Literature Cited Academy, 1998. Impact of aquatic vegetation on water quality of the Delaware River Estuary. 98-5F. by the Academy of Natural Sciences, Patrick Center for Environmental Research for the Delaware River Basin Commission, Philadelphia, PA, 109pp. An, S., Gardner, W.S., 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar. Ecol. Prog. Ser. 237: 41-50. Anderson, I.C., Neubauer, S.C., Neikirk, B.B., Wetzel, R.L., 1998. Exchanges of carbon and nitrogen between tidal freshwater wetlands and adjacent tributaries. Final Report for the Virginia Coastal Resources Management Program, Virginia Department of Environmental Quality, Richmond, VA, 56pp. Anderson, I.C., Tobias, C.R., Neikirk, B.B., Wetzel, R.L., 1997. Development of a process-based nitrogen mass balance model for a Virginia (USA) Spartina alterniflora Salt Marsh: Implications for net DIN flux. Mar. Ecol. Prog. Ser. 159, 3-27. Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123:53–86. doi:10.1016/j.earscirev.2013.02.008 Arrigoni, A., Findlay, S., Fischer, D., Tockner, K., 2008. Predicting carbon and nutrient transformations in tidal freshwater wetlands of the Hudson River. Ecosystems 11(5): 790- 802. Baldock, J.A., Masiello, C.A., Gelinas. Y., Hedges, J.I., 2004. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar. Chem. 92: 39–64. doi: 10.1016/j.marchem.2004.06.016 Baldwin, A.H., 2013. Nitrogen and phosphorus differentially affect annual and perennial plants in tidal freshwater and oligohaline wetlands. Estuaries and Coasts 36(3): 547-558. Bartlett, K.B., Bartlett, D.S., Harriss, R.C., Sebacher, D.I., 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4: 183-202. Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A.G., 2013. The changing carbon cycle of the coastal ocean. Nature 504: 61–70. doi: 10.1038/nature12857 Bellis, V.J., Gaither, A.C., 1985. Seasonality of aboveground and belowground biomass for six salt marsh plant species. Journal of the Elisha Mitchell Scientific Society. 101(2): 95-109. Benner, M.A., Moran, M.A., Hodson, R.E., 1985. Effects of pH and plant source on lignocellulose biodegredation rates in two wetland ecosystems, the Okefenokee Swamp and a Georgia salt marsh. Limnol. Oceanogr. 30, 489-499. Bernhardt, E.S., Blaszczak, J.R., Ficken, C.D., Fork, M.L., Kaiser, K.E., Seybold, E.C., 2017. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20(4): 665-682. Blair, N.E., Aller, R.C., 2012. The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Marine Sci. 4: 401-423. Booth, P.M., 1989. Nitrogen and phosphorus cycling strategies in two tidal freshwater macrophytes, Peltandra virginica and Spartina cynosuroides. Ph.D. Dissertation, The College of William and Mary. Gloucester Point, VA, 264pp. Bosse, U., Frenzel, P., 1998. Methane emissions from rice microcosms: The balance of production, accumulation and oxidation, Biogeochemistry 41: 199–214. Bowden, W.B., Vorosmarty, C.J., Morris, J.T., Peterson, B.J., Hobbie, J.E., Steudler, P.A., Moore, B., 1991. Transport and processing of nitrogen in a tidal freshwater wetland. Water Resour. Res. 27, 389–408. Boullion, S., Boschker, H.T.S., 2006. Bacterial carbon sources in coastal sediments: a cross- system analysis based on stable isotope data of biomarkers. Biogeosciences 3: 175-185. Bowden, W.B., 1984. Nitrogen and phosphorus in the sediments of a tidal, freshwater marsh in Massachusetts. Estuaries 7: 108-118. Bowden, W.B., 1986. Nitrification, nitrate reduction, and nitrogen immobilization in a tidal fresh-water marsh sediment. Ecology 67: 88-99. Boye, K., Noël, V., Tfaily, M.M., Bone, S.E., Williams, K.H., Bargar, J.R., Fendorf, S., 2017. Thermodynamically controlled preservation of organic carbon in floodplains. Nature Geoscience 10:415-419. Bridgham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.B., Trettin, C., 2006. The carbon storage of North American wetlands. Wetlands 26: 889-916. Bridgham, S.D., Moore, T.R., Richardson, C.J., Roulet, N.T., 2014. Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: A comment on Mitsch et al.(2013). Landscape ecology 29(9): 1481-1485. Brunet, R.C., Garcia-Gil, L.J., 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol. Ecol. 21: 131-138. Bukaveckas, P.A., Beck, M., Devore, D., Lee, W.M., 2017. Climatic variability and its role in regulating C, N and P retention in the James River Estuary. Estuarine, Coastal and Shelf Science. manuscript in press. Bukaveckas, P.A., Wood, J., 2014. Nitrogen retention in a restored tidal stream (Kimages Creek, VA) assessed by mass balance and tracer approaches. Journal of Environmental Quality 43(5): 1614-1623. Bullock, A., Sutton-Grier, A., Megonigal, J., 2013. Anaerobic Metabolism in Tidal Freshwater Wetlands: III. Temperature Regulation of Iron Cycling. Estuaries and Coasts. 