Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 69 Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa (including Eremopoa and Lindbergella) (Poaceae, Poeae, Poinae) Lynn J. Gillespie1,4, Robert John Soreng2, Evren Cabi3, Neda Amiri1,4 1 Research and Collections Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2 Department of Botany, National Museum of Natural History, Smithsonian In- stitution, Washington, DC 20013-7012, USA 3 Department of Biology, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Turkey 4 Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada Corresponding author: Lynn J. Gillespie (lgillespie@nature.ca) Academic editor: C. Morden  |  Received 29 June 2018  |  Accepted 5 October 2018  |  Published 14 November 2018 Citation: Gillespie LJ, Soreng RJ, Cabi E, Amiri N (2018) Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa (including Eremopoa and Lindbergella) (Poaceae, Poeae, Poinae). PhytoKeys 111: 69–101. https://doi.org/10.3897/ phytokeys.111.28081 Abstract Eremopoa is a small genus of annual grasses distributed from Egypt to western China. Phylogenetic analy- ses of plastid and nuclear ribosomal DNA show that Eremopoa species, together with the monotypic genus Lindbergella and a single species of Poa (P. speluncarum), are nested within the genus Poa, in a clade that we accept as Poa subg. Pseudopoa. Here we accept seven species, four subspecies and four varieties in Poa subg. Pseudopoa. Five new combinations are made: Poa attalica, P. diaphora var. alpina, P. diaphora var. songarica, P. nephelochloides and P. persica subsp. multiradiata; P. millii is proposed as a replacement name for E. capillaris; and Poa sections Lindbergella and Speluncarae are proposed. We provide a diagnosis for Poa subg. Pseudopoa, synonymy for and a key to the taxa. Eight lectotypes are designated: Eragrostis barbeyi Post, Eremopoa nephelochloides Roshev., Glyceria taurica Steud., Nephelochloa tripolitana Boiss. & Blanche, Poa cilicensis Hance, Poa paradoxa Kar. & Kir., Poa persica var. alpina Boiss and Poa persica subsp. cypria Sam. Eremopoa medica is re-identified as a species of Puccinellia. Keywords Annuals, classification, DNA, Eremopoa, grasses, Lindbergella, phylogeny, Poa, Poaceae, taxonomy PhytoKeys 111: 69–101 (2018) doi: 10.3897/phytokeys.111.28081 http://phytokeys.pensoft.net Copyright Lynn J. Gillespie et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. RESEARCH ARTICLE Launched to accelerate biodiversity research A peer-reviewed open-access journal Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)70 Introduction Eremopoa Roshev. is a small, primarily west and central Asian genus of annual grasses. Roshevitz (1934) named the genus Eremopoa (Greek: eremos = desert, poa = fodder / > bluegrass) and included six species of annuals for the former U.S.S.R. Up to that time, one or more of the taxa had been described or treated in Aira L. (Trinius 1835), Era- grostis Wolf (Post and Autran 1897), Festuca L. (Koch 1848), Glyceria R. Br. (Fischer and Meyer 1841, Steudel 1854), Nephelochloa Boiss. (Grisebach 1852, Boissier and Blanche 1859) and Poa L. (Trinius 1830, 1836, Steudel 1854, Boissier 1884, Hackel 1887, Stapf 1897, Ascherson and Graebner 1900). Poa persica Trin. is the type species of Eremopoa, Festuca sect. Pseudopoa K. Koch, Poa subgen. Pseudopoa (K. Koch) Stapf and P. sect. Pseudopoa (K. Koch) Hack. After Eremopoa was described, most authors accepted the genus (Grossheim 1939, Köie 1945, Bor 1960, 1968a, 1970, Pavlov and Gamajunova 1964, Tzvelev 1966, 1976, 1989, Scholz 1980, 1981, Tutin 1980, Cz- erepanov 1981, 1995, Cope 1982, Mill 1985, Clayton and Renvoize 1986, Watson and Dallwitz 1992, Soreng 2003, Valdés and Scholz 2006, Darbyshire 2007, Cabi and Doğan 2012, Nikiforova et al. 2012). Few taxonomists continued to refer the species to Poa (Samuelsson 1950, Kovalevskaja 1968). No revision of the genus as a whole exists. Roshevitz (1934) differentiated the genus Eremopoa from Poa as: always annuals with long panicle branches arranged in half-whorls; glumes unequal, inferior 1-veined, superior 3-veined; lemmas with obscure keel and lateral veins, apex acuminate or briefly aristate; and callus without lanate hairs. Tzvelev (1976) added the following characteristics: lower glumes 2/7–2/3 the first lemma in length; lemmas somewhat keeled with 5 veins, apex gradually tapering, sometimes with a short cusp, somewhat scabrous due to very short spinules and often pilose in the lower part along the keel and marginal veins; callus obtuse, glabrous or almost glabrous; leaf sheaths closed only at the base and leaf blades flat or loosely folded. The genus is relatively easy to recognise as a set of annuals, whereas Poa has few annuals and those are distinct from species included in Eremopoa. However, none of the characters by themselves actually differentiates Eremopoa from Poa. In Poa, glumes can also be short, the lower one is commonly 1-veined, the upper one normally 3-veined. Lemmas in Poa are usually dis- tinctly keeled, with soft hairs at least on the keel and with an obtuse, acute or acumi- nate apex. They are rarely weakly keeled (e.g. in sect. Secundae), sometimes glabrous (ca. 15% of spp.) and rarely produce a minute cusp (a cusp occurs more often than acknowledged in the literature, but is usually irregularly expressed). In Poa, a dorsal tuft of hairs on the callus is present in 2/3 of the species. In the other species, the cal- lus is sometimes glabrous or has a minute or more developed crown of hairs around the base of the lemma. In addition, Poa leaf sheaths are only infrequently closed at the base, most being closed more than 1/10 the length, and leaf blade form runs the gamut from flat and thin to tough and involute. Panicle branches in Poa are infre- quently whorled with 6 or up to 9 branches per lower node, the normal range is 1 to 5. Although panicle branches are commonly numerous (ranging up to 27) in Eremopoa, with most taxa usually having over 5, E. altaica (Trin.) Roshev. has 1–5(–7) and E. songarica (Schrenk ex Fisch. & C.A. Mey.) Roshev. varies widely with (1–)3–8(–12). Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 71 Eremopoa species are annual with some extreme features usually not found in Poa, but, other than abundantly branching panicles, those characteristics are broached in all cases. No one has doubted that Eremopoa was closely related to Poa. The taxa placed in Eremopoa range from Egypt (Sinai and north coast) across the northern Middle East (Israel, Lebanon, Syria, Iraq, Turkey [Anatolia], Iran), to Af- ghanistan, Pakistan, northwest India (Himachal Pradesh, Kashmir), western China (Tibet and Xinjiang), north through Transcaucasia into the Caucasus mountains of Russia and across central Asia in Turkmenistan, Uzbekistan, Tajikistan, Kyrgyz Repub- lic and Kazakhstan. Two taxa have been observed elsewhere as waifs: E. persica in west- ern Europe (France, Norway) and E. altaica (Trin.) Roshev. in Canada (see references in Taxonomy section). The geographic region with the most diversity of Eremopoa taxa is clearly Asia Minor; nearly all of the accepted species occur in Turkey. There have been many differences of opinion on the species and infraspecific ranks to accept in Eremopoa (Table 1). Roshevitz (1934) treated six species in his new ge- nus in the former U.S.S.R (E. altaica, E. bellula (Regel) Roshev., E. oxyglumis (Boiss.) Roshev., E. multiradiata (Trautv.) Roshev., E. persica and E. songarica). Tzvelev (1976) reduced these six species to two species, E. persica and E. altaica, with two and three subspecies, respectively, all of which were accepted as species by Czerepanov (1981, 1995). Scholz (1980, 1981) described two new species, E. attalica H. Scholz from Turkey and E. medica H. Scholz from Azerbaijan. The type of E. medica (holotype at W, isotype at B) was determined to be a species of Puccinellia Parl. (Soreng pers. obs. 2015). Mill (1985) treated six species in Turkey, including two new species, E. capil- laris R.R. Mill and E. mardinensis R.R. Mill. Rahmanian et al. (2014) accepted four species in Iran, including E. medica and E. persica with three varieties. Bor’s genus Lindbergella (Bor 1968b, 1969) comprises a single annual species that is morphologically similar to Eremopoa. It differs from Eremopoa only in having firmer lemmas that are 3-veined and obscurely apiculate and panicles with 1–5 branches that are smooth. Lindbergella sintenisii (H. Lindb.) Bor was originally published as Poa sintenisii by Lindberg (1942) and also as P. persica var. cypria by Samuelsson (1950), the type of which is a syntype of P. persica var. alpina Boissier (1884). The species is endemic to Cyprus. The first molecular data on Eremopoa, generated by our lab in 2004/2005, indicat- ed that E. songarica was nested within Poa. That data was first published by Gillespie et al. (2007) using chloroplast DNA sequences from the trnT-trnL-trnF region. Based on this same data, inclusion of Eremopoa in Poa was already applied in the Flora of China account (Zhu et al. 2006, as P. subg. Pseudopoa (K. Koch) Stapf ) and was continued in Gillespie et al. (2008, 2010), Soreng (2004+) and Soreng et al. (2010, 2015a, 2017a). Although nested within Poa, Eremopoa was positioned on a long branch separate from other Poa clades, justifying its recognition as a distinct subgenus, P. subg. Pseudopoa (Gillespie et al. 2007). We published our initial DNA results for only one species of Eremopoa (E. songa- rica) based on trnT-trnL-trnF and, subsequently, nuclear ribosomal (nrDNA) ITS and ETS sequence data (Gillespie et al. 2007, 2008, 2010, Soreng et al. 2010). We sub- sequently sequenced two additional plastid regions (matK and rpoB-trnC) and added Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)72 Ta bl e 1. C la ss ifi ca tio n hi sto ry o f E re m op oa a nd o th er ta xa h er e ac ce pt ed in P oa su bg . P seu do po a. S pe ci es a nd in fra sp ec ifi c ta xa a cc ep te d by R os he vi tz (1 93 4) a nd au th or s o f m aj or fl or as a nd th e re gi on c ov er ed b y th ei r t re at m en ts ar e gi ve n. Th e la st co lu m n pr ov id es th e co rr es po nd in g na m es in P oa a cc ep te d he re . R os he vi ts (1 93 4) R os he vi ts (i n K öi e 19 45 ) B or (1 97 0) Tz ve le v (1 97 6, 1 98 3) C op e (1 98 2) M ill (1 