Supplementary Methods Detailed Site Description. Chain Valley Bay is located on the southern shores of Lake Macquarie on the central coast of NSW, Australia (33°5.5’S, 151°35’E). Lake Macquarie lies within the Sydney Basin and is situated upon extensive Permian coal measures that extend throughout the Sydney Basin from Newcastle to the Illawarra. The history of coal mining in the central coast extends to the late 1800s, and since this time coal mining activity has increased. Chain Valley Colliery became operational within the Chain Valley Bay sub- catchment in 1962. Following partial pillar extraction from the underground long wall mine, Chain Valley Bay encountered lateral and vertical subsidence1. Rapid inundation occurred as elevation decreased. Low-lying areas of the foreshore, including private residences, became prone to flooding and inundation. Initial measurements of the subsidence in 1986 were approximately 500 mm, increasing to 607 mm in June 1987, 750 mm by June 1988 and 782 mm by December 19881. By 1989 subsidence had reached 818 mm, and 850 mm by 1991. During a visit to the Chain Valley Bay site in 2014 a nearby resident (pers. comm., 8th September) verified subsidence was still occurring. Figure 1: Location of study site within a) Australia, b) Lake Macquarie, and c) Chain Valley Bay. Wetland extent indicate pre-subsidence extent, derived from aerial photography before the subsidence event. The Chain Valley Bay wetland is situated on a fluvial delta that formed as sediments transported by the Karignan Creek tributary entered Lake Macquarie. Lake Macquarie is a large, immature barrier estuary that has not undergone complete infill. It drains a catchment of approximately 605 km2 and has an estuary area of approximately 115 km2. The Chain Valley Bay wetland has a variable extent, estimated at < 2 km2 at the time of the study. Lake Macquarie has a semi-diurnal tide regime and a tidal range of 1.18 m based on a tide gauge located 500 m upstream of the entrance2. However, as tides are attenuated as they enter the large immature barrier estuaries3, the tidal range of the study site is markedly less than that recorded at the nearest tide gauge. Tidal inundation is an important control on the distribution of coastal wetland vegetation3 and the landward limit of coastal wetland vegetation and upper tidal limits typically coincide. As Lake Macquarie is youthful, substrates suitable for coastal wetland vegetation establishment are not extensive and limited to fluvial deltas where a continuous supply of sediment facilitates delta progradation and expansion of wetland vegetation over time. Fluvial delta development at Chain Valley Bay is not extensive, but substrates support a mosaic of vegetation including subtidal seagrass beds dominated by Zostera capricornia, Posidonia australis, Halophila ovalis and Ruppia megacarpa. The mangrove zone support two mangrove species that extend to temperate regions in southeastern Australia, Avicennia marina and Aegiecras corniculatum, but is dominated by the former, which exhibits broad tolerance of a range of salinity and inundation regimes. Coastal saltmarsh species situated within the upper intertidal zone are typical of the region and include Juncus krausii, Sarcocornia quinqueflora, Sporobolous virginicus and Suaeda australis. Where overland flows deliver freshwater to the wetland, the saltmarsh also supports brackish species such as Bauma juncea, Ficinea nodosa, Selliera radicans and Phragmites australis. The saltmarsh transitions to terrestrial forests dominated by Casuarina glauca and Melaleuca quinquenervia. Influence of global climate and salinity variation on C concentration. Global variation in tidal wetland carbon storage has previously been related to climate4, with higher rainfall proposed to increase C inputs via enhanced primary production5 and lower temperature proposed to slow rates of organic matter decomposition6. At a local scale, salinity may influence wetland carbon storage by influencing rates and pathways (e.g. sulfate reduction) of carbon decomposition7. Data sets were identified that could be used to explore the global- scale effect of these factors on variation in tidal wetland carbon storage. Carbon storage data were assigned to broad Köppen climate zones (four levels: Tropical, Arid, Warm Temperate, Cool Temperate) based on their geographic location with respect to these zones. Global scale variation in sea surface salinity values extracted from gridded data of global variation in mean annual sea surface salinity in 2015, derived from the Aquarius Satellite Mission, were also assigned to tidal carbon