 93 . 10 . 27 .63 .45 . 17 . 06 . 13: . 54 . 36 . 63 . 05 . 19 . 38 . 76 . 76 . 14 .61 .22 . 05 .47 . 24 . 95 A 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0'. 1. 2. 1. 0. 1. 0. 0. 1. 0. 0. 80 37 58 82 45 82 92: 25 41 54: 33 72 50 64 17 66 80 62 1 7 25 68 90 88 25 94 44 34 86 14 58 56 22 86 97 67 81 96 77: 76 30 74 93 06 73 66 18 04 10 90 26 80 90 01 65 87 (m) 17. 17. 17. 16 1 3. 16. 15. 17. 16. 17. 17. 17. 17. 17. 16. 17. 17. 16. 17. 16. 17. 16. 15. 17. 16. 17. 16. 17. 17. 16. 17. 17. 18. 17. 17. 17. 12. 16. 17. 15. 16. 17. 16. 15. 17. 17. 17. 16. 78 13 2 9 96 53 19: H6 12 64 33 56: 56 07 52 94 56 6 0 5H HI 1 3 2 9 67 37 09 75 89 06 17 57 39 13 01 08: 42 27 58 99 12 33 72 68 07 55 14 00 40 20 89 Obs. 4 86 479 401 254 479 51 1 517 5 09 4 76 531 482 446 2H3 457 490 502 52 5 517 494 5 09 3 3 0 473 42 3 5 09 469 495 489 497 495 102 495 354 393 485 490 327 450 273 478 496 315 518 505 464 5 09 495 466 494 492 505 490 446 256 479 453 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 151 TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV Published P Period Normal Maxima M (m) Obs. 11167 1598 11168 1599 11169 1600 11332 10360 1601 1602 1603 1604 12111 11170 12930* 835 1605 1606 12112 1607 1608 1609 1610 1611 1612 11335 1614 1615 1616 1617 1618 1619 1620 12114 11171 1622 11337 1623 1624 1626 2100 1627 12931* 1628 1629 1630 1631 11172 1632 1633 1634 1635 1636 11173 11174 1637 1638 12641 12641 12644 12646 12647 12668 21670 12672 12685 12685 12685 12694 12702 12705 12710 12722 12723 12724 12732 12744 12760 12764 12767 12769 12777 12788 12792 12796 12798 12799 12800 12805 12816 12828 12832 12854 12858 12862 12862 12874 12881 12884 12886 12887 12906 12916 12920 12923 12924 12925 12926 12927 12934 12939 12942 12944 12960 7583 9945 8447 8794 8940 13076 7995 9261 6625 7044 15060 12730 10200 12897 10611 10260 6456 6740 10572 11626 11617 8405 11006 13055 7914 9368 9748 11654 13566 7943 12307 12764 10555 9852 8812 6955 8829 5513 10886 7429 6953 7936 7926 8233 10521 8634 12318 83 09 11599 8354 9524 8264 9714 8815 9522 7680 11820 1.8562 1.7347 7.4985 1.6587 3.2665 3.24365 2.08 1.855078 4.582237 1.734575 7.498219 1.658716 2.684117 2.707408 3.266554 4.735880 3.997793 3.243647 2.072058 102. 81 7E 5. 153550 9. 05141 4.2403 4.4739 3. 0519 5. 145696 2.595966 9. 051330 6.209522 3.487541 4.180584 4.245816 4.491939 3.051804 11.644997 11.644997 2.95661: 6. 1823 1.4486 2.94764 3.7411 5.61 4. 37535 3. 62043E 2.9741 1.3961 4.93861 5.211 ? ? 2.3328 2.76673 11.4 3.65920 1.3929 8. 1057: 5.20 3.97 5.2502 32. 7 1.4199 1.9977 3.32157 1.71537 2.956673 6. 182992 1.790078 2.768695 1.450501 2.944988 3.741143 5.649335 4. 375314 3.626460E 1.280633 2. 974102 2.030989 Irr. 1.396100 4.916808 5.202724 1.796300 3.598520 2.769561 2.332737 2.769078 11.401209 3.667450 1.392919 8. 126580 5.200830 3.970365 5.249619 32.746 1.419892 1.997551 3.324999 1.715372 32793. 394 24504. 568 27746. 529 27680.449 28783.395 23347.528 25850. 393 28040.467 29806.634 29928.242 29926.405 23320. 599 29958. 306 31796.310 34690.418 32878. 305 29778.637 28045.406 32880. 399 31801.286 32419. 541 32880.296 31799.349 24772. 722 32062. 363 23341.668 24787.682 26594.456 31976.647 31342.355 14604.612 26328.373 32537.326 28376. 572 26304.269 27253.622 . . . 26502.647 26929.624 29826. 594 23344. 538 31670.549 33160. 533 27722.387 24468. 688 24025. 729 27658.416 31738. 367 29778.637 32000.655 32004. 637 29204.247 31752.242 31626.627 13888. 576 17447. 825 29826. 594 16. 88 15.62 17. 30 15. 87 16. 78 15.99 16.99 16. 12 16.47 16.54 15. 37 16. 80 17. 00 16.25 16. 16 14. 82 16. 30 16. 12 16.21 15. 51 16.20 16. 52 14.20 16. 15 14. 94 16.48 15. 97 16.66 15. 79 16. 74 14. 89 15. 73 14.25 17.20 16.58 16. 90 17. 15 16.90 15.66 16.30 16.68 16.47 16.62 16. 73 16.42 15. 03 15. 55 17.66 15. 78 15.74 15.88 15. 93 14. 14 17. 01 16.60 16. 19 16. 84 17.48 16.76 18. 12 16. 75 17. 50 16. 78 18. 32 17. 14 17. 54 17.67 16.98 17.80 17.53 16. 70 17. 12 16. 14 17.23 17.60 17.29 16. 76 17. 16 17. 34 15.66 16.90 17. 16 16. 95 17. 10 17. 82 17.29 17.50 16. 70 16.94 14. 77 18.30 17.47 17.48 17.55 17.76 17.20 17.48 17.35 17. 15 17.30: 17. 90 17.32 16. 17 16. 82 18.20: 16.34 16.81 17. 76 16. 81 14. 97 17.67 17. 81 17.36 17. 86 17.23 16.44 17. 86 16. 35 17.29 16. 34 17. 84 16.78 17. 12 17.35 16.43 17.35 16. 51 16.69 15. 50 16.71 17. 12 16.93 16.30 16. 83 17. 07 15. 03 16.59 16.34 16.74 16.80 17.45 16.88 17.29 16. 00 16.55 17.91 17.21 17.22 17.50 16.72 17.06 17.07 16.89 16.97 17.53 16.99 15.75 16.46 17. 90: 16.04 16.44 17. 05 16.48 14.64 17.43 17. 53 17. 01 17.41 0.60 1. 14 0.82 0. 88 0.72 0.79 33 02 07 13 61 00 0.53 0.45 0. 96 1.32 0.93 1.48 1.08 1.25 0. 96 0. 82 1.46 0.75 2.22 0.48 1.13 1.16 1.50 0. 76 1.81 1.21 0.52 1.10 0.89 0.58 0.40 0. 86 1.54 1.18 0.67 0.68 0. 68: 1. 17 0.90 1. 14 1.27 0.54: 0.56 1.07 1. 88 0.88 0.83 0.66 1.21 1. 17 1.02 17. 19 16.38 17. 81 16.29 17.24 16.28 17.75 16. 71 17.05 17.27 16.32 17.28 16.48 16.64 15.41 16.66 17. 02 16. 86 16.22 16.78 17. 02 14. 93 16.54 16.19 16.71 16.72 17.37 16.78 17.24 15.88 16.47 17.84 17.15 17. 18 17.44 16.62 16.98 17. 03 16. 84 16.92 17.45 16.93 15.67 16.38 17.86: 16. 00 16.37 16. 92 16.40 14. 58 17.39 17.45 16. 93 17. 34 487 535 309 485 311 508 350 459 491 488 487 319 448 483 437 437 487 485 443 438 440 357 520 502 533 437 495 350 470 413 492 467 535 397 366 489 334 396 460 497 527 335 331 358 410 493 485 176 488 470 491 454 544 281 482 531 208 152 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 1639 12122 1641 1642 1643 11338 1644 164 5 1646 1649 1650 1651 1652 11175 1653 11339 1654 1655 1656 11341 1657 12932* 1658 11342 12123 1659 838 1660 12124 1662 11345 1663 1664 1665 11347 1666 836 1667 12125 1668 1669 837 1670 12933* 1671 1672 1674 11350 11351 1676 1677 1678 12128 11352 1679 X 12962 12966 12974 12980 12982 12986 12995 12996 13012 13021 13023 1-.O37 13037 13038 13051 13051 13058 13065 13070 13070 13075 13084 13086 13086 13092 13094 13095 13099 13122 13124 13128 13132 13136 13144 13148 13149 13150 13157 13158 13162 13162 13164 13165 13166 13178 13180 13185 13205 13206 13213 13215 13217 13230 13233 13241 y 8523 12156 12406 6024 7836 9040 7356 7973 10047 9944 793* 6604 1032- 9564 8761 9749 13356 9663 9203 10226 9673 6042 11751 12990 10872 11419 8168 8694 11238 14094 9294 7390 6711 9774 10356 11134 14274 8466 10272 6785 10796 12554 7613 7637 12 849 7769 8973 10310 12738 7258 8779 9168 10446 6210 12884 Published 2. 4. 2. 3. 300. 5. 5. 2. 1. 3. 2. 1. 1. 4. 1. 1. 1. 7. 9. 3. 42. 4. 4 5475 Irr. 86003 62051 0576 Irr. 3 311 323 58 4912 9717 24494 61232 7587 '667 '4669 9555: Irr. P 2. 119. 4. 2. 3. 1. 210 300. 5. 5. 2. 3. 1. 3. 1. 2. : 1. 1. 1. 4. 0. 1. 1. 1. 4. 663 2. 3. 3. 176027 2. 75344 40344 , 1888 .6 3, 1. 4. 1. 7. 9. 3. 1, 1, 3 42, 2 1 .839625 4 . . . ... . . . . 03 5 1 1 6 3 1 1 2 4 Period 547530 54 860834 628929 057767 517858 ? 3 233821 323963 583839 008016 Irr. 491177 972384 423040 243380 611432 758690 778777 667009 671453 467565 956663 423518 051388E 330948 ,072820 ,050324 ,352054E .391003 ,830680 .252677 ,186869 .771699 .403445 .519801 .781369 .648353 .188674E .680324* .741296 .428982 .900736 .104515 .820330 . 818129 Irr. .389654 .213615 .279961 .271508 .077313 . 040812 Normal Maxima 23287. 24077. 33563. 24359. 24002. 31379. 26329. 26978. 26594. 32822. 29872. 23341. 23605. 26570. 27749. 29542. 32467. 32508. 24363. 26189. 30523. 16760. 29926. 26547. 29906. 23545. 29519. 23752. 32537. 24763. 32135. 24402. 29926. 29869. 26310. 29780. 16755. 29204. 31342. 32860. 32854. 32851. 26978. 34682. 29870. 27253. 31293. 716 346 896 830 370 456 403 455 689 845 518 451 397 374 261 898 516 640 614 488 5 84 385 364 564 326 720 248 678 333 389 310 630 628 247 355 300 288 254 452 429 451 625 486 26308.461 24402. 29938. 31799. 32854. 678 501 349 383 16. 14. 14. 15. 15. 17. 15. 17. 15. 15. 15. 16. 14. 16. 15. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 15. 14. 16. 16. 16. 16. 15. 16. 15. 17. 14. 14, 16, 16, 16, 14, 13 16 17 14 16 16 17 14 15 16 17 17 16 16 M 64 55 98 90 94 07 40 56 50 56 58 57 47 86 95 72 10 89 62 25 38 65 36 92 53 78 , 40 , 32 , 00 , 83 , 70 ,62 .96 . 85 , 10 . 99 . 81 . 21 . 88 .46 . 75 . 20 . 66 . 64 . 51 . 34 . 78 . 84 . 84 . 82 . 91 . 10 . 44 .48 . 00 m 17. [17. 16. 17. 17. 17. 17. 18. 16. 16. 17. 17. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 16. [17. 17. 16. 17. 17. 17. 17. 16. 17. 16. 16. 17. 18. 16. 15. 14. 17. 18. 16. 17. [17. 18. 16. 16. 17. 17. 18. 17. 16. 32 3 38 31 14 58 20 72 82 83 10 12 72 67 46 6H 65 32 55 98 27 11 13 92 92 51 95 44 63 50 44 34 41 90 91 02 12 21 02 90 28 56 76 18 49 26 8 22 00 97 54 60: 22 22 73 m 17. 15. 16. 16. 17. 16." 16. 16. 16. 17. 16. 17. 17. 17. 17. 17. 16. 16. 16. 17. 17. 17. 16. 17. 16." 17. 16. 17. 15. 15. 16. 17. 16. 13. 17. 18. 15. 16. 18. 16. 17. 17. 17. 16. 16. 08 j H4 85 86 46 37 38 64 H5 44 99 44 14 20 29 76 93 87 82 63 50 lV 34 19 77 19 54 61 51 54 90 80 64 99 41 05 74 86 16 53 27 49: 98 90 46 j 0. 2. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 3. 1. 0. 0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. ] 1. 0. 1. 1. 0. 0. 0. 0. 0. \ 6 8 75 40 41 20 51 80 16 32 27 52 55 25 HI 51 <)(> 55 43 93 73 89 46 77 00 39 73 55 12 63 67 74 72 45 05 81 03 31 00 14 44 53 36 10 54 98 92 02 38 16 15 63 50 78 74 73 17. 15. 16. 16. 1 7. 16." 16. 16. 16. 1 7. 16. 17. 17. 17. 17. 17. 16. 16. 16. 17. 17. 17. 16. 17. 16.' 17. 16. 17. 15. 15. 16. 17. 16. 13. 17. 18. 15. 16. 17. 18. 16. 17. : 17. 17. 16. 16. 0 03 75 76 78 43 28 30 54 HI 5') 89 57 04 17 25 71 87 84 77 56 41 10 30 15 65 16 47 55 44 45 83 72 61 90 34 01 61 80 4 : 13 45 23 46: 93 85 41 Obs. 26 5 5 07 3 96 472 509 407 5 04 122 521 52 5 4K2 492 5 56 429 4H7 (95 414 457 399 360 466 477 585 578 319 499 394 470 474 460 528 500 483 510 318 523 506 456 363 490 528 519 484 271 5 04 488 165 305 509 507 427 462 292 462 456 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 153 TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 11176 11177 12131 1680 1681 12132 12934* 1682 1683 12133 11357 1685 1686 1687 1688 1689 11358 11359 1690 1691 1693 11178 12134 11363 1694 10361 1695 1696 1697 11179 11180 1699 1700 1701 1702 1703 1704 1705 12137 11365 1706 11366 1709 1710 1711 1712 1713 1714 12138 1715 11181 11367 1716 1717 1718 X 13248 13248 13257 13260 13260 13278 13278 13281 13294 13302 13302 13304 13305 13308 13311 13314 13317 13323 13324 13324 13333 13344 13350 13354 13355 13359 13359 13363 13364 13368 13377 13402 13406 13408 13410 13414 13417 13424 13440 13440 13445 13473 13479 13480 13482 13484 13487 13487 13488 13489 13500 13500 13506 13506 13507 y 4416 12216 11289 11213 12163 11232 13504 7471 9446 10068 13122 7160 8016 9061 7442 10896 10912 9723 12577 13504 8804 8481 11652 9942 9205 9519 11462 10565 10447 4692 8985 12015 7454 7986 9064 13791 9104 9345 1003 8 13284 9877 11658 7146 10294 10993 11187 6640 9928 10494 8574 8370 14010 7178 13701 13124 Published P 6. 1. 1. 12. 4. 1. 6. 1. 2. 3. 4. 5. 3. 1. 14. 2. 2. 2. 5. 2. 1. 3. 2. 2. 6. 1. 1. 4. 34195 258351 81 15 8575 . ? . 7758 887: 937: 79 90619 672 370598 935 896 512 31232 9315 976935 08 ? ? . ? ? 02: ? 44614 6. 1. 3. 3. 1. 0. 2. 12. 4. 1. 1. 1. 2. 3. 6. 1. 1. 2. 3. 4. 5. 1. 1. 3. 1. 14. 2. 3. 2. 2. 5. 2. 5. 2. 2. 3. 10. 1. 1. 5. '... 365. 82561 50578 150061 . 3698 .861892 . 871443 .05014 7. 3. 2. 2. 1. 1. 0. 1. 1. 3. 1. 4. Period 342160 258329 504149 129851 670054 331516 042288 149930 857411 433883 775839 Irr. 327894 396909 392752 844018 935962 679253 846262 901449 672220 361528 663907 737819 934808 895806 596196 313974 605670 931563 976863 058118 370073 171807 512291 022756 776164 758125 777812 446150 679043 65 894529 825628 509643 150061 897864 902041 Irr. 862245 860929 530702 267728 ,870375 ,045226 Normal Maxima 31324. 16753. 32860. 32504. 17447. 31729. 33073. 32861. 32681. 3 86 625 340 417 825 387 647 298 809 29780.630 32509. 31313. 34689. 24440. 32419. 29825. 32507. 32441. 29542. 31669. 32419. 34684. 28034. 29870. 26929. 2441 8. 29928. 31611. 31681. 34685. 32851. 26605. 29876. 26566. 26334. 26330. 31274. 403 372 263 733 541 590 306 399 397 540 541 405 526 451 624 737 242 626 542 312 408 579 448 612 320 284 639 32490.255 32006.650 32061. 26573. 32800. 32052. 29135. 27680. 31739. 27756. 26656. 29825. 385 380 381 403 449 356 256 265 590 31698.467 24332. 16787. 27749. 829 591 .451 15. 16. 16. 15. 16. 15. 16. 14. 16. 17. 16. 14. 17. 16. 16. 14. 16. 17. 16. 15. 16. 16. 16. 17. 15. 16, 14. 17. 16, 16, 16, 15, 16, 15, 16. 16, 16, 15, 17, 16 15 16 15 16 16 16 16 16 15 16 16 16 16 16 16 M 84 55 25 77 00 88 92 62 56 68 71 28 53 49 24 55 78 42 04 88 35 48 ,36 12: 79 98 , 75 , 12 ,25 .25 .32 .96 .54 .67 . 80 .95 . 15 . 10 .25 . 84 .79 .45 .44 . 04 .48 . 15 .48 .94 .95 .23 .67 . 58 .44 .23 . 03 m 16. 17. 17. 16. 17. 16. 17. 16. 17. 18. 17. 15. 18. 17. 17. 15. 17. 18. 17. 17. 17. 17. 17. 17. 16. 17. 15. 17. 17. 17. 17. 16. 17. 16. 17. 17. 17. 15. 18. 17. 17. 17. 17. 17. 80 33 12 31 66 31 52: 36 24 50: 42 05 52 50 44 95 80: 00: 16 10 12 16 16: 94: 97 38 78 86 55 41 20 97 59 58 63 54 35 96 40 93: 43 85 12 40 17. 75 17. 17. 17. 17. 16. 18. 17. 17. 17. 17. 85 08 36 02 82 32 24 61 44 21 m 16. 16. 16. 16. 17. 16. 17. 15. 16. 18. 17. 44 99 79 07 14 08 29 65 97 23 24 18.24 17. 17. 15. 17. 17. 16. 16. 16. 16. 16. 17. 16. 17. 15. 17. 17. 16. 16. 16. 17. 16. 17. 17. 16. 15. 18. 17. 16. 16. 16. 17. 17. 16. 17. 16, 17, 16, 17, 17, 16 14 03 47 65 70: 84 65 82 90 88 70: 49 17 37 63 08 91 90 55 26 44 39 37 94 60 06 49 77 35 94 32 .30 .76 ,20 .58 . 77 .96 . 35 . 09 . 77 A 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 96 78 87 54 66 43 60: 74 68 82: 71 77 99 01 20 40 02: 58: 12 22 77 68 80: 82: 18 40 03 74 30 16 88 01 09 91 83 59 20 86 15 09: 64 40 68 36 27 70 60 42 07 59 65 66 17 21 , 18 (m) 16. 16. 16. 16. 17. 16. 17. 15. 16. 18. 17. 18. 17. 16. 15. 17. 17. 16. 16. 37 94 73 04 03 05 25 53 92 17 19 17 07 95 38 58 66: 76 57 16.77 16. 16. 17. 16. 17. 15. 17. 16. 85 83 65: 41 14 30 58 99 16. 83 16. 16. 17. 16. 17. 17. 16. 15. 17. 84 48 19 38 33 33 86 54 98 17.42 16. 16. 16. 17. 17. 16. 17. 16. 17. 16. 17. 17, 16. 66 24 85 24 19 72 17 .54 66 .92 ,27 . 01 .69 Obs. 488 385 323 495 391 500 235 501 497 257 289 509 355 353 484 510 340 195 463 474 452 472 367 261 518 479 527 394 430 419 269 515 464 435 417 349 426 516 247 214 520 481 515 462 391 380 486 519 528 502 341 438 500 423 489 154 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results oj observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 839 1719 11368 12139 11369 1720 1722 1725 1726 1727 11370 1728 11372 1729 1730 1731 1732 11373 11374 11375 11376 11377 1733 1734 1735 1736 1737 1738 12935* 1739 1740 1741 1742 11378 11379 1743 11381 11182 1744 1745 1746 12142 840 11383 11384 11385 1747 1748 11386 1749 1750 1751 1752 11388 1753 X 13508 13514 13518 13518 13518 13518 13525 13537 13559 13564 13566 13573 13578 13583 13588 13591 13593 13596 13599 13600 13602 13602 13603 13606 13607 13613 13623 13624 13627 13630 13634 13635 13640 13641 13651 13654 13657 13659 13666 13681 13692 13698 13703 13712 13717 13724 13726 13726 13731 13732 13741 13743 13747 13748 13766 y 15187 8786 9931 10008 11064 11474 8498 6748 8226 13783 9198 8665 10456 8511 8081 8489 13434 11508 9764 12901 7182 12861 12658 9766 9009 11673 10051 6538 8091 7905 9155 7906 10519 10692 9660 9703 10717 12252 11504 9609 7659 11028 11000 10812 10939 9582 7194 8074 6210 11645 10055 11462 8335 8995 8114 Published 2. 531. 1. 1. 2. 3. 1. 3. 2. 1. 1. 4. 4. 1. 4. 1. 4. 1. 39. 12. 33. 2 3 5 2 89973 P 2. 9 531 97098 670872 Irr. 220697 718025 822486 371817 1256 757410 3419 00 906218 8030 41228 8836 9866 312793 67* 6 1 . . . . 108712 . 56804 . 126391 . . . . 817679 0. 1. 1. 1. 3. 2. 2. 1. 3. 2. 1. 3. 2. 1. 2. 1. 2. 1. 3. 6. 4. 3. 3. 3. 0. 1. 1. 4. 46. 4. 1. 1. 1. 1. 39. 12. 4. 3. 1. 33. 2. 1. 1. 3, 2 1 3 4 1 5 1 2 Period 899643 484509* 778900 969644 670043 Irr. 808537 636296 220697 940761 717928 242168 822486 371817 144588 754580 Irr. 320821 114956 060101 341414 654730 069029 898838 368013 370181 973442 612928 297493 810168 412280 972615E 987233 492899 325965E 453900 365844 199 623872 561669 338073 937958 03 92 84 .519203 .796361 .526121 .213471 .107428 .514748 .552511 .769900 .656935 .126391 .602015 .817679 Normal Maxima 29108. 31313 27980. 32462. 32879. 31796. 24716. 27783. 32817. 29454. 23341. 29926. 31321. 27779. 25944. 25944. 27341. 29585. 31626. 32473. 32861. 26571. 28040. 32441. 32854. 29877. 31345. 30901. 26626. 32852. 26547. 30575. 34299. 28845. 29927. 26501. 34684. 594 658 2 92 373 310 860 280 346 660 590 333 524 285 340 340 376 264 627 363 253 493 420 399 332 448 385 610 464 298 584 539 297 285 325 621 372 19684. 526 29135. 16787. 31611. 32804. 32467. 32850. 31642. 29867. 34685. 24431 27683 30619 30885 24763 16787 403 589 626 452 374 ,246 .644 .456 .312 .682 .401 . 350 .633 . 720 . 589 15. 14. 17. 16. 16. 16. 15. 16. 15. 15. 17. 16. 16. 16. 16. 16. 16. 14. 16. 16. 17. 16. 15. 15. 15. 15. 15. 15. 17. 16. 15. 17. 15. 17. 17. 17. 17. 13. 14. 16. 15. 17, 13 16 16, 17 17 17 16 15 16 15 16 17 16 M 28 78 57 39 12 49 99 37 90 94 18 04 52 57 86 70 30 46 34 33 32 55 32 94 52 20 82 51 .62 , 86 . 54 . 07 . 78 . 15 . 38 . 12 .29 . 89 . 14 , 41 . 40 .21 .48 .65 . 92 . 47 . 32 . 08 . 46 .69 . 57 . 97 . 15 .26 . 18 m 16. [17. 18. 17. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 15. 17. 17. 18. 17. 16. 17. 16. 15. 16. 17. 18. 18. 16. 17. 17. 17. 17. 18. 18. 15. 15. 17. 17. 17. 14. 17. 17. 18. 17. 17. 16. 16 17 17 17 18 17 32 60 30 40 70 61 90 33 62 46 58 01 99 14 86 65 50 10 58 21 03 16 44 10 60 62 91 12 57 00 70 57 20 96 70 15 23 10 27 44 14 75 . 78 40 91 . 18 . 72 , 70 . 86 . 91 . 20 . 10: .22 .26 .46 m 16. 17. 16. 17. 17. 17. 16. 17. 17. 16. 17. 16. 17. 17. 17. 17.' 16. 17. 16. 16. 16. 16. 15. 16. 16. 18. 17. 16. 16.' 17. 17. 18. 14. 14. 17. 16. 17. 14. 17. 17. 17. 17. 17. 16. 16. 16. 16. 16. 17. 17. I 02 94 94 30 28 03 29 06 41 67 34 89 55 37 14 24 87 68 87 07 70 14 45 52 62 19 57 34 77 70 83 07 55 86 10 54 52 14 22 48 94 59 43 69 60 88 80: 84 98 11 A 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0. 0. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 1. 1. 04 82 73 01 58 12 91 96 72 52 40 97 47 57 00 95 2 0 64 24 88 71 51 12 16 08 42 09 61 95 14 16 50 42 81 32 03 94 21 13 03 74 54 30 75 99 71 40 62 40 22 63 13: 07 00 28 (m) 1 5. 17. 16. 17. 17. 16. 16. 16. 17. 16. 17. 16. 1 7. 17. 1 7. 17. 16. 1 7. 16. 16. 16. 16. 15. 16. 16. 18. 17. 16. 16. 17. 17. 18. 14. 14. 17. 16. 17. 14. 17. 17. 17. 17. 17. 16. 16 16 16 16 17 17 95 89 87 19 20 96 24 95 38 61 24 85 48 31 06 16 81 6? 84 00 62 07 42 45 51 13 49 26 '67 65 '76 01 47 78 03 42 48 . 05 17 41 . 89 . 56 , 39 , 66 . 52 . 84 . 72 . 77 . 91 . 02 Obs. 466 157 225 458 466 345 440 489 496 458 43 9 483 248 487 418 455 421 528 550 425 281 421 490 515 503 200 21 1 475 486 201 254 491 321 494 449 449 312 360 511 -,32 526 473 376 524 393 289 317 459 423 482 515 408 : 300 482 366 487 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 155 TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 1754 12143 1755 841 1756 1757 1758 12936* 1760 1761 1762 843 1764 1765 843 11184 1766 1767 1768 1769 1770 1771 1772 1773 12148 1774 1775 1776 1777 12937* 11390 12938* 1778 12149 1779 1780 1781 1782 1783 8 4 * 1784 1785 11394 1786 12151 1787 1788 1789 1790 11185 11186 1792 1793 1794 12156 X 13771 13776 13795 13805 13812 13814 13824 13825 13844 13854 13856 13863 13867 13868 13871 13887 13893 13896 13898 13910 13919 13923 13926 13926 13932 13935 13937 13946 13953 13957 13960 13963 13967 13968 13968 13980 13982 13983 13986 14024 14027 14042 14044 14046 14046 14046 14054 14068 14071 14076 14078 14085 14090 14093 14112 y 9074 9942 13686 13274 7154 7484 9206 7507 6025 12156 10326 10884 11286 7160 10860 8559 9244 7532 11946 4760 8654 11117 7755 9166 11832 9019 9285 10014 7343 9590 9952 7213 9084 11370 14787 7514 8499 7194 12834 12823 8746 12444 9910 9534 12198 12266 14254 8970 9393 8190 8643 7311 13204 6699 11478 Published P Period 1.777449 2.9552 1.904893 7. 5019 2.481: 1.471116 2. 104909 4.2897 7. 99348 14.6477 1.726788 1.680441 9. 808210 1. 1267 3.056440 4.899085 2.667278 1.682527 6. 824541 3.214463 1.777449 1.806750 1.505709 1.909333 1.145422 3.889765 7.499625 1.876666 2.481463 1.471125E 2.107633 4.289563 7.935437 2.926638 14.714971 1.726788 1.680441 5.733945 9. 808249 1.126754 3.056440 4. 876621 1.321541 2.667278 1.677202 1.682527 6. 810273 3.749756 1.656485 1.745286 0. 827969 3.714048 3.214370 740.7 741.8 1.78339 3. 963080 8. 14883 2.217580 8. 68274 4. 90 2.9H564 16.22 2. 161022 8. 872721 2.865288 3.734506 4. 18689 1.783390 3. 101381 3.963080 2.855381 8.148830 2.217580 8.682741 4.729944 1.346232 2.911564 4.796347 16.196955 3.478672 2.161022 8.872721 2. 862942 3.734506 3.610043 4. 181441 5.777367 2.018660 Normal Maxima 30665.247 29806.628 32852. 341 23320. 599 29928.283 34690.319 34299.297 27750. 391 32845.299 23596.901 32849.266 26547. 584 32060. 374 31321.524 26308.461 32852.341 30673.239 28371. 501 31342.355 29811.606 24761.749 26244. 371 26626.464 24033. 774 16753.625 21151.521 32854.332 29586.258 29872.455 30882.642 16760.531 26869.645 32861.343 32004 28065.290 29869.462 32854.332 29554.242 26512.623 13861.607 27980.658 31642.644 13893.570 24033. 774 29926.283 24002.830 14604.612 31669.540 32851.349 30648.240 28372.495 26330.284 24821.586 32003.648 30882.642 16. 17. 16. 16. 16. 15. 15. 17. 16. 15. 16. 15. 15. 15. 14. 16. 16. 16. 15. 17. 16. 15. 16. 16. 16. 16. 15. 16. 16. 17. 17. 16. 16. 13. 16. 16 . 15. 16. 14. 16. 15. 15. 17. 16. 15. 14 . 15. 16. 15. 16. 16. 16. 15. 16. M 76 54 90 14 96 78 09 12 38 34 60 92 76 65 99 71 87 53 32 30 02 48 94 08 56 84 98 14 60 05 26 35 03 65 50 76 96 59 86 09 36 76 46 49 66 32 75 01 08 81 40 08 76 50 16. 86 m 17. 18. 17. 17. 17. 17. 16. 17. 16. 15. 17. 17. 16. 17. 16. 17. 18. 17. 15. 17. 16. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. [17. 16. 17. 17. 17. 16. 17. 16. 16. 18. 17. 16. 15. 16. 17. 16. 17. 16. 17. 16. 17. 17. i 27 0 6 : 40 51 80 52 48 77 95 95 70 12 47 19 38 80 16 66 76 84 97 96 98 88 0 0 : 42 07 01 03 46: 98 39 27 0 77 96 39 12 20 58 16 76 31 52 71 54 11 58 2 0 07 95 2 4 97 30 74 m 17. 12 17. 87: 17. 19 17. 16 17.55 16. 91 15. 77 17.48 16.67 17.34 16.69 16.04 16. 75 15. 92 17.43 17. 73 17. 19 15. 55 17.64 16.66 16.36 17.68 17.42 16. 83: 17. 18 16.66 16.69 16. 81 17.26 17.68 17.00 16. 94 16.*64 17.66 16. 93 16. 87 15.55 17. 16 15. 76 16.48 18. 00 17. 19 16.31 15.20 15.99 17. 16 15.66 16. 93 16.72 16. 91 16.50 16.96 17.48 A 0.51 0. 52: 0.50 1.37 0.84 1.74 1.39 0.65 0.57 0.61 1. 10 1.20 0.80 1.54 1.39 1. 09 1.29 1. 13 0.44 0.54 0. 95 1.48 1. 04 1. 80 0. 44: 0. 58 1. 09 0. 87 0.43 0.41: 0.72 1.04 1.24 ]3.35 0.27 1.20 1.43 0.53 1.34 1.49 0.80 1. 00 0. 85 1. 03 1. 05 1.22 0. 36 1.57 1. 12 0.26 0.55 1.16 1.21 0. 80 0.88 < m > 17. 09 17. 84: 17. 16 17. 07 17.50 16. 79 15.68 17.44 16.63 17.27 16.61 15.99 16.65 15. 83 17. 36 17.64 17. 11 15. 52 17. 60 16.60 16.26 17.61 17. 30 16. 80: 17. 14 16.59 16.63 16. 78 17.23 17.63 16.93 16. 86 16.62 17. 58 16.83 16. 84 15.46 17.06 15. 71 16.41 17. 94 17. 12 16.24 15. 12 15. 96 17. 05 15. 58 16. 91 16.68 16. 83 16.42 16. 91 17.42 Obs. 429 202 470 4 4 0 199 472 512 324 482 500 362 455 527 502 507 368 334 526 500 345 461 501 381 455 355 476 502 488 500 441 360 496 4 8 0 134 478 508 483 501 503 422 496 4 8 8 212 485 456 506 492 4 6 4 520 373 475 408 490 520 335 797- 156 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 1795 1796 1797 1798 1799 11396 846 1800 1801 11188 12939* 1803 11398 11400 1804 1805 1806 1807 1808 11401 11402 12940* 1809 845 1811 11404 1812 1813 1814 1815 1816 12160 1817 1818 1820 1821 12941* 1822 1823 11189 1824 1825 12942* 12943* 1826 1827 1828 1829 1830 1832 11414 1833 1834 1835 1836 X 14122 14125 14127 14133 14134 14137 14139 14139 14144 14146 14147 14149 14157 14163 14168 14178 14191 14192 14193 14193 14193 14199 142 01 142 06 14212 14225 14235 14236 14237 14245 14247 14250 14264 14265 14274 14276 142 80 14286 14292 14293 142 95 14297 14305 14307 14331 14345 14353 14355 14360 14366 14366 14374 14375 14408 14408 y 9386 10874 9176 8353 10140 10166 7182 10078 7525 8380 8387 5603 10443 10944 10492 9618 10984 13701 8122 9318 11544 9718 12772 9359 11592 9948 9144 10168 9019 9872 9097 11772 10343 8988 9066 4022 7760 8915 7917 9612 7794 12032 13533 13548 10624 12035 6028 10154 9640 7487 10521 8975 6173 9626 11672 Published P 4. 1. 3. 1. 3. 3. 2. 2. 1. 1. 3. 2. 4. 4. 2. 7. 4. 3. 3. 1. 3. 5. 3. 2. 3. 2. 4. 1, 3, 4 3 1 2 16 2 074100 965328 914415 79636 861: 163035 098323 23 76 596 4904 666280 93450 073087 630165 4. 1. 3. 1. 3. 3. 2. 7. 2. 2. 1. 1. 3. 2. 2. 4. 4. Period 079218 960615 914369 Irr. 796387 860750 163035 038104 279345 098323 Irr. 236086 595507 491785 666213 279576 934522 088458 636777 365? Irr. 823288 95229 67 . . . 051376 12 8696 667575 628368 458843 244678 894968 3447 042363 . 23 .51659 ,60 .29091 .2 98447 .4675: .328148 . 2382 . 82 7. 2. 7. 5. 1. 3. 3. 1. 2. 3. 2. 2. 5. 3. 0. 5. 2. 3. 2. 3. 4. 2. 2, 1. 