98 5) C ze re pa no v (1 99 5) Zh u et a l. (2 00 6) G ab ri el ja n an d O ga ne si an (2 01 0) R ha m an ia n et al . ( 20 14 ) Eu ro +M ed (o n- lin e) H er e U SS R SW Ir an Ir an , A fg ha ni st an , w . Pa ki st an , n .w . I ra q, s. Tu rk m en is ta n, s. e. A ze rb ai ja n U SS R Pa ki st an Tu rk ey U SS R C hi na (X in jia ng , X iz an g) A rm en ia Ir an Eu ro pe , Tr an sc au ca si a, Tu rk ey , L ev an t, N or th A fr ic a w ho le ra ng e E. p er sic a E. p er sic a E. p er sic a E. p er sic a E. p er sic a E. p er sic a E. p er sic a – E. p er sic a E. p er sic a E. p er sic a Po a pe rs ic a – – va r. pe rsi ca su bs p. p er sic a su bs p. p er sic a – – – – va r. pe rsi ca – su bs p. p er si ca – va r. m aj or – – – – – – – – – – E. m ul tir ad ia ta – (= v ar . s on ga ric a) su bs p. m ul tir ad ia ta su bs p. m ul tir ad ia ta E. m ul tir ad ia ta E. m ul tir ad ia ta – E. m ul tir ad ia ta (= p er sic a va r. pe rsi ca ) E. m ul tir ad ia ta su bs p. m ul ti ra di at a E. a lta ica – – E. a lta ica E. a lta ica – E. a lta ica P. di ap ho ra – – E. a lta ica P. d ia ph or a – – su bs p. a lta ica su bs p. a lta ica – – su bs p. di ap ho ra – – su bs p. a lta ica su bs p. d ia ph or a va r. di ap ho ra E. so ng ar ica – va r. so ng ar ica su bs p. so ng ar ica su bs p. so ng ar ica E. so ng ar ica E. so ng ar ica – E. so ng ar ica va r. so ng ar ica su bs p. so ng ar ica va r. so ng ar ic a E. b ell ul a – E. b ell ul a (p p. = a lta ica , pp = so ng ar ica ) (= a lta ica s.l .) (in di re ct ly re fe re nc ed , no t a cc ep te d) (p p. = a lta ica , pp  = so ng ar ica ) – – E. b ell ul a – (= v ar . a lp in a? ) P. pe rsi ca v ar . al pi na (u nd er ox yg lu m is) – – – (in di re ct ly re fe re nc ed , no t a cc ep te d) – – – – – va r. al pi na E. ox yg lu m is E. ox yg lu m is (= v ar . s on ga ric a) su bs p. ox yg lu m is su bs p. ox yg lu m is (= E. so ng ar ica ) E. ox yg lu m is su bs p. ox yg lu m is E. ox yg lu m is E. p er sic a va r. ox yg lu m is su bs p. ox yg lu m is su bs p. o xy gl um is – – – – – E. a tta lic a – – – – E. a tta lic a P. a tt al ic a – – – – – E. ca pi lla ris – – – – E. ca pi lla ris P. m ill ii – – – – – E. m ar di ne ns is – – – – E. m ar di ne ns is (= P. p er sic a su bs p. m ul tir ad ia ta ) – E. ne ph elo ch loi de s – – – E. n ep he loc hl oi de s (Ir an ) – – – E. ne ph elo ch loi de s – P. n ep he lo ch lo id es – – – – – – – – – E. m ed ica – (= P uc cin ell ia sp .) – – – – – – – – – – – P. si nt en is ii – – – – – – – – – – – P. sp el un ca ru m Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 73 data for Eremopoa persica (Cabi et al. 2017, as Poa persica). A DNA analysis of ITS sequence data by Hoffmann et al. (2013) showed Lindbergella sintenisii was also nested within Poa near Eremopoa. Since then, we have accumulated nrDNA and plastid se- quence data for most of the Eremopoa taxa and L. sintenisii and sampled many more species of Poa from Turkey and around the world. Analysis of our accumulated phylo- genetic data on Eremopoa is presented here. All Eremopoa taxa were nested well within Poa, and P. speluncarum J.R. Edm. and L. sintenisii were found to be nested within or sister to the set of Eremopoa species. Here we place these taxa in Poa subg. Pseudopoa and present a taxonomic synopsis of all the species and infraspecies, as well as a key to the taxa we currently accept. Further study is needed before a comprehensive revision of the subgenus can be produced. Methods Collections of Eremopoa at E and G (except those not available for loan), several from P and two type specimens from BM and B were loaned to RJS at US. Other material was examined by RJS at B, K, LE, P, US and herbaria in Turkey (ANK, ISTE, NKU). Fieldwork in which 38 specimens of Eremopoa were collected by us was conducted in Kyrgyz Republic (RJS 2006) and Turkey (RJS and associates 1994, 2013, 2014, 2015; LJG & RJS and associates 2011; EC was a co-collector on the 2011 to 2015 expedi- tions). Additional material was obtained from R. Hand (Lindbergella sintenisii) and M. Assadi and M. Amini-Rad (Iranian Eremopoa). The molecular phylogenetic analysis included 77 samples: 15 Eremopoa, 56 Poa, 1 Lindbergella and 5 outgroup samples (Appendix 1). A diverse set of Poa species was cho- sen to represent the majority of sections, including all sections in southwest Asia. Out- group taxa were chosen to include representatives of the two taxa (Phleum L. and Milium L.) and one clade considered most closely related to Poa (Gillespie et al. 2010, Soreng et al. 2015b). Sequences of Lindbergella and the majority of Eremopoa samples, plus many matK and rpoB sequences, are new to this study (Appendix 1). For simplicity, due to the confusing taxonomy and nomenclature, we refer to Eremopoa taxa using names at the species level in the Results, trees and Appendix 1 (see Table 1 for their corresponding names in Poa). The collection TARI 135082 was previously identified as E. medica (Rah- manian et al. 2014), but was re-determined by RJS as P. persica subsp. persica. DNA was extracted from silica gel dried or herbarium leaf material as described in Gillespie et al. (2008). Three plastid markers (matK, rpoB-trnC and trnT-trnL-trnF [TLF]) and two nuclear ribosomal DNA (nrDNA) markers (internal transcribed spac- er [ITS] and external transcribed spacer [ETS]) were sequenced. Amplification and se- quencing protocols, including primers used, were described in our previous studies, as follows: ITS and TLF (Gillespie et al. 2008); ETS (Gillespie et al. 2009, 2010); matK and rpoB-trnC (Soreng et al. 2015b). Sequences were assembled, edited, aligned and concatenated using Geneious ver. 6.1.5 (http://www.geneious.com). The MAFFT ver. 7.017 plugin (Katoh and Standley 2013) was used for alignment, followed by manual Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)74 adjustment. All samples are complete for all markers, except for several samples with missing ends. The molecular study was conducted at the Canadian Museum of Nature; sequencing was mostly performed by NA, analyses by LJG. Maximum parsimony (MP) analyses were performed in PAUP* 4.0b10 (Swofford 2002) using the heuristic search command with default settings, including tree bisec- tion-reconnection (TBR) swapping, saving all multiple shortest trees (Multrees) with a maximum number set to 100,000. Branch support was assessed using MP bootstrap analyses performed in PAUP* with heuristic search strategy, 10,000 bootstrap repli- cates, each with ten random addition sequence replicates, saving ten trees per replicate. Bayesian Markov chain Monte Carlo analyses were conducted in MrBayes (Ron- quist et al. 2011). Optimal models of molecular evolution for individual markers were first determined using the Akaike information criterion (AIC; Akaike 1974) conducted through likelihood searches in jModeltest with default settings (Darriba et al. 2012). Models were set at GTR + Γ for ITS, ETS and rpoB-trnC partitions and GTR + I + Γ for matK and TLF partitions based on the AIC scores and the models allowed in Mr- Bayes. Two independent runs of four chained searches were performed for either two or three million generations (analyses were stopped when split frequency of 0.005 was reached or closely approached), sampling every 500 generations, with default param- eters. A 25% burn-in was implemented prior to summarising a 50% majority rule consensus tree and calculating Bayesian posterior probabilities (pp). MP heuristic searches and bootstrap analyses were performed initially on the sepa- rate marker alignments. Strict consensus trees were examined for conflicting topologies with incongruence identified by branch conflicts with ≥75% bootstrap support (BS). No supported incongruence was found between ITS and ETS trees, nor amongst the three plastid trees. Further MP and Bayesian analyses were performed on the separate concatenated nrDNA (77 samples, 1251 aligned characters) and plastid (77 samples, 4465 characters) alignments. Since supported incongruence was detected between the nrDNA and plastid strict consensus trees, species and clades determined to be incongruent were removed prior to performing analyses on the concatenated com- bined nrDNA and plastid alignment (68 samples, 5599 aligned characters). Trees were viewed in FigTree v1.4.0 (Rambaut 2006+). Clade designations follow Soreng et al. (2010) with modifications as in Cabi et al. (2017) and Soreng et al. (2017b), wherein well-supported major clades are assigned letters. Results Plastid and nrDNA Bayesian trees are given in Fig. 1 with summary statistics in Suppl. material 1. There are 100 new sequences reported in GenBank and these are given in Appendix 1. MP trees (bootstrap values shown below branches in Fig. 1) were very similar to the Bayesian trees with a few minor unsupported differences. Major clades (shown by letter and colour in Fig. 1) are identical in both nrDNA and plastid trees, Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 75 with two exceptions: Poa arctica R. Br. and P. sect. Secundae members (P. curtifolia Scribn., P. secunda J. Presl and P. stenantha Trin.), each belonging to different major clades in the two trees. The position of three major clades differs significantly between the nrDNA and plastid trees: J clade (sect. Jubatae: P. jubata A. Kern.), S clade (sects. Stenopoa and Abbreviatae) and V clade (sect. Pandemos: P. trivialis L.). Poa major clades have been described elsewhere (Gillespie et al. 2007, 2008, 2009, Soreng et al. 2010, 2017b, Cabi et al. 2017); here we focus on the position of Eremopoa. Eremopoa species, together with Lindbergella sintenisii and Poa speluncarum, form a clade (E clade) in both nrDNA and plastid trees, but are strongly supported only in the plastid analysis (pp = 1, BS = 99%). All E. multiradiata, E. oxyglumis, E. persica and E. songarica accessions form a strongly supported clade (core Eremopoa clade) in both trees (pp = 1, BS = 100%). In the plastid analysis E. attalica, L. sintenisii and P. spelun- carum form a strongly supported clade (pp = 1, BS = 100%), with L. sintenisii sister to E. attalica (pp = 1, BS = 96%). In the nrDNA tree, E. attalica and P. speluncarum are sister taxa (pp = 0.99, BS = 77%) and Lindbergella is weakly supported as sister to this clade plus the core Eremopoa