Squamata M. Oppel 1811 [K. de Queiroz and J. A. Gauthier], converted clade name Registration Number: 101 2012). By contrast, analyses based on DNA- sequence data place the root of the squamatan De!nition: !e largest crown clade containing tree within “Scleroglossa,” usually with either Lacerta agilis Linnaeus 1758 but not Sphenodon Dibamidae or Gekkota, or a clade composed (originally Hatteria) punctatus (Gray 1842). of both taxa, as the sister to all other squa- !is is a maximum-crown-clade de"nition. matans (e.g., Townsend et al., 2004; Vidal and Abbreviated de"nition: max crown ∇ (Lacerta Hedges, 2005; Wiens et al., 2010; Pyron et agilis Linnaeus 1758 ~ Sphenodon punctatus al., 2013; Reeder et al., 2015). In the context (Gray 1842)). of these alternative hypotheses, the two pri- mary extant subclades are di#erent and in one Etymology: Derived from the Latin squama case have been given the names Dibamia and (scale) + -ata (provided with), thus, “scaled.” Bifurcata (Vidal and Hedges, 2005). Squamata is composed of 10,078 currently recognized Reference Phylogeny: Figure 1 of Gauthier et extant species (Uetz, 2016), thus rivaling Aves al. (2012) is the primary reference phylogeny and surpassing its sister clade, Sphenodon (with (see also Estes et al. 1988: Fig. 6; Lee, 1998: only one currently recognized extant species), Figs. 1–2; Conrad, 2008: Fig. 56); however, by four orders of magnitude. Somewhat dated our de"nition has been formulated so that it lists of extinct species are available for Serpentes will apply to a clade of identical composition in (Rage, 1984) and for non-Serpentes, non-mosa- the context of phylogenies based on molecular saurian Squamata (Estes, 1983). (e.g., Townsend et al., 2004: Fig. 8; Vidal and Hedges, 2005: Fig. 1; Wiens et al., 2010: Fig. 4; Diagnostic Apomorphies: Gauthier et al. Pyron et al., 2013: Fig. 1) and combined mor- (1988) listed 69 + 5 (addendum) putative syn- phological and molecular data (Reeder et al., apomorphies of Squamata relative to other 2015: Fig. 1; Simões et al., 2018: Fig. 2) that extant diapsids, which are also diagnostic rela- di#er regarding relationships within Squamata tive to most other extinct diapsids given that so (see Composition and Comments). Although few potential stem squamatans have been iden- Lacerta agilis is not included in the primary ti"ed (see Pan-Squamata in this volume). Estes reference phylogeny, it is most closely related to et al. (1988) added 18 potential synapomor- Lacerta viridis of the taxa included in that tree phies that have reversed in some squamatans. (see Baeckens et al., 2015). Gauthier et al. (2012) listed only 59, includ- ing 20 that are shared with the putative stem Composition: Squamata was hypothesized squamatan Huehuecuetzpalli mixtecus (see Pan- by Estes et al. (1988; see also Gauthier, 1982) Squamata, this volume), but this lower num- to be composed of two primary extant sub- ber re$ects the near-absence of soft anatomical clades, Iguania and Scleroglossa, and those sub- characters in their study. Some of the most obvi- clades have been corroborated by subsequent ous diagnostic apomorphies are paired male analyses based on morphological data (e.g., intromittent organs (hemipenes), loss of car- Lee, 1998; Conrad, 2008; Gauthier et al., uncle (false egg tooth), mobile fronto-parietal Squamata joint (modi"ed in fossorial forms and mosasau- (1820) and Haworth (1825), Sauri of Gray roids), embryonic fusion of parietals (reversed (1825), Pedata, Tetrapoda, and Communipedis in some gekkotans, some xantusiids, and of Haworth (1825), Saurae of Gray (1827) and Sineoamphisbaena hexatabularis), mobile quad- Wagler (1828), Lacertae of Wagler (1830) and oth- rate with peg-in-socket squamosal-quadrate ers, Lacertiformes of Bonaparte (1831), Lacertina articulation (lost in chameleons and modi"ed of Müller (1831), Squamati of Wiegmann in snakes), pterygoids