4 17, 4 3 2 1 2 0 16 2 Irr. 755305 825761 950832 469861 540272 051376 131655 667575 540702 628368 890416 250731 458843 244678 502753 128021 894968 351611 042359 .003679 .260377 .008089 .714153 .516562 .921478 ,195722 .290777 .2 98447 .096854 .467209 .327725 .603578 .244842 .788133 Normal Maxima 34299. 31642. 29566. 32861. 29906. 28034. 16760. 26689. 31379. 23704. 27694. 24404. 31701. 32004. 28065. 29869. 29584. 24332 25890. 31610. 23974. 29778. 28376. 32850. 32879. 26689. 29843. 32852. 31324. 29938. 23340. 29897. 29081. 24716. 26189. 23340. 29199. 24002. 21815. 28371. 32852 16760 32828 24824 26323 29926 26689 16757 23290 31589 26944 25 944 274 644 245 343 385 526 531 282 370 772 363 675 458 637 301 462 258 3 96 650 863 637 572 332 373 282 597 298 3 86 501 586 452 .611 . 860 . 520 .676 . 254 . 830 . 779 . 501 .254 . 531 .3 90 .624 .283 .228 .282 . 542 . 707 .631 .366 . 330 M 15. 16. 15. 16. 16. 16. 16. 16. 15. 16. 15. 16. 16. 16. 15. 16. 16. 16. 15. 14. 13. 16. 15. 14. 15. 17. 16. 15. 17. 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 15. 16. 15. 16. 15. 16, 15, 16. 16. 17. 16 16 15 16 65 19 52 62 66 48 10 74 88 94 28 15 77 02 22 HO 6 5 22 52 89 6 9 17 86 82 80 33 02 96 09 1 1 24 30 76 55 36 10 64 85 48 24 28 60 . 27 , 99 . 93 . 04 . 55 . 53 . 80 . 70 . 13 .32 . 55 . 00 . 00 m 16. 17. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 16. 17. 17. 17. 16. 16. 15. 16. 16. 16. 16. 18. 17. 17. 18. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17, 16 17. 16. 17, 17 17, 17 17 16 16 76 53 14 39 44 64 40 82 24 91 33 30 89 56 7H 65 98 1 3 97 30 08 90 97 16 82 40 10 25 22 40 40 40 24 38 78 70 30 90 68 25 92 78 . 21 . 00 . 55 . 51 . 98 . 74 . 10 . 38 . 73 .64 . 25 . 40 . 83 m 16. 17. 16. 17. 17. 17. 17. 16. 17. 16. 17. 16. 16. 17. 17. 16. 16. 16. 16. 15. 16. 17. 16. 16. 17. 17. 16. 17. 16. 17. 17. 17. 17. 17. 17. 16. 17. 16. 16. 16. 17. 16. 17. 16. 16. 17. 17. 17. 16. 15. 16. 37 17 66 21 18 08 60 OH 53 94 51 HI 22 57 5 0 75 48 56 62 66 38 97 75 84 78 06 99 03 99 03 36 39 00 48 31 95 42 33 89 62 41 04 38 34 95 18 60 30 90 84 , 57 A 1. 1. 1. 0. 0. 1. 1. 1. 0. 0. 2. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 0. 1. 1. 1. 1. 1. 0. 1. 0. 1. 1. 1. 0. 0. 0. 1. 0. 1, 0, 21 34 62 77 78 16 3 0 08 35 97 1 1 15 12 54 56 83 35 91 45 41 3 9 73 11 34 02 07 02 29 13 29 16 10 48 83 42 60 67 05 20 01 64 18 94 01 . 62 , 47 , 43 , 21 . 30 . 67 , 60 32 , 70 . 40 . 83 (m) 16. 17. 16. 17. 17. 16. 17. 16. 17. 16." 17. 16. 16. 17. 17. 16. 16. 16. 16. 15. 16. 17. 16. 16. 17. 16. 16. 16. 16. 16. 17. 17. 16. 17. 17. 16. 17. 16. 16. 16. 17. 15. 17. 16. 16. 17. 17. 17. 16. 15. 16. 29 08 55 16 10 99 53 06 46 86 43 71 12 52 41 6 0 58 51 57 57 31 90 68 75 70 97 91 96 96 98 27 34 96 41 23 88 31 25 83 55 37 94 28 26 93 14 56 21 85 75 51 Obs. 507 338 481 485 459 453 507 214 525 241 499 477 3 38 452 517 395 568 478 49H 5 54 425 522 454 519 481 203 490 466 372 485 464 417 481 434 398 376 433 425 407 450 513 486 320 42 9 405 499 415 513 494 451 453 391 488 526 448 WHOLE VOLUME VARIABLE STAR'S IN SMALL MAGELLANIC CLOUD 157 TABLE 3.?Results oj observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 1837 11415 1838 1839 12944* 1840 1841 11416 12163 1842 1843 11191 1844 12945* 11418 1845 1846 1847 11419 12946* 12164 12165 11421 1848 1849 1850 1851 1852 1853 1854 847 11192 1855 11193 1856 11423 848 1858 1859 12947* 1860 1862 11426 11427 1863 1864 12168 1865 1866 1867 11429 1868 12948* 111 94 1869 X 14417 14421 14424 14425 14426 14428 14439 14442 14442 14444 14445 14445 14453 14454 14460 14461 14462 14471 14472 14498 14502 14502 14508 14515 14515 14536 14538 14548 14552 14562 145 82 145 86 14593 14610 14616 14622 14624 14645 14657 14663 14664 14673 14676 14679 14682 14685 14688 14694 14694 14703 14705 14706 14709 14712 14713 y 8103 9838 8464 6784 7952 9774 9826 6957 12288 9489 6522 13755 8425 6671 ?9739 6694 7556 8345 7926 9762 11238 11916 6702 7415 12265 12333 6582 8762 8904 8765 11765 13086 13199 12378 7347 13830 11901 11578 6397 7888 12992 8234 6261 9564 15095 7426 11424 9784 11377 7774 9149 11314 9819 8520 15059 Published 1.548201 2.996506 2. 973182 ?. . . 1.960631 2.851269 2.732084 3. 50 2. 77 2.807427 2.605116 27. 2 2.352437 6.83990 6.439648 Irr. 2. 178 6. 15 6.490598 245.45 562.4 3.73339 2. 86 3683 2.142594 1.34618 P Period 1. 548201 0. 774007 2.988312 1.979222 1. 952263 1.704640 2.867038 1.335427 1.141162 2.973182 3.357575 1. 966510 2.851245 1.634446 2.358696 2.437899 3. 368387 2.732084 1.124126 1.632530E 1.833537 1.672056 100. 776E 3.277324 3.492279 2.755618 0. 824853* 2.807427 1.084694 2.609256 27. 057009 2. 354104 6.839898 6.427066 3.693157 Irr. 2. 172770 6. 111834 4. 309732E 1.869295 1.984796 6.490598 1.932495 250. 8 0. 527340 1.943053 1.275772 556 3.724908 1.648701 3.146455 2.861157 3.452228E 2.142594 2.464918 Normal Maxima 29877. 448 32061. 385 34690. 462 26329. 300 29903.227 23751.559 26973.379 23751.559 31345. 385 32023. 603 16758. 644 29484. 460 29896. 383 31379. 370 29847. 558 27697.456 26331.335 16757. 627 26594.450 16758. 644 32861.343 32880. 265 32800. 380 26334. 320 23315.640 26573.519 29877.448 24065.748 24051. 760 29566.245 31674.549 23974. 863 24408. 793 27683.401 34685. 368 31610. 648 24065. 748 29872.455 26547.584 32490.255 26929. 624 26595 31611.626 29869. 389 26945.394 28043 24821.590 24404. 670 31729.387 32467. 374 16758.650 26244.371 29903.400 M 16. 76 17. 85 16. 43 16. 68 17. 04 16. 82 16. 78 17.65 16. 95 15. 88 15. 82 16. 30 15. 84 17. 27 17. 39 16. 14 15. 78 15. 70 17. 34 17. 13 16. 93 16. 35 16. 78: 16. 97 15. 18 15. 62 15. 60 16. 47 16. 80 15. 86 13. 71 15. 77 15. 95 16. 08 16. 14 12. 59 16.25 15. 23 15. 11 17. 04 16. 64 15. 29 15. 53 16. 94 16. 53 17. 06 16. 71 15. 40 15. 72 16. 60 16. 97 15. 91 17. 59 16. 07 16. 13 m 18. 07 18. 24 17. 49 18. 00 17. 88 17. 42 17. 62 18. 64 17.44: 17.48 17. 04 17. 07 17. 34 17. 73 18. 10 18. 08 17. 35 17.40 18.48 17. 62 17. 86 17. 51 16.95: 17. 94 17. 00 17.25 16. 16 17. 62 17.44 17. 58 15. 08 17. 36 16. 40 17. 00 17.30 13. 55 17. 63 16.22 15. 78 17. 84 17. 10 16.62 16.28 [18. 00 17. 18 18. 00 17.29 18. 70 16. 83 17. 80 17.48 17. 03 17. 73 18. 00 16. 84 m 17. 72 18. 07 17. 09 17. 58 17. 45 17. 15 17.29 18. 37 17. 30 17. 00 16. 54 16. 89 16. 88 17. 58 17. 75 17. 46 16. 91 16. 96 18.20 17. 58 17. 18 17. 59 16.23 16. 70 15. 88 17. 19 17. 17 17. 08 14. 61 16. 88 16. 21 16. 51 16. 87 17.25 15. 82 17. 40 16. 89 16. 08 15. 98 16. 94 17. 70 17. 14 16.47 17. 54 17. 27 16. 73 17.40 16. 60 A 1. 31 0. 3 9 1. 06 1. 32 0. 84 0. 60 0. 84 0. 99 0.49: 1.60 1.22 0. 77 1. 50 0.46 0. 71 1. 94 1. 57 1. 70 1. 14 0. 49 0. 93 1. 16 0. 17 0. 97 1. 82 1.63 0.56 1. 15 0.64 1. 72 1.37 1. 60 0.45 0. 92 1. 16 0. 96 1.38 0. 99 0.67 0. 80 0.46 1. 33 0. 75 ]1.06 0.65 0. 94 0. 58 3.30 1.11 1.20 0. 51 1. 12 0. 14 1.93 0. 71 ( m ) 17. 63 18. 04 17. 02 17. 49 17. 39 17. 11 17. 23 18. 30 17.27 16. 89 16.46 16. 84 16. 78 17. 55 17. 70 17. 33 16. 80 16. 85 18. 12 17. 50 17. 10 17. 52 16. 11 16. 59 15. 84 17. 11 17. 13 16.96 14. 52 16. 77 16. 18 16.45 16.79 17.16 15. 75 17. 35 16. 86 15. 99 15. 93 16. 90 17. 64 17. 10 16.40 17.46 17.24 16.65 17.27 16. 55 Obs. 323 317 4 7 0 481 42 3 469 414 353 337 486 453 4 6 0 455 2 5 4 264 499 5 04 465 293 4 5 7 271 299 503 4 8 4 227 472 492 411 42 9 437 533 4 0 9 505 503 507 5 06 413 504 517 417 500 496 505 242 193 420 286 303 467 4 1 0 3 04 467 380 416 398 158 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 1871 1872 1873 11195 1874 1875 1876 1877 1878 11435 1879 1880 1881 1882 1883 1884 11436 1885 1886 1887 11438 1888 11441 1889 11196 1890 12949* 1891 1892 1894 11443 1896 1897 1898 11446 1899 1900 12170 1901 1903 1904 1905 1906 11447 12171 1907 1908 12172 1909 850 12173 1910 1911 1913 1914 X 14744 14754 14764 14767 14774 14775 14794 14805 14813 14818 14826 14826 14831 14835 14835 14836 14844 14846 14847 14859 14864 14871 14875 14879 14883 14888 14893 14894 14904 14909 14943 14980 14984 14999 15000 15O02 15004 15006 15007 15021 15023 15026 15041 15042 15042 15045 15074 15078 15079 15083 15084 15086 15088 15093 15100 y 14984 8796 10718 9087 10673 8266 11155 12128 7585 10500 6244 10720 9551 7275 15844 11765 8988 9636 6884 7154 9055 7242 8871 8824 8934 14051 14863 12640 13494 6314 14964 6530 15083 13586 4422 7653 8589 11706 14301 11024 6385 12164 15486 8922 11418 14906 9553 12138 7394 12522 11664 7400 7714 6626 9106 Published P 1. 12. 1. 3. 3. 2. 49. 1. 18. 3. 1. 1. 3. 5. 3. 1. 3. 5. 7. 3. 1. 2. 300855 91 758622 353263 103258 757997 6 Irr? 976231 11 3283 311638 778540 45 66277 4810 241356 02432 . . . 1208 41 06551 643255 .534545 1. 3. 12. 1. 3. 3. 2. 49. 5. 1. 4. 2. 3. 2. 18. 1. 2. 1. 2. 1. 3. 2. 3. 1. i. 0. 3. 5. 1. 1. 3. 1. 3. 0. 4. 3. 0. 3. 5. 1. 7. 3. 0. 3. 1. 3. 1. 4. 2. 5. 1. 2. 3. 3. Period 300860 088278 941131 758622 349848 103258 758309E 667 548958 577145 363782 Irr. 225759 930679 013109 116598 047160 802212 584349 503104 322865 509831 156009 327986 311653* 778540 474978 451489 653194 445706 722887 458999 241317 018713 497787 760545 212614 811079 573097 094892 858453 416802 065511 863009 355693 643280 206115 603857 947874 532453 049689 534557 016629 044984 971579 Normal Maxima 32136. 31108. 32879. 26945. 24418. 34690. 32880. 27750. 29870. 27683. 29514. 26656. 29519. 29826. 29872. 32878. 32011. 31650. 24787. 31313. 32503. 29867. 34682 29135. 29811. 26331. 27746. 32804. 24716. 27650. 32861. 29877. 16757. 32135. 26322. 29897. 29897. 29881. 24468. 32136. 29906. 26949. 31669. 28078. 26949. 32136. 26563. 26973. 29554. 29811. 27746. 31296. 26328. 27749. 259 274 373 391 737 319 311 478 495 401 379 265 364 5 04 455 5 96 5 98 654 6 82 372 365 456 .321 403 606 335 529 452 860 633 298 448 542 248 285 452 228 449 688 259 327 367 540 342 .367 .259 .608 ,379 ,242 .606 .441 .478 .373 .451 M 16. 73 15. 66 14. 5 5 17. 05 15. 54 16. 32 14. 79 13. 34 15. 69 17. 02 16. 38 14. 60 16. 67 16. 96 16. 80 14. 54 17. 24 15. 98 17. 30 16. 70 17. 27 16. 08 17. 07 16. 44 17. 31 16. 94 16. 54 15. 49 15. 84 16. 98 16. 71 16. 36 16. 80 15.66 16. 44 15. 39 16. 40 17.21 17. 19 15. 35 17. 02 15.20 16. 12 16. 88 16.26 16. 41 16. 33 16. 59 14. 78 15. 97 15. 46 17. 30 16.27 16. 16 15. 86 m 17. 16. 16. 17. 16. 17. 15. 14. 16. 17. 17. 15. 17. 17. 17. 16. 17. 17. 18. 18. 17. 17. 17. 17. 17. 17. 17. 17. 16. 18. 17. 17. 17. 16. 17. 16. 17. 17. 17. 16. 18. 16. 17. 17. 16. 17. 17. 17. 16. 17. 17. 18. 16. 17. 16. 75 50 24 80 90 48 53 56 65 99 19 19 76 74 42 01 70 62 19 03 72 39 72 70 85 85 46 18 70 15 54: 60 28 50 82 61 91 91 81 72 08 38 44 52 73 42 40 42 81 45 00 32 79 72 92 IT 17. 16. 15. 17. 16. 17. 14. 16. 17. 16. 17. 17. 17. 15. 17. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 16. 16. 17. 17. 17. 17. 16. 17. 16. 17. 17. 17. 16. 17. 15. 17. 17. 16. 17. 16. 17. 16. 17. I 47 12 49 49 49 13 05 20 15 91 44 44 16 58 48 10 93 55 48 94 45 23 59 63 11 74 27 75 23 27 07 31 39 06 53 67 57 21 80 93 03 27 57 13 99 15 12 06 16.48 17. 16. 17. 16. 87 55 26 46 A 1. 02 0. 84 1. 69 0. 75 1. 35 1. 16 0. 74 1.22 0. 96 0. 97 0. 81 0. 59 1. 09 0. 78 0.-62 1.47 0. 46 1.64 0. 89 1. 33 0.45 1. 31 0. 65 1.26 0. 54 0. 91 0. 92 1.69 0. 86 1. 17 0.83: 1.24 0.48 0. 84 1. 38 1. 22 1. 51 0. 70 0.62 1. 37 1. 06 1. 18 1.32 0. 64 0. 47 1. 01 1. 07 0. 83 2. 03 1.48 1. 54 1. 02 0. 52 1.56 1. 06 ( m 17. 16. 15. 1 7. 16. 17. 1 3. 16. 1 7. 16. 17. 1 7. 1 7. 1 5. 1 7. 16. 1 7. 17. 1 7. 16. 1 7. 17. 17. 17. 17. 16. 16. 17. 17. 17. 17. 16. 17. 15. 17. 17. 17. 16. 17. 15. 16. 17. 16. 17. 16. 17. 15. 16. 16. 17. 16. 17. 16. > 40 06 38 44 40 05 97 14 6 9 86 57 5 9 12 28 45 99 87 4(> 45 85 41 15 55 57 05 63 21 67 18 19 04 26 30 98 43 62 53 12 73 85 94 23 54 06 92 09 98 96 38 80 52 16 39 Obs. 284 476 529 225 519 461 526 510 502 484 496 532 570 48 5 455 515 2 97 433 570 449 210 5 06 319 386 350 435 344 5 04 485 312 269 475 397 470 365 485 451 464 435 518 367 511 428 412 470 398 391 484 513 500 409 205 464 464 496 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 159 TABLE 3.? Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 11450 1915 1916 1917 1918 1919 1920 1 1451 1922 1 1452 1923 1924 1925 11455 1926 1927 1928 11458 1929 1930 1931 1932 1933 1934 1935 1936 10364 1937 12950* 1938 10365 1939 1940 1941 1942 1943 11460 1944 851 1945 1946 1947 1948 1949 1950 1951 11463 10366 11464 1952 1953 1954 1955 1956 1957 X 15104 15114 15114 15114 15126 15129 15140 15147 15154 15159 15164 15165 15167 15186 15191 15194 15206 15208 15214 15224 15226 15226 15234 15237 15240 15241 15246 15258 15258 15271 15273 15281 15292 15295 15308 15310 15312 15327 15328 15332 15338 15344 15355 15356 15356 15360 15378 15381 15393 15394 15397 15397 15399 15406 15406 y 9916 6701 7673 9053 8223 14918 9583 7407 9514 6864 11763 7895 10474 12363 9677 9382 8887 12650 13025 10008 8592 9090 12454 13381 10115 6828 14487 9985 11791 8684 14586 8255 7504 7630 11224 8800 9660 6845 10347 12964 8817 10009 9050 8054 12925 7998 14292 4461 9438 9640 10347 11614 10684 9725 10672 Published 2.6447 1.718573 3. 0992 2. 562289 17. 18 3. 5919 1. 6618 1.44089 5.59381: 13. 80 4. 88210 1.503053 1.2600 2.84102 1.620313 4.685052 6.46868 7.97086 5. 084 1. 7628: 14. 263 16. 71 209 5. 30200 P 2. 1. 1 . 2. 2. 1. 3. 1. 2. 515. 2. 3. 17. i . 5. 1 . 1. 5. 1. 2. 2 . 13. 4. 2. 3. 1 . 1 . 9. 2 . 1 . 1 . 1 . 1 . 2 . 1 . 1 . 4 . 4. 6. 4. 2 . 1 . 3. 7. 5. 1 . 14. 4. 2 . Period 972801 577073 996813 644705 170935 718591 099199 308274 905313 73 566228 215858 199567 Irr. 591696 084556 662646 440845 584440 455729 691051 436544 780938 874815 465447 234686 503052 882679 087687 693363 258093 668090 253062 549727 841071 621936 787467 277416 685052 468724 468974 937384 401956 616610 990220 083367 755276 135674 Irr. 188271 007613 16.700904 2 . 209. 5. 457685 9958 319262 Norma l Maxima M 34689. 458 26547. 584 29514. 379 32851.254 34690. 370 26566.612 31697. 371 28078. 342 26508. 640 29847 29826. 594 31655.524 30262. 346 32880. 399 29784.626 23340. 676 24462.659 32441. 361 23824. 400 29847. 591 26572.516 26347.271 33563.346 29877.448 25881.416 27750. 389 16757.627 29876.448 23288. 713 30593. 593 26565. 502 23732.610 29811.606 28845.285 32879. 275 27783.280 23347.528 21815. 779 29135.403 27694. 363 24065. 748 25881. 416 33129.642 24761.749 26264.443 33172.348 17476. 649 29876.448 23654.886 29958. 306 29585.264 27184 27980.658 16. 74 17. 28 16. 31 16. 06 17. 44 16. 32 15. 42 17. 32 16. 60 15. 45 15. 95 15. 68 13. 70 17. 17 15. 54 16. 18 16. 86 16. 98 15. 63 16. 87 16. 65 16. 58 14. 17 15. 60 16. 19 16. 35 17. 27 17. 00 14. 98 16. 06 16. 38 16. 98 17. 06 16. 81 15. 62 17. 22 17. 20 16. 90 15. 70 15. 27 16. 40 16. 24 17. 03 16. 56 15. 44 15. 11 17.45 14. 44 14. 29 15. 60 16. 27 13. 60 16. 45 11. 89 15. 31 m 17. 72 17. 96 16. 80 17. 36 18. 19 17. 62 17. 10 18. 20 17.66 [17. 80 17. 31 17. 16 14. 90 18. 00 17. 47 17. 36 17. 78 17.66 16. 22 17. 81 17. 38 17. 78 15. 16 16. 80 17. 72 17. 88 18. 10 18. 12 16.49 17. 14 17. 52 17. 96 18.22 18. 18 17. 00 17. 98 17. 86 17. 82 17. 17 16.46 17. 37 17. 05 18. 04 17.60 16. 06 16. 66 18. 00 15. 54 15. 69 16. 75 17. 11 14. 87 17. 00 13. 14 16. 96 m 17. 33 17. 76 16. 58 16. 85 17. 95 17.25 16. 55 17. 88 17.29 16. 96 16. 75 14. 44 16.'93 16. 95 17. 54 17. 46 15. 98 17. 57 17. 07 17.42 14. 69 16. 40 17. 19 17. 36 17. 91 17. 72 15. 72 16.68 17. 15 17. 71 17. 92 17. 88 16.68 17. 73 17. 63 17. 47 16. 50 16. 01 16. 92 16. 76 17. 71 17. 22 15. 78 16. 01 17. 81 15. 13 16. 33 16. 74 14.28 16. 75 12. 41 16.47 A 0. 0. 0. 1. 0. 1. 1 . 0. 1 . 1 2. 1. 1. 1 . 0. 1 . 1. 0. 0. 0. 0. 0. 1. 0. 1. 1 . 1 . 0. 1 . 1 . 1 . 1 . 0. 1 . 1 . 1. 0. 0. 0. 1. 1 . 0. 0. 1. 1. 0. 1 . 0. 1. 1. 1 . 0. 1. 0. 1. 1 . 98 68 49 30 75 30 68 88 06 35 39 48 20 83 93 18 92 60 59 94 73 20 99 20 53 53 83 12 51 08 14 98 16 37 38 76 66 92 47 19 97 81 01 04 62 55 55 10 40 15 84 27 55 25 65 < m > 17. 26 17. 71 16. 55 16. 76 17. 90 17. 16 16.44 17. 82 17.22 16. 87 16. 65 14. 36 16. 80 16. 88 17. 48 17. 42 15. 94 17. 51 17. 02 17. 34 14. 62 16. 32 17. 09 17. 26 17. 85 17. 65 15. 62 16.61 17. 07 17.64 17. 84 17. 79 16. 59 17. 68 17. 59 17. 41 16.40 15. 93 16. 85 16. 71 17. 65 17. 53 15. 74 15. 91 17. 78 15. 06 16. 25 16.68 14.20 16. 71 12. 33 16. 36 Obs. 350 389 462 4 2 4 319 290 483 302 444 303 486 453 527 427 471 490 287 383 491 381 522 3 94 512 488 346 478 377 268 514 510 399 431 329 401 469 242 280 471 492 496 452 479 294 381 499 477 324 521 533 479 464 518 517 407 521 160 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 12175 1958 362-12 11466 1959 1961 212 206 1962 1963 1964 1965 11470 1966 1967 1968 1969 1970 1971 1972 10367 11472 11473 1973 1974 1975 1976 11478 1977 1978 853 11197 1979 1980 1981 11479 12179 214 1982 11198 1983 1984 1985 1987 1988 1990 1992 1993 1994 852 12181 11199 11482 1995 X 15408 15417 15424 15425 15425 15438 15467 15472 15474 15477 15500 15500 15525 15534 15537 15546 15550 15554 15567 15567 15573 15582 15585 15586 15586 15610 15624 15630 15639 15649 15650 15654 15656 15668 15673 15696 15702 15708 15712 15714 15715 15718 15723 15728 15740 15750 15754 15764 15785 15789 15792 15792 15810 15814 y 11592 14567 16704 9822 11105 7266 16488 16597 11898 10365 8545 10624 10554 11626 12425 12724 6969 13732 5683 11301 14934 14652 9096 7402 11204 6556 14292 9477 9473 12586 6404 13392 10030 8771 11206 8340 12042 16402 14925 12192 13715 7381 8214 13150 6706 6732 4793 6134 11552 11804 11088 12960 9216 9213 Published 1. 2. 8. 2. 2. 4. 29. 1. 3. 2. 3. 2. 2. 1. 2. 7. 1. 2. 5. 1. 3. 3. 5. 2. 1, 3. 2 5 33444 99652 78596 Irr. 09414 52046 Irr. 285 1 459875 339712 431: 351689 5410 ... '885437 8997 ... 73197 33326 074196 720267 2255 .618050 43843 ,130851 . . . ... ,02563 , 8441 307855 .197953 .101953 . 0128 P 1. 1. 0. 1. 2. 4. 3. 107. 8. 330 2. 2. 4. 28. 29. 1. 2. 3. 2. 3. 2. 1. 1. Period 876768 334426 652545 211246 993797 429267 901449 8* 786497E ? 092773 524309 Irr. 269964 9357 0533 458571 570978 336301 432522 351689 768726 049538 472806 7.480607 2. 4. 1. 3. 2. 7. 1. 6. 2. 2. 1. 480 4. 5. : 1. 3. 2. 1. 3. 6. 1, 5. 2 4, 3 1 2 2 5 893108 700419 903073 008234 Irr. 738848 334443 073493 296595 820007 722555 879212 ? 205197 224855 618050 ,438435 ,545092 .391115 .130802 .561163 .842724 .048695 . 849043 .213400 .197953 .783024 .095233 .930205 .012808 Normal Maxima M 31702. 26561. 32508. 33172. 31436. 29927. 16755. 29958. 16757 32473. 31782. 29784. 27755. 26566. 32854. 21813. 23605. 26331. 34690. 16754. 29554. 29911. 31108. 32822. 32878. 13888. 29585. 32878. 32854. 24787. 30264. 32880. 29870. 32059 32878. 14604. 29927. 33104. 32879. 29839. 32852. 32854. 30935. 459 637 261 340 340 402 628 306 363 262 636 401 612 285 786 845 335 267 598 242 283 274 403 396 576 264 305 332 682 346 265 451 305 612 435 622 326 571 254 383 512 32509.348 24331. 29780. 31681. 34682. 26547. 32850. 32037. 824 630 542 472 584 391 601 16. 17. 16. 17. 16. 16. 16. 14. 15. 15. 16. 16. 15. 15. 13. 16. 16. 15. 16. 16. 17. 16. 16. 15. 15. 16. 17. 16. 16. 16. 14. 16. 15. 16. 16. 16. 15. 14. 15. 16. 15. 15. 16. [ 63 08 49 04 00 21 52 00 02 90 78 28 48 20 70 55 78 73 77 09 04 92 79 69 73 46 08 85 76 29 85 56 84 58 50 94 96 94 17 84 26 88 73 15. 74 15. 90 16. 91 15. 16. 15. 15. 16. 16. 16. 16. 89 12 70 67 34 84 58 32 m 17. 18. 17. 17. 16. 17. 17. 15. 15. 18. 17. 17. 16. 16. 15. 17. 18. 17. 17. 17. 17. 17. 17. 16. 17. 17. 18. 18. 18. 16. 16. 17. 17. 17. 17. 17. 17. 16. 16. 17. 16. 17. 17. 17. 16. 17. 16. 18. 17. 16. 16. 17. 17. 17. 84 03 09 72 89 58 55 50 67 56 86 26 24 45 00 12 08 11 52 07: 76 77 98 60 29 25 08 09 00 70 15 33 02 74 60 53 60 27 03 21 85 70 98 21 98 92 96 00 04 95 73 96 73 70 rr 17. 17. 16. 17. 16. 17. 17. 14. 17. 16. 16.' 14. 16. 17. 16. 17. 16. 17. 17. 17. 16. 16. 16. 17. 17. 16. 15. 17. 16. 17. 17. 17. 15. 15. 17. 16. 17. I 29 80 88 46 49 12 20 72 52 99 14 36 92 66 58 15 75: 45 38 58 15 86 95 76 62 51 70 02 48 35 22 35 84 63 06 43 17 17. 56 16. 16. 17. 16. 17. 16. 16. 16. 17. 17. 17. 71 51 56 64 41 60 60 60 61 40 02 A 1. 0. 0. 0. 0. 1. 1. 1. 0. 2. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 21 95 60 68 89 37 03 50 65 66 08 98 76 25 30 57 30 38 75 98: 72 85 09 91 56 79 00 24 24 41 30 77 18 16 10 59 64 33 86 35 59 82 25 47 08 01 07 88 39 28 39 12 , 15 .38 (m) 17. 17. 16. 17. 16. 17. 17. 14. 17. 16. 16. 14. 16. 17. 16. 17. 16. 17. 17. 17. 16. 16. 16. 17. 17. 16. 15. 16. 16. 17. 17. 17. 15. 15. 17. 16. 17. 17. 16. 16. 17. 16. 17. 16. 16. 16. 17. 17. 16. 21 74 84 41 43 03 13 62 45 92 06 27 88 57 49 10 68: 40 32 51 09 76 90 69 54 48 61 97 40 27 15 31 75 57 04 32 05 48 61 44 49 57 28 51 51 57 53 32 93 Obs. 235 360 445 294 471 511 441 200 515 432 343 505 500 501 493 379 3 96 480 472 287 438 322 322 514 474 490 418 364 451 495 522 440 515 381 415 408 478 444 414 484 493 465 240 485 500 357 479 417 492 494 488 416 383 443 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 161 TABLE 3.?Results oj observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 1996 1997 1998 11200 11201 1999 11483 2000 2001 2002 11202 11484 11485 2004 11203 2006 2008 2009 2010 854 2011 2012 10368 2013 11486 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 855 10369 2027 2028 11204 857 11487 2029 2030 2031 2032 2034 2035 2036 2037 2038 2039 X 15830 15833 15844 15846 15849 15865 15870 15875 15886 15893 15924 15927 15927 15946 15963 15966 15976 15981 15984 15994 16014 16016 16029 16032 16044 16054 16055 16066 16084 16092 16107 16108 16115 16116 16119 16119 16126 16134 16142 16143 16154 16160 16164 16173 16179 16185 16190 16195 16200 16207 16224 16233 16242 16254 16262 y 93 86 6333 12365 6102 12327 13820 11865 11766 8214 13015 9564 10860 14244 10579 10830 7045 8093 7146 9820 7824 8062 7684 5103 13554 8571 13366 14776 11665 12832 8683 11707 7444 11878 12364 7452 8864 7557 10653 7994 4362 11392 8042 10326 6117 8817 10138 8484 11343 7907 6954 11586 7807 6865 9852 13824 Published P 0. 1. 2. 1. 1. 2. 2. 2. 4 . 1. 1. 15. 1. 2. 2 . 2 . 2 . 11 . 4. 1. 2 . 1. 3. 4 . 32. 2. 2. 3. 11 . 2. 2. 5. 1. 8331956 4676: 40717 325492 6567 881545 3447 156027 97: 50708 642184 95 6715 85038 200796 87414 95446 4072 40 629527 491051 30887 86 34263 9618 9702 985271 099468 9831 93690 79 248655 ,97945 14. 1. 0. 1. 2. 1. 1. 2. 1. 2. 2. 4. 1. 1. 1. 1. 4. 1. 0. 15. 1. 1. 2. 2. 2. 2. 2. 11 . 4. 1. 0. 2 . 1. 1. 3. 2. 4. 32. 2. 2. 3. 3. 11. 1. 2. 2. 5. 3. 1, 2. 3. 2. 1. Period 240957 611796 833196E 4676: 403583 967818 656762 884088 338848 346362 292595 967660 209275 507086 642184 364970 707921 977355 656520 953034 Irr. 443737 662267 857789 590942 203742 874156 954107E 407450 742146 629511 616453 489228 308877 932868 908311 577227 342576 941331 948731 982519 688962 099468 982936 291626 936978 794475 ,248655 Irr. .156177 .979254 ,501551 .368761 ,613415 .123134 Normal Maxima M 23593.899 21815. 779 24462.659 34682.472 32441. 361 21815. 769 31998.632 23340.586 29871.460 23340.586 33150. 580 32800. 380 32880. 399 34690. 370 32861. 343 29204. 247 32851.408 32828. 390 29867.456 31800.288 16759.606 24745. 829 29938. 501 29135.403 24033.774 31697.371 32003.648 28374.453 29839. 571 26313.268 29867.456 24824. 624 32838.390 30507.635 29926. 538 29839. 571 29454.660 31799.291 32818.369 27727. 294 31800.288 32475. 373 29927.277 29808. 570 25892.327 31324.386 21813. 786 29868.460 34682. 378 29926.333 30673.250 31342. 355 27980. 654 15. 24 16. 16 14.64 17. 37 16. 18 16.45 16. 85 15. 92 16. 94 16. 08 16.63 15. 15 17. 27 16. 79 17. 03 16. 88 15. 56 17. 06 16. 20 14.22 16. 50 17. 05 16. 50 15. 79 16.69 16.23 16. 97 14. 30 14. 56 16. 18 16.47 17. 38 16. 52 17.23 16.40 15. 36 15. 34 15. 72 14. 34 16. 36 15. 92 15. 74 15. 81 14.22 16. 72 15.36 16. 52 15.20 16.66 16. 04 16.63 16. 35 15. 57 15. 53 17.38 m 16. 78 17. 57 15. 77 17. 95 17. 58 17. 82 17.40 17. 17 17. 95 17.42 17.29 16. 90 18.33 17.65 17. 71 17. 84 16.60 17. 82 16.65 16. 12 16. 99 17. 82 17. 85 17. 57 17.69 17. 16 17.46 15.35 15. 80 17. 09 17.57 17.66 17.64 18. 09 17.66 16.55 16. 90 16. 92 15. 03 16. 90 17.43 16.58 16. 80 15.50 17.47 17.21 17.53 16.99 17. 55 17.53 17.60 17.02 16.53 17. 18 18. 11 m 16. 17 17. 18 17. 73 17. 13 17. 52 17.22 16.85 17. 52 17. 01 16. 96 16. 16 17. 99 17. 39 17. 37 17. 54 16. 20 17. 54 16.42 15.28 17. 51 17.53 17. 16 17.26 16. 91 17. 30 ? ? ? 15. 34 16.69 17.26 17. 54 17. 37 17.93 17. 36 16. 18 16.40 16.52 14.68 16.65 17. 03 16. 30 16. 54 14. 84 17. 12 16. 74 17. 17 16.30 17.' 04 17. 06 16.68 16. 14 16. 77 17. 88 A 1.54 1.41 1. 13 0. 58 1.40 1.37 0. 55 1.25 1.01 1.34 0.66 1. 75 1. 06 0. 96 0. 68 0. 96 1. 04 0. 76 0.45 1. 90 0.49 0.77 1.35 1.78 1. 00 0. 93 0.49 1. 05 1.24 0. 91 1. 10 0.28 1.12 0.76 1.26 1.19 1.56 1.20 0.69 0. 54 1. 51 0. 84 0. 99 1.28 0. 75 1. 85 1. 01 1.79 0. 89 1.49 0. 97 0.67 0. 96 1.65 0. 73 16. 07 17. 09 17.69 17. 04 17. 43 17. 18 16. 77 17.45 16. 92 16. 92 16. 04 17. 92 17. 33 17.32 17. 77 16. 13 17.49 16. 39 15. 15 17.46 17.44 17.04 17. 19 16.85 17.26 15.26 16.63 17. 19 17.52 17.30 17. 88 17.28 16. 10 16.30 16.44 14.63 16.61 16. 93 16.24 16.47 14. 75 17. 07 16.62 17. 10 16. 18 16.'94 17. 00 16.64 16. 07 16.66 17. 