clade (pp = 0.97, BS = 59%). Within the core Eremopoa clade, all E. oxyglumis and E. songarica samples form a strongly supported clade in the nrDNA analysis (pp = 1, BS = 100%), whereas in the plastid analysis, these samples are divided between two strongly supported clades corresponding to E. oxyglumis plus one E. songarica sample (IRAN 20357, identification needs confirmation) (pp = 1, BS = 89%) and all remaining samples of E. songarica (pp = 1, BS = 100%). Eremopoa multiradiata and E. persica samples do not form a clade in either analysis, although all except one (E. persica, Soreng 9215) are strongly supported as a clade (pp = 1, BS = 95%) in the plastid tree. The combined nrDNA and plastid Bayesian tree with proportional branch lengths is shown in Fig. 2. Prior to analysis, species and clades with positions incongruent (branch conflicts with ≥ 75% BS) between the nrDNA and plastid trees were removed, including Lindbergella sintenisii, P. arctica, P. sect. Secundae species and the J, S, and V clades. The E clade is strongly supported, as are its two subclades, E. attalica-P. spe- luncarum and the core Eremopoa clade (all pp = 1, BS = 100%). Both subclades are on long branches and separated by considerable genetic distance. The core Eremopoa clade is subdivided into two strongly supported clades: E. multiradiata-E. persica (pp = 0.99, BS = 96%) and E. oxyglumis-E. songarica (pp = 1, BS = 94%). Eremopoa oxyglumis and three of four accessions of E. songarica each form moderately or strongly supported clades (pp = 1, BS = 86%; pp = 1, BS = 100%, respectively). In the combined nrDNA and plastid tree (Fig. 2), the E clade is strongly sup- ported as sister (pp = 1, BS = 100%) to a clade comprising Poa supersects. Homalopoa (H clade) and Poa (P clade) and the N clade (P. sect. Nanopoa plus unassigned spe- cies). In the nrDNA analysis, the E clade is strongly supported as sister to clades P+H (not differentiated), N, and X (represented here by P. arctica) (Fig. 1). In the plastid analysis, the E clade is sister to a larger clade comprising clades H, N, and P, plus J, S and V (Fig. 1). Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)76 Discussion Our molecular analyses of plastid and nuclear ribosomal DNA strongly support the position of Eremopoa and Lindbergella within the genus Poa. Eremopoa and Lindbergella were united in a clade along with Poa speluncarum with strong support in the plastid and combined trees (weak support in the nuclear tree). We call this set the E clade Figure 1. Poa nrDNA and plastid Baysian analyses showing placement of Eremopoa and Lindbergella. Bayesian 50% majority rule consensus trees of nrDNA ITS and ETS (left) and plastid data (trnT-trnL- trnF, matK and rpoB-trnC) (right). Bayesian posterior probabilities are shown above branches, MP boot- strap values below branches. Outgroups are not shown. Major clades are indicated by colour and capital letter. Taxa shown in black belong to different major clades in plastid and nrDNA trees. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 77 Figure 2. Poa combined nrDNA and plastid Baysian analysis showing placement of Eremopoa. Bayesian 50% majority rule consensus tree of combined nrDNA (ITS and ETS) and plastid data (trnT-trnL-trnF, matK and rpoB-trnC). Bayesian posterior probabilities are shown above branches, MP bootstrap values below branches. Major clades are indicated by colour and capital letter; outgroups are shown in black. (Soreng et al. 2010, Cabi et al. 2017) and accept it as Poa subg Pseudopoa. In its recent usage, this subgenus was initially considered to include only Eremopoa (Zhu et al. 2006, Gillespie et al. 2007); here it is expanded to include Lindbergella and P. speluncarum. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)78 Within the E clade, three taxa of southwest Turkey and Cyprus, E. attalica, P. speluncarum and Lindbergella sintenisii, are phylogenetically isolated from all the other species of Eremopoa sampled (the core Eremopoa clade). All three taxa formed a strong- ly supported clade in the plastid tree, while in the nuclear tree only the first two species form a clade and L. sintenisii is sister to this clade plus the core Eremopoa clade. The position of L. sintenisii is moderately supported as incongruent between the nuclear and plastid trees suggesting that the genus may be of hybrid origin; however, further studies are needed to confirm incongruence over lack of support. All Eremopoa taxa sampled, excluding E. attalica, form a strongly supported clade in all trees, called here the core Eremopoa clade. This clade includes two strongly sup- ported subclades in the combined nuclear-plastid tree, corresponding to E. persica s.l. and E. altaica s.l. In the first subclade, E. multiradiata is nested amongst E. persica samples, as is the sample originally determined as E. medica (TARI 35082). The E. multiradiata sample (Soreng 9240) comes from the type locality of E. mardinensis in SW Turkey and is a good match for that species, but we believe that E. mardinensis should be treated as a synonym of E. multiradiata. The E. altaica s.l. subclade in the combined tree includes a strongly supported and divergent clade of three E. songa- rica samples and a clade of E. oxyglumis plus one sample of E. songarica (identifica- tion needs confirmation). The position of E. songarica (tetraploid) with E. oxyglumis (diploid and hexaploid) is strongly supported in the combined and nuclear trees, but is weakly supported with E. persica (diploid) in the plastid tree. This, together with ploidy level, is suggestive of a possible hybrid origin for E. songarica, but this hypoth- esis needs to be further explored. As noted in the introduction and Table 1, there has been no consensus on the taxonomy of Eremopoa species. Bor (1970, p. 49) wrote “As far as the genus Eremopoa Roshev. is concerned I am prepared to accept two species only: Eremopoa persica (Trin.) Roshev. and E. bellula (Regel) Roshev.” He considered E. songarica, multiradiata and oxyglumis “only worthy of varietal rank” as the single taxon, E. persica var. songarica. Tzvelev (1976), Cope (1982) and Mill (1985) dismissed the E. bellula form as indis- tinct, yet it was maintained as a species by Bor (1970) and Rahmanian et al. (2014). As such, the array of taxa has been treated as a series of species, subspecies or varieties. The taxonomy proposed by Tzvelev (1976) seems the most useful for treating E. persica s.l. and E. altaica s.l.; each is treated as a separate species with subspecies. His classifica- tion, supported by molecular data, is adopted here with some minor modifications. Here, we present a synopsis of P. subg. Pseudopoa based on our current understand- ing. Further herbarium and molecular study is needed before a more comprehensive revision of the subgenus can be produced. We treat all Eremopoa species, Lindbergella sintenisii and P. speluncarum in P. subg. Pseudopoa. We merge all Eremopoa taxa and L. sintenisii into Poa and treat the Eremopoa taxa as five species. Poa diaphora Trin. is the correct name for E. altaica within Poa. Two subspecies, subsp. diaphora and oxyg- lumis (Boiss.) Soreng & G.H. Zhu, are recognised in P. diaphora based in part on their mostly clear separation in the plastid analyses and morphological distinctions. Subspe- cies diaphora includes three difficult to distinguish varieties: var. diaphora (formerly E. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 79 altaica), var. alpina and var. songarica (formerly E. songarica). Poa persica includes two subspecies and is clearly separated from both P. diaphora subspecies in the analyses. Most Eremopoa taxa already have names in Poa or the epithets used in Eremopoa are available in Poa (with one exception). Taxonomy Poa subg. Pseudopoa (K. Koch) Stapf in J. D. Hooker, Fl. Brit. India 7(22): 337. 1897 [1896]. Festuca [unranked] Pseudopoa K. Koch, Linnaea 21(1[4]): 409. 1848. Poa sect. Pseu- dopoa (K. Koch) Hack., Nat. Pflanzenfam. 2(2): 73. 1887. Eremopoa Roshev., Fl. URSS 2: 429, 756. 1934. Type. Poa persica Trin. ≡ Festuca persica (Trin.) K. Koch. Lindbergia Bor, Svensk Bot. Tidskr. 62: 467, 1968 (nom. illeg. hom., non Kindb., 1897). Lindbergella Bor, Svensk Bot. Tidskr. 63: 368. 1969. Type. Poa sintenisii H. Lindb. ≡ Lindbergella sintenisii (H. Lindb.) Bor. Emended diagnosis. Like species of other Poa subgenera, but annual (P. speluncarum a weak stooling perennial) and differing from other annual species of Poa by combi- nation of sheath margins fused only near the base (basal sheaths fused to 16%, top sheath 4–12% [to 50% in P. speluncarum]), panicle branches scabrous along angles (P. sintenisii smooth), arranged in whorl-like groups of 5 to 27 per node (sometimes fewer in P. diaphora and P. sintenisii), sometimes the lower whorls of branches na- ked or with only a few sterile spikelets, flowers bisexual, glumes short (lower glume 2/7–2/3 (–3/4) the first lemma in length), 1-veined (3-veined in P. sintenisii), apex sharply pointed, sometimes apiculate, rachilla internodes exposed, scaberulous, cal- lus glabrous (or with a short crown of hairs in P. sintenisii), lemmas membranous to subchartaceous (P. sintenisii chartaceous), 3–5 veined, the intermediate veins faint when present, laterally compressed, but the keel not pronounced, glabrous or keel and marginal veins short sericeous (also sericeous between the veins in P. sintenisii), but keel scabrous distal to the hairs. Distribution. Southwest Asia from Israel, Lebanon, Cyprus and Turkey eastwards through Transcaucasia, Iran, central Asia to western China and northwest India. Spo- radic elsewhere, possibly adventive on Egypt’s North African coast but native east of the Red Sea, adventive in Europe and Canada. Notes. A subgenus of seven species with several infraspecies, distributed mainly in semi-arid midlands to uplands (usually 300 m plus) to alpine, with winter spring / sum- mer drought precipitation pattern, often along trails and roads, cultivated fields and pastures, around puddles, shallow springs, swales and vernal pools, snow beds, in pine/ oak forests to open grasslands and deserts, also in shallow caves, in shallow sandy or stony soils or screes of igneous or metamorphic rocks of igneous or sedimentary origin, including pumice, lava, serpentine, shale, sandstone, limestone and marble. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)80 Key to Poa subgen. Pseudopoa taxa and other annual species of Poa in the coincident geographic region Plants annual (infrequently perennial or perenniating); anthers mostly 0.2–1 mm (to 1.7 mm in the weak stemmed, stooling perennial P. speluncarum, to 2.8 mm in the annual species Poa persica). 1 Palea keels soft hairy, never scabrous; callus glabrous (Poa sect. Micrantherae) ... 2 – Palea keels scabrous at least in part (if hairy in part, then distally scabrous); callus glabrous or hairy .............................................................................................. 3 2 Anthers 0.2–0.5 mm long; panicle branches ascending, spikelets congested along the branches; plants light green ........................................... Poa infirma Kunth – Anthers 0.5–1 mm long; panicle branches spreading to ascending, spikelets mod- erately congested along the branches; plants darker green ............. Poa annua L. 3 Spikelets ovate; lemma keels densely villous medially, many hairs over 0.5 mm long; callus with a plicate web; anthers 0.4–0.8 mm long; panicles short (to 5 cm long), branches terete, smooth or sparsely scabrid, with 1–2 branches per node; upper culm sheath margins fused 25–35(–50)% their length; plants of vernal swales, Albania, Croatia, Greece, Bulgaria and European part of Turkey (Poa sect. Jubatae) ...........................................................................Poa jubata – Spikelets generally lanceolate; lemma keels glabrous or sericeous, hairs less than 0.3(–0.5) mm long; callus glabrous or with a short crown of hairs; anthers 0.2– 2.8 mm long; panicles short or long, branches angled, smooth or scabrous, most- ly with 2 to 27 branches per node, commonly appearing whorled; upper culm sheath margins fused 4–12% their length (40–50% in P. speluncarum); plants of Cyprus, Anatolian Turkey, southwards and eastwards across Asia into China (Poa subg. Pseudopoa, incl. Eremopoa) .................................................................. 4 4 Uppermost culm sheath margins fused 40–50% their length; spikelets mostly 1-flowered; lemmas glabrous; callus glabrous; anthers 1.1–1.7 long; plants feeble, stooling perennials of caves and shady cool moist places in the Taurus Mts. of Turkey (rare) (Poa sect. Speluncarae) .....................................Poa speluncarum – Uppermost culm sheath margins fused 4–12% their length; spikelets (1–)2 to 10-flowered; lemmas glabrous or pubescent; callus glabrous or with a minute crown of hairs; anthers 0.2–2.8 mm long; plants slender tufted annuals ........... 5 5 Lemmas 3-veined, apex slightly apiculate, lemmas and paleas subcoriaceous, sericeous along the keel(s) and marginal veins and between the veins; panicle branches smooth, mostly 1–5 at lower nodes; callus glabrous or with a short crown of hairs; plants endemic to Cyprus (usually on serpentine substrates) (Poa sect. Lindbergella) ...............................................................Poa sintenisii – Lemmas 5-veined (veins commonly faint), apex infrequently apiculate, lem- mas and paleas subchartaceous to subcoriaceous, glabrous between the veins or throughout; panicle branches scabrous, (1–)5–27 at lower nodes; callus glabrous; plants widespread, but not in Cyprus (Poa sect. Pseudopoa) ........................... 6 Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 81 6 Panicles with 1 to 3 lower whorls of 7 or more sterile/naked or mostly sterile branches; panicles 7–20 cm long, effusely branched; lemmas 2–2.5 mm long, sericeous along the keel and marginal veins; spikelets 1–4(–6)-flowered ........... 7 – Panicles not or infrequently with some sterile lower branches; panicles 2–21 cm long, effusely to sparsely branched; lemmas 1.8–4.5 mm long, glabrous or seri- ceous along the keel and marginal veins; spikelets 1–12-flowered ..................... 8 7 Anthers 1.1–1.5 mm long; ligules 1.5–2.5 mm long; branches 7–20 per lower whorl; spikelets 1–4(–6)-flowered; plants of Zagros Mts., Iran ........................... ..............................................................................................P. nephelochloides – Anthers 0.8–1 mm long; ligules 1–1.5 mm long; branches 7–15 per lower whorl; spikelets 1–3-flowered; plants of Taurus Mts., Turkey......................... P. attalica 8 Anthers (1.2–)1.4–2.8 mm long; lemma apex blunt or obtuse to acutely pointed, with a broad membranous margin (P. persica s.l.) ........................................... 9 – Anthers 0.2–1.3 mm long; lemma apex acute or narrowly acute to acuminately pointed, with a narrow membranous margin (blunt or slightly pointed in P. millii but then with 13–27 branches at lower panicle nodes) ................................... 10 9 Lemmas all glabrous or rarely with a few hairs near the base of the keel or mar- ginal veins; spikelets (4–)5–10(–12)-flowered; panicles usually ¼–½ the plant height; anthers 1.5–2.8 mm long .......................P. persica subsp. multiradiata – Lemmas (at least of the lowest flower in a spikelet) minutely sericeous along the keel and marginal veins for ¼–⅔ the length; spikelets (2–)3–7(–9)-flowered; panicles usually ⅖–⅔ the plant height; anthers (1.2–)1.4–1.8 mm long ............. ....................................................................................P. persica subsp. persica 10 Anthers mostly 0.2–0.6 mm long; lemmas 1.8–4.5 mm long, apex sharply point- ed, usually glabrous, infrequently sparsely puberulent along the keel with one or a few soft hairs scattered near the base; spikelets (1–)2–3(–5)-flowered; plants 2–40 cm tall ............................................................................................................ 11 – Anthers 0.6–1.3 mm long; lemmas 2.3–3 mm long, apex acute and sharply point- ed to obtuse and blunt, at least the lowest lemma in a spikelet evenly sericeous (hairs ca. 0.1–0.3(–3.5) mm long, stiff, appressed) along the keel in the proximal ¼–½ and along the marginal veins near the base; spikelets 3–5(–9)-flowered; plants mostly 15–60 cm tall ........................................................................... 13 11 Lemmas 3.5–4.5 mm long; panicles (2–)3–8(–9) cm long, branches 1–5(–7) at lower nodes, divaricately rebranched and relatively stout, spikelets usually sparse and few; plants mostly 5–25(–30) cm tall .......................................................... ......................................................P. diaphora subsp. diaphora var. diaphora – Lemmas 1.8–3.5(–3.8 in large specimens with many spikelets) mm long; pani- cles 2–15(–20) cm long, branches (1–)3–8(–12) at lower nodes, divaricately re- branched or not, capillary to somewhat stout, spikelets sparse to crowded, few to many; plants 2–40 cm tall .............................................................................. 12 12 Plants low growing, with dense fascicles of rebranching culms; culms 2–6 cm tall, with lateral inflorescences from lower culm leaves; panicles contracted to open, Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)82 1.5–4 cm long, included in tuft of basal leaves or slightly exerted; lemmas 3–3.5 mm long; plants alpine ....................... P. diaphora subsp. diaphora var. alpina – Plants low growing or taller, without fascicles of rebranching culms; culms soli- tary to several, mostly 10–40 cm tall, without lateral inflorescences; panicles ef- fuse, usually more than 5 cm long, usually exerted; lemmas 1.8–3.5 mm long; plants of various habitats ............... P. diaphora subsp. diaphora var. songarica 13 Spikelet pedicels mostly 2–5 mm long; panicle branches 5–18 at lower nodes, stiffly spreading, lower whorls never naked or with rudimentary spikelets; lemma apices acutely pointed; anthers 0.6–1.0(1.1) mm long ....................................... ............................................................................P. diaphora subsp. oxyglumis – Spikelet pedicels mostly 5–10 mm long: panicle branches (9–)13–27 at lower nodes, slender, slightly flexuous, lower whorls sometimes with a few branches that are naked or with some rudimentary spikelets in addition to normal spike- lets; lemma apices obtuse to acute, blunt or slightly pointed; anthers 0.8–1.3 mm long .......................................................................................................P. millii Poa subg. Pseudopoa sect. Pseudopoa (K. Koch) Hack., Nat. Pflanzenfam. 2(2): 73. 1887. Emended description. Tufted annuals. Leaf sheaths keeled, margins fused for 4–12% their length; blades flat to convolute, surfaces scabrous. Panicles open, with (1–)3–27 branches at lower nodes, lower whorls sometimes sterile; branches ascend- ing to widely spreading, scabrous angled, with pedicels mostly equalling or up to 4× longer than their spikelets. Spikelets 1–10-flowered; glumes unequal, 1st glume 1-veined, 2nd glume 3-veined, usually reaching to less than ⅔ the adjacent lemma; rachilla internodes terete, scabrous; callus smooth, glabrous, with a round disarticu- lation scar; lemmas laterally compressed, weakly keeled, glabrous or short sericeous in lower half of the keel and also along the marginal veins, between veins smooth or scabrous, glabrous (rarely sericeous), 5-veined, intermediate veins obscure to dis- tinct, margins narrowly to broadly scarious, apex obtuse to acuminate, sometimes briefly muticus. Flowers perfect, ovaries glabrous, anthers 0.2–2.8 mm long; cary- opsis 1.5–2.5 mm long, narrowly elliptical, laterally compressed, fused to the palea, solid, hilum ⅛–⅙ the grain in length. Poa attalica (H. Scholz) Soreng, Cabi & L.J. Gillespie, comb. nov. urn:lsid:ipni.org:names:77191831-1 Eremopoa attalica H. Scholz, Willdenowia 10(1): 33, f. 1. 1980. Type. Turkey. Antalya, “nordwestl. Antalya bei Termessos, ausgetrockneter Gebirgs- bach”, 300 m, 23 Jul 1979, Kehl s.n. (holotype: B! [B-100272775]) Distribution. Turkey (western Taurus Mts.). Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 83 Notes. We provisionally retain this species in sect. Pseudopoa, despite its divergent phylogenetic placement. The species is morphologically similar to other members of the section. As noted by Mill (1985), it is most like Poa nephelochloides Roshev., but the anthers are smaller. Some populations of P. millii approach P. attalica and are problem- atical to separate (see under P. millii). Further molecular study is needed to determine if the three species are closely related and if a new section is warranted. Poa diaphora Trin., Mém. Acad. Imp. Sci. St.