storage data based on their geographic location. Linear regression analysis was initially undertaken to identify a relationship between salinity and %C. Linear mixed models were used to analyse the influence of climate or salinity on the relationship between RSLR and %C. Linear regression analysis. However, as small scale variation in salinity is likely high within a tidal wetland due to climatic and hydrologic variability, the effect of salinity is more likely to be detected at local scales, as reported previously8,9. Furthermore, the temporal scales of %C data and sea surface salinity data do not correspond, as sea surface salinity data has been time averaged over a 12 month period and %C has accumulated over millennia. For these reasons, relationships between %C and salinity should be interpreted cautiously. Influence of RSLR variability on C density. We further validated the role of Holocene RSLR variation on C storage by analysing the relationship between C density (g C cm-3) and RSLR zones. Where C density values were available for a study site, these were directly incorporated into our analysis. In the absence of C density values, the models of Holmquist et al.10 (i.e. equation 1 and 2) were used to estimate bulk density. OC=(0.074±0.014)OM2+(0.421±0.012)OM−(0.0080±0.0021) Eq. (1) Where: OC = fraction organic carbon OM = fraction organic matter BD=1/((OM/k1)+((1−OM)/k2)) Eq. (2) Where: BD = bulk density OM = fraction organic matter k1 = self-packing density of pure organic matter, estimated to be 0.098 g cm−3 ± 0.001(s.e.)10 k2 = self-packing density of pure mineral matter, estimated to be 1.67 g cm−3 ± 0.025(s.e.)10 C density was then estimated from bulk density based on reported C concentration (%C). We endeavoured to minimise the number of model-derived bulk density values by using equation 2 when the organic matter fraction was reported. In the absence of organic matter fraction values, we used equation 1 to generate model-derived organic matter fraction values, and equation 2 to generate model-derived bulk density values. Following the statistical approach applied to C concentration, we applied a linear mixed model to assess the relationship between the dependent variable of C density and the fixed factors of soil depth (three repeated measure levels: 0-20cm, 20-50cm, 50-100cm) and RSLR zones (eight levels: Zones I through V and I-II, II-III and IV-V transitional regions). To further assess variations in C density with soil depth, a separate repeated measures analysis of variance (RM-ANOVA)36 was completed for each data-rich RSLR zone. Supplementary Tables Supplementary Table 1. Compilation of tidal marsh soil carbon concentration (%C) data by relative sea-level zones identified by modelling by Clark et al. (1978)11. Records include locations for which carbon or organic matter concentrations were reported over the 0-100cm depth range or beyond. Mean values are reported where multiple cores were collected from a location, though separate records are presented where differences in geomorphic setting or vegetation composition were reported from the same site. % C Sieve size Record SLR_Zone Sieved? (mm) 1 I 48.77 -64.29 Y 0.063 5.25 1.23 0.31 0.23 12 2 I 48.77 -64.29 Y 0.063 11.23 3.54 1.12 0.42 12 3 I-II transition 42.76 -70.81 17.97 19.46 17.58 13 4 I-II transition 42.78 -70.81 13.69 9.60 8.24 13 5 I-II transition 43.27 -70.59 15.74 12.76 12.00 13 6 I-II transition 43.32 -70.57 19.04 13.36 10.55 13 7 I-II transition 41.56 -70.54 31.32 39.97 22.41 7 8 I-II transition 41.56 -70.54 26.10 35.34 24.43 7 9 I-II transition 41.56 -70.58 25.77 27.10 29.17 7 10 I-II transition 41.56 -70.58 26.99 30.42 22.74 7 11 I-II transition 41.58 -70.50 31.89 27.66 46.22 50.72 7 12 I-II transition 41.58 -70.50 41.70 40.20 48.54 52.11 55.49 7 13 I-II transition 41.58 -70.50 40.70 43.33 59.70 7 14 I-II transition 41.55 -70.51 26.10 35.34 24.43 7 15 I-II transition 41.55 -70.51 30.92 25.54 34.81 7 16 I-II transition 48.40 -4.51 2.35 0.46 4.35 14 17 I-II transition 41.24 -72.99 8.11 8.21 6.65 15 18 I-II transition 41.10 -73.39 16.12 7.04 7.54 15 19 I-II transition 41.12 -73.32 24.49 14.89 13.91 15 Latitude Longitude 0-20cm 20-50cm 50-100cm 100-150cm 150-200cm 200-250cm 250-300cm 300-350cm 350-400cm 400-450cm 450-500cm 500-550cm 550-600cm Reference 20 I-II transition 41.07 -73.43 22.31 13.57 10.25 15 21 I-II transition 41.08 -73.41 18.09 10.04 8.76 15 22 I-II transition 41.08 -73.41 21.17 13.38 7.66 15 23 I-II transition 40.95 -73.70 19.66 12.99 9.69 15 24 I-II transition 40.95 -73.72 19.05 11.46 13.93 15 25 I-II transition 40.87 -73.81 26.50 24.01 32.97 15 26 I-II transition 40.87 -73.82 