83 Obs. 515 400 513 407 443 365 372 486 274 354 440 222 290 366 235 238 403 273 482 513 205 230 383 415 379 419 377 527 507 444 424 367 454 264 384 475 438 515 521 468 496 401 486 528 380 461 437 515 390 448 444 455 488 467 285 162 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued HV 2040 2041 11205 2042 2043 2044 11206 11488 2045 10370 11489 2046 2047 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 11490 11491 2059 2060 2061 2062 2063 2064 2065 12951* 2066 2067 2068 856 11492 2069 12952* 2070 11207 11494 11495 2075 2076 2077 2078 10371 2079 2080 11496 2081 X 16291 16292 16299 16302 16322 16324 16326 16329 16331 16332 16338 16342 16352 16360 16366 16368 16386 16400 16403 16405 16413 16414 1643 7 16440 16440 16456 16478 16486 16504 16504 16505 16506 16521 16532 16546 16574 16583 16584 16605 16611 16619 16623 16638 16650 16650 16662 16684 16689 16692 16694 16703 16704 16705 y 10534 10637 10845 9784 13454 7305 12828 9522 13975 5679 8034 12721 8033 12578 7345 9468 8589 13208 13284 14575 11258 13234 12744 8772 11073 13345 11400 10244 9284 13178 10526 9966 10603 10166 12727 14204 14153 8028 10308 12162 9905 10242 9720 6600 9324 13614 9085 15713 4989 10884 8678 7710 10203 Published P 6. 5. 3. 0. 3. 2. 2. 2. 2. 3. 12. 3. 7. 3. 2. 1. 3. 2. 10. 11. 33. 3. 1. 12. 2. 2. 3. 2. 1. 4. 1. 3. 2. 7. 12359 92179 816022 '6032495 399471 85226 4772 553763 800893 26 575 219886 118096 52591 305688 906767 688893 842568 18447 166230 7 43868 80619 155 87427 456978 .46 .499041 39 . 74 , 5241 .013319 . 79 .60792 Period 6. 5. 3. 2. 0. 0. 112096 911249 802571 618130 603217* 603334 0. 802974* 3. 1. 2. 2. 1. 2. 3. 2. 2. 3. 12. 3. 7. 3. 2. 1. 3. 3. 2. 2. 10. 2. 1. 11. 33. 3. 29. 3. 1. 12. 2. 2. 7. 3. 2. 1. 1. 1. 4. 2. 1. 4. 1. 3. 2. 2. 7. 399471 942815 847232 477345 110743 557713 453981 800893 872111 225973 57498 219796 165295 544907 308962 909013 684718 788955 878319 859993 18447 242726 424031 166230 663233 043955 989504 Irr. 435033 807181 155307 960884 874273 182360 710850 449509 580251 390353* 390556 027581 499111 395878 707034 524111 007808 778719 982155 607628 Normal Maxima 32466. 34684. 30528. 31680. 26573. 32860. 32850. 32878. 32878. 26594. 24824. 23605. 31799. 26328. 26564. 27756. 29926. 26571. 32142. 32441. 31397. 33172. 24402. 29100. 24686. 32849. 23752. 32850. 29199. 24761. 32849. 26632. 27749. 32473. 32490. 23288. 29927. 25944. 32061. 26565. 26510. 32504. 29108. 32800. 26605. 32878. 26341. 33071. 31398. 32466. 3 94 314 640 531 519 256 289 257 305 456 624 845 291 373 625 265 283 490 259 361 251 348 678 560 855 404 564 391 254 749 266 395 451 363 255 713 325 340 385 502 624 261 594 380 579 396 281 620 246 394 M 15. 15. 15. 15. 14. 17. 16. 16. 16. 16. 17. 16. 16. 15. 15. 15. 14. 16. 15. 16. 16. 16. 15. 15. 16. 16. 14. 16. 15. 14. 13. 15. 14. 14. 15. 16. 14. 15. 15. 15. 15. 17. 16. 17. 16. 16. 16. 16. 16. 15. 16. 16. 14. : 50 32 49 91 70 02 27 26 08 42 00 30 46 96 58 32 21 47 60 60 07 60 99 90 18 34 35 00 98 89 71 26 22 54 88 09 52 67 76 40 60 21 60 13 33 11 86 12 43 84 40 16 74 m 16. 16. 16. 17. 15. 17. 16. 17. 17. 16. 17. 16. 17. 17. 17. 17. 15. 17. 16. 17. 17. 17. 16. 16. 16. 17. 15. 16. 17. 16. 15. 16. 15. 15. 16. 16. 15. 16. 16. 16. 16. 17. 17. 17. 17. 16. 17. 16. 17. 17. 17. 17. 15. 70 61 58 70 54 66 67 51 42 96 41 79 32 40 05 28 47 40 42 40 37 75 78 96 78 30 27 62 42 18 18 81 31 82 92 60 92 91 93 01 94 53 14 80 43 90 86 92 50 38 72 44 62 16. 16. 16. 17. 15. 17. 16. 16. 17. 16. 17. 16. 17. 16. 16. 16. 14. 17. 16. 17. 17. 17. 16. 16. 16. 16. 14. 16. 17. 15. 14. 16. 14. 16. 16. 15. 16. 16. 15. 16. 17. 16. 17. 17. 16. 17. 16. 17. 16. 17. 17. 15. 34 1 3 28 19 25 38 55 98 04 76 28 57 00 99 52 63 99 06 09 15 01 3 3 54 58 54 99 86 35 01 63 26 32 90 54 37 47 46 53 70 51 37 91 47 08 60 52 62 10 97 31 15 25 A 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 0. 2 0 29 0<) 7 9 84 64 40 25 34 54 41 49 86 44 47 96 26 93 82 80 30 1 5 79 06 60 96 92 62 44 29 47 55 09 28 04 51 40 24 17 61 34 32 54 67 10 79 00 80 07 54 32 28 88 ( m ) 16. 26 16. 04 16. 21 17. 07 15. 19 17. 34 16. 52 16. 90 16. 95 16. 72 17. 25 16. 54 16. 94 16. 89 16. 42 16. 50 14. 91 17. 00 16. 04 17. 10 16. 92 17. 25 16. 50 16. 51 16. 50 16. 93 14. 80 16. 31 16. 91 15. 54 14. 16 16. 22 14. 83 16. 47 16. 34 15. 38 16. 38 16. 45 15. 66 16. 42 17. 35 16. 87 17. 43 17. 01 16. 55 17.45 16. 57 17. 03 16. 87 17. 22 17. 06 15. 19 Obs. 528 530 46 9 3 88 382 2 96 488 329 36 3 437 441 473 457 458 445 441 529 433 482 3 94 465 295 483 457 522 405 528 486 420 486 539 464 538 521 450 429 469 470 459 513 438 347 417 451 408 414 322 432 311 478 367 431 418 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 163 TABLE 3.?Results of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 2082 12953* 2084 2085 2086 10372 2087 2088 12954* 858 11208 2089 2090 2091 2092 2093 2095 2096 12955* 11497 2097 2098 11498 11499 11209 2099 2101 2102 2103 11500 2104 2105 10373 2106 10375 2107 11502 2108 2109 2110 2111 11503 2112 10376 2113 2114 2115 2116 10377 2118 12956* 2119 2120 X 16715 16720 16733 16742 16749 16765 16779 16784 16787 16795 16797 16799 16804 16806 16808 16820 16825 16827 16834 16841 16843 16845 16860 16860 16860 16866 16876 16906 16908 16908 16922 16922 16929 16931 16947 16948 16959 16961 16964 16965 16969 16974 16991 16992 17004 17011 17012 17034 17043 17049 17050 17054 17054 y 7544 6690 7566 13754 8236 5895 11182 14526 6415 12185 11985 8916 9406 5634 12632 9673 10375 8074 9206 7807 8336 12871 8691 9294 13860 7413 9161 15132 8131 13773 11642 12544 14334 10426 15069 14447 13068 11327 13124 13444 4915 9108 10164 14832 10452 14436 14235 6234 14655 9048 14774 10614 13027 Published P. Irr. 3. 716671 3. 58 1.52301 9. 15919 14. 322 3. 83273 1. 30193 3. 75 0. 5332815 1.77155 2.219514 5. 09 1. 20 3.16393 1.935175 2. 17 0. 5140561 8. 9839 1.7899 2.72170 Irr. 3.07465 6.0035 2.4115 2. 502803 1.320183 1.763081 Period 2.712460 2.060420 R CrB 3.716671 3.789458 1.520168 9. 159187 14.578832 8.826671 3.832724 1.300882 3.825657 0. 539090 0. 533280 1. 771551E 1. 828382 1.828214 2.222553 2. 011024 2.825034 1.278946 1.198709 3.163960 1.389549 2.950000 1.928373 2.160121 0. 692515 0. 514051* 8. 984080 1.789818 2.712666 Irr. 3.074643 Irr. 5. 938101 2.411440 Irr .? 2.506661 1.321779 1.763122 1.758372 1.509484 607.2 608 2.4180 5.632978 2.456094 3.75626 1.63640 2.99 2.407301 5.662258 2.450566 1.785176 3.751937 1.636410 2. 987518 517.47 7. 24034 2.612904 7.272674 2.610736 Normal Maxima 23341.590 32804.452 24763. 720 29869.462 29811. 606 31697.371 32462.292 34690. 319 26568. 516 24404. 670 31796.310 16760.614 31397. 251 30547. 583 31976. 647 24761. 749 27658.416 24065. 740 29784.636 32851. 349 26308.461 16755.544 29847. 587 26189.516 31642.644 24431.682 32854.332 32824.400 27786. 361 32845.251 16760. 614 24417. 779 29868.460 32880. 355 23667.803 30901.610 33211.448 32880 28380.640 31293.606 32860. 346 26949.367 29927.402 31398. 246 31345. 388 31436 32142.259 29778. 637 M 15. 84 16.23 13. 95 16. 05 15. 11 16. 78 15. 44 14. 14 15. 87 15. 50 16. 42 16. 59 16. 18 14. 48 16. 12 16. 15 15. 98 17. 48 16. 42 16. 52 16. 60 16. 37 16.62 16. 16 16. 27 16. 06 16. 38 15. 48 15. 24 16. 35 15. 96 16. 12 15. 58 16. 00 16. 33 15. 70 16.66 15. 89 16. 82 16. 20 16. 75 16.62 13. 00 15. 90 16. 17 15. 95 16. 54 16. 36 16. 54 16.31 15. 38 15.67 16. 82 m 17.40 17.54 15.60 17. 05 17. 10 17.20 16.22 16. 23 16.56 17. 00 17.32 17. 54 17. 74 15. 50 17. 08 16. 75 17.20 17. 98 17.02 17. 70 17.66 17. 13 17. 90 16. 92 17. 10 17. 84 17. 27 17.08 16.30 17. 18 17. 12 17. 50 17.08 16.50 17. 08 17.43 17. 30 16.76 17.42 17. 02 17. 36 17. 56 [17. 80 16. 76 16. 77 17.46 17.34 17.20 17.32 17.38 [17. 75 16.45 17.32: m 16. 94 17. 35 16. 68 16.29 17. 01 15. 78 15. 48 16. 25 16. 50 17. 06 17. 16 17. 32 15. 17 16.43 16. 77 17. 81 16. 73 17. 39 17.27 16. 96 17. 52 16. 58 16. 72 17. 30 16. 86 16.42 15. 75 16. 84 16. 53 16.'66 16.'76 16. 96 16.'56 17. 18 16.64 17. 18 17.23 16. 38 16. 51 17. 06 17. 09 16. 90 17. 12 17. 03 16. 09 17. 08 A 1.56 1.31 1.65 1. 00 1. 99 0.42 0.78 2. 09 0.69 1. 50 0. 90 0. 95 1.56 1. 02 0. 96 0. 60 1.22 0. 50 0. 60 1. 18 1. 06 0. 76 1.28 0. 76 0. 83 1.78 0. 89 1.60 1. 06 0. 83 1. 16 1. 38 1. 50 0. 50 0. 75 1.73 0.64 0. 87 0.60 0. 82 0. 61 0. 94 ] 4 . 80 0. 86 0.60 1. 51 0. 80 0. 84 0. 78 1. 07 ]2 . 37 0. 78 0. 50: ( m ) 16. 84 17. 26 16.61 16. 13 16. 98 15. 73 15. 34 16.21 16.46 17. 00 17. 09 17.22 15. 10 16. 39 16.69 17. 78 16.69 17. 31 17. 20 16. 91 17.43 16. 53 16.66 17. 18 16. 80 16. 31 15.68 16. 78 16.45 16.'56 16. 71 16. 84 16. 50 17. 14 16. 59 17. 14 17. 16 16. 32 16.47 16. 96 17. 04 16. 84 17. 07 16. 96 16. 04 17. 05 Obs. 438 319 4 9 0 408 476 4 5 0 524 468 4 9 7 497 415 422 421 492 489 363 395 300 477 379 362 4 4 4 328 4 8 4 413 351 461 4 1 8 492 415 473 4 7 0 388 461 423 383 496 4 9 4 384 387 374 455 323 451 4 5 8 378 348 469 354 4 5 0 168 518 421 164 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 3.?Resulis of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 2121 2122 2123 2124 2125 2126 859 2127 2128 2129 2130 10378 2131 2132 2133 2134 2135 10379 2136 10380 12957* 2137 2138 2139 2140 2141 2141 11511 2143 2144 2145 11512 2146 2147 2148 2149 2151 2152 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 10381 X 17063 17065 17070 17074 17085 17093 17098 17104 17108 17119 17136 17139 17148 17153 17177 17184 17194 17199 17204 17211 17228 17245 17259 17264 17294 17297 17303 17304 17305 17328 17334 17334 17335 17346 17347 17373 17407 17413 17468 17503 17507 17517 17523 17528 17543 17545 17582 17585 17585 17591 17623 17624 17634 17643 y 10509 13338 9048 14912 9114 10305 10222 12623 12055 13914 10772 4956 14804 9105 9982 9924 9108 14994 14243 6348 5705 9104 10558 12526 3766 9164 14794 12444 9575 7851 8865 14613 9220 9123 9076 14393 14246 12082 9744 9178 14807 9606 15495 9928 11582 13825 9664 8615 10799 13531 12606 10071 13477 6438 Published P 0. 1 . 2 . 6. 4 . 2 . 573. 1 . 2. 4 . 2 . 2 . 4 . 3. 2 . 3. 4 . 2 . 1 . 8. 6 . 4 . 2 . 3. 2 . 3. 3. 6. 3. 6867 7750 00 : 06454 831 90568 39 ! 83085 268759 72322 5949 98176 00 4166 91 4876: 4759 03316 45 13597 5167 96 79 55 76674 79328 33413 . 6 8 , 0193 Period 0. 686908* 0. 686931 1.775036 2.034551 6.064539 4.844562 2.903061 581. 96 1. 830875 2. 268759 4. 729917 2. 019915 0. 720539 2.960042 4.006124 3.229595 2.416804 2.854977 3.483796 4.482065 2. 030636 1.131560 1.445555 3.437439 2.879809 8. 115697 2.421202 6.490233 Irr. 2. 548160 5.942971 4.941147 0. 988300 1.802097 1.430679 3.317442 2.769072 3.811053 1.380363 3. 192787 2. 944608 2.299232 3.169060 3.333967 1.523523 3. 346353 5.739025 5.632320 6.693010 4. 769157 2. 886543 2.509613 2.273591 3.046718 3. 008185 Normal Maxima 32537.326 29542. 397 26563.608 30575. 539 32732.610 32011 29811. 606 32852. 298 24304. 858 32851.254 32037. 518 32850. 289 31670. 549 29938. 453 25850. 393 31589.631 29958. 306 32800.380 24716. 860 32845.251 29826. 589 31739. 356 16755.628 23667.803 23341. 689 29204. 247 32062.363 24380. 743 16760. 780 30575. 539 23681.809 24821. 586 16754. 596 27650. 630 24745.830 29927.278 26949. 367 17447. 825 32011.598 32850. 289 16758. 644 26312.267 32880. 399 29074.650 27755.401 27707. 376 23341. 590 27683.401 32860. 300 28376. 572 24417. 779 27750. 391 M 15. 97 16. 44 16. 48 15. 26 15. 84 16. 00 13. 73 [ 16. 22 15. 85 15. 43 17. 19: 16. 18 16. 20 16. 50 15. 42 16. 12 16. 36 16. 37 15.27 16. 50 16.62 17. 40 16.41 15. 54 15. 58 15. 60 14. 64 16. 10 15. 76 15. 97 16. 04 16.40: 16.44 16. 99 17. 00: 16.28 16. 00 16. 53 15. 78 15. 54 15. 91 16. 24 15. 15 16.43 16. 05 14. 36 16.24 16. 18 15.23 16. 35 16. 12 15. 47 16. 05 16. 15 m 16. 72 17. 38 17. 60 16. 17 17. 26 17. 41 18. 5 16. 62 16. 92 16. 77 17. 4 1 : 16. 45 17. 30 17.66 16. 85 17. 18 17. 72 17. 20 16. 80 17. 70 17. 27 17. 99: 17. 06 16. 90 16. 77 17. 27 16.26 16. 78 16. 99 17. 28 17. 09 17. 09 17. 30 17. 97 17. 38: 17.40 17. 13 17. 74 17. 26 15. 93 17. 16 17. 19 15. 82 17.21 16. 60 16.47 17. 01 16.66 16.62 17. 51 17. 43 17. 18 17. 24 17. 06 m 16. 53 17. 16 17. 37 15. 79 16.67 16. 82 16. 43 16. 55 16. 24 17. 33 16. 34 16. 93 17. 19 16. 44 16. 86 17. 25 16. 94 16.28 17. 26 16. 94 17. 80 16. 84 16. 54 16. 26 16.68 15. 53 16. 69 16. 70 16.62 16. 86 16. 92 17. 85 17.20: 17. 04 16.68 17.40 16.89 15. 72 16. 76 16. 93 15. 56 16. 85 16.36 15. 73 16. 74 16.47 16. 10 17. 10 16. 94 16.63 16. 82 16. 80 A 0.73 16.48 0. 94 17. 10 1.12 17.29 0. 91 15. 73 1. 42 16. 57 1.41 16.73 ] 4 . 77 0.40 16.40 1.07 16.48 1. 34 17. 15 0.22: 17. 32: 0.27 16.32 1.10 16. 86 1.16 17. 1 1 1. 43 16. 34 1.06 16.79 1. 36 17. 16 0. 83 16. 88 1. 53 16. 18 1.20 17. 18 0.65 16.90 0. 59: 17. 76 0.65 16. 80 1.36 16.45 1. 19 16. 18 1.67 16.57 1.62 15.42 0.68 1.23 16.61 1.31 16.61 1.05 16.55 0.69: 16. 81 0.86 16.86 0.98 17.78 0. 38: 17. 17: 1.12 16.96 1.13 16.62 1. 21 17. 32 1.48 16. 79 0.39 15.69 1.25 16.68 0.95 16.87 0. 67 15. 51 0.68 16. 80 0.55 16.32 2. 11 15. 59 0.77 16.69 0.48 16.44 1. 39 16. 01 1.16 17. 02 1. 31 16. 85 1. 71 16. 52 1.19 16. 74 0.91 16.75 Obs. 482 383 436 434 473 370 220 468 458 471 478 475 376 485 504 433 452 359 4 5 4 373 3 84 280 466 455 485 462 461 484 497 489 496 272 427 287 447 386 419 412 446 514 444 467 444 494 458 514 483 522 506 431 407 450 466 404 WHOLE VOLUME VARIABLE STAR'S IN SMALL MAGELLANIC CLOUD 165 TABLE 3.? Results oj observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).? Continued 11V 2169 2170 2171 2172 11517 2173 2174 2175 2177 2178 2179 2180 2182 2 183 2 184 2185 2186 861 2187 11518 11519 1 1520 2188 2189 2190 11521 2192 2193 2194 11523 2195 11524 2196 862 103 82 2197 2198 2199 2200 2201 2202 2203 2204 11527 11528 2205 11530 10383 2206 11531 2207 11532 2208 2209 2210 X 17644 17651 17655 17667 17694 17695 17706 17737 17749 17774 17775 17776 17892 17844 17846 17847 17859 17860 17871 17880 17934 17943 17945 17946 17958 18018 18097 18103 18132 18138 18166 18186 18215 18215 18219 18266 18292 18298 18323 18338 18386 18386 18443 18492 18504 18513 18570 18591 18596 18606 18615 18720 18757 18774 18774 y 14496 15414 842 3 12204 1246 8 14324 14395 14668 6965 9168 14454 1 1164 1 1104 14649 7410 13 865 14455 10474 10335 5748 9933 101 19 13270 10618 10518 9546 9554 9721 13999 11616 9904 10431 9922 13426 6264 7894 13683 14005 14154 12444 9775 13133 14295 13280 13062 6044 14109 7236 11161 12720 13400 11472 9824 6366 13394 Published P. 1. 2. 3. 6. 2. i. 1 3. 41. 5. 2. 1. 1 1. 13, 26 3 3 22 74991 98884 03699 4300 2873 6233 Irr. ? 45 7815 790 47732 4384 25 , 2 . 04 .531678 .21277 . 7 Period 1. 2. 2. 1. 3. 6. 4. 2. 2. 1. 0. 2. 3. 1. 3. 2. 4. 2. 2. 1. 3. 1 3. 2. 2. 3. 2. 3. 1. 41. 2. 3. 5. 2. 1. 6. 4. 2 1 1. 13. 5. 2 4 2 25 2 3 2 4 2 3 22 2 748006 988864 Irr. 562346 295794 031310 429336 210763 282549 992632 405161 685890 812180 537532 622441 690300 067745 413842 968883 Irr. 869377 626238 712066 459131 573948 427265 007754 746566 500543 367884 809912 264649 408125 789717 475501 438424 064465 577015 .465313 ,252644 .182314 , 962282 .528560 .593755 .579047 .432997 .949948 .531678 .440239 Irr. ? .814729 .033686 .212749E .650006 .919222 Normal Maxima 26572. 24461. 26973. 513 641 379 27756.256 23344. 29778. 26502. 16758. 28034. 29906. 31324. 28776. 31655. 24787. 32819. 30593. 21816. 13861. 24745. 30665. 24304. 27746. 29927. 25850. 29839. 29927. 31675. 32878. 24408. 26981. 31274. 24402. 32828. 29081. 29813. 31739. 32537. 26573. 27756. 29897. 23338. 32752. 31801. 26319. 29074. 28804. 25850. 26570. 27750. 24787. 32854. 30648. 538 637 647 559 526 234 386 476 524 682 3 98 5 93 787 607 830 247 858 529 236 393 571 325 572 3 96 793 369 639 678 390 611 648 356 326 519 256 452 634 564 286 275 646 381 393 518 391 682 3 83 337 M 16. 15. 16. 16. 16. 15. 15. 14. 16. 15. 16. 15. 15. 15. 16. 15. 16. 14. 15. 14. 15. 16. 16. 14. 15. 15. 15. 15. 15. 16. 12. 16. 15. 15. 16. 16. 15. 15. 16. 14. 14. 15. 15. 15. 15. 14. 16. 16. 15. 15. 15. 16. 15. 13. 15. 05: 29 75 27 15 28 24 55 2 9 76 53 96 84 51 42 19 20 81 65 88 57 67 76 50 74 47 92 48 56 71 99 64 94 32 34 63 32 63 06 60 34 16 45 70 65 28 46 37 82 85 82 58 02 55 26 m 16. 16. 17. 17. 16. 17. 16. 16. 17. 17. 17. 16. 16. 17. 17. 16. 16. 16. 16. 15. 16. 17. 17. 15. 16. 17. 17. 16. 17. 17. 14. 17. 17. 16. 17. 17. 16. 16. 16. 15. 15. 16. 16. 16. 16. 16. 17. 17. 16. 16. 16. 73 59 77 34 48 10 44 59 65 16 50 44 90 00 40 80 82 40 90 90 1 1 75 23 80 77 27 22 66 05 65: 27 49 11 15 64 40 58 70 83 90 39 40 79 67 89 12 09 61 28 31 58 16. 93 15. 14. 16. 91 74 90 m 16. 16. 17. 16. 16. 15. 16. 17. 16. 17. 16. 16. 16. 17. 16. 16. 15. 16. 15. 17. 17. 15. 16. 16. 16. 16. 16. 17. 13. 17. 16. 15. 17. 17. 16. 16. 16. 15. 14. 15. 16. 16. 16. 15. 16. 17. 16. 16. 16. 14. 16. 45 15 02 34 57 90 40 22 65 13 24 47 52 14 37 50 71 47 88 18 00 15 40 75 85 25 66 34: 76 19 59 81 22 08 16 29 58 32 98 81 31 28 54 55 91 23 07 20 79 23 45 A 0. 1. 1. 1. 0. 1. 1. 2. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 1. 1. 68: 30 02 07 33 82 20 04 36 40 97 48 06 49 98 61 62 59 25 02 54 08 47 30 03 80 30 18 49 94: 28 85 17 83 30 77 26 07 77 30 05 24 34 97 24 84 63 24 46 46 76 35 89 19 76 ( m ) 16. 16. 16. 16. 16. 15. 16. 17. 16. 17. 16. 16. 16. 17. 16. 16. 15. 16. 15. 17. 16. 15. 16. 16. 16. 16. 16. 17. 13. 17. 16. 15. 17. 17. 16. 16. 16. 15. 14. 15. 16. 16. 16. 15. 16. 17. 16. 16. 16. 14. 16. 40 06 95 32 45 82 25 13 56 07 21 40 42 07 26 46 60 39 85 11 97 06 33 63 76 16 56 28: 68 13 51 75 13 01 08 22 53 23 91 73 22 22 46 43 87 15 04 15 77 15 33 Obs. 423 363 449 464 419 388 466 406 346 435 216 489 472 365 419 489 409 474 441 503 481 250 42 9 510 437 405 393 438 493 176 518 31 1 383 474 379 418 474 499 274 483 510 457 3 82 459 427 512 471 2 02 475 452 458 435 490 511 447 166 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL. 9 TABLE Z.?Resvlts of observations (* in Column 1 denotes newly discovered variables; in Column 5 denotes variable periods).?Continued H V 11534 2211 11536 11537 2213 2214 2215 2216 11540 2217 11541 2218 2219 11542 2220 2221 10384 2222 11544 11545 2223 2224 2225 2226 2227 2228 2229 863 2230 2231 11546 2232 2233 2234 103 85 865 X 18822 18846 18972 18987 19034 19101 19134 19137 19161 192 05 19221 19313 19314 19350 19456 19512 19539 19604 19662 19788 19865 19943 20158 203 74 20661 20893 21018 21397 21764 22120 22146 22155 23178 23438 23535 23924 y 13281 10442 5001 9999 13420 14174 4889 13836 10338 9194 10284 9207 13425 11850 8547 13333 9993 8905 11922 14910 7166 10324 3833 7129 4305 10639 5414 5445 8985 7120 9267- 7113 4830 10574 9207 2424 Published P 9. 17498 2.39816 1. 7828 4.37905 1. 9747 20. 0 6. 70 4. 70 13. 2086 1.89983 Irr. 10. 45 29. 0 12. 52 36. 7 Irr. Irr. 15. 2 0. 5402149 6.9774 33. 3 Per iod 1.688563 5.095061 0. 569098 Irr. 3.786521 82 ? 9. 174396 2.679895 0.870331* 2.259640 1.397722 2.396421 1.400598 1.738064 4. 379522E 4. 235353 1.972354 19. 985803 3.472644 Irr. 6.700442 4. 703865 13.154599 1.900934E 12.466963 Irr. 10. 448011 28. 961606 12.526122 36.67924 Irr. Irr. 15. 172204 0. 5402149 7. 037199 33.326668 Normal Maxima 29566. 245 25892.327 26593. 551 32037. 518 26304.269 32508. 406 30528.640 29825. 590 29897. 452 29825. 590 33563. 346 29808.570 31291.478 27715.399 30935.512 32850. 200 23595.881 23605. 845 23288. 713 29870. 451 29808. 570 24815. 593 32052. 381 32034. 503 32845. 251 31734. 237 26945. 391 26978. 452 30561.604 M 16. 17 15. 84 16. 36 16. 15 14. 90 16. 05 14. 94 15. 38 16. 61 16. 20 16. 44 15. 37 15. 68 16. 30 15. 90 15. 34 16. 34 14. 27 15. 49 15. 12 14. 91 15. 57 15. 24 15. 69 15. 38 13. 90 15. 15 13. 58 15.66 14. 16 12. 59 13. 80 14. 32 14. 32 15. 78 14. 07 m 16. 87 16. 48 16. 90: 16. 71 16. 34 16. 91 16. 05 16.78 17.22 16. 84 17. 04 17. 14 16. 62 17. 23 16. 59 16. 75 17. 61 15. 70 16. 60 15. 59 16. 33 16. 38 16. 03 16. 37 16. 43 15. 30 16. 18 15. 65 16.26 15. 66 13. 38 16. 80 15. 80 15. 36 16. 58 15. 59 m 16. 58 16. 26 16. 64: 15. 80 15. 55 16. 37 16.97 16. 52 16. 75 16.63 16. 20 16. 83 16. 27 17. 28 15. 20 16. 23 15. 84 16. 06 15. 63 15. 97 15. 74 15. 00 15. 97 15. 21 15. 24 15. 07 16. 29 15. 09 A 0. 70 0. 64 0. 54: 0. 56 1. 44 0. 86 1. 1 1 1. 40 0. 61 0. 64 0. 60 1. 77 0. 94 0. 93 0. 69 1. 41 1. 27 1. 43 1.11 0. 47 1. 42 0. 81 0. 79 0. 68 1. 05 1. 40 1. 03 2. 07 0. 60 1. 50 0. 79 3. 00 1. 48 1. 04 0. 80 1. 52 ( m ) 16. 53 16. 22 16. 60: 15. 70 15. 48 16. 28 16. 93 16. 48 16. 71 16. 51 16. 14 16. 77 16. 18 17. 19 15. 10 16. 16 15. 74 16. 01 15. 58 15. 89 15. 67 14. 86 15. 93 15. 11 15. 14 15. 02 16. 24 14. 99 Obs. 440 423 3 07 4 04 326 353 481 4 30 266 3 99 341 375 416 166 46') 409 40 3 361 413 437 452 427 438 450 440 475 452 451 438 442 406 442 439 434 397 42 3 167 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods) HV 12132 814 12949 11368 11446 1821 809 2102 1863 2091 2090 2234 1595 11536 1510 11229 2043 1834 11212 1738 2020 11238 362-12 2010 12932 2180 2121 2101 10378 1327 810 11415 11289 2044 12170 1851 11390 1715 11447 11540 12912 11512 11436 11472 11197 1853 11489 11375 2039 11419 1769 12902 12957 1515 12163 1756 12091 11347 11260 12098 2097 12914 11485 11466 1897 1505 1940 11222 10365 11177 12089 12128 12168 11497 1678 12114 12093 11143 11487 11517 Period 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1, 1. 1. 1, 1 1 ? 1, 1. 1. 1. 1, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 331516 371546* 474978 484509* 497787 502753 509104* 514051* 527340 533280 539090 540212 547478 569098 570857 584136 603344* 603578 606288 612928 616453 618163 652545 656520 671453 685890 686931* 692515 720539 726109* 736327* 774007 788189 802974* 811079 824853* 827969 862245 863009 870331* 885430 988300 047160 049538 073493 .084694 ,110743 .114956 ,123134 , 124126 ,126754 . 130463 ,131560 ,140726 .141162 .145422 .170326 .186869 .187552 .193612 .198709 .205423 .209275 211246 .241317 .251220 .253062 .253912 . 258093 . 258329 . 270844 .271508 .275772 . 278946 . 279961 . 280633 .281473 .290208 .291626 .295794 log P -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0, 0. 0 0 0 0 0 0 0 0 4795 4300 3233 3147 3030 2986 2932 2890 2780 27 30 2683 2674 2616 2448 2435 2335 2195 2193 2174 2126 2101 2089 1853 1828 1730 1637 1631 1596 1423 1390 1329 1113 1033 0953 0909 0836 0820 0644 0640 0603 0429 0051 0200 0210 0308 0352 0456 0473 0504 0508 0518 0533 0537 0572 0573 .0590 .0683 .0744 ,0747 0769 0787 ,0811 ,0825 ,0832 ,0939 .0973 .0980 ,0983 .0997 .0998 . 1041 1043 . 1058 .1068 .1072 .1074 .1077 . 1107 .1111 . 1125 M( 15. 13. 16. 17. 16. 17. 13. 15. 16. 14. 16. 14. 15. 16. 15. 16. 14. 16. 15. 15. 17. 16. 16. 15. 16. 15. 15. 16. 16. 16. 13. 17. 16. 17. 17. 15. 17. 15. 16. 16. 17. 16. 16. 0 73 99 14 31 44 10 51 17 53 48 18 32 93 36 82 31 50 55 40 02 08 54 49 95 03 96 97 38 18 00 45 63 90 02 21 24 00 75 49 61 24 40 85 16.40 16. 16. 16. 16. 17. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 17. 16! 17. 16. 16. 16. 17. 16. 17. 15. 16, 16, 17, 16, 16 16 16 17 16 16 16 56 52 70 33 09 99 30 54: 62 92 93 ,47 96 80 82 82 60 00 ,85 ,74 ,40 ,06 , 58 . 21 .92 .52 .88 . 14 .63 .52 .66 .76 .05 . 50 .44 . 14 mc 16. 14. 17. 18. 17. 17. 14. 17. 17. 15. 17. 15. 16. 16. 16. 17. 15. 17. 15. 16. 17. 17. 17. 16. 16. 16. 16. 17. 16. 16. 14. 18. 17. 17. 17. 15. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 18. 17. 17. l 16 68 06 04 82 70 68 00 18 50 74 36 83 90 79 29 34 25 87 63 36 02 09 40 49 44 72 27 45 88 63 02 62 66 91 80 72 34 13 22 76 09 31 25 33 16 11 21 82 13 84 80: 17. 27 17. 17. 17. 17. 17. 17. 18. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17, 17, 17, 16, 50 42 31 34 61 70 4 66 62 91 42 88 71 74 85 06 30 77 92 , 21 ,70 .16: .86 .47 .40: . 19 .48 A 0. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0, 0, 1, 0, 1 0 0 0 0 43 69 92 73 38 60 17 83 65 02 56 04 90 54 97 98 84 70 47 61 28 48 60 45 46 48 73 89 27 88 18 39 72 64 70 56 72 59 64 61 52 69 46 85 77 64 41 88 73 14 ,54 26: 65 58 49 84 ,38 81 88 06 ,62 06 ,68 ,48 ,65 ,16 ,64 ,14 .78 ,89 .78 .58 . 18 . 50: . 10 .42 .90: .75 .33 (m) 15. 14. 16. 17. 17. 17. 14. 16. 16. 15. 17. 15. 16. 16. 16. 16. 14. 16. 15. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 14. 17. 17. 17. 17. 15. 17. 16. 16. 16. 17. 16. 17. 16. 16. 0 90 29 65 63 30 34 25 30 90 10 22 02 55 60 47 87 99 85 61 02 22 76 84 14 22 21 48 80 32 54 16 82 27 36 62 48 37 06 84 93 46 81 06 80 97 16.75 16. 16. 17. 17. 17. 17. 16. 17. 17. 17. 17. 17. 17. 18. 17. 17, 17. 17. 16. 17, 17. 17, 16, 16, 17, 17, 17, 17, 17 17 17 16 16 16 95 81 , 54 , 77 60 ,03: 90 24 25 01 11 25 24 1 ?? 20 ,40 . 50 . 11 .64 . 41 ,36 .49 ,61 .93 .36 ,63 .02 . 31 .02: .40 .27 .89: .79 .32 xo 15. 14. 16. 17. 17. 17. 14. 16. 16. 15. 17. 15. 16. 16. 16. 16. 14. 16. 15. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 14. 17. 17. 17. 17. 15. 17. 16. 16. 16. 17. 16. 17. 16. 17. 16. 16. 16. 17. 17. 17. 17. i 90 32 74 68 29 39 19 26 92 13 20 01 . 50 70 43 90 98 93 69 03 20 78 86 17 25 19 44 83 30 47 19 83 28 34 59 52 42 03 85 87 55 80 11 87 02 85 92 75 51 73 66 30: 17.00 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17. 16. 16. 17. 17. 16. 17. 16. 17. 17. 17. 16. 