-Pétersbourg, Sér. 6, Sci. Math., Sec- onde Pt. Sci. Nat. 4,2(1): 69–70. 1836. Aira altaica Trin., Mém. Acad. Imp. Sci. St.-Pétersbourg Divers Savans 2: 526. 1835. Nephelochloa altaica (Trin.) Griseb., Fl. Ross. 4(13): 367. 1852. Poa diaphana Boiss., Fl. Orient. 5: 611. 1884, nom. inval. Eremopoa altaica (Trin.) Roshev., Fl. URSS 2: 431. 1934. Type. “Sterilissimus salsuginosis deserti editi Tschujae”, [1800–3000 m], July 1832, A. Bunge (lectotype, designated by Tzvelev 1976, pg. 480, and marked in herbarium: LE! [Trinius herbarium microform image 424-A4! p.p. Bunge 1832]; isolectotypes: LE [3 specimens: TRIN-2620.01! with original description (Trinius herbarium microform 312-A1), Trinius herbarium microform images 424-A3!, 424-A5!], K [K000789849 image!; specimen labelled “Aira altaica Trin. Altai”, “Acad. St. Petrop, mis. 8br 1835” is a good match for LE type material]). See Soreng et al. (1995) for explanation of Trinius herbarium citations. Distribution. Egypt (Sinai Peninsula) to China (Xinjiang, Xizang). Notes. Separating the four forms of Poa diaphora s.l. treated here is often difficult. Here we choose to recognise two subspecies as divided in the molecular plastid analy- sis. Subspecies diaphora and oxyglumis are most easily separated by the minute anthers (0.2–0.6 mm) combined with glabrous or nearly glabrous lemmas in the former and slightly longer anthers (0.6–1.1 mm) combined with hairy lemma keels and marginal veins in the latter. The other forms, diaphora s.s., songarica and alpina are essentially intergrading and are here treated as varieties in subsp. diaphora. The specimen K000789848 (image!) (“Al. Bunge” ex hrbr. Alexandri Lehmann, Reliquiae botanicae, original det “Poa diaphora Tr.”) might be original material of Aira altaica, but RJS doubts it as it is not a good match for LE types; it is a taller plant more like K00789847 (also Reliquiae Lehmannianae), which is Bunge material collected 20 May 1842, in Karakum desert. Poa diaphora subsp. diaphora var. diaphora Fig. 3A Poa persica var. diaphora (Trin.) Asch. & Graebn., Syn. Mitteleur. Fl. 2: 437. 1900. Eremopoa altaica (Trin.) Roshev. subsp. altaica. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)84 Figure 3. Poa subgenus Pseudopoa sect. Pseudopoa. A P. diaphora subsp. diaphora var. diaphora, Chu, Kyrgyz Republic (Soreng et al. 7537) B, C P. persica subsp. persica, Adiyaman, Turkey (Soreng et al. 9215) B habit C closeup of base of plant showing keeled leaf sheaths and caniculate blades D, E P. persica subsp. multiradia- ta, Mardin, Turkey (Soreng et al. 9240) D habit E spikelet showing glabrous lemmas. Photos by R.J. Soreng. Distribution. China (Xinjiang, Xizang), Kazakhstan, Kyrgyz Republic, Pakistan, Rus- sia (Altai Mts.), Tajikistan, Turkey. Notes. A single specimen recorded from Turkey (Kars Prov., Litvinov 4790 US ex K) evidently belongs to this variety and was also cited by Mill (1985) under E. songarica. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 85 Poa diaphora subsp. diaphora var. alpina (Boiss.) Soreng, Cabi & L.J. Gillespie, comb. nov. urn:lsid:ipni.org:names:77191833-1 Poa persica var. alpina Boiss., Fl. Orient. 5: 610. 1884. Type. Turkey. Plantae Lyciae, ad fonts reginis alpinae montis Elmalu, 25 Jun 1860, E. Bourgeau 271 (lectotype, here designated: G [G00330280 image!]; isolectotypes: G [G00380172 image!, p.p. central and right top two samples], G [G0038173 image!], K [K-000789856 image!]). Distribution. Armenia, Azerbaijan, Afghanistan, Georgia, Iran, Kyrgyz Republic, Pakistan, Turkey and Turkmenistan(?). Notes. This taxon, accepted as Eremopoa bellula by several authors (see Names of Uncertain Application below), was first recognised infraspecifically by Boissier (1884) as Poa persica var. alpina. The variety is common in the highest elevations at which the genus occurs, in the alpine of Turkey, Iran and Afghanistan to the Pamir mountains, reaching 4000 m. Further study is needed to clarify the distinction of var. alpina from var. diaphora and these from Eremopoa bellula, as the material placed here appears heterogenous. Of the six syntypes of var. alpina cited by Boissier (Bourgeau 271, hab. in alpinis, montes supra Elmali Lyciae [G00380172, G0038173, G00330280, K000789856]; Kotschy 12, Tarus Cilicicus, 5–6000’; Prairies humides de la region alpine du Taurus, au Boulgarmden [as 12d: G00330281, K000789851 image!]; Balansa s.n., Jul-Aug 1855 [K000789857, P02358251 p.p. bottom right]; Blanche s.n., Libani cacuminal; Kotschy 477, mons Kuh Delu Persiae australis, 10 Jun 1842 [BM000959359 image!, E!, G00308632 image!, P02358251! p.p. “fo. pygmaea” bottom left]), we select Bourgeau 271 as the lectotype as it is typical of the form. As noted by Samuelsson (1950), the Sintenis syntype (mons Troodos, Cypri) represents a separate form that is treated here as Poa sintenisii. Poa persica var. “minor” Boiss. (cited by Mill, in Fl. Turkey 9: 492. 1985) is a nomen nudum since it is a herbarium name on Bourgeau 271, syntype of var. alpina Boiss.; this name is also inscribed on Kotschy 12d (p.p. G00308174), but the latter is original material, not a syntype, mentioned by Boissier (1884). Poa diaphora subsp. diaphora var. songarica (Schrenk ex Fisch. & C.A. Mey.) Soreng, Cabi & L.J. Gillespie, comb. nov. urn:lsid:ipni.org:names:77191834-1 Glyceria songarica Schrenk ex Fisch. & C.A. Mey., Enum. Pl. Nov. 1: 1–2. 1841. Nephelochloa songarica (Schrenk ex Fisch. & C.A. Mey.) Griseb., Fl. Ross. 4(13): 367. 1852. Nephelochloa persica var. songarica (Schrenk ex Fisch. & C.A. Mey.) Regel, Trudy Imp. S.-Peterburgsk. Bot. Sada 7: 603. 1881. Poa songarica (Schrenk ex Fisch. & C.A. Mey.) Boiss., Fl. Orient. 5: 611. 1884. Poa persica var. songarica Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)86 (Schrenk ex Fisch. & C.A. Mey.) Stapf, Fl. Brit. India 7(22): 337. 1897 [1896]. Eremopoa songarica (Schrenk ex Fisch. & C.A. Mey.) Roshev., Fl. URSS 2: 431, pl. 32, f. 11. 1934. Eremopoa persica var. songarica (Schrenk ex Fisch. & C.A. Mey.) Bor, Grass. Burma, Ceylon, India & Pakistan 532. 1960. Eremopoa altaica subsp. songarica (Schrenk ex Fisch. & C.A. Mey.) Tzvelev, Bot. Zhurn. (Moscow & Len- ingrad) 51(8): 1104. 1966. Poa diaphora subsp. songarica (Schrenk ex Fisch. & C.A. Mey.) Soreng & G.H. Zhu, Fl. China vol. 22: 266. 2006. Poa songarica var. argaea Hausskn. & Bornm. ex R.R. Mill, Fl. Turkey & E. Aegean Isl. 9: 491. 1985, nom. inval., as syn. of Eremopoa songarica. Poa paradoxa Kar. & Kir., Bull. Soc. Imp. Naturalistes Moscou 864. 1841, nom. illeg. hom. Poa subtilis Kar. & Kir., Bull. Soc. Imp. Naturalistes Moscou 15(3): 532. 1842. nom. nov. (cited Poa paradaxa Kar. & Kir., 1941 [entry no.] 926). Type pro- tologue. Hab. in herbosis ad rivulum Ai deserti Soongoro-Kirghisici, Jun, Karelin & Kiriloff. Type: Hab. in herbosis ad rivulum Ai deserti Soongoro-Kirghisici, Jun 1840, Karelin & Kiriloff (Herb. Fischer no. 504) (lectotype, here designated: LE!; isotypes: P [P02663383!], W [W0028251 image!]). Type. Ad fl. Karatal versus montes Karatau, 13 June 1840, H. Schrenk s.n. (holotype: LE; isotype: LE). Distribution. Afghanistan, Armenia, Azerbaijan, China (Xizang), Georgia, Iran, Israel, Kazakhstan, Kyrgyz Republic, Tajikistan, Turkey, Turkmenistan and Uzbekistan. Notes. Poa diaphora var. songarica was recently recorded (as Eremopoa songarica; determination verified here) from one locality in northernmost Israel (Danin and Fragman-Sapir 2016+). It was collected as a waif in Canada (Manitoba) in the 1950s (Stevenson 1965, as E. persica; Darbyshire 2007, as E. altaica: re-identified here), but is apparently not persistent (Darbyshire 2007, B.A. Ford, pers. comm, 2018). Tzvelev (1976, pg. 480) cited “In herbidis Songaria ad rivulum Tschulak [Jun 1841], Karelin & Kiriloff 2123” (LE!) as type of P. subtilis (duplicates at BM000959360 image!, K000789846 image!, BR0000006600860 image!, P02663388!, P02663405!), but the type is the one [1840] collection cited by Karelin and Kiriloff (1841) distrib- uted as Herb. Fischer no. 504. Poa diaphora subsp. oxyglumis (Boiss.) Soreng & G.H. Zhu, Fl. China 22: 266. 2006. Poa persica var. oxyglumis Boiss., Fl. Orient. 5: 610. 1884. Eremopoa oxyglumis (Boiss.) Roshev., Fl. URSS 2: 430, 756, pl. 32, f. 9–10. 1934. Eremopoa persica var. oxyg- lumis (Boiss.) Grossh., Fl. Kavkaza (ed. 2) 1: 268. 1939. Eremopoa altaica subsp. oxyglumis (Boiss.) Tzvelev, Bot. Zhurn. (Moscow & Leningrad) 51(8): 1104. 1966. Eremopoa persica var. oxyglumis (Boiss.) Rahmanian, Iran. J. Bot. 21(11): 214. 2014. nom. inval. isonym. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 87 Type. Turkey. In collibus prope Baibout, 17 Jul 1963, E. Bourgeau (lectotype, desig- nated by Tzvelev 1976, pg. 479: LE! [LE00009676]; isolectotypes: LE [LE00009678 image!], P [P02358146! pp a, P03142400!]). Distribution. Armenia, Azerbaijan, Georgia, China (Xizang), Kyrgyz Republic, Pakistan, Tajikistan, Turkey, Turkmenistan and Uzbekistan. Notes. Most accounts have recognised this taxon at one rank or another, except Mill (1985) who treated it as a synonym of E. songarica. Several collections were cited in the original protologue: Tchihatcheff, Hab. in Ponto; Balansa, Ponto Lazi- co ad Djimil [Balansa 1549 G00308631, E, LE!, P02014318 (= subsp. oxyglumis), P02014317 (= P. persica subsp. multiradiata), US!]; Huet, Erzurum [G00330279, G00308633]; E. Bourgeau, Armenia, in collibus et agris in cultis Armeniae Turcicae ad Gumuchkhane. Poa millii Soreng, Cabi & L.J. Gillespie, nom. nov. urn:lsid:ipni.org:names:60477374-2 Eremopoa capillaris R.R. Mill, Fl. Turkey & E. Aegean Isl. 9: 624, 490. 1985 (non Poa capillaris L. 1753). Eremopoa persica var. ramosissima Azn. ex R.R. Mill, Fl. Turkey & E. Aegean Isl. 9: 490. 