and vomers separated by (1834), Saures of Swainson (1839), Lacertilia of palatines (reversed in some amphisbaenians and Owen (1842 [including Rhynchosaurus articeps], some polyglyphanodontians), very slender sta- 1866) and others, Saura of Gray (1845), Lacertia pes (reversed in some fossorial forms), slender of Owen (1845), Kionocrania of Stannius (1856) epipterygoid, subdivision of embryonic metotic and Huxley (1886), Lepidota of Jan (1857), "ssure into vagus (jugular) foramen posteriorly Autosaurii of Gegenbaur (1859), Autosauria of and recessus scalae tympani anteriorly, embry- Haeckel (1866), Lacertilia vera of Boulenger onic or early post-embryonic (dibamids and (1884, 1885–7), Eusauri of Gadow (1898), some xantusiids) fusion of exoccipitals and opis- Autosauri of Gadow (1898, 1901), Lacerti of thotics, coronoid eminence formed by coronoid Jaekel (1911), Lacertosauria of Tornier (1913), bone only (reversed in some snakes and some and Lacertidae of Nopcsa (1923) are partial amphisbaenians), keeled cervical intercentra, as well as approximate synonyms that refer to all ribs (including cervicals) single-headed, pro- taxa that exclude various highly modi"ed squa- coelous vertebrae (reversed in some gekkotans), matans, such as snakes, amphisbaenians, other absence of trunk intercentra (reversed in some serpentiform species, and chameleons (in vari- gekkotans and full-grown xantusiids), emargin- ous combinations). ated scapulocoracoid (reversed in Heloderma, Other partial (and approximate) synonyms amphisbaenians, chameleons, some dolicho- were used for a paraphyletic group made up of saurs, some dibamids, some pygopodids), and Iguania and Gekkota, which is associated with the absence of gastralia. same ancestor as Squamata on the reference phy- logeny (but not on some of those based on molecu- Synonyms: Numerous approximate synonyms lar data—see Reference Phylogeny). !ese include of Squamata match the modern concept to vari- Pachyglossi of Bonaparte (1840), Amblyglossae ous degrees in terms of composition. Squamosa of Fitzinger (1843), Pachyglossae of Gray (1845), of Latreille (1825, except for the inclusion of cae- Ascalabota of Camp (1923), and Iguaniformes of cilians), Saurophidia of Blainville (1835), Reptilia Hay (1930), although Gray’s (1845) Pachyglossae of Bonaparte (1840, 1841), Streptostylica of might alternatively be considered a partial synonym Stannius (1856) and Cope (1900), Lepidosauria of Lepidosauria given that it included Sphenodon and Diplophalli of Haeckel (1866, inclusion punctatus. Still other partial synonyms were used of Sphenodon unclear), Pholidota of Haeckel for a doubly paraphyletic group that excluded (1895), Sauria of Gadow (1898, 1901), and both Autarchoglossa and Chamaeleonidae; these Lyognathi and Lyognatha of Jaekel (1911) refer include Ascalabotae of Merrem (1820), Ascolabata to a taxon of more or less identical composition. of Gray (1825), Inextensilinguis of Haworth (1825), Sauria of MaCartney (1802) and others Pachyglossae of Weigmann (1834), and Pachyglossa (some of whom included crocodilians), Saurii of of Strauch (1887; who also included Xenosaurus Kuhl (1820) and others, Gradientia of Merrem and Heloderma). 1094 Squamata Comments: Many eighteenth and early nine- French vernacular name Bispeniens in refer- teenth century naturalists based their pri- ence to the hemipenes, which are still consid- mary groupings within ectothermic tetrapods ered diagnostic (see Diagnostic Apomorphies). (Amphibia of some authors, Reptilia of others) !e taxon was recognized inconsistently under on mode of locomotion, separating the slither- a variety of names by nineteenth century ers with small or no limbs (Serpentes, Ophidia, authors (e.g., Blainville, 1822, 1835; Latreille, and variants of those names) from the limbed- 1825; Haworth, 1825; Fitzinger, 1826; Gray, propelled walkers and crawlers (Gradientia, 1831a; Bonaparte, 1840, 1841, 1850; Stannius, Reptilia, and variants of those names). !us, 1856; Zittel, 1887–1890; Cope, 1889; Haeckel, squamatans with well-developed limbs (“typi- 1895), but during the twentieth century it cal lizards”) were commonly grouped with was recognized more consistently under the crocodilians and sometimes with turtles and name Squamata (e.g., Cope, 1900; Hay, 1902; even salamanders and frogs, rather than with Williston, 1917, 1925; Camp, 1923; Nopcsa, snakes, while those with long bodies and 1923; Romer, 1933, 1945, 1956, 1966; Gans, reduced limbs (e.g., Anguis, Amphisbaena, and 1978; Estes, 1983; Estes et al., 1988; Lee, 1998), sometimes even the amphibian Caecilia) were a use that continues in the present century (e.g., considered “snakes” (e.g., Linnaeus, 1758; Conrad, 2008; Wiens et al., 2010; Gauthier et Laurenti, 1768; Scopoli, 1777). !e “lizards” al., 2012). Several early explicit phylogenetic (under various names) were "rst separated from analyses based on morphology supported squa- turtles (e.g., Brongniart, 1800; Cuvier, 1800; matan monophyly (e.g., Rage, 1982; Benton, Daudin, 1802–1803) and later from crocodil- 1985; Gauthier et al., 1988; Evans, 1988), a ians (e.g., Blainville, 1816, 1822; Merrem, 1820; result that has been corroborated by subsequent Gray, 1825). Derivation of snakes from within molecular and combined morphological and “lizards” was inferred by several authors (e.g., molecular studies (e.g., Townsend et al., 2004; Haeckel, 1866; Camp, 1923; McDowell and Hugall et al., 2007; Albert el al., 2009; Reeder Bogert, 1954), and the formal abandonment of et al., 2015; Simões et al., 2018). the paraphyletic group “lizards”, by that time !e name Squamata was "rst used by Oppel usually referred to as either Sauria or Lacertilia, (1811), who applied it to a group composed of was proposed by Estes et al. (1988). Although “lizards” (including crocodilians) and snakes. the paraphyly of “lizards” (relative to both Crocodilians (Loricata), were removed from snakes and amphisbaenians) is now highly cor- Squamata by Merrem (1820; see also Blainville, roborated and widely acknowledged, the group 1816), thus more closely approximating the continues to be treated as a taxonomic unit, modern composition of the taxon, and this pro- although no longer given a formal name (e.g., posal was followed by most subsequent authors Vitt and Caldwell, 2014; Pough et al., 2016; who recognized a taxon designated by that Crother, 2017). name (e.g., Haworth, 1825; Fitzinger, 1826; Despite the long history of treating “lizards” Gray, 1831a; Bonaparte, 1841 [as a synonym]; and snakes as separate taxa, a close relation- Gravenhorst, 1843 [though he excluded snakes]; ship between them has also been recognized for Gray, 1844, 1845 [though he excluded amphis- a long time. !e "rst author to recognize and baenians]; Bonaparte, 1850). When Sphenodon name a taxon composed exclusively of “lizards” punctatus (tuatara) was "rst described (Gray, (including amphisbaenians) and snakes appears 1831b), it was considered an agamid “liz- to have been Blainville (1816), who used the ard” and thus implicitly part of Squamata. 1095 Squamata Cope (1864) separated Sphenodon (= Hatteria) the internal relationships in phylogenies based from Agamidae as Hatteriidae, and Günther on morphological (e.g., Estes et al., 1988; Lee, (1867) further separated it from all “lizards” 1998; Conrad, 2008; Gauthier et al., 2012; but (“Lacertilia”) as Rhynchocephalia, though both see Simões et al., 2018) versus molecular (e.g., authors retained Sphenodon within Squamata. Townsend et al., 2004; Vidal and Hedges, 2005; Cope (1875) increased the separation further Wiens et al., 2010; Pyron et al., 2013; see also still by including extinct taxa (Protorosauridae Reeder et al., 2015) data (see Composition). and Rhynchosauridae) within Rhynchocephalia, Despite