16, 26 23 99 17 33 34 30 41 50 15 69 44 33 61 58 93 44 64 97 , 25 92: 42 .29 .07: ,84 .30 M-m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 52 45 12 28: 16 40 22 18 18 15 17 20 15 0.26 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 14 19 21 41 28 16 37 41 16 46 41 48 15 43 44 26 17 50 36 40 23 43 28 43 33 27 43 47 24 28: 25: 33: 32 40 20 10 23: 16: 36 23 14 14 34 10 19 16 17 14 18 33 21 10 19 39: 40 15 10 14 ,14 18 , 16 , 31 , 14 40 ,40 s 0. 1. 4. 1. 2. 1. 2. 2. 2. 3. 4. 5. 3. 3. 3. 2. 2. 1. 2. 3. 1. 1. 3. 1. 1. 1. 2. 1. 1. 1. 3. 1. 1. 1. 1. 1. 2. 1. 1. 1. 9 2 0 3 8 2 2 4 6 7 4 4 0 1 3 5 2 7 7 2 0 3 0 2 2 2 7 3 0 6 5 4 5 3 7 3 1 2 9 5 2. 2 1. 2. 1. 2. 1. 1. 1. 2. 4. 5. 4 0 7 4 5 7 2 1 0 7 2. 5: 2. 2. 2. 2. 1. 4. 2. 5. 4. 2. 1 3 9 8 8 2 2 0 2 6 2.7 2. 2. 3. 3. 1. 1. 3. 3. 5 3 8 4 8 5 0 6 2. 3 2. 8 1. 2. , 4 5 2.0 ? 3. 1. 1. ,0 ,6 20 Al 0.45 0.64 0.57 0.64 0.94 0.55 0.86 1.30 0.45 0.65 0.95 0.61 0.59 0. 36 0.63 0.69 0.63 0.56 0.32 1. 06 0.28 0.42 0.40 0.41 0.42 0.44 0. 50 0.78 0.27 0.72 0.77 0. 34 0.60 0.56 0.56 0.49 0. 53 0. 54 0.49 0.51 0.37 0.59 0.35 0.68 0.55 0. 54 0.33 0.81 0. 54 0.71 0.32 0.88: 0.48 0.42 0.33 0.57 0.30 0.50 0.64 0.64 0.38 0.73 0.47 0.34 0.47 0.73 0.42 0.89 0.66 0. 59 0.50 0.42 0.80 0.43: 0.77 0.32 0.59: 0.62 0.30 A 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0 0 0 0 0 0 0 2 00 12 69 17 88 11 64 06 40 75 21 85 60 37 68 59 42 29 30 11 00 11 40 08 08 09 46 20 00 33 84 11 24 15 29 13 37 11 30 20 28 22 23 35 45 21 17 16 38 86 44 76: 34 33 32 54 16 62 48 85 ,47 66 ,43 29 37 , 86 ,45 , 50 , 26 . 60 , 56 . 33 . 76 . 13: .66 . 21 .60: .28 . 06 dm 0.26 0. 00 a 30 0.22 0. 56 0. 30 0.00 ... 0.26 ... 0.39 0.00 0.00 0. 39 0. 52 0.00 0. 28 0. 30 0. 00 0. 29 0. 35 0. 06 0.00 0. 00 0. 20 0.02 0.49 0. 20 0. 30 0.48 0. 03 0.00 0.40 0.42 0. 30 0.40 0. 03 0.48 0.00 0.46 0. 03 0. 35 0. 30 0. 08 0.00 0.44 0.44 0.43 0.60 0.28 0.00 168 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 12935 1871 11208 11451 2022 11196 11324 1542 1772 2109 11438 1686 1958 11416 2001 11377 11394 11133 1513 2006 11381 11523 11302 11166 2152 11311 11498 1359 11495 1985 11172 2077 1623 11541 2219 1948 12107 2179 11304 11173 11339 12123 2062 11142 12933 2147 12133 11155 2197 1389 1353 11458 1517 2012 1371 2137 1894 11365 1615 1743 1930 1968 12100 11414 1658 11200 11473 12923 11160 11175 11400 11378 12092 12090 1466 10364 1516 1755 2004 Period 1. 297493 1.300860 1.300882 1.308274 1.308877 1.311653* 1. 313907 1.319185 1. 321541 1.321779 1.322865 1.327894 1.334426 1.335427 1.338848 1. 341414 1.346232 1.359052 1.361420 1. 364970 1. 365844 1. 367884 1.371704 1.377264 1.380363 1. 389389 1.389549 1.390069 1.390* 1.391115 1.392919 1. 395878 1.396100 1.397722 1.400598 1.401956 1.403556 1.405161 1.418273 1.419892 1.423040 1.423518 1.424031 1.428525 1.428982 1.430679 1.433883 1.438301 1.438424 1.439027 1.440349 1.440845 1.443249 1.443737 1.445072 1.445555 1.445706 1.446150 1.450501 1.453900 1.455729 1.458571 1.459004 1.467209 1.467565 1. 4676 1. 472806 1. 474796 1.482934 1.491177 1.491785 1.492899 1.495513 1.496128 1.502300 1. 503052 1. 504662 1. 505709 1.507086 log P 0. 1131 0. 1142 0. 1142 0. 1167 0. 1169 0. 1178 0. 1186 0. 1203 0. 1211 0. 1212 0. 1215 0. 1232 0. 1253 0. 1256 0. 1267 0. 1276 0. 1291 0. 1332 0. 1340 0. 1351 0. 1354 0. 1361 0. 1373 0. 1390 0. 1400 0. 1428 0. 1429 0. 1430 0. 1431 0. 1434 0. 1439 0. 1449 0. 1449 0. 1454 0. 1463 0. 1467 0. 1472 0. 1477 0. 1518 0. 1523 0. 1532 0. 1534 0. 1535 0. 1549 0. 1550 0. 1555 0. 1565 0. 1578 0. 1579 0. 1581 0. 1585 0. 1586 0. 1593 0. 1595 0. 1599 0. 1600 0. 1601 0. 1602 0. 1615 0. 1625 0. 1631 0. 1639 0. 1641 0. 1665 0. 1666 0. 1666 0. 1681 0. 1687 0. 1711 0. 1735 0. 1737 0. 1737 0. 1748 0. 1750 0. 1768 0. 1770 0. 1774 0. 1777 0. 1781 M 17. 16. 16. 16. 17. 16. 17. 16. 16. 16. 16. 16. 16. 17. 16. 16. 17. 16. 16. 16. 17. 16. 17. 16. 16. 16. 16. 16. 17. 16. 17. 16. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 15. 16. 17. 16. 17. 16. 16. 16. 16. 16, 16. 16. 16, 17. 16. 16, 16, 16 16 16 16 17 16 17 16 16 16 16 15 16 16 17, 16, 16, 16, 16 16 0 14 33 42 84 13 92 10 68 46 82 88 99 56 29 54 55 30 69 98 58 12 71 20 41 53 88 62 75 13 33 18 86 90 , 4 4 .68 68 . 8 4 ,53 94 , 57 , 36 , 2 9 , 9 8 . 0 9 , 10 , 74 , 38 ,40: , 63 , 50 39 . 9 8 . 33 . 7 5 . 54 . 15 . 5 0 . 8 4 . 4 9 . 8 3 . 78 . 55 . 52 . 0 0 . 33 . 37 . 44 . 52 . 2 9 . 50 . 8 9 . 9 8 . 9 8 . 26 . 33 . 81 , 26 . 9 0 . 7 9 m 18. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 18. 17. 17. 18. 17. 17. 17. 18. 17. 17. 17. 17. 17. 17. 17. 17. 17, 17. 17. 17. 17, 16, 17, 17. 17. 17. 17. 17. 17. 17. 17, 17. 17. 18. 16. 17. 17. 16, 17, 17, 17, 17, 17, 17, 17 17 17 17 17 17 17 17 17 17 16 17 17 17 17 17 17 17 17 17 17 17 0 09 35 32 72 99 46 68 20: 50 42 33 98 51 28 55 16 15 22 44 84 06 65 72 42 74 50 90 51 80 , 58 .72: , 86 ,76 , 0 4 , 6 2 . 6 9 , 5 8 . 50 . 7 0 , 2 3 , 32 , 6 8 ,42 , 57 , 6 4 . 7 2 .20: ,90: , 4 0 ,47 , 73 . 6 6 . 6 7 . 52 . 54 . 74: . 6 7 .93: . 6 5 .8.6 . 7 2 . 12 . 34 . 6 0 . 10 . 9 5 . 6 3 . 9 8 . 0 9 . 31 . 4 3 . 7 9 . 8 2 . 7 6 .47: . 6 4 . 35: . 4 0 . 6 5 A 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0, 1. 0. 0. 0. 1. 0. 1. 0. 0. 95 02 90 88 76 54 58 52: 04 60 45 99 95 99 01 51 85 53 46 96 94 94 52 01 21 62 28 76 67 25 54: 00 86 60 94 01 74 97 76 66 96 39 44 48 54 98 82: 50: 77 97 34 60 34 77 00 59: 17 09: 16 , 03 94 , 5 7 , 8 2 , 6 0 , 77 , 58 , 0 9 , 4 6 , 8 0 .81 , 54 , 81 , 8 4 70 14: 83 09: 50 86 0 17. 56 17. 16 16. 17 17. 24 16.99 16.98 16. 80 17.03 17. 60 17. 12 16.92 17.02 17. 32 17.74 16.96 17. 29 17. 31 17. 36 17. 01: 16.76 17. 23: 17.35 17.23 17.62 16.62 16.87 17.39 17. 33 17.27 17. 12 16. 74- 17.56 16.95 17.09 17.07 16.81 16.69 17. 04 17. 33 17.07 17. 11 16. 52 17. 19 17. 19 17. 00 17.07 16.93 17.32 16.66 16. 01 16.98 16.72 16. 29 17. 18 16.61: 16.72 16.88 17. 14 16.94 17.09 17.33 16.68 17. 03 17.42 17. 16 17.40 17. 09 17.00 17. 08 16.77: 17. 30 17. 29 16.79 16.85 16.53 16.81 16.97 17. 20 16.89 x0 17.48 17.07 16. 19 17. 22 16. 95 16.98 16.85 17.13 17.61 17.13 16.89 17.05 17.49 17.88 17.04 17. 21 17.22 17. 37 16.82 17.49: 17.60 17. 25 17. 56 16.65 16. 83 17.40 17.36 17.36 17. 10 17.54 16.95 17.14 17. 15: 16.80 16.68 17.04 17.35 17.08 17.29 16.53 17.17 17.18 17.04 17.05 16.98 17.47 16.66 16.06 16.88 16.81 16.30 17.20 16.53: 16.69 16.89 17.06 16.96 17.03 17.49: 16.73: 17. 14 17. 54 17. 11 17.47 17. 12 17. 03 17.08 16.82: 17.36 16.78 16.86 16.53 16.72 16.90 17.22 16.94 M-m 0. 09 0.45 0.42 0. 08: 0. 14 0. 39 0. 44 0. 11 0. 18 0. 13 0.45 0. 15 0.09 0. 10 0. 10 0. 13 0.08 0. 10 0. 11 0. 17 0. 21 0.08 0. 10 0. 11 0. 35 0.09 0. 14 0. 09 0. 20 0. 12 0. 16 0. 10 0.12: 0. 13 0.11 0.44 0. 10 0. 07 0.20 0. 15: 0. 11 0. 18 0. 13 0. 09 0. 39 0. 13 0.12 0. 46 0. 11 0.11 0.51 0.13 0. 19 0.13 0.11 0.09 0.16 0. 13 0.09 0.12 0.09 0. 10 0. 11 0. 18 0.09 0. 13 0. 12 0. 11 0. 18: 0.12 0.44 0. 10 0.40 0.32 0.06 0. 12 0.42 s 3. 2 1.2 1.7 5. 7 3.2 1.2 1.2 4. 5 2. 5 2.8 1. 2 3.9 4.4 3.8 4.6 2. 5 4. 2 4.9 2.4 3.5: 4.0 4.4 3.3 3.8 1.4 4.4 3.7 5.3 2. 2 3. 1 2.6 5.0 3.9 3.4 4. 1 1. 5 3.5 6.7 2.0 3.0 3.6 2.4 4.9 4.3 1.4 4. 0 3.8 1. 1 3. 3 3.8 1.0 3.4 2.3: 2. 5 5.0 3.7 2.4 2.5 5.4 4.0 6.6 4. 2 3. 1 3.0 5. 1 3.6 4. 2 4.4 4. 1 1.3 3.7 1.4 2.2 4.0 3. 2 1.9 Al 0. 56 0.86 0.32 0. 36 0.34 0.39 0. 63 0.65 0.50 0.58 0.61 0.70 0.62 0.67 0.48 0.92 0.85 0.56 0.29 0.59: 0. 57 0.41 0.63 0.50 0.46 0. 55 0.38 0.66 0.33 0.66 0.61 0.50 0.34: 0.28 0.87 0.29 0.49 0.56 0.81 0.24 0.70 0.33 0.40 0.48 0. 50 0.42 0.64 0.42 0.78 0.90 0.43 0. 36 0.81: 0.51 0.41 0.86 0.50 0.64 0.54: 0. 50 0. 34 0.70 0.65 0. 43 0.67 1.06 0.72 0. 27: 0.80 0. 51 0.78 0.60 0. 51 0. 55 0. 74 0. 46 A2 0. 59 0. 17 0. 16 0. 51 0. 35 0.08 0. 15 0.83 0.43 0. 55 0. 12 0.83 0. 79 0. 79 0.61 0.79 1. 04 0. 74 0.24 0.64: 0.69 0. 52 0.68 0. 59 0. 16 0.68 0.43 0.92 0.25 0.68 0.55 0.66 0.40: 0. 31 1.06 0.12 0.54 0.83 0.54 0.24 0.79 0.27 0.54 0.60 0.17 0. 51 0.75 C.04 0.84 1.06 0.00 0.39 0.64: 0.42 0.54 0.98 0.41 0. 55 0. 53: 0.60 0.52 0.86 0.67 0.44 0.90 1.20 0.88 0.34: 0.97 0. 13 0.89 0. 20 0. 39 0. 66 0.77 0. 28 dm 0. 70 0.00 0.49 0.13 0.44 0.00 0.00 0. 00 0.29 0.74 0.00 0.90 0.48 0. 16 0.47 0.34 0.48 0. 70 0. 74 0.91 0.74 0.60 0. 48 0.07 0.49 0.00 0.48 0.72 0. 16 0.56 0. 52 0.35 1.03 0.00 0.80 0. 36 0.40 0.00 0. 35 0.00 0.00 1.03 0.00 0. 36 0.74 0. 00 0.48 0. 00 0.40 0.60 0.48 0. 36 0. 49 0.00 0. 11 0.52 0.72 0. 30 0. 70 0.39 0.00 0. 15 1.03 0. 28 0. 48 0.00 0. 11 0. 03 0.02 0. 03 0. 36 0. 35 0. 35 0. 56 0.00 0. 55 0. 74 0. 36 0. 22 170 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 12918 12919 1638 11122 1919 11443 11184 1344 1398 11168 11363 11542 11137 1418 12084 12937 2169 1364 1732 11463 2111 11195 1656 11130 2110 11271 1558 2122 11357 1496 1754 12137 1890 11341 12139 1403 12125 12181 1779 2115 11460 11500 11335 2100 11384 1799 1494 1554 2146 12143 2068 1739 11350 11146 1674 1729 2093 1664 2127 12164 11126 12921 1990 11226 1325 11167 1904 11181 11164 10356 12947 1717 1446 1547 12936 12175 11479 1937 1506 Period 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 707335 707404 715372 715559 718591 722887 726788 730957 732080 734575 737819 738064 739793 740069 744832 745286 748006 754284 754580 755276 758372 758622 758690 761301 763122 771157 771764 775036 775834 776653 777449 777812 778540 .778777 .778900 779273 ,781369 ,783024 ,783390 ,785176 .787467 .789818 .790078 .796300 1.796361 1, L, 1 1 1 1 1 1 1 1 1 1 1 .796387 .799570 .799775 . 80Z097 . 806750 .807181 .810168 .818129 .820141 . 820330 . 822486 . 828382* .830680 1.830875 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .833537 .837804 .838299 . 842724 .853118 .853472 .855078 . 858453 . 860929 .86640k .866556 .869295 .870375 .872140 .874579 . 876666 .876768 .879212 .882679 . 886248 log P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2323 2323 2344 2344 2352 2363 2372 2383 2386 2392 2400 2401 2405 2406 2417 2419 2425 2441 2442 2444 2451 0. 2452 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2452 2458 2463 2483 2484 2492 2494 2496 2498 2499 2501 2501 2502 2502 2508 2512 2512 2517 2522 2528 2529 2544 2545 2545 2552 2552 2558 2569 2570 2577 2596 0. 2601 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0 0 0 0 0 0 0 0 0 0 0 2601 2607 2621 2626 2627 2633 .2643 .2644 2655 , 2679 . 2679 . 2684 .2691 . 2697 . 2710 . 2710 . 2717 . 2719 .2723 . 2729 .2734 . 2734 .2740 . 2748 . 2756 M o 16. 16. 16. 15. 15. 16. 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 15. 16. 16. 16. 16. 16. 17. 16. 16. 17, 16, 93 79 81 98 92 31 27 43 58 73 82: 30 05 03 25 76 05 55 30 93 75 66 18 46 20 41 26 44 71 56 41 95 64 95 13 44 58 34 50 54 90 35 04 98 75 50 30 74 , 19 ,28 09 ,38 . 54 . 14 16.78 16, 16, 16, 16 16 16 16 16 16 17 16 . 13 . 15 .36 .22 .85 .75 .71 . 51 .92 .07 . 23 16. 54 16 16 16 16 16 16 17 16 16 16 16 16 . 23 .49 .08 .69 . 23 . 14 . 45 .64 .63 . 54 .91 .60 m, 17. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 16. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 16. 18. 17. 3 33 49 83 60 22 14: 36 42 51 55 64: 23 51 31 91 17 73 28 50 48 36 41 11 10 02 04 20 38 42 23 92 10 55 17.68 17. 17. 17. 16. 16. 17. 17. 17. 16. 16. 17. 17. 16. 17. 17. 17. 16. 14 45 72 73 77 34 56 10 51 65 74 28 85 .38 .05 .80: ,60 17.52 17, 16, [17, 16, 16. 16 16 17 17 17 17 17 17 16 17 17 17 17 17 17 17 18 17 17 17 18 17 .92 .66 .8 ,70 .75 .81 .62 .78 .08 .01 .52 .86 . 50 .83 .60 .88 . 35 . 50 .49 . 44 . 40 . 23 .29 .84 . 13 . 03 .60 A 0. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0, 0, 0, 0. 0. 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 40 80 02 62 30 83: 09 99 93 82 82: 93 66 28 66 41 68 63 20 55 61 75 93 64 82 63 94 94 71 67 51 15 91 73 01 01 14 39 27 80 66 83 47 67 99 78 55 64 86 52: 51 . 14 , 38 . 52 , 57 .60 . 45 .40 .93 . 33 . 30 . 01 .94 . 43 .60 .06 .65 .86 . 42 . 80 . 21 . 26 .78 .65 . 21 . 59 . 12 .00 (m) 17. 17. 17. 16. 16. 16. 16. 17. 17. 17. 17. 16. 17. 16. 16. 16. 16. 17. 17. 17. 17. 17. 16. 16. 16. 16. 16. 17. 17. 17. 16. 17. 17. 17. 16. 17. 17. 16. 16. 17. 17. 16. 16. 16. 17. 17. 16. 17. 16. 17. 16. 17. 17. 16. 17. 16. 16. 16. 16. 17. 16, 16, 17. 17, 17. 16 17 17 17 16 17 17 17 17 16 17 16 17 17 0 18 14 31 38 76 78 92 04 22 24 35: 77 38 83 65 94 40 03 06 26 14 05 79 88 59 81 85 10 19 00 74 68 27 41 61 14 42 57 62 04 29 78 27 33 24 00 58 09 61 58: 34 01 83 46 .00: 41 39 ,56 .40 .42 .90 .99 .00 .48 . 23 . 54 . 25 . 22 . 00 .99 . 00 .01 . 02 .96 .96 . 21 .91 . 56 . 20 XC 17. 17. 17. 16. 16. 16. 16. 17. 17. 17. 17. 16. 17. 16. 16. 16. 16. 17. 17. 17. 17. 17. 16. 16. 16. 16. 16. 17. 17. 16. 16. 17. 17. 17. 16. 17. 17. 16. 16. 17. 17. 16. 16. 16. 17. 17. 16. 17. 16. 17. 16. 17. 17. 16. 16! 16. 16. 16, 17, 16. 16, 17, 17 17 16 1 17 20 46 34 72 83: 95 05 17 28 35: 87 23 85 69 94 41 04 09 26 16 13 75 87 68 79 89 03 18 99 63 60 24 41 72 03 32 54 62 06 31 77 29 30 37 01 58 14 61 62: 35 12 .79 ,47 ,42 ,40 . 56 .45 .43 .91 .90 .16 . 51 . 33 .52 17. 19 17 17 16 17 17 16 17 17 17 16 17 17 . 24 .06 .97 . 14 . 02 .97 .96 . 05 .39 .90 . 59 . 19 M - m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 0 0 14 14 14 16 12 15 15 14 10 OK 11 13 20 12 10 44 16 16 09 19 08 21 19 21 34 16 08 10 11 13 11 12 09 11 34 14 10 39 59 12 14 42 42 45 15 12 40 14 45 10: 40 12 11 13 12: . 37 ,40 . 44 , 34 , 14 , 42 , 12 , 12 . 16 . 22 . 42 . 11 . 15 . 18 . 10 . 38 . 13 . 12 . 14 . 16 . 16 . 17 . 12 . 15 s 3. 3. 3. 2. 2. 3. 3. 2. 3. 5. 4. 2. 2. 3. 5. 1. 1. 2. 4. 2. 6. 2. 2. 4. 2. 2. 5. 3. 5. 3. 3. 4. 4. 3. 2. 2. 4. 1. 0. 4. 3. 1. 1. 1. 3. 4. 1. 3. 1. 5. 1. 4. 4. 3. 1. 1. 1, 2. 3, 1. 3, 3, 3, 4 4 7 0 8 0 0 9 0 4 1 8 0 6 4 0 6 9 3 4 8 0 6 2 2 4 6 1 5 8 7 2 6 3 2 2 0 4 5 6 0 3 6 2 1 0 4 4 2 1: 3 0 , 5 , 3 ,6 ,3 ,0 .0 . 2 . 2 . 1 .8 . 5 2.6 1 2 2 4 3 1 4 4 3 3 3 2 3 2 . 2 .8 . 7 . 3 . 2 .8 . 4 .9 . 1 . 2 . 1 .6 . 7 . 3 A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 1. 0. 0. 0. 0. 0. 0 0 0 0 0 0 ?1 26 52 65 46 88 55: 72 66 61 48 51: 63 50 82 39 41 56 42 71 J9 35 49 64 40 60 44 55 62 42 42 24 71 55 47 74 74 71 34 27 49 44 73 39 62 65 48 47 42 79 31: 45 71 23 34 47 53 45 . 30 .61 30 . 20 .63 .61 , 30 , 55 . 72 . 14 . 52 .94 .62 . 75 .76 .51 .43 . 80 . 41 . 72 .72 A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0, 0 0 0 1 0 0 0 0 0 0 k2 2H 57 74 31 83 56: 73 65 62 67 62: 60 3 3 92 54 00 & ?12 92 32 52 37 57 49 45 36 77 64 58 50 27 87 71 51 56 56 86 11 00 62 44 19 18 12 67 58 16 45 15 42: 12 86 . 30 36 22 . 14 00 , 20 ,64 ,06 , 20 , 74 .67 .26 . 11 ,68 . 04 .66 . 98 . 35 . 94 .01 .53 . 45 . 82 . 37 . 82 . 57 dm 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0, 0 0 0 0 0 03 48 03 90 40 40 44 50 74 57 30 00 67 81 47 29 00 72 00 52 00 39 44 79 00 67 60 00 00 98 35 30 30 30 26 74 30 00 00 00 30 00 44 70 17 16 00 85 25 26 00 48 30 80 44 44 00 60 . 00 , 08 ,70 91 40 , 00 , 00 ,65 48 . 44 , 57 , 22 . 35 , 00 . 36 . 43 . 48 . 00 . 40 . 09 . 20 171 TABLE 4.?Light-curve, parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 1578 11297 12088 10361 10359 1713 1714 1557 11148 1976 1385 12101 2057 841 1447 11118 1404 1532 11426 11119 11209 2023 1390 11358 156 5 12142 11370 11488 1864 1504 12944 11342 1796 11300 11191 1999 11369 1420 10384 2009 1839 2035 1860 1590 1459 11259 1916 11174 1358 1330 1567 12106 11131 11264 1953 12942 11251 2096 1367 1883 1911 11234 12156 2130 1452 1703 1549 10380 1622 11532 2123 12082 1800 12934 11189 1476 1397 11376 12953 797-819 O? 66 Period 1.888397 1.891206 1.891453 1.895806 1.897825 1.897864 1.902041 1.902801 1.902969 1.903073 1.903428 1.907298 1.909013 1.909333 1.912035 1.914368 1.914748 1.920399 1.923495 1.927625 1.928373 1.932868 1.934955 1.935962 1.936813 1.937958 1.940761 1.942815 1.943053 1.946370 1.952263 1.956663 1.960615 1.962505 1.966510 1.967818 1.969644 1.970381 1.972354 1.977355 1.979222 1.979254 1.984796 1.985652 1.992746 1.993342 1.996813 1.997551 1.998761 2. 001986 2.003020 2.003811 2. 004402 2. 007049 2. 007613 2. 008089 2.009994 2.011024 2.011372 2. 013109 2. 016629 2.017850 2. 018660 2.019915 2.022012 2. 022756 2. 026096 2. 030636 2. 030989 2. 033686 2.034551 2.037125 2.038104 2.042288 2.042359 2.050013 2.056331 2. 060101 2.060420 ? 1 2 lc 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,g p 2761 2767 2768 2780 2783 2783 2792 2794 2794 2794 2795 2804 2808 2809 2815 2821 2821 2834 2841 2850 2852 2862 2867 2869 2871 2874 2880 2884 2885 289 2 2905 2915 2924 2928 2937 2940 2944 2946 2950 2961 2965 2965 2977 2979 2994 2996 3003 3005 3007 3015 3017 3019 3020 3025 3027 3028 3032 3034 3035 3039 3046 3049 3051 3053 3058 3059 3067 3076 3077 3083 3085 3090 3092 3101 3101 3118 .3131 . 3139 , 3140 M 16. 16. 16. 16. 16. 15. 16. 15. 15. 16. 16. 16. 16. 16. 1 5. 16. 16. 16. 1 5. 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 15. 16. 15, 16, 15, 16, 16 16 16 16 16 16 16 17 16 16 15 16 16 17 16 16 16 16 16 16 16 15 16 16 16 16 16 16 16 0 46 80 33 62 21 88 64 43 87 56 13 60 40 14 87 58 1 5 20 53 29 27 10 33 54 82 04 83 01 70 26 69 92 06 60 30 , 21 95 32 , 34 , 7 6 , 32 , 6 3 , 6 4 . 6 7 . 87 . 7 6 . 83 . 24 . 8 6 . 55 . 14 . 21 . 4 9 . 88 . 0 7 . 27 . 6 8 . 4 8 . 01 . 8 0 . 7 9 . 6 8 . 78 . 19: . 53 ? 95 . 47 . 35 . 20 . 58 . 4 8 . 8 3 . 58 . 9 2 . 0 2 . 11 . 32 . 83 . 23 m 16. 17. 17. 17. 16. 16. 17. 16. 17. 17. 17. 17. 17. 17. 16. 17. 17. 17. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17 . 0 90 53 0 1 : 02 83 48 06 06 19 56 09 05 55 51 73 22 29 46 28 02 10 36 11 56: 69 58 23 26 64 24 53 92 40 35 07 58 53 22 17.61 17. 17. 17. 17. 17. 16. 17. 16. 17. 16. 17. 17. 17. [16. 17, 16. 17. 17, 17 16, 17, 16 17 17 17 16 ?17 17 17 16 16 17 17 17 17 17 16 16 17 17 52 64 60 10 40 59 , 23 , 32 , 45 78 , 76 . 51 . 02 . 9 . 6 3 . 9 1 . 21 . 50 . 9 8 . 9 4 . 4 2 . 31 . 51 . 6 6 . 4 1 : . 8 3 . 54 . 0 2 . 55 . 7 8 . 9 3 . 6 0 . 30 . 6 6 . 52 . 0 3 . 8 6 .99: . 54 . 54 A 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0, 0. 1 0. 0. 1, 1, 1, 0 1, 0 0 0 1 44 73 6 8 : 40 62 60 42 63 32 00 96 45 15 37 86 64 14 26 75 73 83 26 78 02 : 87 54 40 25 94 98 84 00 34 65 77 37 58 90 27 76 32 97 46 73 72 47 49 21 92 21 37 81 75 84 94 . 82 , 50 93 , 6 2 . 52 . 83 . 88 . 22: . 30 . 59 . 55 . 20 , 58 . 35 . 12 . 4 7 . 0 8 . 6 0 . 01 . 7 5 .67: . 71 . 31 (m) 16. 17. 16. 16. 16. 16. 16. 15. 16. 17. 16. 16. 17. 17. 16. 16. 16. 16. 15. 16. 16. 16. 16. 17. 17. 17. 17. 16. 17. 16. 17. 17. 16. 17. 16. 17. 17. 16. 17. 17. 17. 17 . 16. 17. 16. 16. 16. 17. 16. 17. 17. 16. 16. 17. 16. 16. 17. 17. 16. 17. 16. 17. 17. 17. 16. 17. 16. 17. 16. 16. 17. 16. 17, 17. 16. 16 16. 17 17 0 67 18 73 78 50 12 87 73 73 17 79 79 05 07 45 96 75 89 93 68 66 98 87 34 29 31 03 65 28 76 04 56 95 01 84 19 02 93 19 19 13 00 86 16 22 98 07 09 41 26 13 65 7 3 : 34 48 83 11 78 64 12 04 , 16 . 34 . 32: . 73 , 33 , 7 4 . 03 , 4 8 77 , 29 . 9 0 . 37 . 25 . 6 6 . 6 2 . 6 5 . 14 . 26 xo 16. 17. 16. 16. 16. 16. 16. 15. 16. 17. 16. 16. 17. 16. 16. 16. 16. 17. 15 . 16. 16. 16. 16. 17. 17. 17. 17 . 16. 17. 16. 17. 17 . 16. 17. 16. 17 . 16. 16. 17 . 17 . 17 . 17 . 16. 17. 16. 17. 16. 16. 16. 17 . 17. 16. 17. 16. 16. 17. 17. 16. 17. 16. 17. 17, 17. 16. 17, 16. 17 16. 16. 17. 16. 17. 17 16. 16 16 17 17 68 26 7 1 : 82 54 20 94 78 70 18 74 85 16 99 44 99 89 02 94 77 67 92 84 1 5: 39 36 00 83 29 87 13 57 91 12 76 07 96 88 16 27 16 24 87 09 24 03 08 98 41 34 03 69 38 49 87 , 18 , 7 7 , 5 9 , 13 , 04 . 20 . 35 . 30: . 72 . 31 . 73 . 11 . 50 , 7 5 , 19 . 71 . 24 . 30 . 6 8 . 58 .76: . 3 0 . 0 9 M - m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 37 15 23 49 36 40 50 41 13 14 09 37 09 11 13 14 15 11 39 16 45 10 13 18 14 22 52 14 13 10 45 15 10 12 20 14 16 0. 14 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0. 0, 0. 0 0 0. 0. 0, 0, 0 0 0 0 0 0 0 10 14 14 15 45 17 43 24 39 17 16 14 10 20 12 , 45 . 15 , 22 , 18 , 14 . 4 0 . 4 2 . 14 . 10: . 44 . 16 . 20: . 38 . 12 . 40 . 43 . 14 , 18 . 16 . 11 . 18 . 10 . 10: . 12 . 07 s 1. 3. 1. 1. 1. 1. 1. 1. 3. 2. 3. 1. 4 . 3. 4 . 4. 4. 4. 1. 4 . 1. 4 . 5. 2. 4 . 2. 1. 4 . 3. 2. 1. 4. 3 . 3 . 2. 3. 3. 2. 4 . 5. 3 . 3 . 1. 2. 1. 2. 1. 2. 2. 4. 4. 2. 3. 4 . 1. 3 . 2. 2. 3. 1. 1. 3 . 4 . 1. 2. 2. 1. 3. 1. 1. 3. 2. 2. 3 . 4 . 3. 4. 4. 4. 4 3 8 3 5 6 2 8 2 9 7 7 9 6 3 2 5 0 7 6 2 2 2 3 4 4 0 5 3 9 4 2 3 8 4 0 6 9 2 3 7 5 3 1 4 0 3 6 3 5 6 4 0 : 8 3 5 5 2 6 5 2 0 3 2 1 6 3 7 5 2 5 4 6 3 3 4 5 , 5 , 3 A l 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0. 0. 1. 0, 0, 0, 0, 0 0 0 38 47 5 3 : 35 52 49 39 49 87 67 61 36 69 88 52 40 70 78 60 45 76 78 47 7 3 : 53 38 40 76 61 66 71 62 87 41 55 90 01 60 79 45 85 63 40 54 62 35 43 83 66 74 84 58 45 74 61 57 , 37 62 52 , 48 , 55 . 54 , 20: , 22 . 41 . 52 . 77 49 . 32 , 73 . 04 . 74 . 39 . 6 2 . 4 9 . 41: . 43 . 8 0 A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. '2 13 51 30: 09 20 23 08 28 91 66 70 18 92 99 66 49 89 94 31 57 15 96 62 58: 67 31 00 98 66 65 24 76 94 48 45 92 14 59 0. 96 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 62 96 69 11 38 21 24 11 75 53 94 07 47 59 19 67 49 27 67 20 09 56 68 04 : 16 37 13 88 19 06 80 85 67 41 78 53 52: 55 01 d m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 00 60 35 36 44 60 30 80 70 52 74 17 89 00 98 74 74 60 00 70 00 30 55 24 65 17 35 25 36 70 35 00 13 70 00 24 17 70 00 30 36 00 0. 06 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 17 91 03 48 36 74 17 65 36 67 59 20 00 70 00 77 00 48 50 08 00 91 00 85 15 70 00 00 36 16 00 22 36 .91 , 49 . 00 172 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 1535 2186 1604 11159 11120 11352 1964 11199 1832 11188 11277 1748 1762 11235 11194 1731 1712 1413 11441 2099 1511 1789 1357 1918 1463 848 2014 844 1727 11327 2095 1881 1594 1347 1803 11372 2061 1654 1407 1348 1817 2217 11524 2128 2167 1805 2177 11202 1417 2156 1528 1354 2056 1497 1696 11374 1833 1660 1628 2002 11192 11418 12097 1700 11150 1428 1424 2218 1687 1 378 11201 10376 2107 11156 1332 1587 2141 11154 11521 Period 2.062948 2.067745 2. 072058 2. 073063 2. 075037 2.077313 2. 092773 2.095233 2.096854 2. 098323 2. 105760 2. 107428 2. 107633 2. 133454 2.142594 2.144588 2. 150061 2. 153952 2. 156009 2. 160121 2. 160859 2. 161022 2. 166298 2. 170935 2. 171586 2. 172770 2. 203742 2.217580 2. 220697 2.222217 2. 222553 2.225759 2. 227757 2. 232631 2. 236086 2. 242168 2. 242726 2. 243380 2. 243544 2. 248030 2.250731 2. 259640 2. 264649 2. 268759 2. 273591 2. 279576 2. 282549 2.292595 2. 294352 2. 299232 2. 304647 2. 306268 2.308962 2. 311001 2. 313974 2.320821 2. 327725 2.330948 2. 332737 2. 346362 2. 354104 2. 358696 2. 365257 2. 370073 2. 382121 2. 383040 2. 392815 2. 396421 2. 396909 2. 403286 2. 403583 2. 407301 2. 411440 2.412790 2. 416883 2.419333 2. 421202 2. 421604 2. 427265 log P 0. 3145 0. 3155 0. 3164 0. 3166 0. 3170 0.3175 0. 3207 0. 3212 0. 3216 0. 3219 0. 3234 0. 3237 0.3238 0. 3291 0. 3309 0. 3313 0. 3325 0. 3332 0. 3336 0. 3345 0. 3 346 0. 3347 0. 3357 0. 3366 0. 3368 0. 3370 0. 3432 0. 3459 0. 3465 0. 3468 0. 3469 0. 3475 0. 3479 0. 3488 0. 3495 0. 3507 0. 3508 0. 3509 0. 3509 0. 3518 0. 3523 0. 3540 0. 3550 0. 3558 0. 3567 0. 3579 0. 3584 0. 3603 0. 3607 0. 3616 0. 3626 0. 3629 0. 3634 0. 3638 0. 3644 0. 3656 0. 3669 0. 3675 0. 3679 0. 3704 0. 3718 0. 3727 0. 3739 0. 3748 0. 3770 0. 3771 0. 3789 0. 3796 0. 3797 0. 3808 0. 3809 0. 3815 0. 3823 0. 3825 0. 3833 0. 3837 0. 3840 0. 3841 0. 3851 Mo 16. 70 16. 20 16. 80 16. 14 16. 42 15. 86 16. 38 16.84 16. 34 16.60 16. 13 16.60 16. 34 15.99 15. 59 16.26 16.00 16. 09 16.68 16. 06 16. 37 15. 73 15.88 16.96 16. 16 16. 23 16. 03 16.09 15.94 17. 01 15. 98 16.37 15. 60 16.70 16. 15 16.26 16.00 16. 10 16.46 16. 22 16.60 16.20 16.64 15.85 15.47 16. 58 16. 14 16.38 16. 18 15. 85 16.99 16.05 16.07 16. 06 16. 88 16.05 16.04 15.84 16. 16 16.08 15. 77 17. 17 17. 10: 15.96 15.77 16. 95 16. 11 15. 37 16. 05 16. 70 16. 18 15.90 15. 70 15.88 16. 31 16. 03 15. 35 15.81 15. 47 mo 17. 33 16. 82 17. 80 16.86 17. 37 16. 60 17. 46 17. 96 17. 02 17. 57 17. 89 17. 22 17. 44 16.65 17. 52 17. 21 17.70 17. 18 17. 33 17.84 17. 61 17. 38 16. 67 17.71 17.31 17.61 16. 90 17. 58 17.46 17. 78: 17.20 17.46 16. 70 17.51 17. 30 17. 73 16.62 17. 63 17. 33 16. 90 17.08 16.84 17. 49 16.92 17. 18 17.41 17. 50 17.04 17.21 17. 10 17.57 17.23 17.37 17. 14 17.62 17. 29 17. 36 16.96 17. 33 17.42 17. 36 17. 88 17.78: 17. 01 16. 53 17. 54 17. 24 17. 14 17.06 17. 20 17.58 16.76 17.43 16. 58 17. 18 17.79 17.02 16.96 17.27 A 0. 63 0. 62 1. 00 0.72 0.95 0. 74 1. 08 1. 12 0. 67 0.97 1.76 0.62 1. 10 0.66 1.93 0.95 1.70 1. 09 0. 65 1.78 1. 24 1. 57 0.79 0. 75 1. 15 1. 38 0. 93 1.49 1. 52 0.77: 1. 22 1. 09 1. 10 0. 81 1.15 1. 47 0.62 1. 53 0.87 0.68 0.48 0. 64 0. 85 1. 07 1.71 0. 83 1.36 0.66 1.03 1.25 0. 58 1. 18 1.30 1. 08 0. 74 1.24 1. 32 1. 12 1. 17 1. 34 1.60 0.71 0.68: 1. 09 0. 76 0. 59 1. 13 1.77 1. 01 0. 50 1. 40 0.86 1. 73 0.70 0. 89 1.76 1. 67 1. 15 1. 80 (m>0 17. 03 16.46 17. 28 16. 52 17. 02 16. 23 17. 05 17. 53 16. 78 17. 12 17.08 16.91 17. 01 16. 32 16. 79 16. 87 17. 04 16.76 17. 02 17. 18 17. 20 16. 77 16.46 17. 42 16. 88 17. 14 16.65 17. 06 16. 95 17. 51: 16.69 17. 07 16. 37 17. 17 16.86 16.98 16. 31 17. 04 16. 94 16. 59 16. 80 16.48 17. 13 16.48 16. 52 17. 10 16. 98 16.67 16. 79 16.62 17. 32 16. 84 16. 92 16.84 17. 34 16. 87 16. 93 16.62 16. 88 16. 92 16. 77 17.48 17.41: 16. 61 16.30 17.46 ' 16. 88 16. 51 16.63 16. 98 17.04 16. 32 16.84 16. 