1985, nom. inval. Type. Turkey. Adana, distr. Feke, Sencan Dere nr Gurumze, 1300 m, 30 May 1952, P.H. Davis, Dodds & Cetic 19681 (holotype: E! [E00196495]; isotypes: BM! [BM000959355], K! [K000789852]). Distribution. Turkey (central and eastern Taurus Mts. and adjacent ranges). Notes. Morphologically Poa millii is intermediate between P. persica subsp. persica and P. attalica. However, we are not sure which of these it is actually related to or if it is a hybrid between them. The type approaches P. persica in having anthers 1.2–1.3 mm long and P. attalica in having abundant branching and sometimes having some sterile branches amongst the lower branch whorls. Much of the material of P. millii from further west than the type location from the Taurus Mts. has smaller anthers and is problematical to separate from P. attalica. Poa nephelochloides (Roshev.) Soreng, Cabi & L.J. Gillespie, comb. nov. urn:lsid:ipni.org:names:60477375-2 Eremopoa nephelochloides Roshev., in Köie, M., Beitr. Fl. Sudwest Iran I. Danish Sci. Invest. Iran In K. Jessen & R. Sparck. (Eds) Danish Sci. Invest. Iran, pt. 4: 50. 1945. Eremopoa persica var. nephelochloides Roshev., nom. inval. as syn. of E. nephelochloides. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)88 Type. Iran. 60 km north of Dizful, 3 May 1937, M. Köie 475 (lectotype, here desig- nated: C [C10016935 image!]; isolectotype: LE). Distribution. Iran (Zagros Mts.). Notes. Due to its sterile whorls of branches, this species seems very close to Poa millii and P. attalica, but may be a derivative of P. persica since it has longer anthers than the previous taxa. Roshevits cited two gatherings of Köie: “Kechwar, 700 m (3 May 1937; no. 475). Chah-Bazan, 500 m” (Kechvar is about 60 km north of Dizful). The specimen at C has the same date and collection number as Roshevits cited and was annotated by Roshevits as this taxon; we select it as the lectotype. The anthers are ca. 1.1–1.2 mm as measured from the C photo and other characters seem to match P. attalica. The anther length is given as 1.5 mm in Roshevits’ diagnosis. The specimen clearly has the hyaline lemma apices of P. persica s.l. (in contrast to P. diaphora). How- ever, these features are also present in the type of E. capillaris (=P. millii). Poa attalica has shorter anthers, ca. 0.8 to 1 mm, on the type (anthers not described by Scholz 1980 or Mill 1985). Poa nephelochloides and P. attalica may represent the same species, diagnosed as different from P. persica by sterile branches and from Nephelochloa orien- talis Boiss. by glabrous lemmas (P. nephelochloides has pubescent lemmas). However, Poa nephelochloides and P. attalica are geographically isolated by over 1500 km and have different anther lengths. Poa persica Trin., Mém. Acad. Imp. Sci. St.-Pétersbourg, Sér. 6, Sci. Math. 1(4): 373. 1830. Festuca persica (Trin.) K. Koch, Linnaea 21(1[4]): 410. 1848. Nephelochloa persica (Trin.) Griseb., Fl. Ross. 4(13): 366. 1852. Poa pamphylica Boiss., Diagn. Pl. Ori- ent., ser. 1, 13: 58. 1854[1853?], nom. inval. as syn. of Poa persica. Eremopoa persica (Trin.) Roshev., Fl. URSS 2: 430, pl. 32, f. 8. 1934. Type. Iran: in collibus ad Akar-Tschai prob. Karabagh, 1400–1900 m, 27 May 1829, Szowits 246 (lectotype, designated by Tzvelev 1976, pg. 479: LE! [photo E000327964!, TRIN-microform 434-B4!]; isolectotypes: LE [TRIN-2666.02!, TRIN-microform 434A8!, 434-B1!, 434-B2!, 434-B3!]). Notes. Other original material includes: Iran, Prov. Aderbeidschan. distr. Khoi, ad Seidchadzi, 18 May 1828, Szovits 258 (LE!, LE0009678 [image!], LE0009679, LE0009680 [image!], LE0009681 [image!], W0028250 [image!]; In apricis prov. Aderbeidschan e Karabahg, Fischer [herb. Fischer] (K000789867 [image!]). Poa per- sica has two major variations: subsp. persica with pubescent lemmas and relatively narrower panicle length to plant height ratio; and subsp. multiflora with glabrous lemmas and relatively greater panicle length to plant height ratio, and often more flowers per spikelet. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 89 Poa persica subsp. persica Fig. 3B, C Eremopoa persica var. typica Grossh., Trudy. Bot. Inst. Azerbaidzh. Fil. Akad. Nauk. S.S.S.R. 8: 268. 1939, nom. inval. Eremopoa persica var. persica. 1960. Poa cilicensis Hance, Ann. Sci. Nat., Bot., sér. 4, 18: 234. 1862. Type protologue. In Tauro cilicio, Kotschy 529. Type. In monte Tauro, aestate 1836, Kotschy 529, this from hb. H.F. Hance [via Reed 1887] no. 7498 (lectotype, here designated: BM! [BM000551484, right hand plant (2 left hand specimens are Poa diaphora var. songarica and are clearly excluded from Hance’s description written on the sheet)]; isolectotype: P! [P02642319]). Glyceria taurica Steud., Syn. Pl. Glumac. 1: 286. 1854 (non Poa taurica E. Pojarkova, 1965, Poa × taurica H.N. Pojark., 1963). Type protologue. In monte Tauro, 1836, Kotschy (Kotschy hrbr.). Type. In monte Tauro, Aestate,1836, Kotschy 529 (lectotype, here designated: P! [P02642319]; isolectotype: BM [BM000551484 image!]). Distribution. Armenia, Azerbaijan, Georgia, Egypt (north coast, possibly adventive), Iran, Iraq, Lebanon, Pakistan, Syria, Turkey; waif in France (introduced in wool, Mar- seille, H. Roux, P06768417!, P03370109!; RJS determination, 2015) and Norway (Greuter et al. 1984+). Notes. Although Kotschy’s herbarium is mainly at W, a search of the W herbarium website did not turn up Kotschy 529 except as the genus Arenaria from Tauro cilicio or a Scrophularia from Persia. Kotschy 528 at W is a Poa of the P. bulbosa complex from “In monte Tauro” in 1836. Presumably the earlier 1836 set was broken up and 529 ended up at BM and P. The anthers in the G. taurica lectotype are 1.8 mm long and the lemmas are pubescent along the keel and marginal veins. Poa persica subsp. multiradiata (Trautv.) Soreng, Cabi & L.J. Gillespie, comb. nov. urn:lsid:ipni.org:names:60477377-2 Fig. 3D, E Poa palustris var. multiradiata Trautv., Trudy Imp. S.-Peterburgsk. Bot. Sada 4: 406. 1876. Poa multiradiata (Trautv.) Regel, Trudy Imp. S.-Peterburgsk. Bot. Sada 7: 620. 1880. Eremopoa multiradiata (Trautv.) Roshev., Fl. URSS 2: 430, t. 32. 1934. Eremopoa persica subsp. multiradiata (Trautv.) Tzvelev, Zlaki SSSR 479. 1976. Nephelochloa tripolitana Boiss. & Blanche, Diagn. Pl. Orient., ser. 2, 4: 133–134. 1859. Poa persica var. major Boiss., Fl. Orient. 5: 610–611. 1884. Type protologue. Hab. ad margines semitarum inter hortos ad Tripolium Syriae (Blanche), circa Byrouth in Libano (Gaillardot). Type. Lebanon. S. Tripoli, dans les bords des chemins, 16 Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)90 May 1854, Blanche 1267 (lectotype, here designated: JE [JE00005064 ex herb. Gaillardot, image!]). Note. Two of the original specimens turned up in our search, Blanche 1267 (JE00005064 ex herb. Gaillardot) and Gaillardot s.n. (JE00005065 ex herb Gaillardot no. 2323 [image!]). Blanche in 1869 (P02530724) might also be original material, with a distribution date rather than a collection date. Eragrostis barbeyi Post, Bull. Herb. Boissier 5: 760–761. 1897. Type protologue. Habi- tat in collibus prope Midyat (Mardin), no. 38. Type. Turkey. Midyat, Hillsides, May 1895, 38 Barbey (lectotype, here designated by Nada Sinno Saoud & RJS: BEI! (image seen by RJS!)). Note. The BEI sheet has “No. 55 38 Barbey, 1895” (55 was originally written as 54 but the 4 written over by 5). Eremopoa mardinensis R.R. Mill, Fl. Turkey & E. Aegean Isl. 9: 624, 488. 1985. Type. Turkey. Mardin, Mardin to Nusaybin, 8 km from Mardin, 850 m alt., shal- low limestone gully, 22 May 1957, P. H. Davis & D. Hedge 28491 (holotype: E! [E00196494]). Type. Armenia rossica, prope monasterium Kiptschach, 1875, G. Raddi. Type: Arme- nia rossica: prope monasterium Kiptschach in monte Alagos, Jun 1875, G. Radde 124 (holotype: LE! [photo E00326521!]; isotypes: LE, LE, W [W19160014191 image!]). Distribution. Armenia, Georgia, Iran, Lebanon, Pakistan, Syria and Turkey. Notes. The presence of hairs on the lemmas in material treated as “multiradiata” is confused in the literature. Mill (1985) indicates that E. multiradiata and E. persica s.s. have lemma keels hairy in the lower ⅓–½. We concur with Tzvelev (1976), who keyed E. persica subsp. persica as lemmas short pilose along the base of keel and marginal veins and subsp. multiradiata as lemmas glabrous or with a few solitary hairs. Mill (1985) distinguished his new species Eremopoa mardinensis from E. multiradiata based on its glabrous lemmas, 8–12-flowered spikelets and florets strongly divergent from the rachilla. However, subsp. multiradiata also has glabrous lemmas (as noted above) and divergent florets (when spikelets are in flower) and its (4)5–9(10)-flowered spikelets over- lap in number; therefore, we treat E. mardinensis as a synonym of E. multiradiata. The type material of Eragrostis barbeyi is from the same place as E. mardinensis and is clearly the same form (spikelets many-flowered); Nephelochloa tripolitana, with ca. 12–14-flowered spikelets, also appears to belong to this form. If E. mardinensis were accepted as a species, the basionym names Eragrostis barbeyi or Nephelochloa tripolitana would have priority. Poa subg. Pseudopoa sect. Speluncarae Soreng, Cabi & L.J. Gillespie, sect. nov. urn:lsid:ipni.org:names:60477378-2 Type. Poa speluncarum J.R. Edm. Diagnosis. Differing from Poa sect. Pseudopoa in being perennial and stooling, with top culm sheath margins fused 40–50% their length and from almost all Poa in proximal spikelets being 1-flowered. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 91 Poa speluncarum J.R. Edm., Fl. Turkey & E. Aegean Isl. 9: 623. 473. 1985. Type. Turkey. C4, Konya, distr. Ermenek, Kamis Dere between Ermenek and Oyuklu Dag., floor of caverns, 1400–1500 m, 14 Aug 1949, P. H. Davis 16180 (holotype: K! [K000641325]; isotype: E! [E00367874]). Distribution. Turkey (central Taurus Mts.). Notes. Poa speluncarum was described by Edmondson (1985) as an annual spe- cies of Poa sect. Ochlopoa Asch. & Graebn (≡ Poa sect. Micrantherae Stapf. Type: Poa annua). Our investigation found it to be a feeble, stooling perennial with sparsely scabrous panicle branches, uppermost sheaths closed up to half their length, spikelets sparsely scaberulous, mostly 1-flowered, the distal-most ones frequently 2(–3) flow- ered, anthers 1.1–1.7 mm, caryopsis 1.7–1.8 mm long, hilum 0.3 mm long and grain adherent to the palea. DNA data have clearly placed it in the Poa clade that includes Eremopoa species (E clade), either as sister to P. attalica (nuclear data) or as sister to P. attalica + P. sintenisii (plastid data). The species is odd in subgenus Pseudopoa for its perennial habit (albeit weak) and more closed sheaths, and in Poa generally by its mostly uniflorous spikelets. It is a very rare species that lives in the backs of shallow, moist, cool caves in the Taurus Mts., along with other cave endemics. Poa subg. Pseudopoa sect. Lindbergella (Bor) Soreng, Cabi & L.J. Gillespie, sect. nov. urn:lsid:ipni.org:names:60477379-2 Lindbergia Bor, Svensk Bot. Tidskr. 