these striking disagreements, data not recognizing Squamata, and placing turtles from both DNA sequences and phenotypic between Rhynchocephalia and “lizards” (and sources strongly support many of the same crown snakes) in his taxonomy. However, he later squamatan subclades: traditional Anguimorpha (Cope, 1889) recognized Squamata as a group plus Serpentes, Dibamidae, Gekkota, Iguania, including “lizards” and snakes but excluding Lacertoidea (including Amphisbaenia), and Sphenodon, and this arrangement has been Scincoidea. Estimating the timing of their adopted by most authors since the beginning divergence is complicated because their inter- of the twentieth century (e.g., Cope, 1900; relationships are in dispute and their early Williston, 1917, 1925; Nopcsa, 1923; Romer, fossil records are sparse. A single partial, but 1933, 1945, 1956, 1966; McDowell and Bogert, articulated, specimen from the mid-Triassic 1954; Gans, 1978; Estes, 1983; Estes et al., (~240 Ma), Megachirella wachtleri (Renesto 1988; Lee, 1998, 2005; Conrad, 2008). and Posenato, 2003), has recently been inferred Squamata is clearly the most appropriate name to be a stem squamatan (Simões et al., 2018). for the clade in question. Other candidate names It is the only potential pan-squamatan known (see Synonyms) either have seldom been used from the Triassic or Early Jurassic. Otherwise, since the eighteenth century (e.g., Saurophidia, the oldest pan-squamatan fossils that might Streptostylica, Lyognathi), are more appropri- be referrable to the total clades of any of the ately applied to di#erent clades (e.g., Pholidota, crown squamatan subclades are mainly partial Reptilia, Lepidosauria), or were used (most com- jawbones known from ~167 Ma (Bathonian, monly) for a paraphyletic group associated with Middle Jurassic; e.g., Caldwell et al., 2015). the same ancestor (e.g., Sauria, Lacertilia) and Relatively intact, or at least associated, remains thus do not correspond as closely in terms of of stem-members of three of them (Gekkota, composition (Squamata itself was used in this Scincoidea, Anguimorpha) are known from ~150 way by Gravenhorst, 1843, and Haeckel, 1866). Ma (Kimmeridgian, Late Jurassic; e.g., Evans, Moreover, the name Squamata has previously 2003). Apart from Dibamidae, which has no fos- been de"ned phylogenetically as designating the sil record, most of the rest are diverse and dispa- same (crown) clade to which it is applied here rate by ~75 Ma (Campanian, Late Cretaceous; (Estes et al., 1988; Lee, 1998), although it has e.g., Gao and Norell, 2000). Crown squamatans sometimes been applied implicitly to a more appear to have been the dominant lepidosaurs in inclusive clade (see Conrad, 2008; Simões et terrestrial ecosystems since the Early Cretaceous al., 2018). We have de"ned the name using a (e.g., Evans and Matsumoto, 2015; and references maximum crown clade de"nition in the interest therein), while rhynchocephalians predominated of presenting a simple de"nition (one with few during the early Mesozoic (e.g., Cocude-Michel, speci"ers) that will nevertheless apply to the same 1963; Hsiou et al., 2015; and references therein; clade in the context of major di#erences between see also Lepidosauria, this volume). 1096 Squamata Literature Cited Brongniart, A. 1800. Essai d’une classi"cation naturelle des reptiles. Iere Partie. Etablissement Albert, E. M., D. San Mauro, M. Garcia-Paris, L. des ordres. Bull. Sci. Soc. Philom. Paris Ruber, and R. Zardoya. 2009. E#ect of taxon 2(35):81–82. sampling on recovering the phylogeny of squa- Caldwell, M. W., R. L. Nydam, A. Palci, and S. mate reptiles based on complete mitochondrial Apesteguía. 2015. !e oldest known snakes genome and nuclear gene sequence data. Gene from the Middle Jurassic—Lower Cretaceous 441:12–21. provide insights on snake evolution. Nat. Baeckens, S., S. Edwards, K. Huyghe, and R. Van Commun. 