32 16. 82 17. 11 16. 32 16. 57 16.63 xo 17.08 16. 51 17.46 16. 54 17. 04 16. 18 17.08 17. 55 16.77 17. 23 17. 27 16.88 17.04 16. 33 16.79 16. 84 17. 11 16. 77 17. 08 17. 22 17. 15 16. 77 16. 38 17. 42 16.93 17. 10 16. 56 17. 07 16. 87 17. 50: 16.78 17.01 16. 29 17. 19 16. 90 17. 23 16. 30 17. 09 17. 00 16.65 16.81 16. 53 17. 17 16.56 16. 53 17. 10 16. 98 16.72 16. 79 16.66 17. 35 16. 81 16.89 16.77 17.38 16. 87 16. 87 16. 55 16. 92 16.95 16.81 17.62 17. 56: 16.63 16. 26 17. 32 16.83 16. 50 16. 68 17.00 17. 06 16. 31 16. 83 16. 32 16.87 17. 21 16.40 16. 52 16.65 M - m 0. 17 0. 45 0. 16 0. 36 0. 13 0. 40 0. 16: 0. 16 0. 14 0. 12 0. 19 0. 45 0. 14 0. 39 0. 16 0. 14 0. 11 0. 16 0. 18 0. 11 0. 14 0. 15 0. 12 0. 16 0. 13 0. 17 0. 16 0. 13 0. 18 0. 16: 0. 15 0. 18 0. 14 0. 18 0. 12 0. 16 0. 45 0. 12 0. 20 0. 16 0. 49 0.38 0. 18 0. 14 0. 16 0. 15 0. 16 0. 45 0. 23 0. 12 0. 16 0. 12 0. 11 0. 12 0. 12 0. 09 0. 16 0. 10 0. 08 0. 14 0. 16 0. 22 0. 23 0. 17 0. 12 0. 15 0. 14 0. 14 0. 16 0.23 0. 17 0. 50 0. 14 0. 22 0. 10 0. 12 0. 16 0.18 0. 13 s 2 . 4 1. 1 4 . 3 1. 8 4. 0 1 . 0 4. 0 3. 7 i. 2 3 . 8 4 . 0 1. 1 3. 7 1. 4 2 . 9 2. 7 4 . 1 2 . 9 2 . H 4 . 6 5. 4 2 . 7 i . 2 2. 5 6 . 4 3 . .5 3 . 4 4. 5 2 . 6 3. 5: 4. 3 2. 2 3. 3 2. 5 4 . 2 4 . 9 1. 2 4. 2 2 . 9 3. 3 1. 0 1. 4 3. 2 5. 0 2. 9 3. 1 2 . 9 1. 4 2. 3 4. 2 2. 8 4. 1 3. 3 4 . 6 6 . 7 4. 8 3. 2 3 .6 4. 2 3. 8 4. 7 3. 4 3. 4 4. 0 4. 2 3. 5 3. 7 3. 7 3. 0 2.4 3. 1 1. 2 4. 3 3. 1 4. 1 6.0 3.4 2.8 4. 5 A n. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1. 0 . 0 . 0 . 1. 0 . 1. 0 . 0 . 1. 0 . 1. 0 . 0. 0. 0 . 0 . 0 . 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 1 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1 4 5 55 61 56 59 7 4 6 7 7 2 4 4 61 09 60 71 5 7 19 66 0 5 7 5 4 4 0 9 HI OK 52 5 2 6 7 90 60 91 05 5 0 : 7 4 80 72 57 7 1 88 57 95 58 4 4 48 55 56 64 15 55 91 57 74 78 39 74 85 66 42 74 87 72 73 84 98 46 4 4 68 4 7 38 72 13 67 35 92 79 06 46 55 02 09 78 10 A 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0. 1. 0 . 0 . 0 . 1. 0 . 1. 0 . 0 . 1. 0. 0. 0 . 0 . 0 . 0 . 0 . 1. 0 . 0 . 0 . 0 . 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0 . 1 . 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 1. I M 1 4 7 7 52 7 1 0 0 8 1 H2 46 7 2 IK 0 6 Kl IK n6 0 11 11 42 y) K7 9 9 5 5 4 5 96 9 7 66 16 94 5 5 : 94 60 76 49 87 16 10 17 5 7 4 7 00 18 59 85 13 56 90 19 58 95 38 90 91 84 63 98 91 80 89 98 26 50 48 82 58 42 82 30 67 29 95 14 37 48 88 46 17 75 40 d m 0. 85 0. 00 0. 00 0. 52 0. 70 0. 62 0. 40 0. 00 0. 36 0. 34 0. 67 0.48 0. 26 0. 79 0. 48 0. 44 0. 15 1. 03 0. 19 0. 00 0. 35 0. 28 0. 74 0. 48 0. 98 0. 02 0. 20 0. 00 0. 00 0. 57 0. 00 0. 30 0. 70 0. 50 0. 00 0. 26 0. 00 0. 00 0. 81 0. 50 0. 16 0. 00 0. 00 0. 00 0. 00 0. 22 0. 15 0. 25 0. 81 0. 06 0. 20 0. 79 0. 00 0. 98 0. 24 0. 29 0. 28 0. 48 0. 57 0. 00 0. 00 0. 22 0. 43 0. 58 0. 80 0. 48 0. 59 0. 00 0. 44 0. 62 0. 00 0. 00 0. 00 0. 52 0. 18 0. 31 0. 25 0.60 0. 00 173 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 1971 1490 1932 1845 2206 11207 2114 11275 1955 1414 1869 2200 1935 1361 10382 10370 1448 1760 2021 2076 2036 1887 2108 2166 1711 1702 11383 1965 2204 850 1815 1538 1984 1639 2143 1546 2046 2172 1923 1969 2190 2025 1391 11528 1545 1650 11486 12930 1571 12929 1854 2120 2038 2042 1642 1726 1568 1376 1917 11128 1773 2216 1600 1931 1938 11332 11151 11114 2082 2104 12943 1981 1847 1978 1670 2193 1360 1458 1850 Period 2. 432522 2. 433851 2. 436544 2. 437899 2. 440239 2. 449509 2. 450566 2. 451083 2.457685 2. 459108 2. 464918 2. 465313 2. 465447 2. 474574 2. 475501 2. 477345 2. 479556 2. 481463 2. 489228 2. 499111 2. 501551 2. 503104 2. 506661 2. 50961 3 2. 509643 2. 512291 2. 519203 2. 524309 2. 528560 2. 532453 2. 540702 2. 544633 2. 545092 2. 547530 2. 548160 2. 548317 2. 557713 2. 562346 2. 566228 2. 570978 2. 573948 2. 577227 2. 577499 2. 579047 2. 581644 2. 583839 2. 590942 2. 595966 2.601802 2.602804 2. 609256 2.610736 2.613415 2. 618130 2. 628929 2.636296 2. 637709 2. 638279 2. 644705 2. 647469 2. 667278 2. 679895 2. 684117 2. 691051 2. 693363 2. 707408 2. 708452 2. 711953 2.712460 2. 712666 2.714153 2. 722555 2. 732084 2. 738848 2. 741296 2. 746566 2.747562 2. 749549 2. 755618 lc 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ,g p 3860 3863 3868 3870 3874 3891 3893 3894 3905 3908 3917 3919 3919 3935 3937 3940 3944 3947 3961 3978 3982 3985 3991 3996 3996 4001 4013 4021 40 29 4035 4050 4056 4057 4061 4062 4063 4079 4086 4093 4101 4106 4111 4112 4115 4119 4123 4135 4143 4153 4154 4165 4168 4172 4180 4198 4210 4212 4213 .4224 . 4228 , 4261 .4281 ,4288 . 4299 0.4303 0. 0. 0. 0. 0. 0. 0, 0. 0 0 0 0 0 0 , 4326 , 4327 . 4333 .4334 . 4334 .4336 .4350 .4365 . 4376 . 4380 . 4388 . 4390 .4393 . 4402 M 16. 16. 16. 15 . 15. 17. 15. 16. 16. 15. 15. 16. 16. 15. 16. 16. 15. 15. 16. 16. 16. 16. 15 . 16. 16. 16. 16. 16. 15. 15. 15 . 16. 15 . 16. 15. 16. 16. 16. 15. 16. 15 . 15 . 15 . 15 . 15 . 15 . 16. 15. 17. 16. 15 . 16. 15 . 15 . 15. 15 . 16. 15 . 15 . 16. 15 . 15. 15 . 16. 15. 16. 16. 15. 15. 15. 15. 16. 15. 16. 16. 15. 15. 16. 15. 0 77 47 19 78 82 21 95 46 45 83 73 06 10 83 54 12 70 89 52 11 05 22 89 12 24 36 48 28 45 97 89 20 48 16 51 20 20 27 95 38 74 04 69 65 90 04 39 85 01 25 56 82 28 66 28 46 76 78 67 92 73 38 99 17 58 34 40 90 84 96 99 50 36 29 12 48 67 . 51 62 mo 17. 52 17.61 17. 39 17. 72 16. 28 17. 53 17. 46 17. 55 17. 00 17. 87 16. 44 16. 83 17. 63 16. 77 17. 64 16. 66 16.61 16.46 17. 64 16. 90 16. 72 17. 55 16.76 17. 43 17. 51 17. 19 17. 23 17. 26 16.79 17. 45 17. 18 16. 94 17. 30 16. 74 16. 74 17. 15 16.69 17. 34 17. 31 17.68 16. 77 16. 60 17. 04 16. 89 17. 38 16. 56 17. 39 16. 81 17.65 16.90 17. 30 17.32: 16.93 17.45 16.69 16. 18 17. 34 17. 22 16.97 17.47 17. 53 16.78 16. 78 16. 90 16.66 17.67 17. 26 17. 68 17. 40 17. 12 17. 00 17. 60 17.06 16. 70 17. 22 16.66 17. 22 17. 44 17. 25 A 0. 1. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 75 14 20 94 46 32 51 09 55 54 71 77 53 94 30 54 91 57 12 79 67 33 87 31 27 83 75 98 34 48 29 74 82 68 23 95 49 07 36 30 03 56 35 24 48 52 00 96 64 65 72 50: 65 79 41 72 58 44 30 55 80 40 79 73 08 33 86 78 56 16 01 10 70 41 10 18 55 93 63 0 17. 10 16.99 16.95 16. 97 16. 04 17. 35 16.96 17. 13 16. 71 16.69 16. 15 16. 53 17. 00 16. 46 17. 13 16.42 16. 34 16. 14 17. 30 16. 55 16. 34 16.98 16. 50 16. 85 17. 00 16.89 17. 00 16.92 16. 22 16.96 16. 75 16. 72 16.65 16. 55 16. 36 16. 78 16. 44 16.95 16.87 17. 17 16. 33 16.00 16. 55 16.46 16. 65 16. 00 16. 89 16. 33 17. 39 16. 55 16.68 17. 05 16. 41 16. 82 16. 14 15. 80 17. 13 16.65 16. 37 17. 27 16. 95 16. 28 16. 28 16. 54 16. 13 17. 10 16. 87 17. 01 16. 84 16.45 16. 55 17. 15 16. 51 16. 48 16. 80 16. 16 16. 71 17. 13 16. 59 xo 17.07 17. 17 16.98 17. 05 16. 06 17. 35 16. 91 17. 14 16.67 16. 80 16. 14 16. 55 17. 03 16. 42 17. 20 16. 36 16. 26 16. 19 17. 22 16. 57 16. 39 17.09 16.45 16.99 17.08 16. 87 16. 95 16. 85 16. 34 16. 93 16. 74 16.67 16.67 16. 50 16. 22 16. 80 16. 51 16. 93 16. 79 17. 21 16.36 16. 03 16. 58 16.45 16. 78 16. 00 17. 01 16. 48 17. 41 16. 56 16.63 17. 13: 16. 37 16.80 16. 21 15. 81 17. 14 16. 74 16. 53 17. 24 16.90 16. 26 16.41 16. 50 16. 05 17. 18 16.96 17.09 16. 74 16. 71 16. 60 17. 15 16. 46 16. 47 16. 81 16. 22 16. 68 17. 10 16. 70 M - m 0. 44 0. 19 0. 14 0. 14 0. 43 0. 50 0. 16 0. 20 0. 51 0. 20 0. 20 0. 12 0. 22 0. 14 0. 12 0. 50 0. 20 0. 39 0. 14 0. 24 0. 43 0. 11 0. 13 0. 15 0 13 0. 14 0. 12 0. 16 0. 11 0. 11 0. 10 0. 10 0. 10 0. 17 0. 15 0. 10 0. 16 0. 18 0. 17 0. 16 0. 20 0. 16 0. 12 0. 16 0. 20 0. 16 0. 17 0. 16 0. 18 0. 49 0. 17 0. 26 0. 14 0. 15 0. 15 0.45 0. 10 0. 18 0. 16 0. 22 0. 14 0. 13 0. 38 0. 42 0. 40 0. 13 0. 16 0. 16 0. 15 0. 17 0. 20 0. 24 0. 16 0. 52 0. 24 0. 14 0. 15 0. 18 0. 13 s 0. 9 2. 8 5. 2 4. 4 1.6 1. 0 3. 5 3. 0 0 . 9 3. 4 2. 2 3 .9 2. 5 3. 2 5. 1 1. 0 2 . 9 1.6 3. 1 2. 2 1. 3 4. 7 3 . 9 5 .6 5. 0 2. 7 3. 5 2. 1 6 . 6 4. 0 5. 2 3. 7 4. 3 4. 0 2. 1 3. 5 3. 2 2. 8 2. 8 3. 7 2. 4 3 . 7 4 . 9 4. 0 2 . 4 3. 4 2. 8 5. 0 3. 1 1. 2 2 . 6 2 . 9 5. 0 3 . 6 3. 7 1. 2 4. 5 5 . 6 4 . 6 2. 3 4. 1 3. 3 1. 5 1. 1 1. 3 3. 5 4. 2 5. 3 3. 8 3. 9 2. 7 2. 2 3. 9 0. 9 3. 0 3. 4 4. 1 3. 3 4. 9 A l 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0, 0. 0. 75 77 72 18 38 32 98 72 58 00 52 49 07 62 78 54 61 47 74 58 59 81 55 77 76 57 49 73 76 92 77 47 11 42 91 62 32 73 92 83 73 00 81 77 06 99 68 58 42 60 19 34: 99 15 84 66 35 84 79 40 12 91 66 70 95 86 5 3 05 9" 73 70 , 80 07 . 41 . 73 , 77 , 9 6 . 6 0 . 98 A 2 0. 00 0. 74 0. 97 1.49 0. 17 0. 00 1.07 0. 73 0.00 1. 08 0. 39 0. 57 0.92 0. 65 1. 04 0. 00 0. 60 0. 22 0. 76 0. 43 0. 15 1. 05 0. 64 1. 07 1. 02 0. 52 0. 53 0. 51 1. 14 1. 11 1. 04 0. 54 1. 40 0. 51 0. 64 0. 67 0. 34 0.68 0.87 0.95 0. 60 1. 14 1. 08 0.93 0. 86 1. 08 0. 64 0.79 0. 44 0. 12 1.07 0. 33: 1. 32 1.29 0. 96 0. 13 0. 45 1. 20 1.01 0. 31 1. 35 0. 98 0. 26 0. 07 0. 25 0. 94 0. 65 1. 44 1. 17 0.87 0. 64 0. 60 1. 27 0. 00 0. 74 0. 84 1. 18 0. 65 1. 30 d m 0. 00 0. 67 0. 39 0. 36 0.00 0. 00 0. 00 0.47 0. 00 0. 81 0. 40 0. 00 0.09 0. 79 0. 00 0. 30 0. 67 0. 49 0. 00 0. 00 0. 30 0.48 0. 00 0. 00 0. 24 0. 44 0. 17 0. 00 0. 00 0. 00 0. 22 0. 85 0. 40 0. 48 0. 25 0. 70 0. 10 0.00 0. 00 0. 40 0. 00 0. 30 0. 55 0. 00 0. 60 0. 54 0. 30 0. 31 0. 17 0. 65 0. 28 0.00 0. 25 0. 25 0. 62 0.44 0. 00 0.79 0. 39 0. 59 0. 35 0. 00 0. 00 0. 48 0. 48 0.65 0.74 0. 00 0. 00 0. 00 0. 00 0. 00 0. 34 0. 00 0. 54 0. 00 0.72 0. 56 0. 00 174 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 11286 11162 1614 10367 2149 1629 12931 11135 11115 2080 1836 2030 2049 1885 1852 2182 1753 1980 12955 1809 1942 1690 11138 2045 1993 1844 2135 1782 2013 2059 1868 11185 1841 11519 2050 2015 2069 1507 11491 2139 2000 2165 12160 1540 1974 1822 839 2126 1575 1922 1786 1460 2210 1765 11482 11179 1806 2029 1947 11136 2155 1616 10369 11530 11499 1611 2131 11492 11278 2187 11450 1842 11171 11180 11496 2027 2118 1838 Period 2. 756272 2. 761200 2. 768695 2. 768726 2.769072 2. 769078 2. 769561 2. 769799 2. 769930 2. 778719 2. 788133 2. 79447 5 2. 800893 2. 802212 2. 807427 2. 812180 2. 817679 2. 820007 2. 825034 2. 825761 2. 841071 2. 846262 2. 846392 2. 847232 2. 849043 2. 851245 2. 854977 2. 855381 2. 857789 2. 859993 2.861157 2. 862942 2. 867038 2. 869377 2. 872111 2.874156 2. 874273 2. 876680 2. 878319 2. 879809 2. 884088 2. 886543 2. 890416 2. 890675 2. 893108 2. 894968 2. 899643 2. 903061 2. 904684 2. 905313 2. 911564 2. 912862 2. 919222 2. 926638 2. 930205 2. 931563 2.934522 2. 936978 2. 937384 2. 942630 2. 944608 2. 944988 2. 948731 2. 949948 2. 950000 2. 956673 2. 960042 2. 960884 2. 964746 2.968883 2. 972801 2. 973182 2. 974102 2. 976863 2.982155 2. 982519 2. 987518 2. 988312 log P 0. 4403 0. 4411 0. 4423 0. 4423 0.4423 0. 4423 0. 4424 0. 4424 0.4425 0. 4438 0.4453 0. 4463 0.4473 0. 4475 0. 4483 0. 4490 0. 4499 0.4503 0. 4510 0 4511 0. 4535 0. 4543 0. 4543 0. 4544 0.4547 0.4550 0.4556 0. 4557 0. 4560 0. 4564 0.4565 0.4568 0. 4574 0.4578 0.4582 0.4585 0.4585 0. 4589 0. 4591 0.4594 0. 4600 0. 4604 0. 4610 0. 4610 0.4614 0.4616 0. 4623 0.4629 0. 4631 0. 4632 0. 4641 0.4643 0. 4653 0. 4664 0.4669 0.4671 0.4675 0.4679 0. 4680 0.4687 0. 4690 0. 4691 0.4696 0. 4698 0. 4698 0.4708 0. 4714 0.4714 0. 4720 0.4726 0.4732 0.4732 0.4734 0.4738 0.4745 0.4746 0.4753 0.4754 Mo 16.04 16. 56 15. 53 16. 36 16. 28 16. 18 15. 97 15. 84 16. 27 16. 40 15.92 16. 32 15.86 15. 68 16. 19 15. 84 15. 64 16. 23 16. 42 15. 86 15. 62 16. 04 16. 76 15. 79 16. 12 15. 50 16. 11 16. 10 15. 49 16. 14 15.86 16. 47 16. 56 15. 57 15. 25 16.47 15. 76 16. 28 16. 18 15. 54 15. 92 16. 35 16. 28 15. 66 15.73 16. 57 15. 28 16. 00 15. 82 16. 30 16. 27 16. 15 15. 26 15. 16 16. 23 16. 25 16. 50 15. 36 16. 04 15.75 15. 29 15. 79 16.06 16.46 16. 16 16. 15 16. 14 15.67 15. 96 15.65 16. 65 15. 66 16.06 15.88 16. 16 15. 92 16. 31 16.09 mo 17. 02 17. 44 16. 66 17. 08 17.40 17. 08 16.65: 16.99 16.71 17. 72 16.75 17. 23 17. 30 17.32 17. 34 16. 90 17. 02 17. 39 17. 02 16.97 17. 00 17. 16 17. 59 17. 13 18. 00 17. 00 17. 47 16.63 17.27 17. 10 16.98 16. 73 17. 40 16. 11 16. 72 16.96 16.93 16.91 16.78 16. 90 17. 17 17. 51 17. 38 16.66 17. 29 17.62 16. 32 17.41 16. 72 17. 36 17. 30 17. 36 16. 90 16.70 17. 38 17.41 17. 85 17. 21 16.85 16.89 15.68 17. 29 16. 60 17. 09 16. 92 16. 90 17. 24 16. 91 16. 84 16. 90 17.63 17. 26 16.95 16.76 17. 44 17. 43 17. 38 17. 15 A 0. 98 0. 88 1. 13 0.72 1. 12 0.90 0.68: 1. 15 0.44 1. 32 0. 83 1. 10 1. 44 1. 64 1. 15 1. 06 1. 28 1. 16 0.60 1. 11 1. 38 1. 12 0. 83 1. 34 1. 88 1. 50 1. 36 0. 53 1. 78 0. 96 1. 12 0. 26 0. 84 0. 54 1.47 0.49 1. 17 0.63 0. 60 1.36 1. 25 1.16 1. 10 1. 00 1. 56 1. 05 1. 04 1.41 0. 90 1.06 1. 03 1. 21 1.76 1. 54 1. 15 1. 16 1. 35 1.85 0.81 1. 14 0. 39 1. 50 0. 54 0. 63 0. 76 0.75 1. 10 1. 24 0. 88 1. 25 0.98 1.60 0. 89 0. 88 1. 28 1. 51 1. 07 1. 06 < m ) 0 16. 63 17. 16 16. 28 16. 72 16. 96 16.69 16. 27 16. 49 16. 52 17. 22 16. 43 16.80 16. 79 16.69 16. 73 16. 40 16. 58 16.92 16. 69 16. 57 16. 59 16. 76 17. 27 16.66 17. 28 16. 44 16. 91 16. 35 16. 74 16. 73 16. 60 16. 57 16. 87 15. 85 16.12 16.76 16.45 16. 68 16.50 16.45 16. 77 17.02 16.94 16. 37 16. 76 17. 13 15. 95 16. 73 16. 41 16. 92 16.90 16.96 16. 33 16. 16 16.97 16.83 17. 28 16.62 16. 51 16. 47 15. 44 16. 78 16. 31 16. 87 16. 53 16. 54 16. 80 16. 38 16. 54 16. 39 17.17 16.67 16.63 16.40 17. 06 16. 93 16.96 16.68 xo 16.65 17. 10 16. 27 16. 80 16. 99 16.77 16. 41: 16. 59 16. 53 17. 25 16. 44 16. 86 16. 89 16. 75 16. 94 16. 52 16. 54 16.98 16. 68 16. 58 16. 53 16.78 17. 28 16. 65 17. 35 16. 44 17.00 16. 35 16.67 16. 74 16. 58 16. 60 17. 08 15. 83 16. 16 16. 78 16. 51 16.69 16. 44 16. 43 16. 71 17.09 16.98 16. 29 16. 75 17. 21 15. 93 16. 90 16.40 16.96 16.98 16.97 16. 30 16. 13 16.95 17. 01 17. 37 16. 57 16. 56 16.45 15. 47 16. 78 16. 29 16.82 16. 49 16. 53 16. 80 16.48 16. 51 16. 44 17. 23 16.69 16.62 16.41 17. 02 16.86 16.98 16.79 M - m 0. 18 0. 12 0. 12 0. 26 0. 14 0. 14 0. 18 0. 16 0. 18 0. 15 0. 15 0. 18 0. 14 0. 14 0. 16 0. 16 0. 18 0. 18 0. 49 0. 14 0. 13 0. 12 0. 16 0. 12 0.13 0. 14 0. 16 0. 50 0. 10 0. 16 0. 14 0.45 0. 20 0. 53 0. 18 0. 20 0. 16 0. 16 0.50 0.12 0. 16 0. 14 0.18 0. 14 0.12 0. 21 0. 16 0. 16 0. 16 0. 16 0.18 0. 10 0. 14 0. 13 0. 16 0.14 0. 16 0. 14 0. 14 0. 20 0.47 0. 12 0.48 0. 22 0.46 0. 44 0. 18 0. 14 0. 18 0. 19 0. 20 0. 16 0. 15 0. 16 0. 10 0. 14 0. 16 0. 17 .s 5. 1 Z. 8 4. 4 2. 5 3. 3 4. 5 I. 9 4. 1 2. 4 5.9 3. 1 3. 6 4 . 9 4. 6 4. 2 5.9 5. 0 5. ?) 0 . 9 4. 4 4. ') 5. 0 5.4 5.8 4. 7 i . 4 4. 4 1. 2 5. 4 3. 0 3 .9 1. 3 2. 8 1. 2 3. 2 3 . 0 3 .9 4. 2 1.0 4. 4 3. 3 3 . 6 3. 7 3. 2 4. 5 2. 6 3. 3 3 . 6 3. 8 3 . 0 3. 2 6 . 6 4. 9 3. 4 3. 2 4 . 6 3. 8 4. 4 3. 8 2. 8 1. 1 5. 1 0. 9 1.9 0. 9 1. 3 2. 5 4. 3 3. 2 3. 5 2. 4 3. 8 3. 0 2. 4 6 . 4 3. 0 3. 0 5. 2 A l 0.65 0. 60 0.69 0. 50 0 .73 0. 55 0. 43 : 0. 71 0. 31 0.83 0. 55 0. 65 0. 86 1. 00 0.71 0. 67 0. 85 0.73 0. 60 0.68 0. 83 0.67 0. 54 0. 84 1. 15 0.98 0. 83 0. 49 1.05 0. 63 0.70 0. 23 0. 57 0. 50 0.97 0. 32 0. 74 0.39 0.60 0. 83 0. 81 0. 74 0. 70 0.66 0.95 0.72 0.68 0.90 0. 57 0. 70 0. 56 0. 69 1. 06 1. 00 0. 76 0. 70 0. 85 1. 13 0. 51 0. 78 0. 37 0. 90 0. 54 0. 48 0. 76 0.66 0. 77 0. 76 0. 58 0. 81 0. 70 1. 01 0. 59 0. 62 0. 74 1. 00 0. 71 0. 64 A 2 0. 67 0. 56 0. 87 0. 43 0. 78 0. 70 0. 51: 0. 87 0. 26 0. 99 0. 57 0. 7 3 1. 15 1. 28 0. 88 0. 80 0. 86 0. 87 0. 00 0. 85 1. 10 0. 90 0. 59 0. 99 1. 49 1. 06 1. 06 0. 10 1.44 0. 64 0. 84 0. 06 0. 54 0. 10 1.01 0. 33 0. 88 0. 49 0. 00 1. 05 0. 88 0. 84 0. 80 0. 69 1. 22 0. 65 0. 73 1. 02 0. 67 0. 71 0. 59 1. 03 1. 41 1. 10 0. 79 0. 90 1. 00 1. 42 0. 60 0. 73 0. 04 1. 20 0. 00 0. 30 0. 00 0. 17 0. 66 0. 95 0. 61 0. 89 0. 57 1.18 0. 60 0. 51 1. 08 1. 00 0. 72 0. 86 d m 0. 56 0. 65 0. 44 0. 68 0. 00 0. 24 0. 65 0. 67 0. 53 0. 00 0. 08 0. 30 0. 10 0. 30 0. 28 0. 00 0. 44 0. 35 0. 00 0. 00 0. 00 0. 00 0. 67 0. 29 0. 00 0. 34 0. 25 0. 49 0. 30 0. 20 0. 05 0. 34 0. 22 0. 00 0. 30 0. 50 0. 00 0. 80 0. 00 0.00 0. 00 0. 00 0. 02 0. 80 0. 00 0. 28 0. 00 0. 00 0. 17 0. 30 0. 22 0. 00 0. 00 0. 49 0. 35 0. 00 0. 13 0. 00 0. 20 0. 85 0. 25 0. 00 0. 30 0. 00 0. 00 0. 00 0. 06 0. 00 0. 36 0. 00 0. 09 0. 22 0. 52 0. 44 0. 00 0. 00 0. 00 0. 34 175 TABLE 4.?Light-curve parameters for periodic variable* (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 2170 2178 1443 1959 146 2 1824 2192 2079 1651 10381 11478 11283 1898 2173 1530 1495 2065 1913 2168 11127 1662 1812 1609 11258 1770 1643 1472 1906 12915 11296 12124 11144 10373 11233 1872 11132 1920 11204 1780 1875 11163 11216 1680 1987 11124 1813 11230 1450 11429 11307 2034 10358 846 2098 12109 2157 11145 2154 852 1908 1900 1747 1677 11113 1778 1924 2053 1469 11139 2051 2133 1936 11287 1603 1820 1577 11158 12927 1381 1 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. i. 3. i. 3. i. J. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3, 3, 3. 3, 3 3, 3. 3, 3 3 3 3 3 3 3 =>eriod 988864 992632 993751 993797 995806 003679 007754 007808 008016 008185 008234 008297 018713 031 310 037925 042297 043955 044984 046718 048898 050324 051376 051804 055944 056440 057767 061915 065511 068595 072054 072820 074443 074643 075267 088278 089339 099199 099468 101381 103258 112379 114799 129851 130802 131203 131655 141217 143102 146455 149805 156177 159687 163035 163960 168306 169090 .190287 ,192787 ,197953 .206115 ,212614 ,213471 ,213615 ,213946 .214370 . 215858 219796 .223893 .224949 . 225973 229 59 5 .234686 . 243583 . 243687 . 244678 . 248895 . 251800 . 252551 . 262293 log P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 4755 4760 4762 4762 4765 4777 4782 4782 4783 4783 4783 4783 4798 4816 4826 4832 4834 4836 4838 4841 4843 4845 4846 4851 4852 4854 4860 4865 4869 4874 4875 4878 4878 4879 4897 4899 4913 4913 4916 4918 4931 4935 4955 4957 4957 49 58 4971 4974 4978 4983 4992 4996 . 5001 . 5002 . 5008 , 5009 . 5038 , 5042 . 5049 , 5060 . 5069 . 5070 . 5070 . 5070 . 5071 . 5073 . 5078 . 5084 . 5085 . 5087 . 5091 . 5098 . 5110 . 5110 .5112 .5117 . 5121 . 5122 . 5135 M 15. 15. 15. 16. 15. 15. 15. 1 5. 1 5. 16. 16. 16. 1 5. 1 5. 1 5. 16. 15. 15. 16. 16. 16. 15. 15. 1 5. 15. 15. 1 5. 16. 15. 16. 15. 15. 15. 16. 15. 15. 15. 15. 16. 15. 16. 16. 15. 15. 16. 15. 16. 15. 16. 16. 15. 15. 15. 16. 16, 15, 16, 15, 15, 16, 15, 16, 16 16 15 15 16 15 15 15 15 15 15 15 16 16 16 15 15 0 29 SI H8 00 58 93 92 84 97 00 55 52 36 28 99 04 26 6H 05 6 2 85 74 95 Zl 58 40 65 12 76 25 85 80 58 54 27 86 12 81 28 94 46 51 ,62 74 , 57 , 80 , 54 .93 , 58 . 88 , 74 , 77 ,74 . 21 . 19 .99 . 14 . 53 .67 . 03 .92 . 83 . 37 . 37 .68 . 20 . 27 . 48 .62 .07 . 42 . 87 .93 . 37 .08 . 00 . 31 . 80 . 13 m , 16. 16. 17. 16. 16. 17. 17. 17. 16. 16. 17. 17. 16. 17. 17. 16. 16. 17. 17. 17. 17. 16. 16. 16. 16. 16. 16. 17. 16. 17. 16. 17. 17. 17. 16. 16. 16. 16. 17. 17. 17. 17. 16. 17. 17. 17. 17. 16. 17. 17. 17. 16. 17. 16. 17. 16. 16. 17. 16. 17. 17. 17. 17. 17. 16. 16. 17. 16. 16, 17, 16. 17. 17. 16, 17, 16, 16, 16, 17 0 59 91 33 89 95 57 22 38 52 91 79 41 20 10 09 58 81 24 24 75 50 82 77 46 53 60 69 44 98 00 48 15 08 14 11 65 80 80 48 00 68 18 16 21 41 09 32 77 09 32 23 55 04 97 06 94 72 01 95 10 43 23 00 , 45 92 ,68 , 20 ,79 .89 . 03 , 85 . 40 . 02 .98 . 50 .94 .85: . 74 . 17 A 1. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 0. 1. 1. 0. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 0, 0, 1, 1, 1, 0, 1. 1 1 1. 1 I 1 1 0 0 0 2 30 40 45 89 37 64 30 54 55 91 24 89 84 82 10 54 55 56 19 83 67 08 82 24 95 20 04 32 22 75 63 35 50 60 84 79 68 99 20 16 22 67 54 47 84 29 78 84 51 44 49 78 30 . 76 , 87 ,95 , 58 ,48 , 28 .07 , 51 , 40 .63 . 08 . 24 . 48 . 93 . 31 . 27 .9b . 43 . 53 .09 .61 . 42 .94 . 54: .94 . 04 (m) 16. 16. 16. 16. 16. 16. 16. 16. 16. lb. 17. 17. 1 5. 16. 16. 16. 16. 16. 16. 17. 17. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 15. 16. 16. 16. 17. 16. 0 06 31 76 43 55 96 76 87 21 60 24 07 96 45 69 31 22 68 74 10 15 40 45 93 14 24 21 94 48 72 15 57 56 89 67 42 14 47 10 57 17. 17 16. 15. 16. 17. 16. 17. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 16. 91 89 61 03 59 06 47 85 11 64 18 63 75 , 72 ,62 , 50 , 54 , 51 .62 .95 , 07 ,69 .92 , 51 , 17 , 80 . 37 16. 33 16, 16, 16, 16, 16, 16 16 16 16 16 . 25 . 34 . 78 .64 . 32 .99 . 57 .60 . 45 . 42 X 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 17. 17. 15. 16. 16. 16. 16. 16. 16. 17. 17. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 15. 16. 16. 16. 17. 16. 17. 16. 15. 16. 17. 16. 17. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 17. 16. 17, 16, 16, 16, 16. 16. 16, 16 16, 16, 16 0 15 43 72 59 41 97 77 86 21 60 33 08 89 45 68 39 23 70 78 47 26 45 44: 78 17 17 30 92 57 72 14 67 52 89 65 34 19 43 04 57 23 93 85 68 10 61 00 49 89 13 68 . 16 .60 .69 . 75 . 59 , 52 . 45 . 52 . 67 , 86 . 07 . 76 . 08 . 51 . 12 . 87 . 27 .42 . 34 . 35 . 86 .61 . 41 17. 05 16 16 16 .61 .63: .39 16. 43 M - m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 12 13 24 16 17 16 13 12 49 18 23 19 18 12 18 16 15 14 20 1 5 18 15 20 48 21 12 14 17 16 18 49 15 15 26 49 19 20 16 17 16 15 17 52 19 21 15 18 10 22 24 16 43 12 14 17 14 12 15 12 24 16 21 23 14 11 16 lb 22 14 16 18 16 15 17 , 16 , 12 , 20 , 15 . 14 s 5. 4. 2. 5. 2. 3. 4. 4. 0. 2. 3. 3. 3. 3. 3. 4. 3. 4. 2. 5. 3. 4. 2. 1. 2. 3. 3. 2. 5. 3. 1. 4. 3. 2. 1. 2. 3. 3. 3. 3. 3. 3. 0. 3. 3. 3. 2. 4. 2. 1. 3. 1. 5. 3. 3. 3. 4. 2. 5. 2. 2. 2. 3. 4. 7. 3. 3. 2. 3. 4. 4. 4. 3. 4. 6. 4. 2. 3. 4, 6 4 1 4 5 6 6 8 7 9 0 1 1 9 1 4 1 7 7 0 9 6 4: 1 9 9 4 7 1 3 1 2 4 1 1 6 6 2 6 4 4 3 9 6 0 3 3 9 7 9: 4 3 0 1 8 4 3 9 3 4 9 4 0 6 8 0 9 5 5 2 1 1 0 . 1 ,6 , 0 . 5 . 1 , 5 Al 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 77 85 07 53 96 05 79 92 55 54 82 59 55 15 73 33 02 95 82 50 42 66 58: 19 63 76 68 91 0.73 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0, 0, 1 49 60 84 98 44 81 55 08 65 77 76 79 44 54 93 55 84 56 50 35 33: 97 69 78 50 55 62 35 99 76 76 01 28 42 65 72 98 58 92 83 , 22 89 .95 . 72 , 00 .80 . 58 . 38: .62 . 31 A 2 1. 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 07 08 75 73 82 18 01 22 00 53 83 60 57 37 75 42 05 23 75 66 50 85 40: 11 62 90 74 83 98 52 06 03 07 31 08 49 21 68 87 82 87 0. 47 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 1. 1. 0. 1. 1, 0, 0, 0 1 00 10 56 90 44 67 32 21: 06 18 04 52 64 67 45 98 04 62 00 23 42 84 09 . 99 70 .79 ,90 . 48 .07 , 16 . 73 . 21 . 20 . 70 . 32: .64 . 59 dm 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 00 25 59 00 98 35 00 00 60 15 30 79 30 00 85 36 00 48 00 70 00 28 57 48 44 54 91 00 53 00 15 0.60 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0, 0, 00 40 39 79 30 00 48 48 00 00 15 00 70 16 18 91 39 74 30 35 36 16 17 25 74 25 00 30 48 49 54 00 35 48 20 98 79 25 00 .48 , 47 , 00 . 28 .72 . 52 . 80 . 81 176 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 10360 1 7 1 6 1 2 9 1 6 1 8 4 8 1 2 9 1 3 1 4 8 8 1 8 3 0 2 1 4 8 1 6 3 7 1 8 8 9 2 1 5 8 1 9 7 0 1 7 4 6 2 1 6 0 1 8 7 4 1 8 2 3 1 9 7 2 1 2 1 7 1 1 8 4 3 1 5 5 0 1 8 4 6 2 0 3 7 1 7 3 6 1 7 3 0 1 5 0 8 1 5 7 4 1 6 6 3 1 6 8 8 1 1 2 0 6 2 1 9 6 2 1 3 4 1 4 8 9 2 0 6 7 2 1 3 8 1 9 8 3 1 3 2 9 1 8 9 1 2 0 4 7 1 8 9 6 1 1 5 4 4 1 7 8 8 1 0 3 7 9 1 6 0 6 1 3 3 9 1 8 4 9 2 1 9 4 1 4 2 2 1 2 1 3 1 1 8 8 8 1 6 6 7 1 0 3 8 3 2 1 8 3 2 0 5 5 1 5 0 2 1 7 4 9 1 4 1 0 1 9 0 1 1 3 3 1 1 9 2 6 1 6 2 7 1 6 9 7 1 7 9 2 1 9 4 9 1 3 8 4 1 8 1 6 1 5 3 4 1 7 3 3 1 8 0 4 1 6 3 1 1 3 3 7 1 4 2 3 2 0 5 8 2 0 2 8 2 1 8 5 1 4 4 5 1 8 5 6 1 4 5 3 2 0 7 0 2 1 8 8 P e r i o d 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 2 6 6 5 5 4 2 6 7 7 2 8 2 7 0 5 3 9 2 7 7 3 2 4 2 7 7 8 7 2 2 8 3 2 3 1 2 9 8 4 4 7 3 1 7 4 4 3 3 2 4 9 9 9 3 2 7 9 8 6 3 3 3 9 6 7 3 3 6 3 0 1 3 3 8 0 7 3 3 4 6 3 5 3 3 4 9 8 4 8 3 5 1 6 1 1 3 5 1 6 8 9 3 5 5 6 9 3 3 5 7 5 7 5 3 6 0 9 4 9 3 6 8 3 8 7 3 6 8 7 6 1 3 7 0 1 8 1 * 3 7 1 8 1 7 3 7 2 9 6 6 3 8 7 8 6 7 3 9 1 0 0 3 3 9 2 7 5 2 3 9 9 4 7 1 4 0 8 1 2 5 4 1 6 8 0 4 4 2 0 4 4 1 4 3 5 0 3 3 4 3 7 4 3 9 4 3 8 4 3 5 4 3 9 6 0 6 4 5 1 4 8 9 4 5 3 9 8 1 4 5 8 9 9 9 4 7 2 6 4 4 4 7 8 6 7 2 4 8 3 7 9 6 4 8 7 5 4 1 4 8 9 2 0 8 4 9 2 2 7 9 5 0 0 4 5 3 5 0 0 8 2 4 5 0 4 1 4 9 5 0 9 8 3 1 5 1 9 8 0 1 5 3 1 6 7 8 5 3 7 5 3 2 5 4 4 9 0 7 5 4 5 8 4 8 5 5 2 5 1 1 5 6 9 7 9 7 5 7 3 0 9 7 5 7 9 6 5 4 5 9 1 6 9 6 5 9 8 5 2 0 6 0 5 6 7 0 6 1 0 0 4 3 6 1 6 6 1 0 6 2 0 4 3 7 6 2 8 3 6 8 6 4 2 3 3 7 6 5 4 7 3 0 6 6 6 2 1 3 6 6 7 4 5 0 6 7 6 5 2 5 6 8 3 5 3 3 6 8 4 7 1 8 6 8 8 9 6 2 6 9 0 3 0 0 6 9 2 8 8 1 6 9 3 1 5 7 6 9 9 1 8 5 7 1 0 8 5 0 7 1 2 0 6 6 lo 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. g p 5 1 4 1 5 1 4 2 5 1 4 6 5 1 5 5 5 1 5 6 5 1 6 3 5 1 8 3 5 2 0 8 5 2 1 8 5 2 2 2 5 2 3 0 5 2 3 3 5 2 3 5 5 2 4 6 5 2 5 0 5 2 5 3 5 2 5 3 5 2 5 8 5 2 6 0 5 2 6 5 5 2 7 4 5 2 7 5 5 2 7 5 5 2 7 9 5 2 8 0 5 2 9 9 5 3 0 3 5 3 0 5 5 3 1 4 5 3 2 5 5 3 3 6 5 3 4 1 5 3 5 9 5 3 6 2 5 3 6 4 5 3 6 5 5 3 8 0 5 3 8 3 5 3 9 0 5 4 0 7 5 4 1 4 5 4 2 1 5 4 2 5 5 4 2 7 5 4 3 1 5 4 4 1 5 4 4 2 5 4 4 6 5 4 5 3 5 4 6 5 5 4 8 0 5 4 8 7 5 4 9 6 5 4 9 7 5 5 0 5 5 5 2 6 5 5 3 0 5 5 3 8 5 5 5 3 5 5 6 1 5 5 7 0 5 5 7 5 5 5 8 3 5 5 8 8 5 5 9 7 5 6 1 4 5 6 2 8 5 6 4 2 5 6 4 4 5 6 5 4 5 6 6 3 5 6 6 4 5 6 6 9 5 6 7 1 5 6 7 4 5 6 7 4 5 6 8 1 , 5 6 9 5 , 5 6 9 6 M 15. 