24.72 15.14 12.81 15 27 I-II transition 40.61 -74.20 33.08 22.84 16.10 15 28 I-II transition 41.12 -73.32 5.14 11.77 12.91 15 29 I-II transition 41.08 -73.42 15.25 20.34 21.14 15 30 I-II transition 43.74 -69.83 28.05 27.23 13.22 22.60 4.32 2.08 11.50 16 31 I-II transition 43.10 -70.87 25.89 12.08 13.05 10.03 17.70 32.86 17 32 I-II transition 43.00 -70.94 29.80 18.30 5.47 17 33 I-II transition 43.02 -70.93 16.48 11.87 4.25 17 34 I-II transition 43.02 -70.93 36.73 43.75 43.54 32.32 17 35 I-II transition 43.04 -70.92 21.09 18.14 8.66 17 36 I-II transition 43.00 -70.94 34.59 26.44 14.04 8.81 4.43 17 37 I-II transition 43.02 -70.93 29.17 35.68 22.08 14.40 19.91 26.08 17 38 I-II transition 43.06 -70.90 7.33 10.28 4.78 17 39 I-II transition 43.00 -70.94 31.05 16.64 11.08 10.14 3.75 17 40 II 51.78 -0.85 2.64 1.84 0.80 18 41 II 51.70 -0.72 3.69 2.99 4.00 18 42 II 51.76 -0.85 3.71 3.32 1.98 1.17 18 43 II 53.70 -0.29 3.07 1.94 1.38 19 44 II 53.70 -0.29 5.25 3.11 3.23 19 45 II 53.70 -0.29 5.21 4.22 2.80 19 46 II 40.75 -74.09 17.62 15.57 13.11 5.98 4.28 6.48 20 47 II 38.90 -75.30 12.41 4.25 3.80 21 48 II 38.83 -75.23 22.44 3.69 4.74 21 49 II 38.83 -75.26 33.28 6.21 3.87 21 50 II 38.89 -75.30 22.56 16.06 16.49 21 51 II 38.04 -121.86 6.99 9.91 7.49 22 52 II 38.04 -121.87 23.31 8.07 19.95 22 53 II 38.04 -121.87 22.33 7.47 4.03 22 54 II 38.01 -122.49 5.47 4.97 3.83 22 55 II 38.01 -122.49 3.52 2.98 2.53 22 56 II 37.64 -122.15 3.73 2.23 2.82 22 57 II 38.19 -122.32 5.89 3.70 4.21 22 58 II 37.50 -122.10 5.55 3.65 2.48 22 59 II 37.50 -122.10 3.82 2.99 2.27 22 60 II 37.50 -122.09 4.62 4.31 3.28 22 61 II 37.93 -122.51 1.75 0.88 0.78 22 62 II 38.16 -122.55 9.87 8.85 6.22 22 63 II 38.16 -122.55 4.76 5.09 3.44 22 64 II 38.19 -122.01 15.17 7.95 10.82 22 65 II 38.20 -122.04 7.68 14.36 13.82 22 66 II 37.60 -122.14 5.14 2.86 2.67 22 67 II 37.60 -122.14 3.22 3.11 3.16 22 68 II 37.59 -122.14 4.00 2.88 2.66 22 69 II 37.59 -122.15 3.39 2.51 1.35 22 70 II 37.59 -122.14 3.91 2.58 2.32 22 71 II 40.88 -73.79 19.92 18.40 25.93 23 72 II 41.05 -72.29 38.78 34.08 40.93 23 73 II 48.04 -122.16 5.86 2.00 2.04 24 74 II 48.04 -122.16 3.75 5.00 5.00 24 75 II 48.04 -122.20 4.88 3.71 3.00 24 76 II 47.99 -122.16 6.38 2.56 2.38 24 77 II 48.00 -122.16 1.50 7.00 13.67 24 78 II 39.51 -74.42 9.10 9.03 9.00 13 79 II 39.54 -74.43 19.52 16.72 16.27 13 80 II 40.77 -72.89 18.95 13.62 11.92 13 81 II 40.77 -72.89 20.19 15.36 14.80 13 82 II 38.51 -75.07 8.90 36.00 10.00 25 83 II 38.51 -75.07 10.28 7.60 2.47 25 84 II 38.42 -75.07 25.92 2.39 0.71 25 85 II 38.42 -75.07 30.78 23.24 11.48 25 86 II 53.95 8.71 Y 2 3.29 2.47 1.30 26 87 II 38.30 -75.90 9.50 10.52 10.52 27 88 II 38.30 -75.90 16.49 12.09 12.09 27 89 II 38.30 -75.90 20.60 14.80 14.80 27 90 II 40.03 -74.08 0.19 0.13 0.13 28 91 II 40.77 -72.89 32.89 17.27 28.21 29 92 II 40.91 -72.57 15.70 11.78 7.36 29 93 II 40.90 -73.23 6.83 6.34 4.08 29 94 II 40.77 -72.82 23.08 14.50 8.06 29 95 II 38.87 -76.55 38.72 40.01 41.40 30 96 II 38.77 -75.98 13.00 13.94 13.82 31 97 II 38.73 -76.01 8.87 13.10 13.50 31 98 II 38.63 -75.97 15.86 11.78 11.95 31 99 II 38.78 -76.71 17.50 16.03 23.14 18.37 31 100 II 38.78 -76.71 8.19 7.17 6.04 10.21 31 101 II 38.23 -75.78 12.71 14.09 23.48 31 102 II 38.21 -75.80 8.64 23.55 35.04 31 103 II 38.20 -75.83 14.41 11.85 17.98 31 104 II 39.44 -76.28 5.95 5.57 3.61 31 105 II 39.44 -76.28 5.57 4.86 4.87 31 106 II 39.44 -76.28 4.64 4.60 3.48 31 107 II 38.81 -76.71 10.57 6.45 5.07 6.31 31 108 II 38.79 -76.72 9.66 4.56 4.78 3.27 31 109 II 38.81 -76.74 17.05 7.56 4.31 31 110 II 38.78 -76.71 8.65 6.16 6.02 8.74 31 111 II 38.75 -76.70 10.39 10.66 12.47 17.24 31 112 II 38.69 -76.69 15.54 17.07 12.61 18.45 31 113 II 38.68 -76.69 30.67 12.87 14.98 31 114 II 38.68 -76.69 10.46 8.50 6.23 31 115 II 38.67 -76.69 21.42 45.63 53.91 42.51 31 116 II 38.63 -76.69 8.38 8.06 6.63 5.36 31 117 II 38.62 -76.68 10.36 9.32 10.82 15.39 31 118 II 42.04 -73.92 8.53 7.30 5.26 31 119 II 42.04 -73.92 4.35 3.83 3.13 31 120 II 42.04 -73.92 4.47 4.40 2.97 31 121 II 42.03 -73.92 4.52 4.37 3.07 31 122 II 42.03 -73.92 15.48 19.39 27.40 31 123 II 38.74 -76.69 10.21 8.75 9.08 31 124 II 38.74 -76.69 10.20 9.39 14.85 31 125 II 38.74 -76.69 13.68 11.21 36.64 31 126 II 38.74 -76.69 11.99 12.33 21.11 31 127 II 38.69 -76.69 9.44 10.91 9.51 31 128 II 38.69 -76.69 8.94 7.29 8.54 31 129 II 38.69 -76.69 17.04 13.11 11.73 31 130 II 38.69 -76.69 20.86 18.08 17.64 31 131 II 38.62 -76.67 7.65 14.94 25.31 9.44 31 132 II 38.62 -76.67 35.67 30.99 27.03 16.38 31 133 II 38.62 -76.67 35.75 37.01 41.58 29.85 31 134 II 38.87 -76.55 20.72 8.46 5.12 32 135 II 37.50 -122.00 3.47 3.03 2.89 2.90 2.43 33 136 II 37.60 -122.14 3.83 2.21 