36 (3): 482- 490. doi: 10.1007/s12237-012-9536-5 Burkett, V., Ritschard, R., McNulty, S., O’Brien, J.J., Abt, R., Jones, J., Hatch, U., Murray, B., Jagtop, S., Cruise, J., 2001. Potential consequences of climate change variability and change for the southeastern United States. In: Climate change impacts on the United States: The potential consequences of climate variability and change. Cambridge University Press, Cambridge, pp. 137-164. Burton, K., Neubauer S.C., in prep. Species-specific and dose-dependent responses of tidal freshwater marsh vegetation to nitrogen and phosphorus enrichment. for submission to Wetlands. Cai, W.J., 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Ann. Rev. Marine Sci. 3: 123–145. doi:10.1146/annurev-marine- 120709-142723 Campana, M.L., 1998. The effect of Phragmites australis invasion on community processes in a tidal freshwater marsh. M.S. Thesis, The College of William and Mary, Gloucester Point, VA, 88pp. Caraco, N.F., Cole, J.J., Likens, G.E., 1989. Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 395–413. Chambers, R.M., 1992. A fluctuating water-level chamber for biogeochemical experiments in tidal marshes. Estuaries 15:53–58. Chambers, R.M., Fourqurean, J.W., 1991. Alternative criteria for assessing nutrient limitation of a wetland macrophyte (Peltandra-virginica (L) Kunth). Aquat. Bot. 40: 305-320. Chambers, R.M., Odum, W.E., 1990. Porewater oxidation, dissolved phosphate and the iron curtain: Iron-phosphorus relations in tidal freshwater marshes. Biogeochemistry 10: 37–52. Chambers, L.G., Reddy, K.R., Osborne, T.Z., 2011. Short-term response of carbon cycling to salinity pulses in a freshwater wetland. Soil Sci. Soc. Am. J. 75(5): 2000-2007. Chanton, J.P., Martens, C.S., Kelley, C.A., 1989. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr. 34: 807–819. Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C. and 18 other authors., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7): 1041-1050. Christensen, P.B., Rysgaard, S., Sloth, N.P., Dalsgaard, T., Scheaerter, S., 2000. Sediment mineralization, nutrient fluxes, denitrification, and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat. Microb. Ecol. 21: 73-84. Cornwell, J.C., Kemp, W.M., Kana, T.M., 1999. Denitrification on coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquat. Ecol. 33: 41–54. Courtwright, J., and Findlay S.E.G., 2011. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands 31(2): 239-249. Craft, C.B., 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol. Oceanogr. 52: 1220–1230. Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., Machmuller, M., 2009. Forecasting the effects of accelerated sea‐level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7(2): 73-78. Dahl, T.E., 1999. South Carolina’s wetlands—status and trends 1982–1989. Department of the Interior, US Fish and Wildlife Service, Washington, D.C. 58 pp. Darke, A.K., Megonigal, J.P., 2003. Control of sediment deposition rates in two mid-Atlantic Coast tidal freshwater wetlands. Estuar. Coast. Shelf Sci. 57: 255-268. Day, F.P., 1982. Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology 63: 670-678. Dausse, A., Garbutt, A., Norman, L., Papadimitriou, S., Jones, L.M., Robins, P.E., Thomas, D.N., 2012. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient. Estuar. Coast Shelf S. 100: 83-92. doi: 10.1016/j.ecss.2011.12.037. DeLaune, R.D., Smith, C.J., Sarafyan, M.N., 1986. Nitrogen cycling in a freshwater marsh of Panicum hemitomon on the deltaic plain of the Mississippi River. J Ecol. 74: 249-256. Elsey-Quirk, T., Smyth, A., Piehler, M., Mead, J.V., Velinsky, D.J., 2013. Exchange of nitrogen through an urban tidal freshwater wetland in Philadelphia, Pennsylvania. J. Environ. Qual. 42(2): 584-595. Ensign, S.H., Hupp, C.R., Noe, G.B., Krauss, K.W., Stagg, C.L., 2014a. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA. Estuaries and Coasts 37:1107-1119. DOI: 10.1007/s12237-013-9744-7. Ensign, S.H., Noe, G.B., Hupp, C.R., 2014b. Linking channel hydrology with riparian wetland accretion in tidal rivers. Journal of Geophysical Research, Earth Surface 119:28-44. DOI: 10.1002/2013JF002737. Ensign, S.H., Piehler, M.F., Doyle, M.W., 2008. Riparian zone denitrification affects nitrogen flux through a tidal freshwater river. Biogeochemistry, 91(2-3): 133-150. Ensign, S.H., Siporin, K., Piehler, M., Doyle, M., Leonard, L., 2013. Hydrologic versus biogeochemical controls of denitrification in tidal freshwater wetlands. Estuar. Coasts 36(3): 519-532. Enriquez, S., Duarte, C. M., Sand-Jensen, K., 1993. Patterns in decomposition rates among photo- synthetic organisms: the importance of detritus C:N:P content. Oceologia 94, 457– 471. Epp, R.G., Erickson, D.J., Paul, N.D., Sulzberger, B., 2007. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photoch. Photobio. Sci. 6: 286-300. Fazzolari, É., Nicolardot, B., Germon, J.C., 1998. Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores. Eur. J. Soil Biol. 34, 47–52. Findlay, S., Fischer, D., 2013. Ecosystem attributes related to tidal wetland effects on water quality. Ecology 94(1): 117-125. Findlay, S., Howe, K., Austin, H.K., 1990. Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71: 288-295. Findlay, S., Sinsabaugh, R.L., Fischer, D.T., Franchini, P., 1998. Sources of dissolved organic carbon supporting planktonic bacterial production in the tidal freshwater Hudson River. Ecosystems 1, 227-239. Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., Théate, J., 1998. Carbon dioxide emission from European estuaries. Science 282: 434-436. Frankignoulle, M., Bourge, I., Wollast, R., 1996. Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt), Limnology and Oceanography, 41, doi: 10.4319/lo.1996.41.2.0365. Freeman, C., Ostle, N., Kang, H., 2001. An enzymatic 'latch' on a global carbon store. Nature 409:149. Frolking, S., Roulet, N., Fuglestvedt, J., 2006. How northern peatlands influence the Earth’s radiative budget: Sustained methane emission versus sustained carbon sequestration. J Geophys. Res. 111:G01008. doi:10.1029/2005JG000091. Frost, J.W., Schleicher, T., Craft, C.B., 2009. Nitrogen limits primary and secondary production in a Georgia (USA) tidal freshwater marsh. Wetlands 29: 196-203. Furumai, H., Kawasaki, T., Futuwatari, T., Kusuda, T., 1988. Effect of salinity on nitrification in a tidal river. Water Sci. Technol. 20: 165-174. Gilbert, H., 1990. Éléments nutritifs (N et P), métaux lourds (Zn, Cu, Pb et Hg) et productivité végétale dans un marias intertidal d'eau douce, Québec (Québec). Can. J. Bot. 68: 857-863. Grant, R.R., Jr., Patrick, R., 1970. Tinicum Marsh as a water purifier. In. Two Studies of Tinicum Marsh. The Conservation Foundation: Washington, D.C., USA, pp. 105-123. Greene, S.E., 2005. Nutrient removal by tidal fresh and oligohaline marshes in a Chesapeake Bay tributary. M.S. Thesis, University of Maryland. Solomons, MD, USA. 149 pp. Greiner, M., Hershner, C., 1998. Analysis of wetland total phosphorus retention and watershed structure. Wetlands 18:142-149. Gribsholt, B., Boschker, H.T.S., Struyf, E., Andersson, M., Tramper, A., De Brabandere, L., van Damme, S., Brion N., Meire, P., Dehairs, F., Middelburg, J.J., Heip, C.H.R., 2005. Nitrogen processing in a tidal freshwater marsh: A whole-ecosystem N-15 labeling study. Limnol. Oceanogr. 50: 1945-1959. Gribsholt, B., Struyf, E., Tramper, A., Andersson, M.G.I., Brion, N., De Brabandere, L., van Damme, S., Meire, P., Middelburg, J.J., Dehairs, F., Boschker, H.T.S., 2006. Ammonium transformation in a nitrogen-rich tidal freshwater marsh. Biogeochemistry 80: 289–298. Gribsholt, B., Struyf, E., Tramper, A., De Brabandere, L., Brion, N., van Damme, S., Meire, P., Dehairs, F., Middelburg, J.J., Boschker, H.T.S., 2007. Nitrogen assimilation and short term retention in a nutrient-rich tidal freshwater marsh -- a whole ecosystem 15N enrichment study. Biogeosciences 4: 11–26. Groszkowski, K.M., 1995. Denitrification in a tidal freshwater marsh. Senior Thesis, Harvard College. Cambridge, MA, USA. 85 pp. Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49: 81–115. Heinle, D.R., Flemer, D.A., 1976. Flows of materials between poorly flooded tidal marshes and an estuary. Mar. Biol. 35: 359-373. Herbert, E.R., Boon, P., Burgin, A.J., Neubauer, S.C., Franklin, R.B., Ardón, M., Hopfensperger, K.N., Lamers, L.P.M. , Gell, P., 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere. 6(10): 1-43. doi: 10.1890/ES14-00534.1. Hines, J., Megonigal, J.P., Denno, R.F., 2006. Nutrient subsidies to belowground microbes impact aboveground food web interactions. Ecology 87: 1542–1555. Hoffman, J.C., Bronk, D.A., 2006. Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnol. Oceanogr. 