15. 15. 16. 15. 15. 16. 16. 15. 16. 15. 15. 14. 16. 15. 16. 16. 16. 15. 15. 15. 15. 15. 16. 15. 16. 15. 15. 16. 15. 16. 15. 15. 16. 15. 16. 15. 16. 15. 15. 15. 16. 15. 1 5 . 15. 15. 15. 16. 15. 15. 16. 15. 16. 16. 15. 16. 16. 15, 15, 15 15 15 16 1 5 15 14 15. 15 15 15 16 15 15 15 15 15 15 15 16 0 60 95 64 61 78 39 58 75 65 05 15 49 92 05 47 1 3 09 21 46 93 45 27 09 38 30 21 04 66 17 94 12 78 72 41 02 13 49 16 88 49 75 31 40 84 , 16 , 56 , 19 , 10 , 60 , 73 , 37 , 51 , 18 .06 . 58 . 17 . 73 . 78 . 24 . 82 .95 . 72 . 16 . 06 .96 .94 . 32 . 06 . 55 . 38 . 07 .89 . 44 . 19 . 46 . 78 . 00 .60 . 76 mo 16.62 17. 12 16. 01 17. 58 17. 01 1 6 . 6 7 1 6 . 8 8 1 7 . 1 3 : 1 6 . 8 2 1 7 . 3 1 1 5 . 8 2 1 6 . 8 7 1 6 . 6 6 1 6 . 6 0 1 6 . 8 3 1 7 . 3 3 1 7 . 0 7 : 1 6 . 6 8 1 6 . 6 8 1 6 . 8 7 1 7 . 0 0 1 6 . 2 3 1 5 . 5 1 1 7 . 3 8 1 6 . 8 4 1 7 . 4 6 1 6 . 7 6 1 6 . 8 6 1 6 . 5 7 1 7 . 1 1 1 7 . 1 8 1 6 . 4 9 1 6 . 7 6 1 7 . 0 6 1 6 . 6 1 1 6 . 9 7 17. 18 17. 02 17. 12 16. 60 16. 11 17. 14 16. 88 16. 94 16. 98 17. 05 16. 72 16. 97 16. 91 16. 73 17. 61 1 7 . 0 0 1 6 . 9 8 1 6 . 7 6 1 6 . 8 0 1 6 . 9 7 1 7 . 3 5 17. 14 17. 17 16. 50 17. 25 16. 88 17. 20 15. 75 17. 12 16. 22 16. 44 16.62 16. 82 16. 96 16. 73 16.68 16. 28 16. 80 16.76 16. 94 16. 46 16. 94 17. 23 A 1. 02 1. 17 0. 37 0. 97 1. 23 1. 28 0. 30 0. 38: 1. 17 1. 26 0. 67 1. 38 1. 74 0. 55 1. 35 1. 20 0. 98: 0. 47 1. 22 1. 54 1. 57 0. 96 0. 42 1. 00 1. 54 1. 25 1. 72 1. 20 0. 40 1. 17 1. 06 0. 71 1. 04 0. 65 1. 59 0. 84 1.69 0. 86 1. 24 1. 11 0. 36 0. 83 1. 48 1. 10 1. 82 1. 49 1. 53 0. 87 1. 31 1. 00 1. 24 1. 49 0. 80 0. 70 1. 22 0. 80 0. 62 1. 36 1. 93 0.68 1. 30 1. 16 1. 04 0. 69 1. 16 1. 28 1. 12 1. 56 1. 27 1. 58 0. 66 0. 79 0. 84 1.61 1. 30 1 . 1 6 1 . 4 6 1 . 3 4 0 . 4 7 (m 16. 16. 15. 17. 16. 16. 16. 17. 16. 16. 1 5 . 16. 1 5 . 16. 16. 16. 16. 16. 16. 16. 16. 15. 1 5 . 17. 16. 17. 16. 16. 16. 16. 16. 16, 16. 16 16, 16. 16, 16 16 16 15 16 16 16 16 16 16 16 16 16 17 16 16 16 16 16 17 16 16 16 16 16 17 1 5 16 15 16 15 16 16 16 16 15 16 16 16 15 16 16 >0 19 78 79 16 54 16 71 17: 39 76 51 25 94 it 33 88 68: 41) 10 34 45 77 31 00 31 05 , 07 . 37 , 42 . 51 .79 . 26 . 31 . 80 . 08 .64 .63 .64 .61 . 16 .96 . 82 . 30 .49 . 09 . 56 . 10 . 58 . 37 . 35 . 15 . 42 .68 . 45 . 41 . 66 . 07 . 43 . 50 . 19 .69 . 47 . 13 . 39 .63 .75 . 00 .96 . 38 . 43 . 47 . 40 .94 . 26 . 30 . 43 .91 . 42 .97 X 16. 16. 15. 17. 16. 16. 16. 16. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 15. 15. 16. 16. 17. 16. 16, 16. 16, 16, 16, 16, 16 16 16 16 16 16 16 15 16 16 16 16 16 16 16 16 16 17 16 16 16 16 16 17 16 16 16 16 16 16 15 16 15 16 16 16 16 16 16 15 16 16 16 15 16 17 0 27 73 82 22 55 21 73 99: 34 87 47 37 02 38 33 90 72: 50 27 36 40 69 , 29 .99 , 27 ,02 , 14 . 44 . 40 .71 .81 . 23 , 40 .79 . 01 .66 . 58 . 70 .70 . 21 .95 . 82 . 39 . 53 . 29 . 52 . 20 .64 . 45 . 37 . 15 .48 .70 .49 - 39 .66 . 11 .66 . 45 . 27 . 78 . 47 .81 . 43 .69 . 75 . 03 . 10 . 34 . 30 . 50 . 41 .97 . 25 . 27 . 54 .95 . 47 . 05 M-m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 5 10 47 20 20 16 44 25 20 15 44 16 17 26 17 18 14 16 14 14 1 I 45 46 24 16 14 18 14 22 18 12 12 16 23 18 14 13 16 19 14 41 18 11 20 18 14 14 18 22 16 16 14 14 20 11 20 22 19 15 14 18 15 18 38 20 17 18 12 14 22 16 16 18 08 16 18 16 15 22 ? 4. 6. 1. 3. 3. 3. 1. 3. 2. 4. 1. 3. 3. 2. 3. 3. 4. 3. 5. 5. 2. 1. 1. 2. 3. 4. 3. 4. 2. 4. 4. 3. 4. 2. 3. 3. 4. 3. 5. 4. 1. 2. 5. 3. 2. 3. 4. 2. 3. 3. 3. 4. 4. 2. 5. 2. 2. 4. 3. 5. 3. 3. 3. 1. 3. 3. 3. 5. 3. 4. 5. 4. 3. 5. 2. 4. 4. 4. 3. 5 1 2 3 2 8 4 0 3 0 2 6 4 5 5 9 1 4 6 ') ?) 0 2 7 5 0 7 2 1 6 0 9 1 2 1 5 2 3 0 7 8 9 3 5 9 9 9 9 8 6 4 0 1 9 5 9 0 0 2 0 7 8 0 6 0 5 4 5 2 3 0 5 5 9 9 3 2 1 3 A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 6 2 68 14 6 3 81 81 26 25: 84 78 6 2 88 1 3 19 88 76 61 : 11 72 89 05 96 i<) 69 00 78 10 74 30 71 66 45 64 47 05 55 05 56 74 68 28 56 87 72 22 94 91 58 82 64 81 92 50 47 72 54 42 84 27 41 83 73 69 57 76 83 73 92 84 98 40 48 55 93 87 71 90 83 31 A 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 0. 1. 1. 0. 2 80 9 8 07 6 8 85 9 5 09 25: 6 7 94 1 2 99 24 33 96 ')() 74: 33 0 0 2H 04 00 08 63 09 94 26 91 21 91 80 53 78 36 08 60 28 60 00 88 16 55 20 78 20 12 22 57 97 72 88 12 60 46 00 53 41 02 33 54 95 86 70 26 78 91 80 28 88 22 53 62 60 33 86 89 12 00 33 d m 0. (I. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 52 49 79 36 45 98 22 2S 54 39 00 24 48 00 07 35 00 05 36 60 35 10 1 1 48 80 H 58 58 10 00 00 91 00 00 24 00 00 30 48 00 00 06 72 50 02 00 03 1 5 48 48 00 00 42 03 1 1 59 46 18 30 65 30 36 40 81 28 80 00 16 00 56 03 10 30 00 56 36 67 00 00 177 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 12938 2085 1728 1866 11186 1356 1585 1617 1776 21 16 1704 2213 11490 2086 11205 1725 1352 2151 1710 2089 858 1483 1523 11396 1757 1691 212 2024 1379 11117 1797 1882 1694 1544 1580 1552 1781 1584 1634 1914 1653 1737 1602 2132 2075 1679 1718 1795 1807 1470 1477 11257 1474 12928 831 12112 1793 1952 1439 214 2175 1539 1994 2221 1607 1665 1825 1966 1944 11152 842 1829 1566 1576 1401 20 26 830 11165 1879 I 3. 3. 3. 3. 3. 5. 3. 3. 3. 3. 3. 3. i. 3. 3. 3. 3. 3. 3. 3. 1. 3. 3. 3. 3. J. J. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4, 4, 4. 4. 4. 4, 4. 4, 4, 'eriod 714048 716671 717928 724908 734506 737912 739800 741143 749756 751937 776164 786521 788955 789458 802571 808537 8095 811053 825628 825657 832724 832782 858813 860750 889765 901449 901449 908311 909380 911128 914360 930679 934808 939403 941244 948901 963080 968207 970365 971579 972384 973442 997793 006124 027581 040812 045226 079218 088458 092239 123949 126519 160606 168230 .173919 ,180584 .181441 .188271 .193169 ,205197 .210763 ,212814 ,213400 .235353 ,245816 .252677 4. 260377 4, 4 4 4 4 4 4 4 4 4 4 4 ,269964 .277916 . 282600 .289563 .290777 .313878 . 336307 . 341107 .342576 . 350607 .356862 .363782 log P 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. <). 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0, 0. 0, 0 0 0 0 0 0 0 0 0 0 0 0 5698 5702 5703 5711 5722 57 26 5728 5730 5740 5743 5770 5782 5785 5786 5801 5808 5809 5810 5827 5827 5835 5835 5865 5867 5899 5912 5912 5920 5921 5923 5928 5945 5949 5954 5956 5965 5980 5 9 8 6 5 9 8 8 5 9 9 0 5 9 9 1 5992 6018 6027 6050 6065 6069 6106 6116 6120 6153 6156 6192 6199 .6205 ,6212 .6213 .6220 ,6225 .6238 ,6244 .6246 ,6246 ,6 269 ,6280 ,6287 .6294 .6304 .6312 .6319 .6324 .6325 .6 349 .6371 .6376 .6378 .6385 .6392 .6399 M 15. 16. 1 5. 15. 16. 1 5. 16. 16. 1 5. 16. 1 5. 14. 15. 15. 1 5. IS. 1 5. 16. 15. 16. 1 5. 16. 1 5. 16. 15. 1 5. 16. 15. 15. 15. 15. 16. 15. 16. 15. 15. 15. 15. 15. 15. 15. 15. 15. 16. 16. 16. 16. 15. 16. 16. 16. 15. 15. 15. 16. 15. 15. 15. 15. 14. 14. 16. 15. 15. 15. 15. 15, 15. 16, 16 15 15 16 14 15 15 15 16 15 0 86 05 60 64 06 65 05 09 88 36 71 90 62 1 1 49 88 64 00 74 59 50 37 53 32 29 88 52 08 26 38 24 48 35 38 29 70 52 20 52 47 51 56 84 25 33 00 03 43 22 11 21 79 84 08 15 90 76 30 62 , 94 . 55 , 37 , 70 , 34 . 34 . 49 , 58 . 20 . 50 . 27 . 75 . 37 . 19 . 81 . 32 . 72 . 39 . 03 . 90 m 16. 17. 16. 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 17. 16. 16. 16. 17. 17. 17. 17. 17. 16. 17. 17. 17. 17. 16. 16. 16. 16. 17. 16. 17. 17. 16. 16. 16. 17. 16. 17. 16. 16. 17. 17. 16. 17. 16. 17. 17. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 16. 17. 17. 16. 16. 16. 16. 16. 17, 16 16 16 0 90 05 57 75 61 73 72 85 75 20 91 34 68 10 58 84 73 1 3 10 54 00 20 55 48 03 10 55 27 45 51 86 26 53 18 15 93 95 17 40 53 02 65 97 41 43 73 21 54 13 29 95 99 36 00: 19 98 97 45 38 , 27 59 . 35 , 04 . 75 , 59 , 54 , 76 , 45 . 42 .91 .95 . 58 16. 53 16 16 16 16 16 16 .06 . 71 .92 . 79 . 83 . 71 A 1. 1. 0. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. l. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 0. 1. 0. 0. 1. 1. 1. 1. 0. 1. 2. 04 00 97 11 55 08 67 76 87 84 20 44 06 99 09 96 09 1 3 36 95 50 83 02 16 74 22 03 19 19 13 62 78 18 90 86 23 43 97 88 06 51 09 13 16 10 73 18 21 91 18 64 20 52 92 04 08 21 15 76 . 33 ,04 0. 98 1. 1. 1, 1. 1, 1. 0, 0 1 1 0 1 1 1 1 0 0 , 39 , 41 . 25 , 05 , 18 , 25 .92 .64 . 20 . 21 . 34 . 25 . 39 . 20 . 40 . 80 . 81 s HI 1 4 4 S 72 7 2 57 t ,7 9 7 7 4 6 2 4 9 4 2 0 6 5 0 56 56 60 90 64 68 55 99 10 42 94 55 , 6 5 38 , 8 9 , 78 , 6 0 89 . 39 , 9 5 , 74 , 05 . 8 0 . 9 6 . 7 8 . 43 , 8 3 . 9 7 . 9 1 . 7 4 . 14 . 52 . 19 . 02 . 56 . 9 6 . 91 . 75 . 0 6 . 7 2 . 04 . 7 6 . 34 . 90 . 38 . 6 2 . 6 2 . 13 . 8 8 . 7 1 . 39 -. 30 d m 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0. 0 . 0 . 0 . 0 . 0 . 0. 0 . 0 . 0 . 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0, 0, 0, 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8S 56 79 35 0 0 4 0 11 35 0 0 17 HO 60 HH HH 4H 2 9 0 0 36 0 0 34 KH it, 4 4 91 2 0 4 0 0 0 00 30 00 00 72 30 48 0 0 26 70 98 02 00 72 00 79 7 2 36 00 10 1 1 59 88 35 00 . 45 , 31 , 02 , 25 . 35 . 48 . 00 . 17 . 9 0 . 70 . 35 . 00 . 05 . 03 . 40 . 30 . 85 . 0 7 . 00 . 54 . 8 5 . 56 . 80 . 44 . 35 . 00 179 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 1701 820 1633 1626 1982 1646 2031 1635 1564 1957 1649 11178 1461 1818 1811 1878 1929 1588 2162 1618 1892 211 3 1416 156 3 1706 1570 1767 2161 1794 862 815 1503 1434 1537 12925 2041 10375 2144 1500 2203 11123 2198 2124 1734 1583 1858 2040 1612 1605 11240 1492 1979 1394 11176 1520 1676 11193 2174 1412 1945 1561 2142 1862 1512 1988 826 11112 1400 1324 2163 2223 1775 1509 1855 1689 1435 10385 11140 2054 P 5. 5. 5. 5. 5. 5. 5. 5. S. 5. 5. 5. 5. 5. S. S. 5. 5. s. 5. 5. s. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6, 6. 6. 6, 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 eriod 171807 200560 200830 202724 224855 233821 248655 249619 254004 319262 323693 361528 404616 458843 469861 548958 584440 590184 632320 649335 653194 662258 662354 665369 679043 721871 733945 739025 777367 789717 79486 3 803359 833013 842213 888865 911249 938101 942971 949796 962282 011533 064465 064539 069029 084428 111834 112096 182992 209522 228822 292208 .296595 301158 .342160 .384748 ,389654 ,427066 .429336 .463832 .468724 .473372 .490223 .490598 .546816 .561163 .566419 .611559 .648163 .663725 .693010 .700442 .810273 .818213 .839898 .844018 .011885 .033122 . 164241 .165295 lc 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 >g p 7136 7160 7161 7162 7181 7188 7201 7201 7205 7259 7262 7293 7 3 28 7371 7380 7442 7470 7474 7507 7520 7523 7530 7530 7532 7543 7575 7585 7588 7617 76 27 7631 7637 7659 7666 7700 7717 7736 7740 7745 7754 7790 7828 7828 7831 7842 7862 7862 7912 7931 7944 7988 .7991 7994 8022 .8051 .8055 . 8080 ,8082 ,8105 .8108 .8111 .8123 . 8123 .8160 .8170 .8173 .8203 . 8227 .8237 .8256 .8261 .8332 .8337 .8350 .8353 .8458 .8471 . 8552 .8552 M 1 5. 15. 15. 15. 14. 1 5. 15. 1 5. 14. 15. 1 5. 16. 15. 16. 1 5. 15. 1 5. 16. 1 5. 14. 1 5. 16. 1 5. 1 5. 1 5. 15. 16. 14. 16. 1 5. 15. 14. 14. 15. 15. 15. 16. 15. 15. 15. 16. 15. 15. 15. 15. 15. 15. 14. 15. 14. 14. 15. 15. 15. 15. 15. 16. 15. 15. 15. 15. 14. 14. 15. 15. 15. 15. 15. 15. 16. 14. 15 15 15 14 14 15 15 15 0 1 3 80 22 60 49 20 20 45 0 5 51 26 00 5S 27 72 21 53 27 99 89 74 17 12 34 43 29 05 36 14 32 41 73 84 08 95 32 33 97 50 16 08 32 26 65 94 15 50 29 58 89 78 64 59 84 61 24 08 24 . 45 . 27 . 52 .64 .95 . 12 . 50 . 03 .70 . 23 . 88 . 18 . 91 .63 . 15 .95 . 31 . 50 . 78 . 4 4 . 4 0 m 16. 17. 16. 16. 1 5 . 16. 16. 16. 14. 16. 16. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 17. 16. 17. 16. 16. 16. 16. 16. 15. 16. 16. 16. 17. 17. 16. 16. 17. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16. 0 04 08 33 78 35 52 99 33 86 96 53 68 36 10 74 17 12 97 76 70 60 77 48 61 07 62 18 47 94 15 53 79 97 10 81 61 08 28 79 40 33 58 17 81 65 14 70 51 51 . 20 . 18 . 82 ,67 16. 80 16. 16. 17. 16. 16. 16. 17. 16. 16. 16 16 15 16 16 16 16 16 16 16 16 15 15 16 16 16 ,46 , 39 .00 . 4 4 .61 .46 . 34 . 26 . 28 . 22 . 58 .97 . 92 . 17 . 28 .66 . 33 . 72 . 40 . 40 . 71 .90 . 58 . 59 . 22 A 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 1. 2. 0. 0. 1. 2. 1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 0. 1. 0. 0. 1. 2. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. I, 1. 1, 1 1 1 0 1. 0 0 0 1 I 1 0 1 1 0 1 0 91 28 07 18 86 32 79 88 81 65 27 68 81 8 3 02 96 59 70 77 81 86 60 36 27 64 33 1 3 11 80 83 12 06 13 02 86 29 75 31 29 24 25 26 91 16 71 99 20 22 93 31 40 . 18 08 .96 . 85 , 15 ,92 , 20 , 16 . 19 82 .62 . 33 . 10 . 08 .94 . 22 .94 . 40 .48 .42 .09 . 25 . 45 . 40 . 40 . 80 . 15 . 82 0 15. 16. 15. 16. 14. 15. 16. 15. 14. 16. 16. 16. 16. 16. 16. 15. 15. 16. 16. 15. 16. 16. 15. 16. 16. 16. 16. 15. 16. 15. 16. 15. 15. 15. 16. 16. 16. 16. 16. 15. 16. 16. 15. 16. 16. 15. 16. 15. 15. 15. 15. 16. 16. 16. 16. 15. 16. 15. 16. 15. 84 48 89 28 89 98 18 92 61 36 00 37 04 70 23 66 84 66 44 88 11 47 97 06 30 12 63 59 55 75 07 98 42 67 44 04 71 61 24 73 67 08 73 33 33 67 26 54 94 , 54 . 54 . 20 . 23 . 37 .09 , 87 . 45 . 82 .01 .93 16. 37 15 15. 15 16 15 16, 15 16 16 15 16 15 16 15 15 16 16 15 . 42 .65 . 78 . 04 . 59 . 43 . 70 .06 . 44 .74 . 24 .76 . 1 8 . 1 4 . 2 7 . 2 4 .09 . 8 4 xc 15. 16. 15. 16. 15. 16. 16. 15. 14. 16. 16. 16. 16. 16. 16. 15. 15. 16. 16. 16. 16. 16. 15. 16. 16. 16. 16. 15. 16. 15. 16. 15. ) 70 61 91 36 05 06 36 98 56 35 07 24 03 75 34 82 86 63 45 00 25 52 94 14 46 10 74 68 63 86 10 87 1 5 . 5 8 15. 16. 16. 16. 16. 16. 70 44 11 79 82 27 1 5 . 9 4 16. 16. 15. 16. 16. 15. 16. 15. 16. 15. 15. 16. 16. 16. 16. 15. 16. 15. 16. 16. 16. 15. 15. 15, 16. 15 16. 15 16. 16 15 16 15 16 15 15 16 16 15 86 11 85 38 37 74 31 71 14 67 66 . 36 27 47 . 15 93 .64 ,99 . 17 .01 .67 .65 . 80 . 78 . 17 . 62 . 47 . 81 . 12 . 44 . 75 . 32 .95 . 21 . 19 . 34 . 27 . 10 .86 M- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0 0 0 0 0 0 m 21 20 20 19 18 19 18 22 16 24 18 28 21 26 24 20 29 21 22 21 28 28 20 20 20 22 24 20 24 21 22 21 17 19 40 19 26 26 23 22 24 18 19 20 26 26 18 19 24 31 23 26 20 22 26 24 32 28 22 23 . 22 . 26 , 22 , 24 . 26 . 22 . 22 . 24 , 27 . 35 . 24 . 22 . 20 . 29 . 22 . 26 . 21 . 28 . 32 s 3. 3. 2. 3. 4. 4. 4. 2. 3. 3. 3. 2. 2. 2. 2. 3. 1. 3. 2. 2. 2. 2. 2. 3. 3. 2. 2. 3. 2. 3. 2. 2. 4. 2. 1. 2. 2. 4. 2. 3. 3. 3. 4. 3. 2. 2. 5. 3. 2. 2. 3. 2. 3. 4. 3. 2. 2. 2. 3. 2. 3. 3. 3. 2. 2. 3. 3. 2. 2. 1. 2. 3. 3. 2. 3. 2. 2. 2. 1 1 5 7 8 1 4 2 5 4 4 3 3 8 2 7 6 8 2 5 8 4 1 5 4 1 7 6 1 7 8 9 3 4 7 9 8 7 1 4 3 0 0 0 3 6 6 9 9 4 2 2 5 3 5 4 4 6 9 0 9 3 1 6 6 8 1 0 9 6 7 3 . 5 . 8 , 1 , 2 . 4 .8 . 0 .8 Al 0. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0, 0. 0, 0. 0. 1. 0 0 0 0 0 0 0 0 60 83 74 74 53 81 11 62 53 07 81 42 58 61 70 61 46 60 54 23 61 44 95 83 08 92 78 39 55 52 75 63 69 70 65 88 52 81 92 81 83 83 56 75 49 68 70 40 66 94 92 82 70 59 55 82 64 .80 . 77 . 80 . 18 .07 . 85 . 77 . 73 .62 . 80 .63 . 28 . 38 02 . 71 . 79 . 33 .92 .99 . 54 . 86 .64 A 2 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 62 91 67 87 64 02 36 53 58 17 88 39 61 46 64 69 26 67 46 16 50 31 82 90 12 84 70 41 0. 50 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 61 74 48 87 64 40 83 47 98 75 87 84 84 68 81 44 61 00 67 53 0. 72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. I. 1. 0. 0. 0. 0. 0, 0. 0. 0. 0. 0 0 0 0 0 0 0 0 97 71 76 75 60 67 57 79 78 , 78 . 27 . 10 ,96 .69 .69 .64 . 81 .62 , 25 . 20 . 81 . 77 .92 . 23 .97 . 81 . 51 . 58 . 36 d m 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 54 00 48 70 68 30 00 48 60 00 30 48 85 28 08 48 10 65 25 00 10 00 90 85 36 52 48 00 36 00 45 43 90 80 70 00 00 00 85 00 81 00 00 29 80 08 00 65 72 77 36 20 91 00 56 58 0. 00 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0 0, 0 0 0 0 0 0 00 03 00 .74 . 00 . 34 , 80 , 40 . 91 . 0 0 .49 . 00 . 00 . 00 . 35 . 7 4 . 0 0 . 2 4 .90 . 00 .67 . 20 180 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued HV 12952 1527 2119 1801 853 1427 1548 1905 1973 1355 1599 1758 1592 2081 1582 1393 12940 1666 1709 1764 816 845 1950 1396 2140 1632 1415 1785 1589 1437 1374 1338 1784 12954 1362 1411 1790 2103 1484 835 12950 1399 2087 2215 1486 836 1334 1569 1487 1768 10355 2060 818 1402 1521 1426 2229 11116 1377 1323 1363 1705 1382 206 3 1471 2201 1630 2017 1610 11263 857 1682 856 1 365 2227 2230 1553 2052 1744 Period 7.182360 7. 228515 7. 272674 7. 279345 7. 334443 7. 334587 7. 350077 7.416802 7. 480607 7. 483104 7. 498219 7.499625 7. 534092 7.607628 7.681495 7. 722902 7.755305 7. 771699 7.894529 7. 935437 7. 94085 7.950832 7. 990220 8. 061161 8. 115697 8. 126580 8.141068 8. 148830 8. 332986 8. 376213 8. 396235 8. 493446 8. 682741 8.826671 8. 844470 8. 849588 8. 872721 8. 984080 9. 025906 9. 051330 9.087687 9.145282 9.159187 9. 174396 9. 189303 9. 403445 9. 451439 9. 525624 9. 560778 9. 808249 10. 038246 10.18447 10. 33506 10. 426007 10.427528 10. 43885 10.448011 10.485807 10.528089 10.560554 10.676233 10.758125 10.883998 11.166230 11.192693 11. 252644 11. 401209 11.407450 11. 644997 11. 770245 1 1. 892936 12. 149930 12. 155307 12. 413262 12. 466963 12. 525122 12. 543247* 12. 57498 12. 623872 log P 0.8563 0.8590 0.8617 0. 8621 0.8653 0.8654 0.8663 0.8702 0. 8740 0. 8741 0.8744 0.8750 0.8770 0. 8812 0.8854 0.8878 0. 8896 0.8905 0. 8973 0.8996 0.8999 0. 9004 0. 9025 0.9064 0.9093 0.9099 0.9107 0. 9111 0.9208 0.9230 0.9241 0.9291 0.9387 0. 9458 0.9467 0. 9469 0.9481 0. 9535 0.9555 0.9567 0.9584 0.9612 0.9619 0. 9626 0.9633 0.9733 0.9755 0.9789 0. 9805 0. 9916 1.0002 1.0079 1.0143 1. 0181 1.0182 1. 0187 1.0190 1. 0206 1.0223 1. 0237 1.0284 1.0317 1.0368 1.0479 1. 0489 1.0513 1.0569 1.0572 1. 0661 1. 0708 1. 0786 1. 0846 1. 0848 1.0939 1.0958 1.0978 1.0984 1.0995 1. 1012 Mo 15. 40 15. 40 15.67 15. 53 14. 45 15. 63 15. 47 15. 20 15. 29 14. 73 15. 35 14. 74 14.88 14. 74 15.82 15. 21 15. 95 14. 84 14. 86 15. 56 15. 53 14. 60 15. 44 14. 33 15. 58 15. 63 16. 04 14. 86 15. 08 14.46 14. 65 15. 50 15. 08 15. 87 15. 53 14. 81 14. 86 15. 24 14. 84 14. 46 14.98 15.99 15. 44 14. 94 15. 29 14.81 14. 65 14. 86 14. 62 15. 29 15. 13 14. 35 14. 68 15. 63 14.75 14. 51 15. 15 14. 24 14. 21 14.99 14. 95 14. 74 14. 72 14. 89 14. 95 14. 60 14. 55 14.46 13. 89 15. 54 13. 92 14. 04 14. 52 14. 56 15. 38 15.66 15. 28 13.91 14. 03 mo 16. 01 16.46 16. 45 15. 89 15.75 16.61 15. 93 16. 38 16. 20 15. 92 16. 23 16. 13 15. 54 15. 62 16. 38 15. 93 16. 68 15. 87 16. 54 16. 36 16. 44 15. 94 16. 06 16. 27 16. 77 16. 19 17. 07 16. 20 16. 14 15. 54 15. 56 16. 37 15.88 16. 56 16. 04 16. 35 15. 98 16. 30 15. 50 15. 78 16. 49 16. 92 16. 22 16.05 16.46 16. 12 15.98 16. 11 15. 70 15.73 15. 73 15. 27 15. 55 15. 94 15. 61 15.93 16. 18 15. 26 15. 43 16. 25 15. 59 15. 60 16. 29 16. 18 15. 90 15. 90 15.69 15. 70 15. 35 16. 10 15. 20 15. 78 15. 92 15.75 16.43 16. 26 16. 46 15. 17 15. 16 A 0.61 1. 06 0.78 0. 35 1. 30 0. 98 0. 46 1. 18 0.91 1.19 0. 88 1. 39 0.66 0. 88 0. 56 0.72 0.73 1. 03 1. 68 0. 80 0. 91 1. 34 0. 62 1. 93 1. 19 0. 56 1. 03 1. 34 1.06 1. 08 0. 91 0. 87 0. 80 0.69 0. 51 1. 54 1. 12 1. 06 0.66 1. 32 1. 51 0.93 0. 78 1. 11 1. 17 1. 31 1. 33 1. 25 1.08 0. 44 0.60 0.92 0. 87 0. 31 0. 86 1.42 1. 03 1. 02 1. 22 1. 26 0. 64 0. 86 1. 57 1.29 0. 95 1. 30 1. 14 1. 24 1.46 0. 56 1. 28 1.74 1.40 1.19 1. 05 0. 60 1. 18 1.26 1. 13 < m >0 15. 16. 16. 15. 15. 16. 15. 13 . 15. 15. 15. 15. 15. 1 5. 16. 15 . 16. 15. 15. 1 5. 15. 15. 15. 15 . 16. 15 . 16. 15 . 15 . 14. 15 . 15 . 15 . 16. 15. 15 . 15 . 1 5. 15 . 15 . 15 . 16. 15. 15 . 15 . 66 07 04 71 21 15 69 85 69 36 77 53 20 19 06 51 29 29 66 BH 98 35 74 28 18 85 53 46 60 98 12 89 43 21 76 38 36 68 13 05 62 50 73 48 ,88 15.45 15. 15. 15. 15. 15. 14, 15. 15. 15. 15, 15, 14, 14, 15, 15 15 15 15 15 15 15 15 14 15 14 14, 15, 15 15 15 1 5 14 14 , 33 , 55 . 11 . 4 9 . 42 . 8 0 . 15 . 77 . 0 9 . 31 . 6 7 . 71 . 9 0 . 56 . 25 . 18 . 6 4 . 54 . 25 . 23 . 19 . 16 . 6 2 . 8 5 . 45 . 9 5 . 38 . 18 . 8 9 . 9 3 . 9 7 . 6 1 . 67 xo 15. 76 16. 06 16. 16 15. 63 15. 26 16. 12 15. 72 15. 94 15. 81 15. 46 15.88 15.64 15. 24 15. 27 16. 14 15. 64 16. 37 15. 48 15. 92 16. 03 16.08 15. 42 15.77 15. 55 16. 31 15. 95 16.67 15. 71 15. 77 15. 15 15. 20 16. 01 15. 56 16. 28 15.84 15. 79 15.57 15. 70 15.26 15. 21 15. 74 16. 57 15.78 15. 46 16. 00 15.64 15.48 15. 59 15. 30 15. 56 15. 40 14.89 15. 21 15. 76 15. 12 15.33 15.60 14.66 14. 84 15. 54 15. 21 15. 13 15. 51 15. 54 15. 54 15. 16 15. 33 15. 30 14. 75 15. 78 14. 53 14. 80 15. 37 15. 32 15. 98 15. 97 15. 91 14. 77 14. 57 M - m 0, 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 30 . .dl . 24 . 29 . 22 . 41 . 45 . 23 . 26 . 25 . a . 2t, . ib . 11 . 2K . 26 . <4 . 25 . 11 . 50 . 27 . 27 . 40 s I. 3. 2. 2. 3. 1. 1. (. 3. 2. 2. 4. 1. 2. 2. 2. 1. i . i . 2. I. 2. 1. 3. 2. 1. 2. 3. 4. 3. 2. 2. 2. 2. 2. 3. 3. 3. 3. 2. 3. 3. 3. 2. 1. 2. 2. 1. 2. 0. 1. 1. 0. 1. 1. 1. 3. 1. 1. 2. 3. 1. 1. 1. 1. 3 1 9 0 1 3 7 4 2 K 4 0 7 7 7 4 ') 0 4 6 H 5 2 7 9 8 7 ?4 7 5 1 4 4 6 6 6 3 1 7 6 0 0 7 1 1 7 0 0 9 4 0 , 9 1 . 3 . 3 2 . 0 2 7 6 9 4 ,6 , 2 A l 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1, 1, 1, 1 1 0 0 1 1 0 1 0 0 1 0 1, 1, 0, 0, 0, 0 0 0 1 4-1 70 52 26 H6 H6 57 77 69 HI 6 2 H6 53 61 i') 51 55 68 09 5H 63 91 52 27 82 4 i 70 86 65 69 64 64 57 49 35 99 72 06 43 00 32 61 78 04 , 81 . 84 , 88 . 9 2 . 71 , 30 , 58 . 6 8 . 6 0 . 31 . 8 6 . 07 . 03 . 0 2 . 05 . 26 . 6 4 . 83 . 38 . 14 . 63 . 30 . 6 4 . 71 . 0 6 . 56 . 18 . 7 4 . 97 . 76 . 80 . 52 . 9 7 . 70 . 04 A 2 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 35 7 2 SI IK 8 8 2 i 1 9 H4 6 3 7<> SI 0 4 r,55 35 42 J4 (>') 19 46 S(, 8 6 2 0 J3 7b 26 66 98 82 79 55 45 46 0. 40 0. 1. 32 11 0. 81 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0, 0, 0. 0, 0. , 46 .46 77 65 , 6 3 . 28 . 50 . 74 . 94 . 8 9 , 77 . 72 . 28 . 05 . 4 8 . 55 0. 00 0. 0, 0, 0. 0, 0 0, 0, . 00 . 71 . 41 . 00 . 35 . 00 . 00 . 0 8 0. 36 0. 30 0 . 6 6 0. 47 0 0 0 0 0. 0, 0, 0, 0 0 0 0 0 . 49 . 6 4 . 55 . 00 . 23 . 30 . 88 . 86 . 49 . 17 . 45 . 6 4 . 20 d m 0. 00 0.60 0. 00 0. 35 0. 40 0. 81 0. 35 0. 00 0. 40 0.79 0. 52 0. 35 0. 52 0. 00 0. 00 0. 88 0. 22 0. 15 0. 58 0. 11 0. 53 0. 22 0. 00 0. 81 0. 00 0. 15 0. 95 0.00 0. 52 0. 70 0. 79 0. 50 0. 28 0. 00 0.77 0.95 0. 22 0. 00 0.67 0. 36 0. 00 0.88 0. 00 0. 00 0. 79 0. 00 0. 38 0. 31 0. 56 0. 03 0. 79 0. 00 0. 50 1. 03 0. 43 0. 70 0. 00 0.88 0.77 0. 00 0. 79 0. 36 0. 88 0. 00 0. 67 0. 00 0. 48 0. 10 0. 31 0. 90 0. 30 0. 58 0. 00 0. 79 0. 00 0. 00 0. 74 0. 30 0. 11 181 TABLE 4.?Light-curve parameters for periodic variables (*in Column 1 denotes W Virginis stars; in Column 2 denotes variable periods).?Continued Period log P 1873 1351 2225 2202 1464 2189 827 1345 1438 1373 1326 1933 1454 10366 1996 1335 1386 1579 2088 1695 843 12901* 2233 1442 1560 12108 1481 1372 1482 1328 854 1787 1835 1333 828 1533 1954 822 1828* 1925 1478 1342 1884 817 1541 2222 1543 1522 2209 1430 11129 2205 847 10353 1501 819 863 1967 12951 1451 1369 823 10357 1636 855 840 865 2064 2231 11182 2195 837 1877 824 11157 834 829 206* 821 1956 12.941131 1 13.084381 1 13.154599 1 13.182314 1 13.295751 1 13.459131 1 13.465656 1 13.476726 ] 13.646365 1 13.709355 1 13.7274 1 13.780938 1 14.068061 ] 14.135674 14.240957 J 14. 3806 14.428973 14. 573011 14.578832 14.596196 14. 714971 15. 074089 15.172204 15.287481 15. 509166 15.610365 15.651902 15. 774115 15.82769 15.840831 15.953034 16.196955 16.244842 16. 289 16.296996 16. 435021 16.700904 16.742006 17.195722 17.199567 17.532786 17.938507 18.116598 18.892520* 19.326884 19.985803 20. 454500 22.14355 22. 650006 23. 97284 24. 4757 25. 432997 27. 057009 27. 228396 27.406271 28. 443029 28.961606 29.0533* 29. 989504 30.063434 31. 024 31. 925 32. 012175 32. 746 32. 941331 33.039284 33. 326668 33.663263 36.67924 39.199 41.809912 42.680324* 49.667 65.798 68.9085 73. 589* 88. 5* 107. 8* 127.78 209. 996 .1120 .1167 . 1191 . 1200 . 1237 . 1290 .1292 . 1296 . 1350 . 1370 . 1374 .1392 . 1482 . 1503 .1535 . 1578 . 1592 . 1635 .1637 . 1642 .1678 . 1782 . 1810 . 1843 .1906 . 1934 .1946 .1979 .1994 . 1998 . 2028 . 2094 .2107 .2119 . 2121 . 2158 . 2227 L.2238 . 2354 I. 2355 L. 2439 .2538 1.2581 t. 2762 1. 2862 1. 3007 1. 3108 1.3452 .. 3551 1. 3797 1.3887 1.4054 1.4323 1.4350 1.4379 1.4539 1.4618 1.4631 1.4770 1.4780 1.4916 1. 5041 1. 5053 1.5152 1.5177 1. 5190 1. 5228 1.5272 1.5644 1.5933 1.6213 1.6302 1.6961 1.8182 1.8383 1.8668 1.9469 2.0162 2.1065 2. 3222 14. 48 14. 00 15. 24 14. 34 14. 70 14. 50 14. 14 14. 06 14. 32 14. 91 14. 95 14. 17 14. 95 14. 44 14. 94 14. 20 14.68 14. 06 14. 14 14. 60 14. 82 17. 16 14. 32 14.06 14. 27 14. 19 14. 23 14. 27 14. 48 14. 32 13. 92 14. 30 14.78 14. 14 15. 46 15. 01 1 3. 60 13. 55 16. 55 13. 61 15. 03 13. 93 14. 54 13. 63 13. 96 14. 27 14. 11 14. 05 1 3. 55 13. 46 14. 41 14. 28 13. 69 14. 29 14. 15 13.68 13. 58 13. 70 14. 22 13.66 14. 11 13. 34: 13. 28 13. 78 14. 04 13. 31 14. 07 13. 71 14. 16 13. 86 12.99 13. 20 13. 34 11. 89 13. 18 12. 30 12. 24 14. 00 11. 73 11. 59 16. 17 15. 29 16.03 ( 15. 39 15. 72 15. 80 15. 20 . 6 9 . 2 9 ). 79 . 05 . 0 2 . 30 . 06 15.04 0.96 15.84 . 52 15.61 0.70 15.97 . 0 2 15.16 0.99 16. 26 15. 54 16.48 15. 53 16. 18 15. 40 16. 23 15.63 16. 21 17.80 15. 80 15. 60 15.46 15. 