8.77 33 137 II 37.55 -122.23 6.98 3.69 3.22 2.37 1.64 33 138 II 37.62 -75.67 0.88 0.46 0.46 34 139 II 37.62 -75.67 0.34 0.31 0.54 34 140 II 38.00 -122.29 8.64 5.34 5.46 5.86 6.84 5.82 5.42 5.90 34 141 II 38.19 -122.32 9.86 6.03 5.90 4.68 3.50 3.42 3.27 10.35 34 142 II 38.20 -122.32 5.95 6.40 4.39 3.14 3.42 34 143 II 38.20 -122.03 14.54 13.09 13.96 10.33 10.88 11.59 26.14 27.31 22.41 18.15 20.17 34 144 II 38.20 -122.03 10.64 13.20 17.35 14.36 15.43 23.92 25.21 34 145 II 38.20 -122.03 10.06 14.86 24.26 22.06 1.15 34 146 II 38.20 -122.03 22.61 17.80 23.09 22.54 17.57 30.99 34.23 15.22 23.16 34 147 II 37.62 -75.68 6.74 3.48 1.95 2.39 2.35 34 148 II 38.19 -122.32 6.12 4.28 4.32 3.57 3.83 3.99 4.02 4.34 34 149 II 38.20 -122.03 5.54 6.48 5.40 7.47 10.01 6.90 10.37 34 150 II 38.20 -122.03 7.91 8.30 5.11 7.92 5.64 6.22 4.13 34 151 II 38.87 -76.55 40.45 40.44 37.10 40.51 40.11 40.85 40.37 40.61 33.34 34.04 11.98 34 152 II 34.70 -76.62 0.94 2.00 0.66 35 153 II 34.70 -76.62 3.32 1.61 0.26 35 154 II 34.70 -76.62 5.88 1.77 0.22 35 155 II 34.76 -76.42 6.41 3.97 1.32 35 156 II 34.54 -77.33 7.35 6.13 3.27 35 157 II 34.54 -77.32 8.05 3.53 1.37 35 158 II 51.43 3.53 Y 2 7.76 2.54 1.57 1.36 36 159 II 51.43 3.53 Y 2 3.72 2.20 0.80 36 160 II 51.43 3.53 Y 2 5.37 2.83 2.31 36 161 II 51.43 3.53 Y 2 1.97 36 162 II 38.22 -75.83 1.94 13.75 15.76 37 163 II 38.22 -75.83 11.32 18.37 16.27 14.77 19.94 37 164 II 38.38 -75.85 13.46 18.14 16.62 15.74 18.97 37 165 II 38.22 -75.83 15.14 17.04 20.93 16.73 37 166 II 38.38 -75.85 12.52 22.58 20.64 21.80 13.41 37 167 II 37.52 -122.22 7.43 3.68 8.96 2.96 6.45 6.02 3.12 38 168 II 37.52 -122.21 4.89 4.96 5.42 3.16 2.86 38 169 II 37.52 -122.22 5.07 1.22 2.26 4.33 4.74 2.92 38 170 II 37.51 -122.22 3.80 2.43 4.74 7.26 8.73 5.98 38 171 II 37.52 -122.23 6.09 5.39 6.16 3.58 2.49 38 172 II 37.52 -122.23 9.30 7.10 4.97 3.54 2.73 38 173 II 37.47 -121.95 2.92 3.11 4.63 4.56 2.66 38 174 II 37.45 -121.95 3.36 3.49 3.43 3.36 3.63 2.38 38 175 II 37.46 -121.95 4.34 4.19 4.01 5.05 2.96 2.13 38 176 II 37.46 -121.95 4.52 4.12 3.88 3.75 4.82 3.28 3.07 38 177 II 37.75 -122.21 7.91 4.90 3.40 3.03 1.89 38 178 II 37.75 -122.21 16.60 8.36 6.34 6.20 5.05 3.10 38 179 II 37.50 -122.17 5.44 5.62 5.12 6.65 3.53 3.07 38 180 II 37.47 -121.95 3.63 3.97 4.15 10.48 12.17 4.03 38 181 II 37.47 -121.93 3.45 3.75 3.36 5.16 7.12 7.22 2.35 38 182 II 37.48 -121.95 4.07 6.64 11.30 6.51 38 183 II 37.51 -122.09 5.53 8.50 4.42 7.67 5.44 11.44 12.09 14.62 38 184 II 37.49 -122.15 4.52 3.05 3.40 6.05 4.04 38 185 II 37.49 -122.15 16.60 8.36 6.34 6.20 5.05 3.16 38 186 II 37.55 -122.24 8.40 4.70 3.70 4.21 2.74 38 187 II 37.55 -122.24 12.73 6.97 4.74 3.29 38 188 II 37.46 -121.98 5.09 4.87 4.91 5.97 9.44 5.78 4.46 5.16 38 189 II 37.46 -121.97 3.71 3.80 3.67 3.88 4.14 3.39 2.53 38 190 II 27.94 -97.03 1.40 0.29 0.15 39 191 II 27.94 -97.03 3.74 0.42 0.42 39 192 II 26.97 -82.01 42.84 35.05 15.52 2.08 2.46 40 193 II 27.70 -82.46 40.04 28.07 21.91 6.06 40 194 II 30.00 -89.90 21.68 28.47 33.14 17.67 23.85 19.57 37.70 12.60 23.93 41 195 II 29.71 -89.72 17.11 13.84 19.54 42 196 II 29.67 -89.60 9.72 10.63 16.33 42 197 II-III transition 31.97 -81.02 3.25 1.93 3.06 2.69 3.67 1.52 1.09 0.42 0.74 0.37 0.67 0.64 0.55 43 198 II-III transition 33.74 -118.10 Y 39.55 17.35 17.46 9.37 10.18 7.10 10.05 4.75 9.93 1.38 1.46 44 199 II-III transition 33.74 -118.10 Y 47.16 37.64 17.81 5.23 1.73 10.67 11.15 44 200 II-III transition 59.64 -151.53 3.85 2.26 3.10 34 201 II-III transition 59.64 -151.53 4.12 4.91 7.96 34 202 II-III transition 59.64 -151.53 2.47 2.70 3.26 34 203 II-III transition 59.64 -151.54 9.24 4.01 10.67 34 204 II-III transition 59.64 -151.54 2.73 3.73 6.68 34 205 III 45.73 13.16 Y 2 7.48 6.60 5.29 45 206 III 45.73 13.16 Y 2 4.71 3.07 2.95 45 207 III 24.50 -111.85 0.75 0.76 0.65 46 208 III 30.35 -115.92 4.87 9.57 4.79 3.16 2.56 46 209 III 31.70 -116.62 7.99 4.43 3.80 2.69 46 210 III 27.42 -113.88 4.28 2.46 46 211 III 26.40 -112.75 1.47 1.07 1.06 46 212 IV 37.75 119.17 Y 0.18 0.26 0.19 0.26 47 213 IV 37.75 119.17 Y 0.18 0.41 0.31 0.29 47 214 IV 37.72 119.12 Y 0.15 0.33 0.21 0.18 47 215 IV Y 2 0.33 0.21 0.18 47 216 IV 26.73 119.80 Y 0.15 1.22 1.21 1.18 47 217 IV -31.70 18.18 0.80 0.45 48 218 IV -28.63 16.45 1.28 1.02 1.05 49 219 IV 31.42 121.83 Y 0.15 0.57 0.44 0.37 50 220 IV 31.42 121.83 Y 0.15 0.69 0.50 0.39 50 221 IV 31.42 121.83 Y 0.15 0.56 0.50 0.30 50 222 IV 31.42 121.83 Y 0.15 0.30 0.37 0.24 50 223 IV 37.30 118.90 Y 0.15 0.27 0.32 0.42 51 224 IV 37.30 118.90 Y 0.15 0.19 0.19 0.13 51 225 IV 31.05 122.77 Y 0.841 0.54 0.55 0.43 52 226 IV 31.05 122.77 Y 0.841 0.30 0.45 0.36 52 227 IV 37.58 118.55 Y 2 0.71 0.38 0.27 53 228 IV 