6:5996. Damme. 2015. Chemical signaling in liz- Camp, C. L. 1923. Classi"cation of the lizards. ards: an interspeci"c comparison of femoral Bull. Amer. Mus. Nat. Hist. 48:289–481. pore numbers in Lacertidae. Biol. J. Linn. Soc. Cocude-Michel, M. 1963. Les rhynchocephales 114:44–57. et les sauriens des calcaires lithographiques Benton, M. J. 1985. Classi"cation and phylog- (Jurassique superieur) d’Europe occidentale. eny of the diapsid reptiles. Zool. J. Linn. Soc. Nouv. Arch. Mus. Hist. Nat. Lyon 7:1–187. 84:97–164. Conrad, J. L. 2008. Phylogeny and systematics of de Blainville, H. M. D.. 1816. Prodrome d’une nou- Squamata (Reptilia) based on morphology. velle distribution systématique du règne ani- Bull. Am. Mus. Nat. Hist. 310:1–182. mal. Bull. Sci. Soc. Philom. Paris 8:113–124. Cope, E. D. 1864. On the characters of the higher de Blainville, H. M. D.. 1822. De L’organisation des groups of Reptilia Squamata—and especially Animaux ou Principes d’anatomie Comparée. F. of the Diploglossa. Proc. Acad. Nat. Sci. Phila. G. Levrault, Paris. 16:224–231. de Blainville, H. M. D.. 1835. Description de Cope, E. D. 1875. Check-list of North American quelques espèces de reptiles de la Californie, Batrachia and Reptilia; with a systematic list of précédée de l’analyse d’un système général the higher groups, and an essay on geographi- d’erpétologie et d’amphibiologie. Nouv. Ann. cal distribution. Bull. U.S. Natl. Mus. 1:1–104. Mus. Hist. Nat. Paris 4:233–296 + 4 plates. Cope, E. D. 1889. Synopsis of the families of Bonaparte, C. L. 1831. Saggio di Una Distribuzione Vertebrata. Am. Nat. 23:849–877. Metodica Degli Animali Vertebrati. Antonio Cope, E. D. 1900. !e crocodilians, lizards, and Boulzaler, Roma. snakes of North America. Annu. Rep. Board Bonaparte, C. L. 1840. Prodromus systematis Regents Smithson. Inst. 1898:155–1270 + 36 herpetologiae. Nuovi Ann. Sci. Nat. Bologna plates. 4:90–101. Crother, B., ed. 2017. Scienti!c and Standard English Bonaparte, C. L. 1841. A new systematic arrange- Names of Amphibians and Reptiles of North ment of vertebrated animals. Trans. Linn. Soc. America North of Mexico, Which Comment Lond. 18:247–304. Regarding Con!dence in Our Understanding. Bonaparte, C. L. 1850. Conspectus Systematum Society for the Study of Amphibians and Herpetologiae et Amphibiologiae. E. J. Brill, Reptiles, Herpetological Circular No. 43. Lugduni Batavorum. Cuvier, G. 1800. Leçons D’anatomie Comparée. Boulenger, G. A. 1884. Synopsis of the families of Tome I. Baudouin, Paris. existing Lacertilia. Ann. Mag. Nat. Hist., Ser. Daudin, F. M. 1802–1803. Histoire Naturelle, 5 14:117–122. Générale et Particulière des Reptiles. F. Dufart, Boulenger, G. A. 1885–1887. Catalogue of the Paris. Lizards in the British Museum (Natural Estes, R. 1983. Sauria terrestria, Amphisbaenia. History), Vols. 1–3. Trustees of the British Handbuch der Paläoherpetologie. Teil 10A. Museum, London. Gustav Fischer, Stuttgart. 1097 Squamata Estes, R., K. de Queiroz, and J. Gauthier. 1988. the Lizard Families (R. Estes and G. Pregill, Phylogenetic relationships within Squamata. eds.). Stanford University Press, Stanford, Pp. 119–281 in Phylogenetic Relationships of the CA. Lizard Families (R. Estes and G. Pregill, eds.). Gauthier, J. A., M. Kearney, J. A. Maisano, Stanford University Press, Stanford, CA. O. Rieppel, and A. D. B. Behlke. 2012. Evans, S. E. 1988. !e early history and relation- Assembling the squamate tree of life: perspec- ships of the Diapsida. Pp. 221–260 in "e tives from the phenotype and the fossil record. Phylogeny and Classi!cation of the Tetrapods. Bull. Peabody Mus. Nat. Hist. 53:3–308. Vol. 1: Amphibians, Reptiles, Birds (M. J. Gegenbaur, C. 1859. Grundzüge der Vergleichenden Benton, ed.). Systematics Association Special Anatomie. Wilhelm Englemann, Leipzig. Volume No. 35A. Clarendon Press, Oxford. Gravenhorst, J. L. 1843. Vergleichende Zoologie. Evans, S. E. 2003. At the feet of the dinosaurs: the Breslau, Graf, Barth und Comp. early history and radiation of lizards. Biol. Rev. Gray, J. E. 1825. A synopsis of the genera of Reptiles 78(4):513–551. and Amphibia, with a description of some new Evans, S. E., and R. Matsumoto. 