45 15.65 15. 73 16. 25 16. 00 15. 82 15. 52 16. 18 15. 62 16.63 16. 34 14. 87 15.42 17.98 14. 81 15.87 14.72 16.01 15. 04 14. 84 15.70 15. 94 15.66 14. 74 14. 86 16. 04 16. 12 15. 06 15. 51 15. 56 15. 11 15.65 15. 00 15. 31 15. 41 15. 08 15. 08: 15. 13 14. 61 14. 73 14. 61 15. 59 15. 18 15.66 15. 07 14. 27 14. 56 14. 56 13. 63 13.90 13. 23 13. 16 15. 50 12. 65 12. 84 . 31 . 10 . 54 . 33 . 50 . 34 J. 09 . 03 . 3 9 ). 64 . 4 8 . 54 . 19 I. 26 1.42 . 4 6 1.77 1.68 I. 90 L. 22 1. 40 1.48 I. 17 1.33 I. 27 1.87 I. 43 1. 20 3.77 D. 79 1.47 1.41 D. 88 1. 43 1.83 1.61 1.19 1.40 1.63 I. 84 1.37 1. 22 1. 41 1.43 2.07 1. 30 1. 09 1. 71 3. 97 1. 74 1.85 0. 83 0. 69 1. 30 1. 52 1.47 1. 50 1. 21 1. 28 1. 36 1. 22 1. 74 0.82 0. 93 0. 85 1. 50 0. 92 1. 25 15. 31 14. 81 15. 58 14.91 15. 30 15. 06 14. 69 14. 57 15. 20 15. 31 15. 22 14.62 15. 58 15. 06 15.77 14. 97 15. 54 14. 80 15. 34 15. 15 15.66 17. 36 15. 14 14. 97 14. 84 14. 83 15. 10 15.00 15.66 15. 24 14. 85 15. 10 15. 53 14.99 16.09 15.60 14. 20 14.67 17. 28 14. 27 15. 46 14. 35 15. 28 14. 40 14. 36 15. 10 14.89 14. 81 14. 15 14. 20 15. 22 15. 43 14. 50 14. 89 14.69 14. 45 14. 86 14. 27 14. 83 14. 73 14. 53 14. 24: 14. 37 14. 22 14. 33 13. 88 14. 99 14. 16 15. 11 14. 44 13. 68 13. 90 13. 97 12.75 13. 53 12. 82 12. 68 14. 62 12. 15 12. 03 15.51 14.64 15.63 14.90 15.31 1 5. 26 14.68 14.64 15.04 15.32 15.51 14.77 15.64 15.03 15.85 14.99 15.58 14. 83 15.49 15.15 15.68 17.40 15.06 15.00 14.97 14.92 14.99 15.16 15.44 15.34 15.16 15.08 15.66 15.06 16. 22 15.79 14. 30 14.79 17.38 14.27 15.58 14.40 15.37 14.44 14.49 15.17 15.20 15.09 14. 26 14.40 15.43 15.53 14.57 15.03 15.03 14.61 15.08 14.49 14.89 14.74 14.66 14.51: 14. 56 14.29 14.47 14.19 15.09 14.69 15.08 14.55 13.85 14.04 14.11 12.99 13.52 12.90 12.80 14.80 12.17 12.30 1.3 1.3 1.6 2. 4 2. 1 1.4 2. 2 1.2 2. 1 1.7 1.5 1.6 2. 3 2. 3 2. 5 4. 0 1.6 2 . 9 2. 1 1.3 2 . 8 2. 3 2. 1 1.6 2 . 6 1.7 2 . 6 3 . 9 3 . 6 3. 1 3. 1 4 . 0 2. 2 5. 1 3 . 2 1.7 2 . 8 1.6 1.9 2 . 7 3 . 2 2. 4 4. 0 6. 5 3. 0 6 . 6 3 . 8 2 . 6 3 . 2 4. 1 6. 5 2 . 6 2. 7 2. 7 1.9 6. 3 . . 11.0 2. 8 3 . 0 8. 2 6. 2 3 . 6 2. 8 2. 0 5. 3 2. 8 3. 0 3 . 4 1.6 4. 1 2. 0 1.6 1.2 1.9 1. 16 1. 14 0. 70 0.86 0. 72 0. 96 0. 91 0. 70 1. 40 0. 52 0.82 0. 68 1. 10 0. 90 1. 11 0. 96 1. 05 1. 00 1. 30 0. 84 0. 93 0. 70 1. 30 1.05 0. 86 0.93 1. 16 1. 01 1.42 1.16 1. 17 0. 78 0. 92 0. 98 0.73 0. 97 1. 01 1. 12 0. 94 0. 96 0. 52 0. 57 1. 14 1. 06 0. 61 0.99 1. 30 1. 00 0. 87 0. 81 1. 08 1.05 0. 86 0. 84 0.93 0. 89 1.00 0. 90 0.75 1. 18 0.74 1. 01 1. 00 0. 56 0. 46 0. 75 0.88 0. 86 1. 02 0. 91 0.75 0. 92 0. 80 1. 13 0. 67 0. 58 0. 64 1. 23 0. 85 0. 95 0. 92 0. 30 0. 18 0. 40 0. 59 0. 68 0. 31 0. 53 0. 27 0. 36 0. 42 0. 48 0. 43 0. 42 0. 88 0. 76 0. 90 0. 80 1. 56 0. 39 0. 92 0.47 0. 34 0.99 0.68 0.66 0. 54 0.91 0. 72 1. 04 1. 43 0.88 0. 95 1.01 0. 88 0.73 0. 42 1.50 0.99 0. 48 0. 49 0. 30 0.66 0. 52 0. 55 0. 94 1. 06 1. 21 0. 65 1. 18 1. 09 1. 56 1. 01 0. 76 0. 97 1.09 1. 74 0. 81 0. 69 1. 08 0. 46 1.46 1. 68 0. 53 0. 46 1. 14 1. 28 0. 96 0. 96 0. 60 1. 03 0. 87 0. 82 1. 24 0. 31 0. 71 0. 43 0. 57 0. 17 0. 59 0,07 0. 79 0. 00 0. 00 0. 85 0. 00 0. 36 0. 50 0. 70 0. 72 0. 00 0. 00 0.85 0. 00 0. 30 0. 45 0.88 0. 57 0. 00 0. 15 0. 17 0. 00 0. 00 0.90 0. 60 0. 31 0. 85 0.77 0.79 0. 00 0. 30 0. 02 0. 22 0. 45 0. 85 0. 60 0. 00 0. 79 0. 00 0. 09 0. 85 0. 50 0. 00 0. 00 0. 70 0. 00 0. 74 0. 70 0. 00 0. 70 0. 70 0. 00 0. 02 0. 81 0. 60 0. 79 0. 00 0. 00 0. 00 0. 85 0. 74 0. 34 0. 70 0. 36 0. 30 0. 17 0. 00 0. 00 0. 00 0. 03 0. 00 0. 00 0. 00 0. 59 0. 00 0. 17 0. 56 0. 00 0. 79 0. 30 182 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 5.?Frequency of period jor 1155 Cepheids Period >1 <2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 (M-m) No. of stars 2 5 2 2 3 2 1 8 3 98 57 35 2 7 1 5 12 13 < 0. 3 Period >11 <12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 > 2 0 No. of stars 8 9 11 9 10 7 4 2 2 3 4 (M-m) Period < 1 >1 <2 2 3 3 4 > 0. 3 No. of stars 11 72 39 13 TABLE 6.?Frequency of log P for 1155 Cepheids > 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0 . 0 . 0 . 0. 0 . 0 . 0. 0 . 0 . l o g 00 < 0 5 10 15 2 0 2 5 3 0 3 5 4 0 45 5 0 55 6 0 6 5 70 75 80 85 9 0 9 5 P 0. 0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0 . 0. 0. 0 . 0. 0. 0 . 1. 0 5 1 0 15 2 0 25 30 3 5 4 0 4 5 50 55 6 0 6 5 7 0 75 80 85 90 9 5 0 0 (M-m No. of stars 1 1 7 3 8 5 7 7 3 64 5 5 57 65 98 7 5 66 4 5 5 5 34 35 24 2 3 16 13 < 0. > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 l o g 00 < 0 5 10 15 2 0 2 5 3 0 3 5 4 0 . 4 5 . 50 . 55 . 6 0 . 6 5 . 80 . 85 . 90 . 00 . 10 . 3 0 P 1 . 1 . 1. 1. 1. 1. 1 . 1 . 1. 1 . 1. 1. 1 . 1 . 1. 1 . 1. 2 . 2 . 2 . 0 5 1 0 15 2 0 25 30 3 5 4 0 4 5 5 0 55 60 6 5 7 0 85 90 95 05 15 3 5 No. of stars 1 5 1 3 14 17 11 4 3 3 4 6 7 2 2 1 2 1 1 1 1 1 > -0. - 0 . - 0 . - 0 . - 0 . - 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. (M-m) > 0. l o g 35 < 3 0 2 5 15 10 05 0 0 0 5 10 15 2 0 2 5 3 0 3 5 4 0 4 5 5 0 55 P -0. 30 -0.25 -0. 20 -0. 10 -0. 05 0. 00 0. 05 0. 10 0. 15 0. 20 0.25 0. 30 0. 35 0. 40 0.45 0. 50 0. 55 0. 60 3 No. of stars 1 1 1 2 4 2 5 5 1 0 1 1 11 29 1 3 1 2 6 15 6 1 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD TABLE 7.?Numbers of Cepheids within given intervals of period 183 Period (days) < 2 > 2 < 3 > 3 < 4 > 4 < 5 < 5 > 5 < 10 > 10 <20 > 2 0 This paper 324 271 196 98 889 146 75 34 Shapley and Nail (1955) 160 144 102 57 463 106* 62* 33* Ratio 2. 03 1. 88 1. 92 1. 72 1. 92 1. 38 1.21 1. 03 TABLE 8.?Frequency oj for 1151 Cepheid variables Magnitude limits 12.00-12.19 12.60-12.19 12.80-12.99 13.40-13. 59 13. 60-13.79 13.80-13. 99 14.00-14.19 14.20-14.39 14.40-14. 59 14.60-14.79 No. of stars 2 2 1 1 1 3 2 10 7 10 Magnitude limits 14.80-14. 99 15. 00-15. 19 15. 20-15. 39 15.40-15. 59 15. 60-15.79 15.80-15.99 16.00-16. 19 16. 20-16. 37 16.40-16. 59 16. 60-16.79 No. of stars 20 21 27 28 42 50 83 117 147 147 Magnitude limits 16.80-16. 99 17.00-17. 19 17.20-17. 39 17.40-17. 59 17.60-17.79 17.80-17. 99 18.00-18. 19 18.20-18. 39 18.40-18.49 No. of stars 130 152 88 43 16 7 2 1 1 TABLE 9.?Least-squares solutions for the period-luminosity relation Solution no. 1 2 3 4 5 6 7 8 P > P > P > P > P > P > P > A > Selection l d l d , (M-m) < 0. 3 l d < 5d (M-m)>0. l d < 8 d 3 d < 8d 8 d I 6 d 3 No. of stars 1139 986 147 1005 502 133 47 313 Solutions Zero 17. 52 17.63 17. 12 17.43 17. 58 17.67 18. 81 17. 58 point ? ? ? ? ? ? ? ? 0. 01 0. 01 0. 03 0. 02 0. 04 0. 13 0. 28 0. 03 for+l . >?1 . + 1. + 1. + 1. + 1. + 0. + 0. + 0. + 0. + 0. + 0. + 0. + 0. +0. 0. - 0 . - 0 . - 0 . - 0 . - 0 . - 0 . - 0 . - 0 . - 0 . - 1 . - 1 . - 1 . 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 0 1 2 Sol. 2 0 0. 0 0. 1 0. 0 0. 0 0. 0 0. 1 0. 0 0. 3 0. 7 1.6 3 . 4 4. 7 6 . 4 9-9 10.2 11. 7 13. 1 12.2 7 .6 6. 7 3 . 6 3. 3 2. 5 0. 7 0 .3 0 . 4 0. 1 0. 1 Sol. 2 0 0. 0 0. 0 0. 0 0. 1 0. 0 0. 0 0 .2 0. 5 0. 9 1. 7 3 . 2 4. 1 7 . 4 8 .3 12. 8 10. 8 12. 7 10.7 8 . 4 7 . 4 4 . 2 2 . 6 2 . 2 0 .9 0 .5 0 . 2 0 .2 0. 0 S o l < m 0. 0. 0. 0. 0. 0. 0. 0. 1 . 2 . 2 . 5. 5. 9. 1 0 . 1 1 . 13 . 1 1 . 8. 7. 4 . 3. 2 . 0. 0. 0 . 0. 0. 5 >0 2 0 0 2 0 0 0 0 0 4 2 2 8 2 8 3 5 7 0 4 2 6 8 4 2 0 0 0 Sol. < m 0 0 0 0 0 0 0 0 1 2 3 4 8 4 11 14 11 13 8 5 4 2 2 0 1 0 0 0 8 0 0 0 0 0 0 0 0 3 0 9 2 2 3 8 5 0 8 1 9 1 5 2 2 . 3 . 0 .6 . 0 . 0 Greater than + 1. 5 + 1. 4 + 1. 3 + 1.2 + 1. 1 + 1. 0 + 0. 9 +0. 8 +0. 7 + 0 . 6 +0. 5 +0.4 +0. 3 +0.2 +0. 1 0. 0 -0 . 1 -0 .2 -0 . 3 - 0 . 4 - 0 . 5 -0 .6 -0 . 7 -0 . 8 - 0 .9 - 1 . 0 - 1 . 1 -1 .2 Sol. 2 0 0. 0 0. 1 0. 1 0. 1 0. 1 0 . 2 0. 2 0. 5 1. 2 2. 8 6 . 2 10. 9 17. 3 27.2 37.4 49. 1 62.2 74. 4 82. 0 88. 7 92. 6 95.9 98.4 99. 1 99.4 99. 8 99. 9 100. 0 Sol. xo n. 0. 0. 0. 0. 0. 0. 0. 1. 3. 6. 10. 18. 26 . 39. 50 62 73. 81 89. 93 96 98 99 99 99 100 2 0 0 0 1 1 1 3 8 7 4 6 7 1 4 2 0 7 4 8 2 4 0 2 1 6 8 0 Sol. < n i 0. 0. 0 . 0. 0. 0. 0. 0. 1. 3. 6. 1 1 . 17. 26 . 37. 48 . 6 1 . 73 . 8 1 . 88. 93. 96. 99. 99. 100. 5 >0 2 2 2 4 4 4 4 4 4 8 0 2 0 2 0 3 8 5 5 7 1 7 5 9 1 Sol. 8 < m ) 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 3 1. 3 4. 2 7. 4 11.6 19. 9 24. 7 36.2 50.2 62. 0 75. 1 84. 0 89. 1 93. 6 95. 8 98. 0 98. 3 99.3 99. 9 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 185 T A B L E 11.?? Test for constancy of period HV 11197 2022 2019 2035 11 199 848 2014 844 2002 11192 2021 850 2046 1923 1981 1850 2049 1809 2000 1974 2027 Period (Harvard) 1.073493 ?0.000004 1.308877 4 1.629511 2 1.979418 6 2.095233 7 2.172770 2 2.203742 6 2.217580 3 2.346362 6 2.354104 7 2.489228 8 2. 532543 4 2.557713 7 2.566228 12 2.722555 10 2.755618 8 2.800893 9 2.825761 9 2.884008 7 2.893108 6 2.982519 5 Period (Arp) 1.0736 ?0.0002 1.3090 5 1.6303 4 1.9800 9 2.0952 9 2. 178 1 2.2028 8 2.219 1 2. 345 1 2.3543 7 2.4875 10 2.5350 7 2. 554 1 2. 564 1 2. 724 1 2.760 2 2.800 2 2.825 2 2.880 2 2.896 1 2.984 2 Difference (H -A) -0.00011 ?0.0002 -0.00012 5 -0.00079 4 -0.00058 9 +0.000033 9 -0.0052 1 -0. 00094 8 -0.0014 1 + 0. 0014 1 -0.00020 7 +0.0017 10 -0.0025 7 +0.0037 1 +0.0022 1 -0.0014 1 -0.0044 2 +0.00089 2 +0.00076 2 +0.0041 2 -0.0029 1 -0.0015 2 xl -0.0000029 ?0.0000035 -0.0000022 27 +0.0000041 13 -0.0000027 28 +0.00000053 32 +0.0000016 11 +0.0000048 27 -0.0000016 13 -0.0000027 27 -0.0000054 30 -0.0000034 34 -0.0000013 16 -0.00000087 28 -0.0000028 46 +0.000020 4 -0.0000058 30 -0.0000013 33 -0.000011 3 +0.0000018 23 -0.000016 2 +0.0000048 18 X2 -0.0000057 ?0.0000046 -0.0000043 63 +0.0000061 21 -0.0000032 56 +0.0000015 33 +0.0000027 13 +0.0000036 26 -0.0000035 15 -0.0000054 45 +0.000014 6 -0.0000095 63 -0.0000033 19 +0.0000038 50 +0.000029 9 +0.000019 15 -0.0000040 30 -0.0000012 33 -0.000011 3 +0.0000018 23 -0.000016 2 +0.0000098 19 y +0.0000000011 ?0.0000000011 -0.0000000012 11 -0.0000000009 7 +0.0000000002 2 +0.0000000020 12 +0.0000000007 4 +0.0000000026 11 +0.0000000011 5 +0.0000000010 13 -0.0000000074 21 +0.0000000029 25 +0.0000000012 6 +0.0000000029 26 +0.000000013 4 +0.0000000003 42 +0.0000000032 14 -0.0000000016 16 +0.0000000003 23 -0.0000000003 10 -0.0000000019 9 +0.0000000045 10 186 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 11.? Test jor constancy oj period.?Continued HV 1898 1987 11206 1891 1793 1994 1825 1966 1785 1934 1827 1903 1929 1892 1858 11193 1945 1855 1905 1950 1768 Period (Harvard) 3.018713 10 3. 130851 10 3.399471 19 3.451489 9 4.181441 18 4.213400 23 4.260377 36 4.269964 24 4.729944 71 4.874815 62 4.921478 97 5.094892 63 5. 584440 63 5.653194 50 6.111834 38 6.427066 166 6.468724 124 6.839898 41 7.416802 88 7.990220 162 9.808249 20 Period (Arp) 3.021 1 3. 130 1 3.400 2 3.451 2 4. 180 4 4.217 3 4.265 3 4.270 2 4.725 3 4.885 3 4. 924 2 5.091 4 5. 579 7 5.660 5 6. 120 7 6.440 8 6.465 5 6.830 6 7.413 10 7. 980 1 9.798 1 Difference (H - A) -0.0029 1 +0.00085 1 -0.00053 2 +0.00049 2 +0.0014 4 -0.0036 3 -0.0046 3 -0.000006 2 +0.0049 3 +0.0098 3 -0.0025 2 +0.0039 4 +0.0054 7 -0.0068 5 -0.0082 7 -0. 0129 8 +0.0037 5 +0.0099 6 +0.0038 10 +0.010 1 +0.010 1 xl -0.0000074 32 -0.000016 3 +0.000016 6 -0.0000026 27 +0.0000088 44 -0.000019 6 -0.000025 8 -0.0000069 55 -0.0000081 15 +0.000027 13 +0.000080 20 +0.0000099 48 +0.0000062 11 -0.000018 9 -0.000014 6 +0.000027 26 +0.000030 19 +0.0000095 61 -0.000028 12 +0.0000029 20 +0.0000044 20 X2 -0.000012 3 -0.000012 4 +0.000021 5 -0.0000020 28 +0.000013 5 -0.000034 11 -0.000026 13 -0.000018 12 -0.000020 30 +0.000078 29 -0.0000091 64 +0.0000084 41 +0.000035 27 -0.000014 12 -0.000012 10 +0.000025 28 +0.000033 22 +0.000012 9 -0.000029 10 +0.0000050 21 -0.000031 27 y -0.0000000086 15 -0.0000000037 14 -0.000000081 32 +0.0000000018 18 +0.0000000075 38 +0.000000012 8 +0.0000000017 11 +0.0000000095 88 +0.000000017 36 -0.000000043 22 +0.000000048 33 -0.000000014 3 -0.000000029 25 +0.000000043 99 +0.0000000008 30 +0.000000076 30 +0.0000000048 20 +0.0000000014 35 +0.000000055 13 -0.000000014 27 -0.000000031 16 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 137 TABLE 11.?Test jor constancy of period.?Continued HV 2060 2063 2017 1744 187 3 1933 1695 843 1787 1954 192 5 1884 817 2222 1543 1522 2209 1430 11129 2205 847 Period (Harvard) 10.18447 32 11.166230 25 11.407450 19 12.62 3872 20 12.941131 17 13.780938 24 14.596196 22 14.714971 32 16.196955 68 16.700904 58 17.199567 71 18.116598 48 18.892520 83 19.98 5803 65 20.454500 10 22.14355 43 22.650006 64 23.97284 10 24.4757 11 25.432997 86 27.057009 78 Period (Arp) 10.21 1 11. 18 2 11.43 2 12.59 3 12.91 2 13.76 4 14. 50 5 14.70 2 16.22 4 16.71 2 17.18 7 18.11 4 -- -- -- -- -- -- -- -- 27.2 1 Difference (H - A) -0. -0. -0. + 0. + 0. + 0. + 0. + 0. -0. -0. +0. + 0. - - - - - - - - -0. 026 1 014 2 022 2 034 3 031 2 021 4 096 5 015 2 023 4 0091 2 020 7 0066 4 - - - - - - - - 143 1 xl -0.00015 3 -0.000079 23 +0.000020 16 -0.000056 16 -0.000024 13 -0.0000020 18 -0.0000033 15 +0.000025 22 -0.000087 42 -0.000065 35 -0.00014 4 -0.000038 26 +0.00040 4 -0.000058 32 -0.000097 50 +0.000025 20 +0.000041 28 +0.000018 42 +0.00026 4 -0.000027 34 -0.000029 29 +0. -0. +0. -0. -0. -0. -0. +0. +0. +0. -0. -0. +0. -0. -0. +0. -0. +0. +0. -0. -0. X2 000043 94 000059 53 000042 34 000048 15 000016 12 0000012 18 000083 19 000026 23 00024 17 00010 5 00021 9 000096 24 00022 5 000056 53 00071 14 0000058 32 000042 36 000045 44 00025 5 000027 34 000066 46 -0. -0. -0. -0. +0. +0. -0. +0. -0. -0. +0. -0. +0. +0. -0. -0. +0. -0. +0. +0. -0. y 00000039 18 000000070 12 000000043 58 000000083 31 00000011 3 000000012 45 000000079 14 000000029 58 00000089 45 00000063 17 00000021 29 00000042 3 00000086 17 0000000051 16 0000013 3 000000026 35 00000039 16 00000028 16 00000017 22 00000019 15 000000067 66 797-819 O?C 188 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 11.? Testjor constancy oj period.?Continued HV 10353 1501 819 863 1967 1451 1369 823 10357 1636 855 840 865 2064 2231 11182 2195 837 1877 824 11157 834 829 821 Period (Harvard) 27.228396 10 27.406271 11 28.443029 84 28.961606 11 29.040221 61 30.063434 11 31.023 3 31.92 5 1 32.012175 14 32.746 23 32.941331 31 33.039284 19 33.326668 13 33.663223 35 36.67924 23 39.199 21 41.809912 17 42.680324 79 49.667 15 65.798 7 68.9085 95 73. 589 11 87.627059 45 127.78 44 Period (Arp) - - - - - - - - 29.1 1 - - - - - - - - - - - - 33.1 2 - - 33.7 3 - - 39.6 2 - - 42.6 4 49. 5 3 - - - - - - Difference (H - A) - - - - - - - - -0.059 1 - - - - - - - - - - - - -0.061 2 - - -0.037 3 - - -0.401 2 - - +0.080 4 +0.167 3 - - - - - - x l -0.000075 38 +0.00012 4 +0.000029 30 +0.000054 39 -0.0010 2 +0.00011 4 -0.00028 11 +0.000014 31 +0.00019 4 -0.000027 70 +0.00025 10 +0.00014 6 -0.000068 39 +0.0000006-! 10 +0.000011 64 +0.000047 54 -0.000059 40 -0.0000090 18 -0.00040 29 +0.000057 11 +0.00030 14 -0.00015 15 +0.00029 -0.0032 8 X2 -0.000056 48 +0.00011 4 +0.000069 42 -0.000032 46 -0.0010 2 +0.00010 4 -0.000028 18 +0.000048 x50 +0.00018 5 -0.00022 13 +0.00032 27 +0.00013 6 +0.0011 1 +0.00013 18 +0.000022 67 +0.00013 8 -0.000064 44 -0.046 10 -0.00066 33 +0.0000001 13 +0.00024 14 -0.00044 13 +0.012 Q O -0.00020 21 y +0.00000017 24 +0.00000036 19 +0.000000088 66 -0.00000075 25 -0.0000022 11 -0.000000033 18 -0.0000022 12 -0.00000014 9 +0.00000026 28 -0.00000035 21 -0.00000039 15 +0.00000054 30 +0.0000013 6 -0.0000014 15 -0.00000037 50 +0.00000023 16 -0.00000010 35 +0.00023 6 +0.000012 7 +0.0000013 19 +0.0000018 14 +0.000010 20 -0.00064 14 -0.000057 36 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 189 TABLE 12.?HV 2019 (P=1.629511; P ' = 1.629518?0.000002; P A = 1.6303?0.0004) Maximum 2181 5.779 23347.528 23596.901 23974.863 24504.568 25881.416 26313.268 26567.522 26598.466 26981. 369 27680.449 28477.315 29808. 570 29839.571 29870.495 29906.327 29927.538 30507.635 30659.244 31589.631 31998.632 32034.503 32800.380 33160.533 35518.366* 35658.479* Epochs P -0 . 032 939.973 1093.009 1 324. 957 1650.027 2494.972 2759.992 2916.022 2935.012 3169. 993 3599.005 4088.026 4904.992 4924.017 4942.994 4964.984 4978.000 5333.995 5427.035 5997.995 6248.991 6271.005 6741.009 6962.028 8408.985 8494.970 P' -0 . 032 939.988 1093. 023 1324.970 1650.038 2494.980 2759.998 2916.028 2935.017 3169.997 3599.006 4088.026 4904.988 4924.012 4942.990 4964.979 4977.996 5333.988 5427.028 5997.986 6248.980 6270.996 6740.996 6962.016 8408.964 8494.948 P A -0.033 939. 518 1092.479 1324. 315 1649.228 2493.764 2758.656 2914. 611 2933. 591 3168.458 2597.262 4086.047 4902.618 4921.633 4940.602 4962.580 4975. 591 5331.413 5424.408 5995. 092 6245.967 6267. 970 6737.746 6958.658 8404. 915 8490.586 ?Maximum from Arp (1960a). TABLE 13.?HV 848 (P=2.172770?0.000002;PA=2.178?0.001) TABLE 14.?HV 2021 (P=2.489228 ? 0.000008; PA=2.4875?0.0010) Maximum 13861.607 14604. 612 16755.544 16755.628 21813.786 24025.729 24440.-733 25944.340 26626.464 27341.376 28034.526 28045. 406 28373.456 29468.565 29542.397 29566.245 29870.451 29870.495 30344.270 30648. 337 30659. 244 31291.478 31669.540 32508.261 32860.256 33129.642 34685.312 34685. 415 35452.559* 35476.401* Epochs P 0. 039 342.000 1331.958 1331.988 3659.965 4677.995 4868. 997 5561.020 5874.962 6203.995 6523.011 6528.019 6679.001 7183.016 7216.997 7227.973 7367.981 7368.001 7586.053 7725.997 7731.017 8021.997 8195.997 8582.012 8744.015 8867.998 9583.982 9584.030 9937.102 9948.075 P A 0. 039 341. 180 1328.752 1328.791 3651.178 4666.763 4857.307 5547.688 5860.857 6189. 099 6507.350 6512.346 6662.965 7165. 771 7199. 670 7210. 619 7350.291 7350.311 7567.839 7707.448 7712.455 8002.737 8176. 320 8561.407 8723.021 8846.706 9560.972 9561.019 9913. 244 9924. 190 Maximum 23343.558 23704.772 23965.832 24025.729 24331.824 24468. 688 24824.624 26313.268 26328.373 26559.611 26564. 625 26594.456 26945.391 27341.376 27749.451 27779.315 29108.594 29454.660 29484.460 29514.379 29554.242 29780. 631 29927. 486 29927. 538 30507.635 31321.524 31416.257 31642.644 31657.596 31702.459 32790.387 34684.405 34689.458 35458.521* 35518.366* Epochs P -0. 011 145. 100 249.976 274.038 397. 006 451.988 594.979 1193.013 1199. 082 1291.977 1293.991 1305.975 1446.957 1606. 036 1769.973 1781. 970 2315.983 2455.008 2466.980 2478.999 2495.013 2585.960 2644. 957 2644. 978 2878. 021 3204. 985 3243.042 3333.989 3339.996 3358. 019 3795.073 4555.959 4557.989 4866.945 4890.987 P A -0. 01 1 145. 200 250. 149 274.228 397.282 452.302 595.392 1193. 842 1199. 914 1292.874 1294.890 1306. 882 1447. 962 1607. 152 1771.202 1783. 207 2317. 591 2456.713 2468. 693 2480.721 2496.746 2587.756 2646. 794 2646. 815 2880. 019 3207. 21 1 3245.294 3336.304 3342.315 3360.351 3797.708 4559.123 4561.154 4870. 325 4894.383 ?Maximum from Arp (1960a). ?Maximum from Arp (1960a). 190 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 15.?HV 1923 (P=2.566228; P'=2.566221 ?0.000012; PA=2.564?0.001) Maximum 23595.881 23667.803 26308.461 26567. 562 26626.464 27750.478 27786.361 28040.467 28371.501 29585.264 29808.570 29826. 594 29906.234 30578. 503 31589.631 31697.371 31782.262 32136.259 32462.292 32508.261 32880.399 33211.448 35431.397* 3 5449. 371* 35636.516* Epochs P 0. 024 28.050 1057. 054 1158.004 1180.973 1618.975 1632.958 1731.977 1860.973 2333.949 2420. 966 2427.990 2459.024 2720.991 3115.005 3156.988 3190.069 3328.013 3455.061 3472.974 3617. 987 3746.989 4612.052 4619. 057 4691.983 P ' 0.019 28.045 1057.051 1158.002 1180.970 1618.970 1632.957 1731.976 1860.973 2333.950 2420.967 2427.990 2459.024 2720.993 3115.007 3156.991 3190.071 3328.016 3455.064 3472.977 3617.991 3746.994 4612.059 4619.063 4691.989 P A 0. 018 28.069 1057.968 1159.006 1181.994 1620.377 1634.372 1733.478 1862.586 2335.973 2423.066 2430.096 2461.157 2723.352 3117.709 3159.729 3192.838 3330.902 34 58.060 3475.989 3621.129 3750.243 4616.059 4623. 069 4696.058 ?Maximum from Arp (1960a). TABLE 16.?HV 2046 (P=2.557713?0.000007; PA=2.554 ?0.001) TABLE 17.?HV 1850 (P=2.755618?0.000008; PA=2.760?0.002) Maximum 23320.599 23596.901 24077.656 24417.779 26341.281 26594.456 26929.624 27658.416 27694.363 27786.361 28845.285 29791.623 29809. 528 29927.236 30548.613 31290.495 31436.285 31589.631 32060.374 32441.361 32817.346 35426. 569* 35518. 366* 35656.473* Epochs P -0. 001 108. 026 295. 989 428. 968 1181.007 1279.992 1411.034 1695.973 1710. 027 1745.996 2160.007 2530.001 2538. 001 2583.021 2826.974 3116.021 3173. 021 3233. 975 3417. 024 3566.980 3713.980 4733. 118 4769. 009 4823. 005 P A -0.001 108. 193 296.430 429.602 1182.736 1281.865 1413. 098 1698. 451 1712. 526 1748. 547 2163.161 2533.693 2540. 704 2586. 792 2830. 088 3120.566 3177.649 3237. 691 3422. 007 3571. 180 3718. 394 4740.017 4775.960 4830. 034 Maximum 16760. 780 23732.610 24418. 737 26303. 401 26328.373 26331.335 26573.519 26598. 466 26689.282 27783. 280 29566. 245 29808. 570 29902. 361 29938.243 31321.524 31379. 370 31704. 450 32462.292 32509.259 32845. 241 32878.305 32878. 349 32878.396 34300. 306 35449. 371* 35603.649* Epochs P -0. 013 2530.030 2779.022 3462.957 3472.019 3473.094 3560.981 3570.034 3602.991 3999.997 4647.026 4734.965 4769. 001 4782.023 5284.008 5305.000 5422.970 5697.987 5715.032 5836.961 5848. 956 5848.972 5848.990 6364.994 6781.983 6837.970 P A -0. 013 2526.014 2774. 610 3457.460 3466.508 3467.581 3555.329 3564.368 3597.272 3993.648 4639.650 4727. 449 4761.432 4774.432 5275. 621 5296. 580 5414.363 5688. 943 5705.960 5827.696 5839.673 5839.689 5839.706 6354.891 6771.219 6827. 1 17 ?Maximum from Arp (1960a). ?Maximum from Arp (1960a). WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 191 TABLE 18.?HV 2000 (P=2.884088?0.000002; PA=2.880?0.002) Max imum 13860. 564 23340.586 23340.676 23605. 845 23654.886 24433.677 25881. 416 26331.335 26334. 320 26547.584 27727. 294 27756.256 28373. 456 29867.456 31107. 309 31274.639 31626.627 31675.572 31701.458 31704.450 31782.262 31998. 632 32056. 390 32800. 380 32849.404 32852.298 32852. 392 32878.257 32878. 396 35603. 649* 35658.479* - 0 3286 3287 3378 3395 3666 4167 4323 4325 4398 4808 4818 5032 5550 5979 6037 6160 6176 6185 6187 6213 6289 6309 6566 6583 6584 6585 6593 6594 7538 7557 P 010 998 030 972 976 006 980 981 016 961 002 034 045 060 954 973 017 988 964 001 981 003 . 029 . 993 . 991 .994 . 027 . 995 . 043 . 970 . 981 Epochs P A -0 . 009 3291.663 3291.694 3383.766 3400.795 3671.208 4173.895 4330. 117 4331.153 4405. 203 4814.824 4824.881 5039. 181 5557.936 5988.440 6046. 541 6168. 759 6185.753 6194.742 6195.781 6222.699 6299.927 6317.982 6576.312 6593.334 6594.339 6594.371 6603.352 6603.400 7549.668 7568. 706 ?Maximum from Arp (1960a). 192 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 19.?HV 1974 (P=2.893108; P' = 2.893058?0.000006; PA=2.896?0.001) Maximum 16787.589 24763.720 25909.380 27697.456 27746.529 28371.501 28776.476 29566.245 30619.350 30648.240 30648.337 31108.274 31669.540 32135.248 33211.448 34299.274 34299.297 35427.577* 35517.365* Epochs P 0. 067 2757.005 3153. 001 3771.048 3788.010 4004.031 4144.010 4416. 993 4780.998 4790.984 4791.017 4949. 994 5143.995 5304.966 5676. 954 6052.960 6052.968 6442.957 6473. 992 P ' -0.012 2756.978 3152.981 3771.038 3788.000 4004.025 4144.007 4416. 994 4781.005 4790.991 4971.025 4950.004 5144.009 5304.983 5676.977 6052.990 6052.998 6442.993 6474.029 P A -0.014 2754.178 3149.779 3767.209 3784.153 3999.950 4139.798 4412.509 4776.150 4786.126 4786. 159 4944.977 5138.785 5299.596 5671.212 6046.843 6046.850 6436.450 6467.454 ?Maximum from Arp (1960a). TABLE 20.?HV 1994 (P=4.213400; P'=4.213321 ?0.000023; PA=4.217?0.003) Maximum 23287.716 23338.634 23751.559 23974.863 24391.838 24745.830 24821.586 26309.385 26561.629 26949. 367 28040.467 28078.342 28373.456 29780.630 29839.571 29877.448 29928.242 29928.283 30547.583 30619.350 31436.285 31655. 524 32013.653 32797.374 32818.369 32852.254 32852.298 32852.341 32852.392 33172.348 34689.458 35426.569* 35603.649* 35658.479* Epochs P -0.036 12.049 110.052 163.050 262.014 346.030 364.010 717. 121 776.988 869.013 1127.972 1136. 962 1207.003 1540. 979 1554.968 1564.958 1576.013 1576. 023 1723.006 1740.039 1934.929 1985. 963 2070.960 2256.967 2261.950 2269.992 2270.003 2270.013 2270.025 2345. 963 2706.031 2880.975 2923.003 2936.016 P ' -0.060 12.025 110.025 163.030 261.995 346.012 363.992 717.109 776.977 869.004 1127.968 1136.957 1207.000 1540.981 1554.970 1564.960 1576.016 1576.026 1723.011 1740.042 1934.938 1985.972 2070.971 2256.981 2261.964 2270.007 2270.017 2270.027 2270.039 2345.978 2706.052 2881.000 2923.028 2936.042 P A -0.059 12.015 109.934 162.887 261.766 345.710 363.675 716.484 776.300 868.240 1126.984 1135.966 1205.947 1539.638 1553. 613 1562.597 1574.642 1574.651 1721.509 1738.528 1932.251 1984.241 2069. 166 2255.013 2259. 992 2268.027 2268.038 2268.048 2268.060 2343.933 2703.693 2878.487 2920.479 2933.481 ?Maximum from Arp (1960a). WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD TABLE 21.?HV 1825 (P=4.260377; P'=4.260272?0.00004; PA=4.265?0.003) 193 Max imum 21815.779 23315.640 24363.898 24461.641 24815. 