24.40 117.92 Y 0.25 1.27 0.72 0.52 54 229 IV 33.18 120.76 Y 0.15 0.75 0.19 0.18 55 230 IV 33.18 120.76 Y 0.15 0.95 0.22 0.19 55 231 IV 33.18 120.76 Y 0.15 0.80 0.21 0.14 55 232 IV 33.18 120.76 Y 0.15 0.51 0.35 0.19 55 233 IV 30.17 122.02 Y 0.45 1.39 1.39 1.39 56 234 IV 30.17 122.02 Y 0.45 1.42 1.39 1.39 56 235 IV 30.17 122.02 Y 0.45 1.51 1.49 1.46 56 236 IV 32.56 120.58 Y 0.15 0.36 0.19 0.20 0.15 0.08 0.16 0.26 57 237 IV 32.56 120.58 Y 0.15 0.19 0.16 0.13 0.15 0.12 0.14 0.12 57 238 IV 32.56 120.58 Y 0.15 0.31 0.34 0.28 0.19 0.19 0.11 0.13 57 239 IV 32.56 120.58 Y 0.15 0.84 0.29 0.17 0.11 0.10 0.15 0.13 57 240 IV 41.00 121.80 Y 0.15 0.93 0.82 0.81 58 241 IV 23.67 118.30 Y 0.15 0.52 0.37 0.34 59 242 IV 24.26 54.24 1.59 1.61 1.63 1.12 1.13 60 243 IV 24.46 54.43 1.07 0.79 0.44 0.33 0.33 60 244 IV 24.50 54.53 1.27 1.29 1.24 60 245 IV 24.52 54.47 0.61 0.65 0.12 60 246 IV 37.78 119.00 Y 0.25 0.52 0.32 0.15 61 247 IV 37.78 119.00 Y 0.25 0.42 0.34 0.22 61 248 IV 38.03 118.73 Y 0.15 0.48 0.16 0.15 61 249 IV 39.30 117.48 Y 0.15 2.18 0.92 0.38 62 250 IV 26.02 119.62 Y 0.15 2.00 1.74 1.38 63 251 IV 26.02 119.62 Y 0.15 2.26 1.87 2.76 63 252 IV 26.02 119.62 Y 0.15 0.83 0.24 0.17 63 253 IV 26.02 119.62 Y 0.15 1.89 2.05 2.13 63 254 IV 26.02 119.62 Y 0.15 2.16 2.27 2.17 63 255 IV 26.02 119.62 Y 0.15 1.67 1.59 1.54 63 256 IV -30.85 17.58 3.49 1.14 64 257 IV 23.90 117.50 Y 0.074 0.64 0.58 0.55 65 258 IV 36.10 120.15 Y 0.15 0.60 0.76 0.75 66 259 IV 36.10 120.15 Y 0.15 0.77 0.75 0.72 66 260 IV 36.10 120.15 Y 0.15 1.18 0.66 0.63 66 261 IV 32.93 120.22 Y 0.15 0.28 0.25 0.16 67 262 IV 37.67 118.70 Y 0.15 0.22 0.13 0.14 68 263 IV 37.67 118.70 Y 0.15 0.51 0.26 0.14 68 264 IV 37.67 118.70 Y 0.15 0.30 0.17 0.14 68 265 IV 37.67 118.70 Y 0.15 0.37 0.24 0.25 68 266 IV 37.67 118.70 Y 0.15 0.20 0.10 0.05 68 267 IV 37.67 118.70 Y 0.15 0.52 0.35 0.34 68 268 IV 37.58 118.55 Y 2 0.46 0.29 0.31 68 269 IV 37.58 118.55 Y 2 0.48 0.44 0.43 68 270 IV 37.58 118.55 Y 2 0.35 0.24 0.25 68 271 IV 37.58 118.55 Y 2 0.23 0.23 0.25 68 272 IV 37.58 118.55 Y 2 0.44 0.26 0.23 68 273 IV 37.58 118.55 Y 2 0.57 0.50 0.41 68 274 IV 37.58 118.55 Y 2 0.44 0.44 0.46 68 275 IV 37.58 118.55 Y 2 0.62 0.48 0.32 68 276 IV 31.50 122.00 Y 0.15 0.63 0.57 0.49 69 277 IV 36.20 120.10 Y 0.15 0.72 0.61 0.60 70 278 IV 36.20 120.10 Y 0.15 0.74 0.69 0.68 70 279 IV 36.20 120.10 Y 0.15 1.29 1.14 1.07 70 280 IV-V transition -42.43 -64.12 2.17 0.76 0.40 71 281 IV-V transition -42.43 -64.12 3.54 1.60 0.77 71 282 IV-V transition -42.41 -64.62 12.90 14.50 12.75 7.00 71 283 V -34.14 24.84 0.65 0.44 48 284 V -33.55 27.04 0.27 0.37 48 285 V -34.06 22.24 0.80 0.42 48 286 V -31.68 29.46 0.97 0.32 48 287 V -34.08 24.92 0.93 0.68 48 288 V -27.25 153.25 2.94 2.32 2.08 1.09 72 289 V -27.25 153.25 4.16 5.11 3.00 1.28 72 290 V -27.25 153.25 1.55 1.47 1.11 0.90 72 291 V -16.95 145.80 1.47 0.69 1.74 3.34 3.22 3.22 3.22 3.18 3.18 73 292 V -12.65 130.96 1.23 3.99 5.61 4.08 74 293 V -29.38 153.35 1.93 1.27 0.60 75 294 V -29.38 153.35 0.61 0.54 0.25 75 295 V -35.69 150.10 13.15 8.25 3.94 75 296 V -35.69 150.10 8.86 3.57 1.76 75 297 V -34.94 150.71 9.35 1.36 0.31 75 298 V -34.94 150.71 5.41 1.35 2.87 75 299 V -31.55 152.85 19.87 14.24 6.37 75 300 V -31.55 152.85 20.99 21.16 7.93 75 301 V -30.89 153.00 1.99 0.89 1.17 75 302 V -30.89 153.00 2.50 1.29 1.31 75 303 V -32.64 151.99 2.56 1.77 2.17 75 304 V -32.64 151.99 3.49 1.66 1.83 75 305 V -36.06 150.06 9.75 4.68 1.52 75 306 V -36.06 150.06 8.78 3.08 2.45 75 307 V -32.34 152.49 19.00 7.83 4.52 75 308 V -32.34 152.49 16.59 9.29 5.27 75 309 V -36.59 150.02 9.47 0.94 0.35 75 310 V -36.59 150.02 8.41 0.92 0.84 75 311 V -35.71 150.17 1.63 1.11 0.99 75 312 V -35.71 150.17 0.56 0.66 1.07 75 313 V -34.91 150.74 3.08 0.73 1.72 75 314 V -34.91 150.74 0.93 0.75 1.57 75 315 V -31.55 152.85 0.95 0.29 0.24 75 316 V -31.55 152.85 2.90 0.37 0.22 75 317 V -30.88 153.02 1.92 0.81 1.41 75 318 V -30.88 153.02 2.69 2.18 1.28 75 319 V -32.67 152.15 1.05 1.39 1.02 75 320 V -32.67 152.15 2.18 2.39 1.27 75 321 V -32.20 152.51 3.39 0.58 0.15 75 322 V -32.20 152.51 1.47 0.40 0.46 75 323 V -36.62 150.02 1.87 0.59 0.18 75 324 V -36.62 150.02 1.17 0.56 0.13 75 325 V -36.08 150.12 0.75 0.71 0.41 75 326 V -36.08 150.12 0.52 0.26 0.34 75 327 V -29.43 153.36 0.97 0.11 0.08 75 328 V -29.43 153.36 0.53 0.20 0.06 75 329 V -38.68 145.80 12.94 14.91 7.90 5.79 2.02 1.46 76 330 V -38.57 145.33 13.37 4.22 2.33 77 331 V -38.60 145.35 9.25 3.33 1.78 77 332 V -38.40 145.43 10.88 2.14 1.80 77 333 V -23.95 113.63 0.81 1.57 0.77 78 334 V -33.57 137.95 8.39 5.61 2.14 1.28 0.61 78 335 V -33.61 115.43 9.61 2.23 1.73 0.37 78 336 V -33.63 115.41 11.38 0.22 0.74 78 337 V -33.05 137.57 8.13 6.38 0.41 78 338 V -33.63 151.12 13.90 10.30 10.05 79 339 V -34.99 150.77 24.30 0.50 0.70 79 340 V -35.02 150.67 13.40 11.90 1.75 79 341 V -32.85 151.72 23.50 4.40 0.50 79 342 V -33.52 151.10 12.70 11.30 8.80 79 343 V -33.55 27.04 1.03 0.21 80 344 V -38.41 144.19 Y 2 12.18 3.49 2.15 81 345 V -38.40 144.18 Y 2 1.45 1.00 0.94 1.17 81 References 1 NSW Mine Subsidence Board. Chain Valley Bay Restoration Project: Special Report. (NSW Government Mine Subsidence Board, Newcastle, NSW, 1991). 