2015. An assem- species. Ann. Philos., Ser. 2 10:193–217. blage of lizards from the early cretaceous of Gray, J. E. 1827. A synopsis of the genera of sau- Japan. Palaeontol. Electron. 18.2.36A:1–36. rian reptiles in which some new genera Fitzinger, L. I. 1826. Neue Classi!cation der Reptilien are indicated, and the others reviewed by Nach Ihren Natürlichen Verwandtschaften. actual examination. Philos. Mag., Ser. 2 2: Nebst Einer Verwandtschafts-Tafel Und Einem 54–58. Verzeichnisse der Reptilien-Sammlung des K. K. Gray, J. E. 1831a. A synopsis of the species of Zoologischen Museum’s zu Wien. J. G. Heubner, the class Reptilia. Pp. 1–110 in "e Animal Wien. Kingdom Arranged in Conformity with Its Fitzinger, L. I. 1843. Systema Reptilium. Fasiculus Organization, by the Baron Cuvier, with Primus, Amblyglossae. Braumüller et Seidel, Additional Descriptions of all the Species Vindobonae. Hitherto Named, and of Many Not Before Gadow, H. 1898. A Classi!cation of Vertebrata Noticed, by Edward Gri#th and Others. Vol. 9: Recent and Extinct. Adam and Charles Black, "e Class Reptilia. Appendix (E. Gri%th, ed.). London. Whittaker, Treacher, and Co., London. Gadow, H. 1901. Amphibia and Reptiles. "e Gray, J. E. 1831b. Note on a peculiar structure in Cambridge Natural History, Vol. 8. Macmillan, the head of an Agama. Zool. Misc. 1831:13–14. London. Gray, J. E. 1842. Descriptions of two hitherto unre- Gans, C. 1978. !e characteristics and a%nities of corded species of reptiles fro New Zealand; the Amphisbaenia. Trans. Zool. Soc. London presented to the British Museum by Dr. 34:347–416. Die$enbach. Zool. Misc. 1842:72. Gao, K., and M. A. Norell. 2000. Taxonomic com- Gray, J. E. 1844. Catalogue of the Tortoises, position and systematics of Late Cretaceous Crocodiles, and Amphisbaenians in the Collection lizard assemblages from Ukhaa Tolgod and of the British Museum. Trustees of the British adjacent localities, Mongolian Gobi Desert. Museum, London. Bull. Am. Mus. Nat. Hist. 249:1–118. Gray, J. E. 1845. Catalogue of the Specimens of Gauthier, J. A. 1982. Fossil Xenosauridae and Lizards in the Collection of the British Museum. Anguidae from the Lower Eocene Wasatach Trustees [of the British Museum], London. Formation, southcentral Wyoming, and a Günther, A. 1867. Contribution to the anatomy revision of the Anguioidea. Contr. Geol. Univ. of Hatteria (Rhynchocephalus, Owen). Philos. Wyoming 21:7–54. Trans. R. Soc. Lond. B Biol. Sci. 157:595–629. Gauthier, J., R. Estes, and K. de Queiroz. 1988. A Haeckel, E. 1866. Generelle Morphologie der phylogenetic analysis of Lepidosauromorpha. Organismen: Allgemeine Grundzüge der Pp. 15–98 in Phylogenetic Relationships of Organischen Formen-Wissenschaft, Mechanisch 1098 Squamata Begründet Durch die von Charles Darwin Lee, M. S. Y. 1998. Convergent evolution and char- Reformirte Descendenz-"eorie. Band 2: acter correlation in burrowing reptiles: towards Allgemeine Entwickelungsgeschichte der a resolution of squamate relationships. Biol. J. Organismen. G. Reimer, Berlin. Linn. Soc. 65:369–453. Haeckel, E. 1895. Systematicshe Phylogenie. Dritter Lee, M. S. Y. 2005. Molecular evidence and marine "eil: Systematicshe Phylogenie der Wirbelthiere snake origins. Biol. Lett 1(2):227–230. (Vertebrata). Georg Reimer, Berlin. Linnaeus, C. 1758. Systema Naturae Per Regna Tria Haworth, A. H. 1825. A binary arrangement of the Naturae, Secundum Classes, Ordines, Genera, class Amphibia. Philos. Mag. J. 65:372–373. Species, cum Characteribus, Di$erentiis, Synonymis, Hay, O. P. 1902. Bibliography and Catalogue of the Locis. 