593 25944.340 26319.275 26566.612 27341.376 27746.441 27750.391 27750.478 27980.658 28078.342 28372.470 28845.285 29484.460 29514.379 29902.361 29906.327 29927.402 29927.486 29927.538 31397.251 31610.648 31734.237 31976.647 32509.259 32790.387 32833.309 35636.516* 35657.494* Epochs P -0 .022 352.026 598.074 621.013 704.097 969. 037 1057.042 1115.098 1296.951 1392.028 1392.956 1392.976 1447. 008 1469. 932 1538.970 1649. 950 1799.978 1807.001 1898.068 1898.999 1903. 946 1903.965 1903. 978 2248.942 2299.039 2328.048 2384.947 2509. 962 2575. 948 2586.023 3243.995 3248.919 P ' -0 .053 351.995 598.050 620.993 704.075 969.022 1057.029 1115.086 1296.944 1392.024 1392.951 1392.971 1447.001 1469.930 1538.970 1649.952 1799.986 1807.007 1898.076 1899.007 1903.954 1903.974 1903.986 2248.978 2299.058 2328.067 2384.967 2509.986 2575.974 2586.049 3244.037 3248.942 P A -0.063 351.605 597.387 620.305 703.295 967.949 1055.858 1113.851 1295.507 1390.482 1391.408 1391.428 1445.398 1468.302 1537.265 1648. 124 1797.990 1805.005 1895. 974 1?96.904 1901.845 1901.865 1901.877 2246.476 2296.511 2325.488 2382.325 2507.205 2573.121 2583.184 3240.444 3245. 363 ?Maximum from Arp (1960a). TABLE 22.?HV 1785 (P=4.729944; P'=4.729906?0.00007; PA=4.725?0.003) Maximum 23341.689 24065.748 24462.659 24798.666 26501.621 27783.280 29542.397 29826.594 29869.462 29878.453 29897.228 29911.283 31416.257 31680.531 31699.454 31704.450 35426.569* 35634.618* P -0.021 153.059 236.974 308.012 668.049 939.016 1310.927 1371.012 1380.075 1381.976 1385. 945 1388.917 1707. 097 1762.969 1766.970 1768.026 2554. 953 2598.938 Epochs P ' -0.031 153.051 236.966 308.005 668.045 939.015 1310.929 1371.014 1380.078 1381.978 1385.948 1388.919 1707.102 1762.976 1766.976 1768.033 2554.967 2598.953 P A -0.031 153.209 237.211 308.324 668.737 939.987 1312.287 1372.434 1381.507 1383.410 1387.383 1390.358 1708.870 1764.802 1768.806 1769.864 2557.619 2601.645 ?Maximum from Arp (1960a). 194 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 23.?HV 1934 (P=4.874815; P'=4.874945?0.000062; PA=4.885? 0.003) Maximum 23340.586 26309.385 26329.300 26504.653 26563. 608 26626.464 28040.467 28371. 501 28376.572 29839.571 29843.597 29868.460 29897.452 30507.635 30560.614 30648. 240 30648. 337 31345. 385 31701.458 32003. 648 32037. 601 32052. 381 32135.248 32793. 394 32822.403 33563. 346 35518.366* 35635. 594* Epochs P -0.083 608.925 613. 010 648. 981 661.075 673. 969 964.032 1031.933 1032.979 1333.093 1333. 919 1339.019 1344.967 1470. 137 1481.005 1498.980 1499.000 1641.990 1715. 033 1777.023 1783.988 1787.020 1804.019 1939.029 1944.979 2096.973 2498.019 2522.066 P' -0. 051 608.941 613.027 648. 997 661.090 673.984 964. 040 1031.945 1032.986 1333.092 1333.918 1339.018 1344.965 1470.133 1481. 000 1498. 975 1498. 995 1641. 981 1715. 041 1777.011 1783.976 1787.008 1804.007 1939. 013 1944.963 2096. 954 2497.989 2522.036 P A -0. 062 607.675 611.751 647.648 659. 716 672.583 962.041 1029.806 1030.844 1330.332 1331.156 1336.246 1342.181 1467.090 1477.935 1495. 873 1495.893 1638.584 1711.745 1773.336 1780.268 1783. 312 1800.275 1935.003 1940. 941 2092.618 2492.827 2516.824 ?Maximum from Arp (1960a). TABLE 24?HV 1892 (P=5.653194; P'=5.653095?0.00005; PA=5.660?0.005) Maximum 13860.564 16727.653 16755.544 16760. 531 16760.697 23595.881 25890.396 26303.401 26331.335 26512.623 26568.576 26981.369 27327.470 27722.387 27750.391 28372.470 29135.403 29519.364 29813. 648 29870.451 29926.283 29927.236 29938.412 30560.614 31436.285 31639.636 3170i.458 32793.394 32804.452 33104.622 33211.448 35636.516* Epochs P -0.010 507. 152 512.086 512.968 512.998 1722.080 2127.959 2201.016 2205.943 2238.025 2247.912 2320.942 2382.165 2452.022 2456.925 2567.016 2701.928 2769.909 2821.947 2831.995 2841.871 2842.040 2844.017 2954.079 3108.977 3144.948 3155.884 3349.037 3350.993 3404.091 3422.997 3851.960 P' -0.017 507.153 512.087 512. 969 512.999 1722.102 2127.988 2201.046 2205.987 2238.056 2247.954 2320.974 2382.197 2452.056 2457.010 2567.052 2702.010 2769.930 2821.987 2832.036 2841.912 2842.080 2844.057 2954.121 3109.022 3144.994 3155.930 3349.087 3351.043 3404.141 3423.038 3852.018 P A -0.017 506.534 511.462 512.343 512. 372 1719.999 2125.389 2198.358 2203.294 2235.323 2245.209 2318.140 2379.289 2449. 062 2454. 010 2563.917 2698.711 2766.548 2818.542 2828.577 2838.442 2838.610 2840.585 2950.514 3105.226 3141.154 3152.076 3344.997 3346.951 3399.984 3418.858 3847.314 ?Maximum from Arp (1960a). WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 195 TABLE 25.?HV 1858 (P=6.111834?0.00004;PA=6.120?0.007) Maximum 16759. 606 23341. 590 23341. 689 23732.610 24025.729 26177. 587 26189. 516 26330.284 26501.621 26568. 516 26605. 579 27650.633 27651.625 27980.658 28078.342 28371.501 29494.460 29526.370 29575.253 29813.648 29826.594 30700.279 30700.335 31610. 648 31702.459 31739.356 31757.240 31800.288 32142.259 32503. 365 32509.259 32509. 348 32845.299 33071. 620 34685.368 35504. 316* 35656.473* 35657.494* Epochs P 0. 072 1076.997 1077.013 1140.974 1188.934 1541.014 1542.966 1565.998 1594.032 1604.977 1611. 041 1782.030 1782. 192 1836.027 1852.010 1899.976 2082. 076 2088.932 2096.930 2135.936 2138. 054 2281. 004 2281.013 2429.955 2444.977 2451.014 2453. 940 2460.984 2516.936 2576.019 2576. 983 2576. 998 2631.965 2668. 995 2933.032 3067.026 3091. 921 3092. 088 P A 0.073 1075.562 1075.579 1139.455 1187. 350 1538.962 1540.911 1563.912 1591.908 1602. 839 1608. 895 1779.656 1779. 818 1833. 582 1849. 543 1897.445 2079. 301 2086. 149 2094.137 2133.090 2135.206 2277. 965 2277.974 2426. 718 2441. 720 2447. 749 2450. 671 2457. 705 2513.583 2572. 587 2573.550 2573.565 2628.459 2665.440 2929. 124 3062. 940 3087. 802 3087. 969 '"Maximum from Arp (1960a). TABLE 26.?HV 1855 (P=6.839898 ? 0.00004; PA=6.830 ? 0.006) Maximum 16710.843 16758.559 21813.786 23338.634 23974.863 24077. 656 24439. 744 26177.587 26334. 320 26512.623 26929. 624 27750.478 28065.301 28373.456 28783.395 28804.379 28845. 285 29809.528 29871.460 29877. 448 29926.333 30575. 539 31293. 606 31642.644 31669.540 31710.455 31799.349 32011.598 32060.374 32135.248 32490.255 32504. 261 32819. 398 32860. 391 32880. 399 35452. 599* 35636. 516* 35657.494* Epochs P -0. 025 6. 951 746. 030 968. 965 1061.982 1077. 010 1129.948 1384.022 1406.937 1433.005 1493. 971 1613.981 1660. 008 1705.061 1764.994 1768. 062 1774. 043 1915.016 1924.070 1 924. 946 1932.093 2027. 007 2131.989 2183.019 2186.951 2192.933 2205.930 2236.961 2244.092 2255.038 2306.941 2308.989 2355.062 2361.055 2363.980 2740.033 2766.927 2769.994 P A -0. 019 6.967 747. 118 970.361 1063.528 1078.578 1131.592 1386. 035 1408. 983 1435. 089 1496. 143 1616.327 1662.421 1707.539 1767. 559 1770.632 1776.621 1917. 798 1926. 867 1927. 743 1934. 900 2029.952 2135.087 2186. 190 2190. 128 2196.119 2209.134 2240.210 2247. 352 2258.314 2310.292 2312.342 2358.483 2364.484 2367.414 2744.012 2770. 945 2774. 017 ?Maximum from Arp (1960a). 196 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 27.?HV 11193 (P=6.427066; P' = 6.427241 ?0.00017; PA=6.440?0.008) Maximum 16754.598 23341.689 23605.845 24363.898 24402.678 25893.497 25944.340 26561.629 26632.395 26973.379 27309.490 27750.391 27783.280 28034.526 28804.379 29585.264 29808.570 29813.648 29903.426 29938.243 30527.583 31324.386 31639.636 32462.292 32507.306 32790. 387 32828.390 32879.383 32880.399 33104.622 33150. 580 35431.397* 35451.479* 35476.401* 35509.365* Epochs P 0. 007 1024.906 1066.007 1183. 954 1189.987 1421.947 1429. 858 1525. 903 1536.914 1589.968 1642.264 1710.865 171 5. 982 1755. 074 1874.857 1996. 3 56 2031.101 2031.891 2045.860 2051.277 2146.086 2266. 950 2316. 000 2443. 999 2451.003 2495. 048 2500. 961 2508.895 2509.053 2543.940 2551.091 2905.968 2909. 093 2912.970 2918.099 P ' 0. 055 1024. 928 1066.027 1 183.971 1190.005 1421.958 1429.869 1525.912 1536.922 1589.975 1642.270 1710.869 171 5. 986 1755. 077 1784.857 1996. 353 2031.097 2031.887 2045.855 2051.272 2146.078 2266.940 2315.989 2443.984 2450.998 2495. 032 2500.945 2508.878 2509.037 2543. 923 2551.073 2905.941 2909.066 2912.943 2918. 072 P A 0. 051 1022.850 1063.869 1181.579 1187.601 1419.095 1426.990 1522.843 1533. 831 1586.779 1638.971 1707.434 1712.541 1751.554 1871.097 1992. 353 2027.028 2027.816 2041.757 2047.163 2141.782 2262.404 2311.356 2439.098 2446.087 2490.044 2495.945 2503.864 2 504.021 2538.839 2545.975 2900.140 2903.259 2907. 129 2912.247 ?Maximum from Arp (1960a). TABLE 28.?HV 2060 (P=1O.18447; P' = 10.182911 ?0.00032; PA=10.2l ?0.01) Maximum 24025.729 24402.678 24462.659 24686.855 24800.660 25890.396 27681.382 29108.594 29585.264 31642.644 31998.632 32060.374 32142.259 32507.306 32508.406 32854.288 32854.332 32854.383 35452.559* 25635.594* Epochs P 0. 063 37.076 42.965 64.979 76.153 183. 153 359.008 499. 145 54 5. 949 747. 961 782.915 788.977 797.017 832.861 832.969 866.931 866.935 866.940 1122.052 1140.024 P ' 0. 002 37.020 42.910 64.937 76.103 183.119 359.001 499. 159 545. 970 748.013 782.973 789.036 797.077 832.926 833.035 867.001 867.006 867.011 1122.162 1140.137 P A 0.002 36.921 42.796 64.755 75.901 182.633 358.048 497.833 544.520 746.02 5 780.892 786.939 794.959 830.713 830.821 864.697 864.702 864.707 1119. 180 1137.107 ?Maximum from Arp (1960a). WHOLE VOLUME 197 TABLE 29?HV 1878 (P= 12.941131; P ' = 12.94O817?O.OOO167; PA=l2.91 ?0.02) Maximum 16755.544 16755. 628 23315.640 23341. 689 24363.898 24402.678 26978.452 28065.301 29074.651 29100. 560 29204.247 29514. 379 29877.448 29903. 335 31274.639 31610.648 31701.458 31702.459 32504.261 32504.417 32879.326 32880.355 33150.580 35506.349* 35635.594* Epochs P 0. 054 0. 061 506.972 508.985 587.974 590.971 790. 009 873. 993 951.989 953.991 962.003 985.968 1014. 023 1016. 023 1121.988 1147.953 1154.970 1155. 047 1217.005 1217.017 1245. 987 1246.067 1266. 948 1448. 985 1458.972 P' 0. 031 0. 037 506. 962 508.975 587.966 590.963 790.006 873.992 951.990 953.992 962.004 985.970 1014.026 1016.026 1121.994 1147.959 1154.976 1155.054 1217.013 1217.025 1245.996 1246.075 1266.957 1448.999 1458.987 P A 0. 029 0. 035 508.167 510.185 589. 364 592. 368 791.885 876.071 954.2 54 956.261 964.293 988.315 1016.438 1018.443 1124.663 1150.690 1157.724 1157.802 1219.909 1219. 921 1248.961 1249.040 1269.972 14 52.447 1462.458 ""Maximum from Arp (1960a). TABLE 30.?HV 847 (P=27.057009?0.0008; PA=27.2?0.1) Maximum 14604. 612 17447. 825 23288. 713 23315.640 23343. 558 23667.803 23751.559 23965.832 26264.443 26319.275 26322.285 26347.271 26561.629 27756. 256 27783. 280 28078.342 28376.572 28380. 640 28783. 395 29484.460 29809. 528 29839.571 30648. 240 30648. 337 30919.605 31108. 274 31324.386 31379. 370 31436. 285 31650.654 31757. 240 32000. 655 32056. 390 32136.259 32462.292 35519. 378* 35627.559* Epochs P 0. 004 105.086 320. 960 321.955 322. 987 334.970 338.066 345.985 430.940 432.966 433.077 434. 001 441.923 486. 076 487.274 497. 979 509.002 509.152 524.038 549.948 561.962 563.073 592.960 592.964 602.990 609.963 617.950 619.982 622. 086 630. 009 633. 948 642. 944 645.004 647.956 660.006 772. 993 776. 991 P A 0.004 104.534 319.275 320.265 321.291 333.212 336.291 344. 169 428. 677 430.693 430.804 431.722 439.603 483.524 484.517 495.365 506.330 506.479 521.287 547. 061 559.012 560.117 589.848 589. 851 599. 824 606.761 614.706 616.691 618. 820 626.701 630. 620 639.569 641.618 644. 555 656.541 768.935 772.912 TABLE 31?HV 11182 (P=39.199?0.002; PA=39.6?0.2) Maximum 23287.716 23288. 713 24304.858 24380.743 24462.659 26308.461 26344.280 26347.271 26502.647 26504.653 26656.265 26929.624 27756.256 28776.476 29204.247 29519.364 29870.451 29876.448 29911.283 30344. 395 30575. 539 30700.335 31284.609 31324.386 31675.572 31712.374 32849.266 32850.336 32851.408 32852.254 32854.245 33211.448 33563.346 34267.407 34690.370 35476.401* 35517.365* 35519.378* 35635.594* Epochs P -0.001 0.096 25. 949 27. 885 29.975 77. 063 77. 977 78. 053 82. 017 82. 068 85. 936 92. 910 113.998 140. 025 150.938 158.976 167.933 168. 086 168. 975 180.024 185.921 189. 104 204.010 205.024 213.984 214.922 243. 926 243.953 243.980 244. 002 244. 053 253.165 262.143 280. 104 290. 894 310. 946 311.911 312. 043 315. 008 P A 0. 001 0. 026 25.687 27.603 29.672 76.284 77. 188 77. 264 81.187 81.238 85. 067 91. 970 112.845 138.608 149.411 157.368 166.234 166.386 167.266 178.203 184.080 187. 192 201. 946 202. 951 211.819 212. 749 241.459 241.486 241.513 241.534 241.584 250.605 259. 491 277.271 287.952 307.802 308. 836 308.887 311. 822 ?Maximum from Arp (1960a). ?Maximum from Arp (1960a). 198 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 32.?Test of Arp's estimated errors of period HV 2019 848 2021 2046 1923 1850 2000 1974 1994 1825 1785 1934 1892 1858 11193 1855 2060 1873 847 11182 Period (Arp) l?6303 2. 178 2.4875 2. 554 2. 564 2. 760 2. 880 2. 896 4.217 4.265 4. 725 4. 885 5.660 6. 120 6.440 6. 830 10.21 12. 91 27.2 39.6 Est. er ror (Arp) 0?0004 0. 001 0. 0010 0. 001 0. 001 0. 002 0. 002 0. 001 0. 003 0. 003 0. 003 0. 003 0.005 0. 007 0. 008 0. 006 0. 01 0. 02 0. 1 0 . 2 No. of epochs (N) 8495 9948 4891 4823 4692 6838 7558 6474 2936 3249 2599 2522 3852 3092 2918 2770 1140 1459 777 315 Difference (H-A) P + 4.092 +23.885 - 3.396 - 7. 029 - 4.075 +10.853 -10. 725 + 6.475 + 2.561 + 3.579 - 2.692 + 5.242 + 4. 704 + 4. 119 + 5.825 - 4. 023 + 3.030 - 4.486 + 4.079 + 3. 186 N X est. error period P ?2. 08 4. 57 1. 97 1. 89 1. 83 4. 96 5.25 2.23 2. 09 2.28 1.65 1. 55 3.40 3. 52 3.62 2.43 1. 12 2.26 2. 86 1.61 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD TABLE 33.?HV 1553 (Adopted period = 12.543274) 199 TABLE 34.?HV 837 (Adopted period=42.625746) Normal maximum 14001. 367 16797.764 21789.235 23494.179 24497. 453 25487.933 26491.395 27495. 233 28498. 569 29489.425 30744. 192 31496. 600 32500. 125 33490.918 34494. 380 Epoch 0 223 621 757 837 916 996 1076 1 156 1235 1335 1395 1475 1554 1634 Residuals P= 12. 543274 P + 0. 185 + 0. 120 + 0. 065 -0. 010 -0 . 025 -0 . 015 -0. 035 -0 . 030 -0 . 040 -0. 045 -0. 010 -0. 025 -0 . 020 -0.030 -0 . 030 12.540915 P + 0. 007 -0. 019 +0.004 -0. 046 -0.046 -0. 066 -0. 051 -0. 006 -0. 001 + 0. 009 + 0. 063 + 0. 059 +0. 079 +0. 084 +0.099 12.543274 P + 0.211 + 0. 151 + 0. 091 + 0. 016 + 0. 001 +0. 011 -0. 009 -0. 004 -0. 014 -0. 019 + 0. 016 + 0. 001 +0. 006 -0. 004 -0.004 Normal maximum 12233.163 16710.571 19995.737 23528. 559: 24509. 165 25491.262 26470.588 27494. 587 28476.982 29500.426 30736.999: 31506.394 32487.639 33509. 804 Epoch 0 106 183 265 288 312 335 359 382 406 435 452 476 500 Residuals P = 42. 625746 P + 0. 027 + 0. 036 +0.083 -0 . 062: -0 . 064 -0 . 030 -0 . 062 -0 . 046 -0 . 006 -0 . 004 -0 . 002: + 0. 042 + 0. 056 + 0. 028 42.651198 P +0. 124 +0. 101 + 0. 125 -0. 44: -0.053 -0. 027 -0. 066 -0.057 -0 . 024 -0. 028 -0. 034: -0. 004 + 0. 010 -0. 024 42.660296 P +0. 192 + 0. 146 +0.154 -0. 033: -0. 047 -0. 025 -0. 069 -0. 065 -0.037 -0. 047 -0. 060: -0. 025 -0. 023 -0. 063 200 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 35.?HV 817 (Adopted period=18.898233) Norma l maximum 14198.242 16692.242 19487. 302 21793.442 23492.677 24493.433 25494. 756 26496.268 27498.346 28500. 898 29483.511 30749.787 31487. 102 32488. 803 33490. 504 34397.619 Epoch 0 132 299 402 492 545 598 651 704 757 809 876 915 958 1021 1069 Residuals P = 18. 898233 P + 0. 156 + 0. 126 +0.076 + 0. 056 -0 . 029 -0 . 074 - 0 . 089 - 0 . 094 -0 . 069 - 0 . 019 -0 . 024 - 0 . 019 -0 .004 +0. 001 + 0. 006 +0.006 18. 893591 P + 0. 002 + 0. 004 -0 . 005 0. 000 -0 . 063 -0 . 095 - 0 . 097 -0 . 089 - 0 . 051 + 0. 013 + 0. 020 +0. 042 + 0. 066 +0. 084 +0. 102 + 0. 114 18. 888752 P -0. 089 -0 . 044 0. 000 +0.039 +0.005 -0 . 010 +0.005 +0. 030 +0.085 +0.165 +0. 189 +0. 232 +0.270 +0. 305 +0. 345 +0. 367 18. 91 1457 P +0.709 + 0. 586 + 0. 420 +0. 328 + 0. 180 +0.098 +0. 046 +0. 004 -0 . 008 +0.004 -0 . 037 -0.079 -0.091 -0 . 123 -0 . 155 -0 . 189 18.900376 P + 0.269 + 0.224 + 0. 155 + 0. 123 +0.028 -0.023 -0 . 044 -0 . 055 -0.036 +0.008 -0.003 -0.006 +0. 005 +0.004 +0. 003 -0.002 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 201 TABLE 36?HV 1967 (Adopted period-29.052876; PA=29.1 ?0.1) N o r m a l max imum 11647.298 12700. 174 13861.418: 14965. 572 15332.365: 16755.956: 17449. 157:: 19673.446: 20020. 337: 21795.468: 23597.327 24440.441 25895.700 26506.246 27639. 454 28482. 568 29498. 838 30690. 441 31417. 199 32492.155 33566.676 34697. 559: 34987. 216* 38317. 838: Epochs P 0.000 36.240 76.210: 114.215 126.840: 175. 840: 199. 700:: 276.260: 288. 200: 349. 300: 411.320 440.340 490.430 511.445 550.450 579.470 614.450 655.465 680.480 717.480 754. 465 793. 390 803.360 918. 000: P A 0. 000 36. 181 76.086: 114.029 126.633: 175.554: 199. 375:: 275. 810: 287.731: 348.731: 410.651 439.623 489.632 510.613 549.554 578.527 613.450 654.398 679. 373 716.312 753.237 792. 099: 802.053 916.506: TABLE 37.?HV 1695 (Maximum?14199.909+14.6013 E? 0.00000328 E2) Normal maximum 14199. 909 16711.258 21805. 768 23513.961 24492.417 25806.002 26608.792 27601.334 28492. 139 29512.706 30753. 528 31512.092 32504.926 33511.333 34504.021 35627.559* Epoch 0 172 521 638 705 795 850 918 979 1049 1134 1186 1254 1323 1391 1468 Residual (P) 0. 000 + 0. 002 -0. 036 -0. 017 + 0. 015 + 0. 009 + 0. 010 + 0. 013 + 0. 048 -0. 025 -0. 009 -0. 024 +0. 010 -0. 024 +0. 003 +0. 001 ?Maximum from Arp (1960a). ?Maximum from Arp (1960a). TABLE 38.?HV 884 (Maximum=11531.386+73.4175 E + 0.00037 E2) Normal maximum 11531.386 12712.488 14182.795: 15286.997: 16818. 015: 17332.033: 17628. 965: 19611.450 20055.928 21008.904 21820. 590 23511.664 24465. 376 25786.666 26519.611 27478. 107 28509.456 29467.216 30715. 652 31526.970 32484. 362 33517. 183 34472.735 37939.142 Epoch 0 16 36 51 72 79 83 110 116 129 140 163 176 194 2 04 217 231 244 261 272 285 299 312 359 Residual (P) 0. 000 +0.086 +0. 108 +0. 141 -0. 018 -0.022 +0. 187 -0.005 +0.044 +0.007 + 0. 047 +0.044 + 0. 014 -0.023 -0. 060 -0.032 -0.016 -0.002 -0.041 -0. 019 -0.016 +0.011 -0. 014 +0. 042 TABLE 39.?HV 829 (Maximum-11508.062+89.92 E - 0.006 E2) Normal maximum 11508.062 12495. 619:: 14036. 102: 15538. 030:: 16522. 082:: 17516. 649:: 19558. 360:: 20532.772 21501.927 23538.381 24506. 660 25576. 586:: 26534.350 27501.752 28552.401 29511.041 30565.194 31522.958 32565.720 33526. 989 34573.256: 37581.493:: Epoch 0 11 28 45 56 67 89 100 111 134 144 156 167 178 190 200 212 223 234 245 257 290 Residual (P) 0. 000 +0. 013:: + 0. 167: -0. 048:: -0. 030:: +0. 121:: +0. 066:: +0. 044 -0. 013 +0. 005 -0. 020 +0. 122:: +0. 013 +0. 028 +0.011 -0.039 +0. 019 + 0. 005 -0.038 + 0. 010 + 0.053: -0. 191:: 202 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 40.?Possible cloud members with 'periods under a day HV 11368 1821 2020 11415 P 0.484509 0.502753 0.616453 0.774007 0 17.63 17.34 17.22 17.82 HV 11289 2044 12170 11390 P 0.788189 0.802974 0.811079 0.827969 0 17.27 17. 36 17.62 17. 37 HV 11447 12912 11512 0. 0. 0. p 863009 885430 988300 ( m 16. 17. 16. >0 84 46 81 TABLE 41.?Comparison with Cordoba results Period Star CV 277 HV11174 CV 240 HV12089 CV 270 CV 216 CV 152 CV 233 CV 101 CV 206 CV 106 CV 254 CV 274 CV 3 CV 214 Cordoba 0.200 0. 496686 0.51 0. 56: 0.64732 0.67: 0. 75: 0. 74689 0. 76: 0.778 0.91285 1.56658 1.5716 1.58115 2.3690 Harvard - 1.997551 0. 571 1.270844 0.650 0. 712 0. 721 0. 747 _ - ? ? - ? ? Mean magnitude Cordoba 17. 86 17. 38 17. 50 17.6: 18. 07 17. 77 16. 55 17. 73 18. 12 17.60 17. 58 17. 74 17. 55 17. 75 16. 90 Harvard 17. 80 17.45 17. 90 17. 71 18.27 17. 90 16. 93 17. 82 17. 94 (16.96) 17. 79 17. 90 17. 78 17. 90 17.26 0 17.44 17. 09 17. 46 17. 36 17. 84 17. 46 (16.37) 17.26 17.47 (16.53) 17.23 17. 54 17.22 17. 34 16. 70 Remarks Period not verified Cordoba regards as eclipsing Cordoba period not verified Foreground Close companion; not studied Close companion; not studied Cordoba period not verified Cordoba period verified Cordoba period verified Cordoba period verified Cordoba period verified ?Magnitude reduced to our system. TABLE 42.?W Virginis stars HV 12901 1828 206 Period 15.074089 17.195722 103.8 1 1 2 log P . 1782 .2354 . 0162 17. 17. 14. l>0 36 28 62 2 2 2 dm . 0 6 . 1 5 .01 WHOLE VOLUME VARIABLE STARS IN SMALL MAGELLANIC CLOUD 203 TABLE 43.?Long-period variables HV 12149* 838** 1349 2112* 859* 11295* 1865* 11303* 1719* 12956 11452 1375* 12179 11223 11329* 11366 11401** 1963** 1645** 1366 11427* (833) 1644** 12122** X 13968 13095 9275 16991 17098 11829 14694 12090 13514 17050 15159 9885 15702 7014 12591 13473 14193 15477 12996 9687 14679 12233 12995 12966 y 11370 8168 9334 10164 10222 9324 9784 13890 8786 14774 6864 5706 12042 7215 9327 11658 9318 10365 7973 9062 9564 20164 7356 12156 Period 741. 8 663 615: 608 582. 0 565.02 556 533.87 531 517. 5 515. 7 512 480? 407: 390 365.6 365? 330? 300. 3 293. 2 250. 8 239- 92 210? 119. 5 M o 13. 54 13. 92 15. 16 13. 00 13. 73 14. 54 15. 18 15.20 14. 43 15. 38 14. 97 15. 71 15. 96 16.45 15. 32 16.30 14.67 15. 70 17. 02 15. 92 16. 72 11. 20 14. 82 14. 52 mo [16.89 [17.47 17. 13 [ 17. 80 [ 18. 50 17. 18 18.48 [ 18. 00 [ 17.25 17. 75 [ 17. 32 [ 18. 01 17. 60 17. 55 17. 36 17. 70 16. 08 18. 36 18. 18 [ 17.28 [ 17. 78 [ 17. 70 16.62 [ 17.27 A ]3 .35 ]3.55 1. 97 ]4. 80 ]3.77 2. 64 3. 30 ]2. 80 ]2. 82 2. 37 ]2.25 ]2.30 1.64 1. 10 2. 04 1.40 1.41 2.66 1. 16 ] 1. 30 ] 1. 06 ]6. 50 1. 80 ]2.75 *Long-period variables (Shapley and Nail, 1951b). **Semiregular variables (Shapley and Nail, 1951b). 2 0 4 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TABLE 44.?Irregular variables HV 811 813 12917 11246 11249 11252 1432* 11262* 825* 1455* 1456 11274 11280* 1468 1475* 12924 11292 832* 1529 1573 1586* 11330 1596 11337 1652* 11351 12126 1685 12138 1722* 11373* 11389 X 4298 4585 10004 10176 10470 10650 10915 10998 11125 11251 11254 11283 11394 11397 11474 11683 11810 11943 11981 12434 12534 12597 12612 12858 13037 13206 13212 13304 13488 13525 13596 13773 y 12295 11774 5551 9822 2754 9129 7333 8556 10813 5735 6363 10182 9489 6423 7747 6951 7883 10143 7692 9378 10416 13662 8804 8829 10326 127 38 9858 7160 10494 8498 11508 9993 Mo 14. 00 12.40 15. 10 14. 17 16.80 16. 15 15.40 13.66 14. 06 13. 65 14.42 16.43 14.79 16. 19 12. 56 15. 76 16. 36 13.70 15. 58 15.79 16. 06 14.40 15.03 16.63 14. 17 14. 84 15.97 13. 70 15.65 15. 55 14. 35 16. 34 mo 15.00 14. 10 16.27 14.63 17.80 16.92 17. 10 15.71 15. 14 14. 85 18.06 17.63 15.73 17. 11 13.42 16.84 17.21 14. 32 17; 43 16.96 17.02 15.20 15.86 17.03 15.42 16. 00 17. 24 14.47 16.72 17.46 14.99 17,04 A 1.00 1.70 1. 17 0. 54 1.00 0.77 1.70 2.05 1.08 1.20 3.64 1.20 0.94 0.92 0.86 1.08 0.85 0.62 1.85 1. 17 0.96 0.80 0.83 0.40 1.25 1. 16 1.27 0.77 1.07 1.91 0.64 0. 70 HV 1798 11397 12939 11402* 11423* 11425 1880 11455* 11464 11465* 11470* 1977 2011 2032 2066 2084* 2105* 2106 11502 11511 2171 11518 11531 11537 2214 11545 2228* 11546* 2232* X 14133 14134 14147 14193 14622 14673 14826 15186 15393 15423 15525 15639 16014 16200 16532 16735 16922 16931 16959 17304 17655 17880 18806 18987 19101 19788 20893 22146 22155 y 8353 10466 8387 11544 13830 14625 10720 12363 9438 9858 10554 9473 8062 7907 10166 7566 12544 10426 13068 12444 8423 5748 12720 9999 14174 14910 10639 9267 7113 Mo 16.25 16.03 14.94 13.61 12. 59 16.82 14. 53 17. 17 13.99 14. 20 15.48 16.43 16.20 16. 36 14. 54 13.94 16. 12 16.00 16.66 16. 10 16.75 14.88 15.85 16. 15 16. 05 15. 12 13.90 12. 59 13.80 m 0 17.05 16.94 16.99 15.00 13. 55 17.80 15. 12 18.00 15. 39 15. 54 16.24 17.70 16.69 17.25 15.82 15.60 17. 50 16. 50 17. 30 16.78 17.77 15. 90 16. 31 16.71 16.91 15. 59 15. 30 13. 38 16.80 A 0.77 0.91 2.05 1. 39 0.96 1.02 0. 59 0.83 1.40 1. 34 0.76 1.24 0.49 0.89 1.28 1.65 1.38 0.50 0.64 0.68 1.02 1. 02 0.46 0. 56 0.86 0.47 1.40 0.79 3.00 ?Irregular or semiregular (Shapley and Nail, 1951b). WHOLE VOLUME 205 TABLE 45.?Rate of production of stars that are now Cepheids (T) 10 years 2 to 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22 22 24 24 26 26 28 No. of Cepheids (N) 20 51 55 62 81 102 116 110 103 91 79 70 65 N / T 5. 0 8. 3 6 . 9 6 .2 6 . 6 7. 3 7 . 2 6. 1 5.2 4 . 2 3. 3 2 . 7 2. 3 (T) 10 years 28 to 30 30 32 32 34 34 36 36 38 38 40 40 42 42 44 44 46 46 48 48 50 >50 No. of Cepheids (N) 35 23 24 19 13 4 4 4 2 4 3 2 N / T 1.2 0.72 0.71 0. 53 0. 34 0. 10 0. 10 0.09 0.04 0.08 0.06 0.04 TABLE 46.?Frequency of amplitude Amplitude 0.3 0.4 0. 4 0. 5 0. 5 0. 6 0. 6 0. 7 0. 7 0. 8 0. 8 0. 9 0. .9 1.0 1.0 1.1 1.1 1.2 1.2 1.3 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.8 1.9 1.9 2. 0 2. 0 2. 1 2.1 2.2 2.2 2.3 All s tars(M-m)<0. 3 0 8 24 46 68 67 100 103 108 117 102 84 60 44 27 23 16 9 7 1 1 Percent - 0. 8 2 . 4 4. 5 6. 7 6 . 6 9 . 9 10.2 10. 6 11. 5 10. 0 8. 3 5. 9 4. 3 2. 7 2. 3 1.6 0. 9 0. 7 0. 1 0. 1 All s tars(M-m)>0. 3 4 17 24 22 32 22 11 3 2 1 1 0 0 0 0 0 0 0 0 0 0 Percent 3. 0 12.6 17. 8 16.3 23. 7 16.3 8. 1 2 . 2 1. 5 0. 7 0. 7 - - - - - - - - - - Period > 2 d < 3 d (M-m)<0. 3 0 1 3 8 12 16 21 17 24 33 16 25 14 14 6 12 6 2 0 0 0 Percent - 0 .4 1. 3 3. 5 5.2 7 .0 9- 1 7 .4 10. 4 14. 3 7. 0 10. 9 6.1 6. 1 2 .6 5 .2 2 . 6 0 .9 - - - U.S. GOVERNMENT PRINTING OFFICE: 1966 O ? 7 9 7 - 8 1 9