51: 2319-2332. Hopkinson, C.S., 1992. A comparison of ecosystem dynamics in freshwater wetlands. Estuaries 15: 549-562. Howarth, R.W., Marine, R., Cole, J.J., 1988. Nitrogen-fixation in fresh-water, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688-701. Howarth, R.W., Schneider, R., Swaney, D., 1996. Metabolism and organic carbon fluxes in the tidal freshwater Hudson River. Estuaries 19: 848-865. Howes, B.L., Dacey, J.W.H., King, G.M., 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr. 29: 1037-1051. Huang, X.Q., Morris, J.T., 2003. Trends in phosphatase activity along a successional gradient of tidal freshwater marshes on the Cooper River, South Carolina. Estuaries 26: 1281-1290. Huang, X.Q., Morris, J.T., 2005. Distribution of phosphatase activity in marsh sediments along an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 292: 75-83. Hunsinger, G.B., Mitra, S., Findlay, S.E.G., Fischer, D.T., 2010. Wetland-driven shifts in suspended particulate organic matter composition of the Hudson River estuary, New York. Limnol. Oceanogr. 55: 1653–1667, doi: 10.4319/lo.2010.55.4.1653. Hunsinger, G.B., Mitra, S., Findlay, S.E.G., Fischer, D.T., 2012. Littoral-zone influences on particulate organic matter composition along the freshwater-tidal Hudson River, New York. Limnol. Oceanogr., 57(5): 1303–1316. doi:10.4319/lo.2012.57.5.1303 Ingvorsen, K., Jørgensen, B., 1984. Kinetics of sulfate uptake by freshwater and marine species of Desulfovibrio. Arch. Microbiol. 139: 61–66. Jordan, T.E., Cornwell, J.C., Boynton, W.R., Anderson, J.T., 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnol. Oceanogr. 53(1): 172-184. Joye, S.B., Hollibaugh, J.T., 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270: 623-625. Kalber, F.A., Jr., 1959. A hypothesis on the role of tide-marshes in estuarine productivity. Estuarine Bulletin. 4:3. Keiluweit, M., Nico, P.S., Kleber, M., Fendorf, S., 2016. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry. doi: 10.1007/s10533-015-0180-6 Keller, J.K., Bridgham, S.D., 2007. Pathways of anaerobic carbon cycling across an ombrotrophic–minerotrophic peatland gradient. Limnol. Oceanogr. 52: 96–107. Keller, J., Sutton-Grier, A., Bullock, A., Megonigal, J.P., 2013. Anaerobic metabolism in tidal freshwater wetlands: I. Plant removal effects on iron reduction and methanogenesis. Estuar. Coasts 36 (3): 457-470. doi: 10.1007/s12237-012-9527-6 Keller, J.K., Takagi, K.K., 2013. Solid-phase organic matter reduction regulates anaerobic decomposition in bog soil. Ecosphere 4(5):54. Keller, J.K., Weisenhorn, P.B., Megonigal, J.P., 2009. Humic acids as electron acceptors in wetland decomposition. Soil Biol. Biochem. 41(7): 1518-1522. doi 10.1016/j.soilbio.2009.04.008 Kelley, C.A., Martens, C.S., Chanton, J.P., 1990. Variations in sedimentary carbon remineralization rates in the White Oak River estuary, North Carolina. Limnol. Oceanogr. 35: 372-383. Kelley, C.A., Martens, C.S., Ussler, W.I., 1995. Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 40: 1112-1129. Khan, H., Brush, G.S., 1994. Nutrient and metal accumulation in a fresh-water tidal marsh. Estuaries 17:345-360. Kögel-Knabner, I., 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34: 139–162. Krauss, K.W., Whitbeck, J.L., 2012. Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands 32(1): 73-81. Krauss, K.W., Perez, B.C., Holm Jr., G.O., McWhorter, D.E., Cormier, N., Moss. R.F., Johnson, D.J., Neubauer, S.C., Raynie, R.C., 2016. Component greenhouse gas fluxes and radiative forcing from degrading and healthy coastal deltaic marshes: Pairing chamber techniques and eddy covariance. J. Geophys. Res.-Biogeo. 121: 1503-1521. doi: 10.1002/2015JG003224. Lamers, L.P.M., Dolle, G., Van Den Berg, S.T.G., Van Delft, S.P.J., Sebastiaan, P.J., Roelofs, J.M., 2001. Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55: 87-102. Lamers, L.P., Govers, L.L., Janssen, I.C., Geurts, J.J., Van der Welle, M.E., Van Katwijk, M.M., Van der Heide, T., Roelofs, J.G. and Smolders, A.J., 2013. Sulfide as a soil phytotoxin—a review. Front. Plant Sci. 4: 268. doi: 10.3389/fpls.2013.00268 LaRowe, D.E., Van Cappellen, P., 2011. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Ac. 75: 2030–2042. Lee, D.Y., De Meo, O.A., Tillett, A.L., Thomas, R.B., Neubauer, S.C., 2016. Design and construction of an automated irrigation system for simulating saltwater intrusion in a tidal freshwater wetland. Wetlands 36: 889-898. doi: 10.1007/s13157-016-0801-4. Limburg, K.E., Moran, M.A., McDowell, W., (Editors), 1986. The Hudson River Ecosystem. Springer-Verlag, New York, NY, USA. 331 pp. Loomis, M.J., Craft, C.B., 2010. Carbon Sequestration and Nutrient (Nitrogen, Phosphorus) Accumulation in River-Dominated Tidal Marshes, Georgia, USA. Soil Sci. Soc. Am. J. 74:1028-1036. doi:10.2136/sssaj2009.0171 Lombardi, J.E., Epp, M. A., Chanton, J.P., 1997. Investigation of the methylfluoride technique for determining rhizospheric methane oxidation, Biogeochemistry 36: 153– 172. Lovley, D.R., Phillips, E.J.P., 1986. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microb. 52: 751-757. Lovley, D.R., Phillips, E.J.P., 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microb. 53: 1536-1540. Ma, S., Luther, G.W.I., Keller, J., Madison, A.S., Metzger, E., Emerson, D., Megonigal, J.P., 2008. Solid-state Au/Hg microelectrode for the investigation of Fe and Mn cycling in a freshwater wetland: implications for methane production. Electroanalysis 20: 233-239. MacFarlane, G.T., Hebert, R.A., 1984. Effect of oxygen tension, salinity, temperature, and organic matter concentration on the growth and nitrifying activity of an estuarine strain of Nitrosomonas. FEMS Microbiol. Lett. 23: 107-111. Magalhães, C.M., Joye, S.B., Moreira, R.M., Wiebe, W.J., Bordalo, A.A., 2005. Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Res. 39: 1783- 1794. Malone, T.C., Boicourt, W.C., Cornwell, J.C., Harding, L.W., Jr., Stevenson, J.C., 2003. The Choptank River: A mid-Chesapeake Bay index site for evaluating ecosystem responses to nutrient management. Final report to the Coastal Intensive Site Network (CISNet) Horn Point Environmental Laboratory, University of Maryland, Cambridge, MD, USA. 64 pp. Marton, J.M., Herbert, E.R., Craft, C.B., 2012. Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils. Wetlands 32(2): 347-357. McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E., McDowell, W.H., 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4): 301-312. Meiggs, D., Taillefert, M., 2011. The effect of riverine discharge on biogeochemical processes in estuarine sediments. Limnol. Oceanogr. 56:1797–1810 Megonigal, J.P., Hines, M.E., Visscher, P.T., 2004. Anaerobic metabolism: linkages to trace gases and aerobic metabolism. In W.H. Schlesinger (Editor), Biogeochemistry. Elsevier-Pergamon, Oxford, UK, pp. 317-424. Megonigal, J.P., Schlesinger, W.H., 1997. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37: 77-88. Megonigal, J.P., Schlesinger, W.H., 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochem. Cy. 16: 1062, doi: 10.1029/2001GB001594. Megonigal, J.P., Whalen, S.C., Tissue, D.T., Bovard, B.D., Albert, D.B., Allen, A.S., 1999. A plant– soil–atmosphere microcosm for tracing radiocarbon from photosynthesis through methanogenesis. Soil Sci. Soc. Am. J. 63: 665-671. Merrill, J.Z., 1999. Tidal Freshwater Marshes as Nutrient Sinks: Particulate Nutrient Burial and Denitrification. Ph.D. Dissertation, University of Maryland. College Park, MD, USA. pp. 342 Merrill, J.Z., Cornwell, J.C., 2000. The role of oligohaline marshes in estuarine nutrient cycling. In M. Weinstein D.A. Kreeger (Editors), Concepts and controversies in tidal marsh ecology. Kluwer Press, Dordrecht, Netherlands, pp. 425-441. McKellar, H.N., Tufford, D.L., Alford, M.C., Saroprayogi, P., Kelley, B.J., Morris, J.T., 2007. Tidal nitrogen exchanges across a freshwater wetland succession gradient in the upper Cooper River, South Carolina. Estuar. Coasts 30: 989. Morris, J.T., Bowden, W.B., 1986. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Sci. Soc. Am. J. 50: 96-105. Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., Cahoon, D.R., 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869-2877. Morrissey, E.M., Gillespie, J.L., Morina, J.C., Franklin, R.B., 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol. 20: 1351– 1362. doi:10.1111/gcb.12431 Morse, J.L., Megonigal, J.P., Walbridge, M.R., 2004. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry 69: 175-206. Neubauer, S.C., 2000. Carbon dynamics in a tidal freshwater marsh. Ph.D. Dissertation. The College of William and Mary, Gloucester Point, VA, USA. 221 pp. Neubauer, S.C., 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuar. Coast. Shelf Sci.. 78: 78-88. Neubauer, S.C., 2013a. Carbon sequestration in wetland soils: Importance, mechanisms, and future prospects. Society of Wetland Scientists Research Brief. Oct 2013-0001. 4 pp. Neubauer, S.C., 2013b. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuar. Coasts 36: 491-507 doi: 10.1007/s12237-011-9455- x. Neubauer, S.C., 2014. On the challenges of modeling the net radiative forcing of wetlands: Reconsidering Mitsch et al. (2013). Landscape Ecol. 29: 571-577. doi: 10.1007/s10980-014- 9986-1. Neubauer, S.C., Anderson, I.C., 2003. Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary. Limnol. Oceanogr. 48: 299-307. Neubauer, S.C., Anderson, I.C., Constantine, J.A., Kuehl, S.A., 2002. Sediment deposition and accretion in a mid-Atlantic (USA) tidal freshwater marsh. Estuar. Coast. Shelf Sci. 54: 713- 727. Neubauer, S.C., Anderson, I.C., Neikirk, B.B., 2005a. Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28: 909-922. Neubauer, S.C., Craft, C.B., 2009. Global change and tidal freshwater wetlands: Scenarios and impacts. p. 253-266 in A. Barendregt, D.F. Whigham, A.H. Baldwin (Editors), Tidal Freshwater Wetlands. Backhuys Publishers, Leiden, The Netherlands. Neubauer, S.C., Emerson, D., Megonigal., J.P., 2008. Microbial oxidation and reduction of iron in the root zone and influences on metal mobility. In A.Violante, P.M. Huang, G.M. Gadd (Editors), Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments. John Wiley & Sons, Hoboken, NJ, USA, pp. 339-371. Neubauer, S.C., Franklin, R.B., Berrier, D.J., 2013. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10: 8171- 8183. doi: 10.5194/bg-10-8171-2013. Neubauer, S.C., Givler, K., Valentine, S., Megonigal, J.P., 2005b. Seasonal patterns and plant- mediated controls of subsurface wetland biogeochemistry. Ecology 86: 3334-3344. Neubauer, S.C., Megonigal, J.P., 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18: 1000-1013. doi: 10.1007/s10021-015-9879-4. Neubauer, S.C., Miller, W.D., Anderson, I.C., 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Mar. Ecol. Prog. Ser. 199:13-30. Neubauer, S.C., Toledo-Durán, G.E., Emerson, D., Megonigal, J.P., 2007. Returning to their roots: Iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere. Geomicrobiol. J. 24: 65-73. Nevin, K.P., Lovley, D.R., 2000. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34: 2472-2478. Nietch, C.T., 2000. Carbon biogeochemistry in tidal marshes of South Carolina: The effect of salinity and nutrient availability on marsh metabolism in estuaries with contrasting histories of disturbance and river influence. Ph.D. Dissertation, University of South Carolina. Columbia, SC, USA. 156 pp. Nijburg, J.W., Coolen, M.J.L., Gerards, S., Gunnewiek, P.J.A.K., Laanbroek, H.J., 1997. Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community. Appl. Environ. Microb. 63: 931-937. Nixon, S.W., 1980. Between coastal marshes and coastal waters: a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In P. Hamilton, K. MacDonald (Editors), Estuarine and Wetland Processes. Plenum Press, New York, NY, USA, pp. 438-525. Noe, G.B., Hupp, C.R., Bernhardt, C.E., Krauss, K.W., 2016. Contemporary deposition and long- term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuar. Coasts 39:1006-1019. DOI: 10.1007/s12237-016-0066-4 Noe, G.B., Krauss, K.W., Lockaby, B.G., Conner, W.H., Hupp, C.R., 2013. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry 114(1-3): 225-244. Odum, E.P., 1968. A research challenge: Evaluating the productivity of coastal and estuarine water. In Proceedings of the Second Sea Grant Conference. University of Rhode Island, Kingston, RI, USA, pp. 63-64. Odum,W.E., 1988. Comparative Ecology of Tidal Freshwater and Salt Marshes. Annu. Rev. Ecol. Syst. 19(1): 147-176 Oremland, R.S., Marsh, L.M., Polcin, S., 1982. Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments. Nature 296: 143–145. Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S., Bond, N., 2008. Climate change and the world’s river basins: anticipating management options. Front. Ecol. Environ. 6: 81-89. Paludan, C., Morris, J.T., 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45: 197-221. Pasternack, G.B., 2009. Hydrogeomorphology and sedimentation in tidal freshwater wetlands. In A. Barendregt, D. Whigham, A. Baldwin (Editors), Tidal Freshwater Wetlands. Backhuys Publishers, The Netherlands. Phillips, P.J., Hanchar, D.W., 1996. Water-quality assessment of the Hudson River basin in New York and adjacent states. Water-Resources Investigations Report 96-4065. U.S. Geological Survey, Troy, NY, USA. 76 pp. Poffenbarger, HJ, BA Needelman, JP Megonigal (2011). Salinity influence on methane emissions from tidal marshes. Wetlands. 