10th edition. Laurentii Salvii, Holmiae Fossil Vertebrata of North America. United (Stockholm). States Geological Survey, Washington, DC. MaCartney, J. 1802. Scienti"c names [see p. vi] Hay, O. P. 1930. Second Bibliography and Catalogue in Cuvier, G. 1802. Lectures on Comparative of the Fossil Vertebrata of North America. Anatomy. Translated by William Ross under Carnegie Institution, Washington, DC. the inspection of James MaCartney. T. N. Hsiou, A. S., M. A. G. De França, and J. Longman and O. Rees, London. Ferigolo. 2015. New data on the Clevosaurus McDowell, Jr., S. B., and C. M. Bogert. 1954. !e (Sphenodontia: Clevosauridae) from the Upper systematic position of Lanthanotus borneensis, Triassic of southern Brazil. PLOS ONE and the a%nities of the anguinomorphan liz- 10(9):e0137523. ards. Bull. Am. Mus. Nat. Hist. 105:1–142. Hugall, A. F., R. Foster, and M. S. Y. Lee. 2007. Merrem, B. 1820. Versuch Eines Systems der Calibration choice, rate smoothing, and the Amphibien. Johann Christian Krieger, pattern of tetrapod diversi"cation according Marburg. to the long nuclear gene RAG-1. Syst. Biol. Müller, J. 1831. Beiträge zur Anatomie und 56:543–563. Naturgeschichte der Amphibien. Z. Physiol. Huxley, T. H. 1886. A Manual of the Anatomy 4:190–275. of Vertebrated Animals. D. Appleton, New Nopcsa, F. 1923. Die Familien der Reptilien. York. Fortschritte der Geologie und Palaeontologie, Jaekel, O. 1911. Die Wirbeltiere: Eine Übersicht Über Heft 2. Gebrüder Borntraeger, Berlin. Die Fossilen und Lebenden Formen. Gebrüder Oppel, M. 1811. Die Ordnungen, Familien, und Borntraeger, Berlin. Gattungen der Reptilien, als Prodrom Einer Natur- Jan, G. 1857. Cenni sul Museo Civico di Milano ed geschichte Derselben. Joseph Lindauer, München. Indice Sistematico dei Rettili ed An!bi Esposti Owen, R. 1842. Report on British fossil reptiles, nel Medesimo. Luigi di Giacomo Priola, part II. Rep. Br. Assoc. Adv. Sci. 11:60–204. Milano. Owen, R. 1845. Description of certain fossil crania, Kuhl, H. 1820. Beiträge zur Kenntnifs der discovered by A. G. Bain, Esq., in sandstone Amphibien. Pp. 75–131 in Beiträge zur Zoologie rocks at the south-eastern extremity of Africa, Vergleichenden Anatomie. Hermannschen referable to a di#erent species of an extinct Buchhandlung, Frankfurt am Main. genus of Reptilia (Dicynodon), and indicative Latreille, P. A. 1825. Familles Naturelles du Règne of a new tribe or sub-order of Sauria. Trans. Animal, Exposées Succinctement et dans un Geol. Soc. Lond. 7:59–84 + 4 plates. Ordre Analytique, avec L’ indication de Leurs Owen, R. 1866. On the Anatomy of Vertebrates. Vol. Genres. J. B. Baillière, Paris. 1: Fishes and Reptiles. Longmans, Green, and Laurenti, J. N. 1768. Specimen Medicum, Co., London. Exhibens Synopsin Reptilium Emendatam cum Pough, F. H., R. M. Andrews, M. L. Crump, A. Experimentis circa Venena et Antidota Reptilium D. Savitsky, K. D. Wells, and M. C. Brandley. Austriacorum. Joan. !om. Nob. de Trattnern, 2016. Herpetology. 4th edition. Sinauer, Viennae. Sunderland, MA. 1099 Squamata Pyron, R. A., F. T. Burbrink, and J. J. Wiens. Swainson, W. W. 1839. "e Natural History of 2013. A phylogeny and revised classi"cation Fishes, Amphibians, & Reptiles, or Monocardian of Squamata, including 4161 species of lizards Animals. Vol. II: "e Cabinet Cyclopædia; and snakes. BMC Evol. Biol. 13:93. Natural History; Conducted by Dionysius Rage, J.-C. 1982. La phylogenie des lepidosauriens Lardner. Longman, Orme, Brown, Green, and (Reptilia): une approche cladistique. C. R. Longmans, and John Taylor, London. Acad. Sci. Paris 284:1765–1768. Tornier, G. 1913. Reptilia. Pp. 315–376 in Rage, J.-C. 1984. Serpentes. Handbuch der Handwörterbuch der Naturwissenshaften, Achter Paläoherpetologie, Teil 11. Gustav Fischer, Band (E. Korschelt, ed.). Gustav Fischer, Jena. Stuttgart. Townsend, T. M., A. Larson, E. Louis, and J. R. Reeder, T. W., T. M. Townsend, D. G. Mulcahy, B. Macey. 