2 MHL. OEH NSW Tidal Planes Analysis: 1990-2010 Harmonic Analysis. Report MHL2053, October 2012. (Manly Hydraulics Laboratory, 2012). 3 Roy, P. S. et al. Structure and Function of South-east Australian Estuaries. Estuarine, Coastal and Shelf Science 53, 351-384 (2001). 4 Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nature Climate Change, 1 (2018). 5 Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research: Biogeosciences 121, 2600-2609 (2016). 6 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1111 (2003). 7 Gonneea, M. E., O'Keefe Suttles, J. A. & Kroeger, K. D. (2018). 8 Poffenbarger, H., Needelman, B. & Megonigal, J. Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands 31, 831-842, doi:10.1007/s13157-011-0197- 0 (2011). 9 Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnology and oceanography 52, 1220-1230 (2007). 10 Holmquist, J. R. et al. Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific Reports 8, 9478, doi:10.1038/s41598- 018-26948-7 (2018). 11 Clark, J. A., Farrell, W. E. & Peltier, W. R. Global changes in postglacial sea level: A numerical calculation. Quaternary Research 9, 265-287, doi:http://dx.doi.org/10.1016/0033-5894(78)90033-9 (1978). 12 Gibeault, C., Neumeier, U. & Bernatchez, P. Spatial and Temporal Sediment Dynamics in a Subarctic Salt Marsh (Gulf of St. Lawrence, Canada). Journal of coastal research 32, 1344-1361 (2016). 13 Drake, K., Halifax, H., Adamowicz, S. C. & Craft, C. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States. Environmental management, 1-11 (2015). 14 Goslin, J., Sansjofre, P., Van Vliet-Lanoe, B. & Delacourt, C. Carbon stable isotope (delta C-13) and elemental (TOC, TN) geochemistry in saltmarsh surface sediments (Western Brittany, France): a useful tool for reconstructing Holocene relative sea- level. Journal of Quaternary Science 32, 989-1007, doi:10.1002/jqs.2971 (2017). 15 Hill, T. D. & Anisfeld, S. C. Coastal wetland response to sea level rise in Connecticut and New York. Estuarine, Coastal and Shelf Science (2015). 16 Johnson, B. J., Moore, K. A., Lehmann, C., Bohlen, C. & Brown, T. A. Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine. Organic Geochemistry 38, 394-403 (2007). 17 Ward, L. G., Zaprowski, B. J., Trainer, K. D. & Davis, P. T. Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system: Climatic and relative sea level impacts. Marine Geology 256, 1-17, doi:10.1016/j.margeo.2008.08.004 (2008). 18 Adams, C. A., Andrews, J. E. & Jickells, T. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of The Total Environment 434, 240-251, doi:http://dx.doi.org/10.1016/j.scitotenv.2011.11.058 (2012). 19 Andrews, J. E., Samways, G. & Shimmield, G. B. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK. Science of the Total Environment 405, 1-13, doi:10.1016/j.scitotenv.2008.07.044 (2008). 20 Artigas, F. et al. Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey. Agricultural and Forest Meteorology 200, 313- 321, doi:10.1016/j.agrformet.2014.09.012 (2015). 21 Boyd, B. M. & Sommerfield, C. K. Marsh accretion and sediment accumulation in a managed tidal wetland complex of Delaware Bay. Ecological Engineering 92, 37-46, doi:10.1016/j.ecoleng.2016.03.045 (2016). 22 Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal Wetlands. Estuaries and coasts 35, 1163-1181 (2012). 23 Cochran, J., Hirschberg, D., Wang, J. & Dere, C. Atmospheric deposition of metals to coastal waters (Long Island Sound, New York USA): evidence from saltmarsh deposits. Estuarine, Coastal and Shelf Science 46, 503-522 (1998). 24 Crooks, S. et al. Coastal blue carbon opportunity assessment for the Snohomish Estuary: The climate benefits of estuary restoration. Report by Environmental Science Associates, Western Washington University, EarthCorps, and Restore America’s Estuaries (2014). 25 Elsey-Quirk, T., Seliskar, D. M., Sommerfield, C. K. & Gallagher, J. L. Salt marsh carbon pool distribution in a mid-atlantic lagoon, USA: sea level rise implications. Wetlands 31, 87-99 (2011). 26 Hansen, K. et al. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). J. Soils Sediments 17, 47-60, doi:10.1007/s11368-016- 1500-8 (2017). 