31: 831-842. doi 10.1007/s13157-011-0197-0 Portnoy, J.W., Giblin, A.E., 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecol. Appl. 7: 1054-1063. Raymond, P.A., Bauer, J.E., 2001. DOC cycling in a temperate estuary: A mass balance approach using natural 14C and 13C isotopes. Limnol. Oceanogr. 46: 655-667. Roden, E.E., Wetzel, R.G., 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41: 1733-1748. Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P.B., Sloth, N.P., 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22: 21-31. Shields, M.R., Bianchi, T.S., Gélinas, Y., Allison, M.A., Twilley, R.R., 2016. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments, Geophys. Res. Lett., 43,1149–1157, doi:10.1002/2015GL067388. Schoepfer, V., Bernhardt, E.S., Burgin, A.J., 2014. Iron clad wetlands: Soil iron–sulfur buffering determines coastal wetland response to salt water incursion. J. Geophys. Res.-Biogeo. 119: 2209–2219. Schubauer, J.P. Hopkinson, C.S., 1984. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol. Oceanogr. 29: 1052-1065. Segarra, K., Comerford, C., Slaughter, J.B., Joye, S.B., 2013. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Ac. 115:15 - 30. (DOI: 10.1016/j.gca.2013.03.029) Segarra, K.E.A. , Schubotz, F., Samarkin, V.; Yoshinaga, M.Y., Hinrichs, K.-U., Joye, S.B., 2014. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Comm. 6:7477, doi: 10.1038/ncomms8477 Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33:702-724. Seldomridge, E., Prestegaard, K., 2011. Is denitrification kinetically-limited or transport-limited in tidal freshwater marshes? Appl. Geochem. 26: S256-S258. Seldomridge, E., Prestegaard, K., 2014. Geochemical, temperature, and hydrologic transport limitations on nitrate retention in tidal freshwater wetlands, Patuxent River, Maryland. Wetlands 34(4): 641-651. Simpson, R.L., Good, R.E., Walker, R., Frasco, B.R., 1983. The role of Delaware River freshwater tidal wetlands in the retention of nutrients and heavy metals. J. Environ. Qual. 12:41-48. Simpson, R.L., Whigham, D.F., Walker, R., 1978. Seasonal patterns of nutrient movement in a freshwater tidal marsh. In R.E. Good, D.F. Whigham, R.L. Simpson (Editors), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York, NY, USA, pp. 243-257. Smith, S.V., Hollibaugh, J.T., 1993. Coastal metabolism and the oceanic organic carbon balance. Rev. Geophys. 31:75-89. Smolders, A.J., Lucassen, E.C., Bobbink, R., Roelofs, J.G., Lamers, L.P., 2010. How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98(1-3): 1-7. Stagg, C.L., Schoolmaster, D.R., Krauss, K.W., Cormier, N., Conner, W.H., 2017. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands. Ecology 98: 2003-2018. doi:10.1002/ecy.1890 Stehr, G., Böttcher, B., Dittberner, P., Rath, G., Koops, H.-P., 1995. The ammonia-oxidizing, nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 17: 177-186. Stets, E.G., Butman ,D., McDonald, C.P., Stackpoole, S.M., DeGrandpre ,M.D., Striegl, R.G., 2017. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cy. 31: 663–677. doi:10.1002/2016GB005578. Stevenson, J.C., Ward, L.G., Kearney, M.S., 1988. Sediment transport and trapping in marsh systems: Implications of tidal flux studies. Mar. Geol. 80: 37-59. Struyf, E., Dausse, A., Van Damme, S., Bal, K., Gribsholt, B., Boschker, H.T.S., Middelburg, J.J., Meire, P., 2006. Tidal marshes and biogenic silica recycling at the land-sea interface. Limnology and Oceanography 51: 838-846. Struyf, E., Temmerman, S., Meire, P., 2007. Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary). Biogeochemistry 82: 41-53. Struyf, E., Van Damme, S., Gribsholt, B., Meire, P., 2005a. Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde estuary, Belgium). Hydrobiologia 540: 69- 77. Struyf, E., Van Damme, S., Gribsholt, B., Middelburg, J.J., Meire, P., 2005b. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar. Ecol. Progr. Ser. 303: 51-60. Sundareshwar, P.V., Morris, J.T., 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnol. Oceanogr. 44: 1693-1701. Sutter, L.A., Perry, J.E., Chambers, R.M., 2014. Tidal freshwater marsh plant responses to low level salinity increases. Wetlands 34(1): 167-175. Sutton-Grier, A.E., Keller, J.K., Koch, R., Gilmour, C., Megonigal, J.P., 2011. Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes. Soil Biol. Biochem. 43(7): 1576-1583. doi:10.1016/j.soilbio.2011.04.008 Sutton-Grier, A.S., Megonigal, J.P., 2011. Plant species traits regulate methane production in freshwater wetland soils. Soil Biol. Biochem. 