2004. Molecular phylogenetics of P. Noonan, P. L. Wood, Jr., J. W. Sites, Jr., and Squamata: the position of snakes, amphisbae- J. J. Wiens. 2015. Integrated analyses resolve nians and dibamids, and the root of the squa- con$icts over squamate reptile phylogeny and mate tree. Syst. Biol. 53:735–757. reveal unexpected placements for fossil taxa. Uetz, P., ed. 2016. Species numbers (as of August PLOS ONE 10: e0118199. 2016). !e Reptile Database. Available at Renesto, S., and R. Posenato. 2003. A new lepido- http://www.reptile-database.org/. sauromorph reptile from the Middle Triassic Vidal, N., and S. B. Hedges. 2005. !e phylogeny of of the Dolomites. Riv. Ital. Paleo. Strat. squamate reptiles (lizards, snakes, and amphis- 109:463–474. baenians) inferred from nine nuclear protein- Romer, A. S. 1933. Vertebrate Paleontology. coding genes. C. R. Biol. 328:1000–1008. University of Chicago Press, Chicago, IL. Vitt, L. J., and J. P. Caldwell. 2014. Herpetology, Romer, A. S. 1945. Vertebrate Paleontology. 2nd edi- an Introductory Biology of Amphibians and tion. University of Chicago Press, Chicago, IL. Reptiles. 4th edition. Academic Press, London. Romer, A. S. 1956. Osteology of the Reptiles. Wagler, J. 1828. Vorläu"ge Übersicht des Gerüstes, University of Chicago Press, Chicago, IL. so wie Ankündigung seines Systema Romer, A. S. 1966. Vertebrate Paleontology. 3rd edi- Amphibiorum. Isis von Oken 21:859–861. tion. University of Chicago Press, Chicago, IL. Wagler, J. 1830. Natürliches System der Amphibien, Scopoli, I. A. 1777. Introductio ad Historiam mit Vorangehender Classi!cation der Säugethiere Naturalem Sistens Genera Lapidum, Plantarum, und Vögel. Ein Beitrag zur Vergleichenden et Animalium Hactenus Detecta, Caracteribus Zoologie. J. G. Cotta’schen, München, Essentialibus Donata, in Tribus Divisa, Subinde Stuttgart und Tübingen. ad Leges Naturae. Wolfgangum Gerle, Pragae. Wiegmann, A. F. A. 1834. Herpetologia Mexicana, Simões, T. R., M. W. Caldwell, M. Tałanda, seu Descriptio Amphibiorum Novae Hispaniae, M. Bernardi, A. Palci, O. Vernygora, F. quae Itineribus Comitis de Sack, Ferdinandi Bernardini, L. Mancini, and R. L. Nydam. Deppe et Chr. Guil. Schiede in Museum 2018. !e origin of squamates revealed by a Zoologicum Berolinense Pervenerunt. Pars Middle Triassic lizard from the Italian Alps. Prima, Saurorum Species Amplectens, Adiecto Nature 557:706–709. Systematis Saurorum Prodromo, Additisque Stannius, H. 1856. Handbuch der Zootomie. Zweiter Multis in Hunc Amphibiorum Ordinem "eil. Die Wirbelthiere. Zweites Buch. Zootomie Observationibus. C. G. Lüderitz, Berolini. der Amphibien. Veit and Comp., Berlin. Wiens, J. J., C. A. Kuczynski, T. Townsend, T. Strauch, A. 1887. Bemerkungen über die W. Reeder, D. G. Mulcahy, and J. W. Sites, Geckoniden-Sammlung im zoologischen Jr. 2010. Combining phylogenomics and fos- Museum der Kaiserlichen Akademie der sils in higher-level squamate reptile phylogeny: Wissenshaften zu St. Petersburg. Mem. Acad. molecular data change the placement of fossil Imp. Sci. St.-Petersb. Ser. 7 35:1–72. taxa. Syst. Biol. 59:674–688. 1100 Squamata Williston, S. W. 1917. !e phylogeny and classi"ca- History; Smithsonian Institution; Washington, tion of reptiles. J. Geol. 25:411–421. DC 20560-0162, USA. Email: dequeirozk@ Williston, S. W. 1925. "e Osteology of the Reptiles. si.edu. Harvard University Press, Cambridge, MA. Jacques A. Gauthier; Department of Geology and Zittel, K. A. 1887–1890. Handbuch der Geophysics; Yale University; 210 Whitney Palaeontologie. I. Abtheilung. Palaeozoologie. Avenue, New Haven, CT 06520-8109, USA. III. Band. Vertebrata (Pices, Amphibia, Email: jacques.gauthier@yale.edu. Reptilia, Aves). R. Oldenbourg, München und Leipzig. Date Accepted: 18 July 2018 Authors Primary Editor: Philip Cantino Kevin de Queiroz; Department of Vertebrate Zoology; National Museum of Natural 1101