27 Kearney, M. S. & Stevenson, J. C. Island land loss and marsh vertical accretion rate: Evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7, 403-415 (1991). 28 Kemp, A. C. et al. Use of lead isotopes for developing chronologies in recent salt- marsh sediments. Quaternary Geochronology 12, 40-49, doi:http://dx.doi.org/10.1016/j.quageo.2012.05.004 (2012). 29 Kolker, A. S., Goodbred Jr, S. L., Hameed, S. & Cochran, J. K. High-resolution records of the response of coastal wetland systems to long-term and short-term sea- level variability. Estuarine, Coastal and Shelf Science 84, 493-508, doi:http://dx.doi.org/10.1016/j.ecss.2009.06.030 (2009). 30 Megonigal, J. P. Unpublished data. 31 Merrill, J. Tidal freshwater marshes as nutrient sinks: Particulate nutrient burial and denitrification. (2001). 32 Pastore, M. A., Megonigal, J. P. & Langley, J. A. Elevated CO2 and nitrogen addition accelerate net carbon gain in a brackish marsh. Biogeochemistry 133, 73-87, doi:10.1007/s10533-017-0312-2 (2017). 33 Patrick, W. H. Subsidence. accretion. and sea level rise in south San Francisco Bay marshes. Limnology and Oceanography 35, 1389-1395 (1990). 34 Schile-Beers, L. Unpublished data. 35 Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuarine, Coastal and Shelf Science, doi:10.1016/j.ecss.2015.08.001 (2015). 36 Van de Broek, M., Temmerman, S., Merckx, R. & Govers, G. Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient. Biogeosciences 13, 6611-6624, doi:10.5194/bg-13-6611-2016 (2016). 37 Ward, L. G. & Kearney, M. S. Variations in sedimentary environments and accretionary patterns in estuarine marshes undergoing rapid submergence, Chesapeake Bay. Marine Geology 151, 111-134 (1998). 38 Watson, E. B. & Byrne, R. Late Holocene Marsh Expansion in Southern San Francisco Bay, California. Estuaries and coasts 36, 643-653 (2013). 39 Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science 119, 7-16, doi:http://dx.doi.org/10.1016/j.ecss.2012.12.007 (2013). 40 Gerlach, M. J. et al. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida. Marine Geology 390, 254-269, doi:https://doi.org/10.1016/j.margeo.2017.07.001 (2017). 41 Markewich, H. W. Carbon storage and late holocene chronostratigraphy of a Mississippi River deltaic marsh, St. Bernard Parish, Louisiana. Report No. 2331- 1258, (US Geological Survey, 1998). 42 Piazza, S. C. et al. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities. Report No. 2331-1258, (US Geological Survey, 2011). 43 Alexander, C., Hodgson, J. & Brandes, J. Sedimentary processes and products in a mesotidal salt marsh environment: insights from Groves Creek, Georgia. Geo-Marine Letters 37, 345-359 (2017). 44 Leeper, R. et al. Evidence for coseismic subsidence events in a southern California coastal saltmarsh. Scientific Reports 7, 11, doi:10.1038/srep44615 (2017). 45 Covelli, S., Petranich, E., Langone, L., Emili, A. & Acquavita, A. Historical sedimentary trends of mercury and other trace elements from two saltmarshes of the Marano and Grado lagoon (northern Adriatic Sea). J. Soils Sediments 17, 1972-1985, doi:10.1007/s11368-016-1618-8 (2017). 46 Watson, E. B. & Corona, A. H. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts. Sensors 18, 17, doi:10.3390/s18010032 (2018). 47 Bai, J. et al. Spatial and temporal distributions of soil organic carbon and total nitrogen in two marsh wetlands with different flooding frequencies of the Yellow River Delta, China. CLEAN–Soil, Air, Water 40, 1137-1144 (2012). 48 Bezuidenhout, C. Macrophytes as indicators of physico-chemical factors in South African estuaries PhD thesis, Nelson Mandela Metropolitan University, (2011). 49 Bornman, T. G. & Adams, J. B. Response of a hypersaline salt marsh to a large flood and rainfall event along the west coast of southern Africa. Estuarine, Coastal and Shelf Science 87, 378-386, doi:10.1016/j.ecss.2010.01.024 (2010). 50 Bu, N.-S. et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecological Engineering 81, 335-339, doi:http://dx.doi.org/10.1016/j.ecoleng.2015.04.051 (2015). 51 Cao, L. Carbon deposition and burial in typical coastal wetlands of the northern Shandong peninsula (in Chinese) PhD thesis, University of Chinese Academy of Sciences, (2014). 52 Cheng, X. et al. Short-term C 4 plant Spartina alterniflora invasions change the soil carbon in C 3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biology and Biochemistry 38, 3380-3386 (2006). 53 Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering 35, 1090-1103 (2009). 54 Feng, J. et al. Effects of short-term invasion of Spartina alterniflora and the subsequent restoration of native mangroves on the soil organic carbon, nitrogen and phosphorus stock. Chemosphere 184, 774-783 (2017). 