43(2): 413-420. Doi 10.1016/j.soilbio.2010.11.009 Tobias, C.R., Anderson, I.C., Canuel, E.A., Macko, S.A., 2001a. Nitrogen cycling through a fringing marsh-aquifer ecotone. Mar. Ecol. Prog. Ser. 210: 25-39. Tobias, C.R., Cieri, M., Peterson, B.J., Deegan, L.A., Vallino, J., Hughes, J., 2003. Processing watershed-derived nitrogen in a well-flushed New England estuary. Limnology and Oceanography 48: 1766-1778. Tobias, C.R., Macko, S.A., Anderson, I.C., Canuel, E.A., Harvey, J.W., 2001b. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: A combined groundwater tracer and in situ isotope enrichment study. Limnol. Oceanogr. 46: 1977- 1989. Tzortziou, M., Neale, P.J., Megonigal, J.P., Pow, C.L., Butterworth, M., 2011. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary. Mar. Ecol. Prog. Ser. 426: 41-56. doi 10.3354/meps09017 Tzortziou, M., Neale, P.J., Osburn, C.L., Megonigal, J.P., Maie, N., Jaffe, R., 2008. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol. Oceanogr. 53: 148-159 Tzortziou, M., Osburn, C.L., Neale, P.J., 2007. Photobleaching of dissolved organic material from a tidal marsh-estuarine system of the Chesapeake Bay. Photochem. Photobiol. 83: 782-792. van Damme, S., Dehairs, F., Tackx, M., Beauchard, O., Struyf, E., Gribsholt, B., Cleemput, O., Meire, P., 2009. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium. Estuar. Coastal Shelf Sci. 85(2): 197-207. van der Nat, F.J.W.A., Middelburg, J.J., 1998a. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry 43: 79-104. van der Nat, F.J.W.A., Middelburg, J.J., 1998b. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat. Bot. 61: 95-110. van der Nat, F.J.W.A., Middelburg, J.J., 2000. Methane emission from tidal freshwater marshes. Biogeochemistry 49: 103-121.Vann, C.D., Megonigal, J.P., 2003. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. Biogeochemistry 63: 117-134. Von Korff, B.H., Piehler, M.F., Ensign, S.H., 2014. Comparison of denitrification between river channels and their adjoining tidal freshwater wetlands. Wetlands 34(6): 1047-1060. Walker, R., 1981. Nitrogen, phosphorus and production dynamics for Peltandra virginica (L.) Kunth in a southern New Jersey freshwater tidal marsh. Ph.D. Dissertation, Rutgers University, New Brunswick, NJ, USA. 180 pp. Wallenstein, M.D., Myrold, D.D., Firestone, M.K., Voytek, M.A., 2006. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl.16: 2143-2152. Wang, Z.A., Kroeger, K.D., Ganju, N.K., Gonneea, M.E. and Chu, S.N., 2016. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol. Oceanogr. 61: 1916–1931. doi:10.1002/lno.10347. Weiss, J.V., Emerson, D., Backer, S.M., Megonigal, J.P., 2003. Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle. Biogeochemistry 64: 77-96. Weiss, J.V., Emerson, D., Megonigal, J.P., 2004. Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiol. Ecol. 48:89-100. Weiss, J.V., Emerson, D., Megonigal, J.P., 2005. Rhizosphere iron(III) deposition and reduction in a Juncus effusus L.-dominated wetland. Soil Sci. Soc. Am. J. 69: 1861-1870. Weston, N.B., Dixon, R.E., Joye, S.B., 2006. Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic mineralization. J. Geophys. Res. 111: G01009. Weston, N.B., Vile, M.A., Neubauer, S.C., Velinsky, D.J., 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry. 102:135-151. Weston, N.B., Neubauer, S.C., Velinsky, D.J., Vile, M.A., 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry. 120:163-189. doi: 10.1007/s10533-014-9989-7. Whigham D.F., Simpson, R.L., 1978. Nitrogen and phosphorus movement in a freshwater tidal wetland receiving sewage effluent. Proceedings of Symposium on Technological, Environmental, Socioeconomic, and Regulatory Aspects of Coastal Zone Management. ASCE, San Fransisco, CA, USA, pp. 2189-2203. Whigham, D.F., 2009. Primary production in tidal freshwater wetlands. In A. Barendregt, D.F. Whigham, A.H. Baldwin (Editors). Tidal Freshwater Wetlands. Backhuys Publishers B.V., Leiden, The Netherlands. White, D.S., Howes, B.L., 1994. Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnol. Oceanogr. 39: 1878-1892. Williams, E.K., Rosenheim, B.E., 2015. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis. Geochem. Geophys. Geosyst. 16: 2322–2335, doi:10.1002/2015GC005839. Wilson, B.J., Mortazavi, B., Kiene, R.P., 2015. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry. 123: 329-347. Doi: 10.1007/s10533-015-0085-4. Ziegler, S., Velinsky, D.J., Swarth, C.W., Fogel, M.L., 1999. Sediment-water exchange of dissolved inorganic nitrogen in a freshwater tidal wetland. Jug Bay Wetlands Sanctuary, Lothian, MD, USA. 25 pp.