55 Gao, J. H. et al. The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China. Ecological Engineering 95, 160-170 (2016). 56 Liao, C. et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351-1361 (2007). 57 Liu, J.-e. et al. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China. Ecological Engineering 106, 132-139 (2017). 58 Luo, X., ShanShan, Z. & Dun, M. Spatial Distribution and Seasonal Dynamics Characteristics of Carbon, Nitrogen and Phosphorus in the Liaohe Estuary Wetlands. Periodical of Ocean University Of China (in Chinese) 40, 97-104 (2010). 59 Mo, X., Gong-fu, Y. E., You, S. & et al. Soil microbial biomass and their relationships with soil nutrients in different vegetation restoration patterns on degraded coastal sand. Journal of Fujian College of Forestry (in Chinese) 33, 146- 150 (2013). 60 Schile, L. M. et al. Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications 27, 859-874, doi:10.1002/eap.1489 (2017). 61 Wang, D. Relationship Between Soil Carbon and Plant Communities In The Yellow River Delta (in Chinese) Masters thesis, Liaocheng University, (2017). 62 Wang, Y., Wang, Z.-L., Feng, X., Guo, C. & Chen, Q. Long-term effect of agricultural reclamation on soil chemical properties of a coastal saline marsh in Bohai Rim, Northern China. PloS one 9, e93727 (2014). 63 Wang, W. et al. Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena 128, 144-154 (2015). 64 Wooldridge, T. H., Adams, J. B. & Fernandes, M. Biotic responses to extreme hypersalinity in an arid zone estuary, South Africa. South African Journal of Botany 107, 160-169, doi:10.1016/j.sajb.2016.05.004 (2016). 65 Xu, Y. et al. Geochemical analysis of sediments from a semi-enclosed bay (Dongshan Bay, southeast China) to determine the anthropogenic impact and source. Chemosphere 174, 764-773 (2017). 66 Yang, L. Responses of stoichiometric characteristic of carbon, nitrogen and phosphorus of wetland soil in Yanghe estuary (in Chinese) Masters thesis, Qingdao University, (2017). 67 Yang, T., Ren, H., Zhang, Z.-k. & et al. Distribution and Influence factors of soil organic carbon of different land-use types in the Jiangsu coastal areas. Journal of Subtropical Resources and Environment (in Chinese) 11, 46-52 (2016). 68 Yu, J. et al. The spatial distribution characteristics of soil nutrients in new-born coastal wetland in Yellow River delta. Acta Sci. Circum 30, 855-861 (2010). 69 Zhang, Y. et al. A multi-proxy study of sedimentary humic substances in the salt marsh of the Changjiang Estuary, China. Estuarine, Coastal and Shelf Science (2014). 70 Zi, Y.-y., Xi, M., Kong, F.-l., Li, Y. & Yang, L. Temporal and spatial distribution of soft organic carbon and its storage in the coastal wetlands of Jiaozhou Bay, China. Chinese Journal of Applied Ecology (in Chinese) 7, 005 (2016). 71 Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Marine and Freshwater Research, -, doi:https://doi.org/10.1071/MF16322 (2017). 72 Hayes, M. A. et al. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Global Change Biology 23, 4222-4234, doi:10.1111/gcb.13722 (2017). 73 Hicks, W. S., Bowman, G. & Fitzpatrick, R. East Trinity Acid Sulfate Soils: Part 1: Environmental Hazards. Vol. 31 (CSIRO Land and Water Adelaide, 1999). 74 Hill, J. & Edmeades, B. Acid sulfate soils of the Darwin region. Technical Report No. 092008D., (Department of Natural Resources, Environment the Arts and Sport, Northern Territory, 2008). 75 Kelleway, J. J., Saintilan, N., Macreadie, P. I. & Ralph, P. J. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 19, 865- 880 (2016). 76 Kennedy, D. M. et al. Invasive cordgrass (Spartina spp.) in south-eastern Australia induces island formation, salt marsh development, and carbon storage. Geographical Research 56, 80-91, doi:10.1111/1745-5871.12265 (2018). 77 Livesley, S. J. & Andrusiak, S. M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuarine, Coastal and Shelf Science 97, 19-27 (2012). 78 Macreadie, P. I. et al. Carbon sequestration by Australian tidal marshes. Scientific reports 7, 44071 (2017). 79 Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128, 84-92, doi:http://dx.doi.org/10.1016/j.ecss.2013.05.010 (2013). 80 Vromans, D. Macrophyte phenology in a temporarily open/closed estuary compared with a permanently open estuary Masters thesis, Nelson Mandela Metropolitan University, (2010). 81 Yau, C. C., Wong, V. N. L. & Kennedy, D. M. Soil chemistry and acidification risk of acid sulfate soils on a temperate estuarine floodplain in southern Australia. Soil Research 54, 787-796, doi:10.1071/sr15174 (2016).