62: 467, 1968 (nom. illeg. hom., non Kindb., 1897). Lindbergella Bor, Svensk Bot. Tidskr. 63: 368. 1969. Type. Poa sintenisii H. Lindb. ≡ Lindbergella sintenisii (H. Lindb.) Bor. Diagnosis. Differing from Poa sect. Pseudopoa in: panicle branches smooth; lower glume 3-veined, up to 3/4 as long as the lower lemma; lemmas 3-veined, relatively firm, sericeous on keel marginal veins and sides; callus with short crown of hairs, the hairs 0.2 mm long; and palea keels sericeous in part. Poa sintenisii H. Lindb., Årsbok-Vuosik. Soc. Sci. Fenn. 20 B (7): 5. 1942 (emend. Lindberg 1946). Lindbergia sintenisii (H. Lindb.) Bor, Svensk Bot. Tidskr. 62: 467. 1968. Lindbergella sintenisii (H. Lindb.) Bor, Fl. Cyprus 63: 368. 1969. Poa persica subsp. cypria Sam., Ark. Bot., n.s. 1(9): 417. 1950 [1951].Type. Cyprus. auf dem Troodos, 20 Jun 1880, P. Sintenis 881 (lectotype, here designated: S; isolec- totypes: B [B 10 0365891!], LD [LD1808162 image!, LD1808226 image!], G?, K [K000789835 image!, K000789836 image!, K000789837 image!], W [W0012225 image!, W0033518 image!, W00096518 image!, W0019026 image!]). Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)92 Type protologue. Cyprus. In pineto (P. pallasiana) in m. Troodos lecta est. 1939. Type. Cyprus. Troodos in pineto juxta via huad procul ab “Olympus Camp Hotel”, 22 Jun 1939, H. Lindberg s.n. (holotype: S [S-11-34137 image!]; isotypes: S [S-G- 4941 image!], K [K000789839 image!], LD [LD1807330 image!], W [image!]). Distribution. Cyprus (Mt. Troodos, endemic to serpentine rocks). Names of uncertain application within Poa subgen. Pseudopoa Festuca bellula Regel, Trudy Imp. S.-Peterburgsk. Bot. Sada 7: 594. 1881. Er- emopoa bellula (Regel) Roshev., Fl. URSS 2: 431, pl. 32, f. 12. 1934. Type protologue. Ad fontes calidos Araschan Bulak in Turkestania occidentali, Krause s.n. Type: Taschkenter Alatau, Araschan Bulak, 11 Jun 1871, (Hieronymous) Krause s.n. (holotype: LE [only one collection cited]). Notes. Eremopoa bellula was applied by several authors to small densely tufted al- pine annual plants of south-central and southwest Asia, which we recognise as P. diaph- ora var. alpina (based on Poa persica var. alpina Boissier [1884]). Tzvelev (1976, pg. 480) noted that the holotype collection of E. bellula appeared to be a mix of altaica (diaphora) and songarica forms (“p.p. max” = E. altaica subsp. songarica, somewhat intermediate between this subsp. and subsp. altaica, and “p.p. minor” = E. altaica subsp. altaica); he considered E. bellula to be a synonym of E. altaica subsp. songarica. Further study is needed to clarifiy the placement of Eremopoa bellula and determine if it is synonymous with P. diaphora var. alpina. Eremopoa glareosa Gamajun., Bot. Mater. Gerb. Inst. Bot. Akad. Nauk Kazahsk. SSR 2: 2. 1964. Type protologue. Usbekistanica, Tian Schan Occid., Bostandyk, fonts Aksar-sai, 28 Jul 1949, N. V. Pavlov s.n. (holotype: AA). Notes. Tzvelev (1976, pg. 480) included E. glareosa as a synonym under E. altaica subsp. songarica, but noted that it is somewhat intermediate between this taxon and E. altaica subsp. altaica. As the protologue indicates the plants are 10–28 cm tall, with 3 to 4 florests per spikelet, spikelets 4–7 mm long and anthers 2.5 mm long, this is more likely to be Poa persica, perhaps subsp. multiradiata, since no pubescence is indicated. Festuca heptantha K. Koch, Linnaea 21(3): 410. 1848. Poa heptantha (K. Koch) Steud., Syn. Pl. Glumac. 1: 255. 1854. Type protologue. Im Hochgebirge, auf sumpfigen Wiesen, auf Urgestein, 5500 ft, C. Koch s.n. (holotype: B, probably destroyed). Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 93 Note. There is no location in the species protologue beyond the article title “Bei- trage zu einer Flora des Orients”. Tzvelev (1976) indicated this name and the next, Festuca polygama, probably apply to Eremopoa persica and that the types of these were in Berlin (B). Clayton et al. 2002+ (GrassBase) reflect the same information. RJS was unable to locate type material of either of these two names at B, P or via internet searches. Festuca polygama K. Koch, Linnaea 21: 409. 1848. Poa polygama (K. Koch) Steud., Syn. Pl. Glumac. 1: 255. 1854. Type protologue. “Aus dem Wilhelm’schen Herbr als Poa persica.” Type: Wilhelms (holotype: B, probably destroyed). Notes. Tzvelev (1976) indicates “Caucasus?”, but there is no location in the species protologue beyond the article title “Beitrage zu einer Flora des Orients”. Excluded names Eremopoa medica H. Scholz, Willdenowia 11(1): 96. 1981. Type. Persia, Prov. Azerbaijan occid.: In pratis paludosis SE Shahpur versus lacum Rezaiyeh (Urmia), 1300 m; 12 Jun 1971, Rechinger 41820 (holotype: W [W1972- 0000975 image!; isotypes: B! [B 10_0272774], GZU [GZU000201751 image!], WU [WU0033125 image!]). Notes. The type collection of Eremopoa medica is clearly a perennial species of Puccinellia (possibly P. gigantea (Grossh.) Grossh.) with lemmas rounded on the back, a distinct short crown of callus hairs and papillae common on vegetative structures (pedicels and leaves). Material cited as E. medica in Rahmanian et al. (2014, fig. 5) appears to us to be Poa persica subsp. persica; their description and illustration indicate an annual habit, pubescent lemmas and panicles with 10 or more branches per whorl. The single specimen (TARI 35082) cited was included in our molecular analysis and formed a clade with other P. persica accessions in all trees. Invalid names, not vouchered Festuca amherstiana Nees, Ill. Bot. Himal. Mts. 417. 1839, nom. nud., name in list, no voucher. Notes. Kew GrassBase (Clayton et al. 2002+) indicates it is equal to E. persica. The specimen K00078950 (ex P) (image!), Voyage V. Jacquemont aux Indes orient. no. 1902, has this name on the label. The specimen is certainly P. diaphora, not P. persica. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)94 Acknowledgements We thank the curators and staff at the following herbaria for loans and/or specimen images: E, G, BEI, BM, B, K, LE, P, US, ANK, ISTE, NKU and W. Ralf Hand kindly sent us leaf material and a duplicate of Lindbergella sintenisii from Cyprus; Mostafa Assadi and Mohammad Amini-Rad kindly sent leaf material from Iran from the TARI and IRAN herbaria. Nada Sinno Saoud kindly provided an image of Eragrostis barbeyi from the Post herbarium (BEI). We thank Roger Bull for assistance with the molecular research and Paul Peterson, Stephen Wagstaff and Clifford Morden for their helpful reviews. Part of the molecular study was performed by NA as part of her Masters thesis at the University of Ottawa and Canadian Museum of Nature. LJG acknowledges the support of the Canadian Museum of Nature and the Natural Sciences and Engineering Research Council of Canada (NSERC). References Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Au- tomatic Control 19(6): 716–723. https://doi.org/10.1109/TAC.1974.1100705 Ascherson PFA, Graebner ORPP (1900) Synopsis der Mitteleuropaïschen Flora, Vol. 2, part 1. W. Engelmann, Leipzig. Boissier PE (1884) Ordo CXLI. Gramineae. In: Boissier PE (Ed.) Flora Orientalis, vol. 5. H. Georg, Basilae, 432–692. Boissier PE, Blanche (1859) Gramineae. In: Boissier PE (Ed.) Diagnoses Plantarum Orienta- lium Novarum, ser 2. (4). B. Hermann, Lipsiae, 125–146. Bor NL (1960) Grasses of Burma, Ceylon, India & Pakistan. Pergamon Press, Oxford, 767 pp. Bor NL (1968a) Gramineae. In: Townsend CC, Guest ER, Al-Rawi A (Eds) Flora of Iraq, vol. 9. Ministry of Agriculture of the Republic of Iraq, Baghdad, 1–588. Bor NL (1968b) Lindbergia Bor: A new genus of grasses from Cyprus. Svensk Botanisk Tid- skrift 62: 467–470. Bor NL (1969) A correction. Svensk Botanisk Tidskrift 63: 368–369. Bor NL (1970) Gramineae. In: Rechinger KH (Ed.) Flora Iranica, vol. 70. Akademische Druck und Verlagsanstalt, Graz, Austria, 1–573. Cabi E, Doğan M (2012) Poaceae. In: Güner A, Aslan S, Ekim T, Vural M, Babaç MT (Eds) Türkiye Bitkileri Listesi. Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, Istanbul, 690–756. Cabi E, Soreng RJ, Gillespie LJ (2017) Taxonomy of Poa jubata and a new section of the genus (Poaceae). Turkish Journal of Botany 41: 404–415. https://doi.org/10.3906/bot-1611-28 Clayton WD, Renvoize SA (1986) Genera Graminum. Kew Bulletin, Additional Series 13: 1–389. Clayton WD, Vorontsova MS, Harman KT, Williamson H (2002+) GrassBase – The Online World Grass Flora, World Grass Species: Synonymy. https://www.kew.org/data/grassbase/ index.html [Accessed 10 March 2018] Cope TA (1982) Poaceae, In: Nasir E, Ali SI (Eds) Flora of Pakistan, Vol. 143. Univ. of Karachi, Karachi, 1–678. Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 95 Czerepanov SK (1981) Sosudistye rasteniya SSSR [Vascular Plants of the USSR]. Nauka, Len- ingradskoe Otd-nie, Leningrad, 1–509. Czerepanov SK (1995) Vascular plants of Russia and Adjacent States (the former USSR). Cam- bridge University Press, Cambridge, 1–532. Danin A, Fragman-Sapir O (2016+) Flora of Israel Online. http://flora.org.il/en/plants/ [ac- cessed October 2018] Darbyshire SJ (2007) Eremopoa Roshev. In: Flora of North America Editorial Committee (Eds) Flora of North America North of Mexico, Vol. 24. Oxford University Press, New York, 618–619. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772. https://doi.org/10.1038/nmeth.2109 Edmondson JR (1985) Poa. In: Davis PH (Ed.) Flora of Turkey and East Aegean Islands, Vol. 9. Edinburgh University Press, Edinburgh, 470–486. Fischer FEL, Meyer CA (1841) Enumerato Plantarum Novarum, Vol. 1. G. Fisheri, Petropoli, 1–77. Gabrieljan ET, Oganesian ME (2010) Poaceae. In: Takhtajan AL (Ed.) Flora Armenii 11. Gant- ner ARG, Ruggell, 1–547. Gillespie LJ, Archambault A, Soreng RJ (2007) Phylogeny of Poa (Poaceae) based on trnT-trnF sequence data: Major clades and basal relationships. Aliso 23(1): 420–434. https://doi. org/10.5642/aliso.20072301.33 Gillespie LJ, Soreng RJ, Bull RD, Jacobs SWL, Refulio Rodríguez N (2008) Phylogenetic rela- tionships in subtribe Poinae (Poaceae, Poeae) based on nuclear ITS and plastid trnT-trnL- trnF sequences. Botany 86(8): 938–967. https://doi.org/10.1139/B08-076 Gillespie LJ, Soreng RJ, Jacobs SWL (2009) Phylogenetic relationships of Australian Poa (Poaceae: Poinae), including molecular evidence for two new genera, Saxipoa and Sylvipoa. Australian Systematic Botany 22(6): 413–436. https://doi.org/10.1071/SB09016 Gillespie LJ, Soreng RJ, Paradis M, Bull RD (2010) Phylogeny and reticulation in subtribe Poinae and related subtribes (Poaceae) based on nrITS, ETS, and trnTLF data. In: Se- berg O, Petersen G, Barfod AS, Davis JI (Eds) Diversity, Phylogeny, and Evolution in the Monocotyledons. Aarhus University Press, Aarhus, 589–617. Greuter W, Heywood V, Jury S, Marhold K, Pertti U, Valdés B (Eds) (1984+) Euro+Med Plant- Base. http://www.emplantbase.org/home.html [accessed 10 May 2018] Grisebach AHR (1852) Ordo CXLII Gramineae, In: Ledebour CF von (Ed.) Flora Rossica, Vol. 4. Sumtibus Librariae E. Schweizerbart, Stuttgartiae, 324–484. Grossheim AA (1939) Flora Kavkaza (ed. 2), Vol. 1. Akademiia Nauk S.S.S.R. Azerbaidzhan- skii filial, Baku, Azerbaijan, 1–402. Hackel E (1887) Gramineae. In: Engler HGA, Prantl K (Eds) Die Natürlichen Pflanzenfamil- ien, Vol. 2 (2). Engelmann, Leipzig, 1–97. Hoffmann MH, Schneider J, Hase P, Röser M (2013) Rapid and Recent World-Wide Diver- sification of Bluegrasses (Poa, Poaceae) and Related Genera. PLoS One 8(3): 1–9. https:// doi.org/10.1371/journal.pone.0060061 Karelin GS, Kiriloff IP (1841) Enumeratio plantarum in desertis Songariae orientalis. Moscow, 233 pp. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Im- provements in performance and usability. Molecular Biology and Evolution 30(4): 772– 780. https://doi.org/10.1093/molbev/mst010 Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)96 Koch K (1848) Beitrage zu einer Flora des Orients. Linnaea 21(1[4]): 289–743. Köie ME (1945) Beitrag zur Flora Sudwest-Irans I. Danish Science Investigations in Iran 4: 9–56. Kovalevskaja SS (1968) Poa. Opredelitel’. Rastenii Srednei Azii 1: 127–138. Lindberg H (1942) En botanisk resa till Cypern 1939: foredrag vid tilltradendet av ordforande- skapet i Finska Vetensaps-Societeten den 29 April 1941. Årsbok-Vousikirja Societas Scien- tiarum Fennica 20 B(7): 1–12. Lindberg H (1946) Iter cyprium contributio ad cognitionem florae insulae Cypri. Acta Societa- tis Scientiarum Fennicae, Series B. Opera Biologica 7: 3–37. Mill RR (1985) Eremopoa, Nephelochloa, Catabrosella, Colpodium, Hyalopoa, Catabrosa, Para- colpodium. In: Davis PH (Ed.) Flora of Turkey and East Aegean Islands, Vol. 9. Edinburgh University Press, Edinburgh, 486–501. Nikiforova OD, Ovchinnikova SV, Lipin AS, Blasova N, Olonova MV (2012) Poaceae. In: Baikov KS (Ed.) Conspectus Florae Rossiae Asiaticae: Plantae Vasculares, Academia Scin- tiarum Rossica, Divisio Sibirca, Novosibirsk, 518–576. Pavlov NV, Gamajunova AP (1964) Addenda ad “Flora Kasachstanica” I-IV. Botanicheskie Materialy Gerbariia Instituta Botaniki Akademii Nauk Kazakhskoi SSR 2: 10–13. Post GE, Autran EJB (1897) Plantae Postianae, quas enumerant G. -E. Post and E. Autran, No- vas species descripsit G. -E. Post, Fasciulus VIII. Bulletin de l’Herbier Boissier 5: 754–761. Rahmanian S, Saeidi H, Assadi M, Rahiminejad MR (2014) A taxonomic revision of the genus Eremopoa Roschv. (Poaceae, Poeae) in Iran. Iranian Journal of Botany 20(1): 8–15. Rambaut A (2006+) FigTree, Tree Figure Drawing Tool Version 1.4.3. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/ [Accessed January 2018]. Roshevitz RU (1934) Eremopoa. In: Komarov VLL (Ed.) Flora URSS, vol. 2 Gramineae Juss. Akademii Nauk SSSR, Leningrad, 1–778. Ronquist F, Huelsenbeck JP, Teslenko M (2011) MrBayes 3.2 Manual: Tutorials and Model Sum- maries [on-line]. http://mrbayes.sourceforge.net/mb3.2_manual.pdf [Accessed January 2018] Samuelsson G (1950 [1951]) In: Rechinger KH (Ed.) Zur Flora von Cypren (Reliquiae Samu- elssonianae II.). Arkiv för Botanik, n.s. 1(9): 417. Scholz H (1980) Eine neue Eremopoa-Art (Gramineae) aus der Turkei. Willdenowia 10(1): 33–36. Scholz H (1981) Drei neue Gramineen aus Iran und Libyen. Willdenowia 11(1): 95–100. Soreng RJ (2003) Eremopoa Roshev. In: Soreng RJ, Peterson PM, Davidse G, Judziewicz EJ, Zuloaga FO, Filgueiras TS, Morrone (Eds) Catalogue of New World Grasses (Poaceae): IV. Subfamily Pooideae, Contributions from the United States National Herbarium 48. Smithsonian Institution, Washington, D.C., 310–311. Soreng RJ (2004+) Poa of the World. (Tropicos project). http://www.tropicos.org/ [accessed September 2018] Soreng RJ, Gillespie LJ, Bull RD (2010) Phylogeny and reticulation in Poa based on plastid trnTLF and nrITS sequences with attention to diploids. In: Seberg O, Petersen G, Barfod AS, Davis JI (Eds) Diversity, Phylogeny and Evolution of Monocotyledons, Aarhus Uni- versity Press, Aarhus, 619–644. Soreng RJ, Gillespie LJ, Consaul LL (2017b) Taxonomy of the Poa laxa group, including two new taxa from Arctic Canada and Greenland, and Oregon, and a re-examination of P. sect. Oreinos. Nordic Journal of Botany 35: 513–538. https://doi.org/10.1111/njb.01507 Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 97 Soreng RJ, Gillespie LJ, Koba H, Boudko E, Bull RD (2015b) Molecular and morphological evi- dence for a new grass genus, Dupontiopsis (Poaceae tribe Poeae subtribe Poinae s.l.), endemic to alpine Japan, and implications for the reticulate origin of Dupontia and Arctophila within Poinae s.l. Journal of Systematics and Evolution 53(2): 138–162. https://doi.org/10.1111/jse.12146 Soreng RJ, Peterson PM, Annable CR (1995) Trinius Herbarium, Komarov Botanical Institute, St. Petersberg (Guide to the microform collection). IDC BT–16: 1–66. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017a) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Sys- tematics and Evolution 55(4): 259–290. https://doi.org/10.1111/jse.12262 Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filguei- ras TS, Davis JI, Morrone O (2015a) A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53(2): 117–137. https://doi. org/10.1111/jse.12150 Stapf O (1897) Poa. In: Hooker JD (Ed.) The Flora of British India 7(22). L. Reeve & Co., London, 337–346. Stevenson GA (1965) Notes on the more recently adventive flora of the Brandon area, Mani- toba. Canadian Field Naturalist 79: 174–177. Steudel EG (1854) Synopsis Plantarum Glumacearum, Vol. 1. J. B. Metzler, Stuttgart, 1–475. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (and other methods), ver- sion 4.0b10. Sinauer Associates, Sunderland. Trinius CB (1830) Graminum genera, quedam speciesque complures definitionibus novis. Mé- moires de l’Académie Impérial des Sciences Saint-Pétersbourg, Série 6, Sciences, mathéma- tiques, physiques et naturelles 1(4): 353–416. Trinius CB (1835) [Poaceae] In: Bunge AA (Ed.) Verzeichniss der Im Jahre 1832 im Östichen Theile Des Altai-Gebirges Gesammelten Pflanzen. Ein Supplement zur Flora Altaica. Mé- moires presentés a l’Académie Impérial des Sciences Saint-Pétersbourg pars des divers sa- vans 2: 523–608 [526–529]. Trinius CB (1836) Graminum in hisce actis a se editorum generibus ac speciebus supplementa addit Mémoires de l’Académie Impérial des Sciences Saint-Pétersbourg, sér. 6, pt. 2 Sci- ences Naturelles 4, 2(1): 69–70. Tutin TG (1980) Gramineae. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (Eds) Flora Europaea, Vol. 5. Cambridge University Press, Cambridge, 118–267. Tzvelev NN (1966) Ob ecology-geograicheskikh rasakh v semeistve zlakov Gramineae I ikh taxksonomischeskom range. Botaničeski Žurnal (Moscow & Leningrad) 51(8): 1104. Tzvelev NN (1976) Zlaki SSSR. Nauka Publishers, Leningrad Section, Leningrad, 1–788 [English translation: 1983. Grasses of the Soviet Union, 2 vols. Amerind Publishing Co. New Delhi.] Tzvelev NN (1989) The system of grasses (Poaceae) and their evolution. Botanical Review (Lancaster) 55(3): 141–204. https://doi.org/10.1007/BF02858328 Valdés B, Scholz H (2006) The Euro+Med treatment of Gramineae – a generic synopsis and some new names. Willdenowia 36(2): 657–669. https://doi.org/10.3372/wi.36.36202 Watson L, Dallwitz MJ (1992) Grass Genera of the World. CAB International, Cambridge, 1038 pp. Zhu G, Liu L, Soreng RJ, Olonova MV (2006) Poa. In: Wu C-Y, Raven PH, Hong D-Y (Eds) Flora of China, Vol. 22. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, 266–309. Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)98 A p p en d ix 1 Ta bl e A 1. E re m op oa , L in db er ge lla , P oa a nd o ut gr ou p sa m pl es u se d in th e ph yl og en et ic a na ly se s. In gr ou p sa m pl es a re a rr an ge d by p la sti d cl ad e (p l), n uc le ar c la de (n r) a nd se ct io n. V ou ch er in fo rm at io n (h er ba riu m in di ca te d in p ar en th es es ) a nd c ou nt ry o f o rig in a re p ro vi de d; w he re th er e is no c ol le ct or o r c ol le ct or n um be r, th e he rb ar iu m s pe ci m en n um be r is gi ve n. G en Ba nk A cc es sio n nu m be rs a re p ro vi de d fo r IT S, E T S, tr nT -tr nL -tr nF , m at K an d rp oB -tr nC s eq ue nc es fo r ea ch s am pl e; th os e in B O LD a re n ew to th is stu dy . pl nr Se ct io n Ta xo n Vo uc he r C ou nt ry IT S ET S T LF m at K rp oB -t rn C A A Al pi na e Po a al pi na L . G ill esp ie 62 99 (C AN ) U SA , C ol or ad o G Q 32 44 83 G Q 32 42 87 D Q 35 39 85 .2 K M 52 38 88 K M 52 40 01 A A Al pi na e Po a ba de ns is H ae nk e e x W ill d. H aj ko va et a l. 20 04 -1 2 (U S) Bu lg ar ia G Q 32 44 90 G Q 32 42 95 G Q 32 44 02 K Y3 78 86 1 K Y3 78 82 7 A A Al pi na e Po a lig ul at a Bo iss . (J AC A 16 60 95 ) Sp ain G Q 32 45 22 G Q 32 43 46 G Q 32 44 32 .2 K Y3 78 87 6 K Y3 78 84 2 A A Al pi na e Po a th ess al a Bo iss . & O rp h. G ill esp ie et al . 1 04 00 (C AN ) Tu rk ey K M 52 38 02 K M 52 37 29 K M 52 40 88 K M 52 39 01 K M 52 40 14 A A Ar en ar ia e Po a ba ctr ia na su bs p. gl ab rifl or a (R os he v.) Tz ve lev G au ba (I RA N 2 12 37 ) Ira n K X1 18 73 4 K X1 18 71 6 K X1 18 75 1 M H 92 13 44 M H 92 13 69 A A Ar en ar ia e Po a bu lb os a L. Ca ta la n 13 -2 00 0 (U Z) Sp ain EU 79 23 88 G Q 32 42 97 .2 AH 01 55 57 .3 K Y3 78 86 3 K Y3 78 82 9 A A Ar en ar ia e Po a bu lb os a su bs p. v iv ip ar a (K oe ler ) Ar ca ng . So re ng & S or en g 5 81 4 (U S) U SA , N ev ad a ( in tro d. ) G Q 32 44 92 G Q 32 42 98 G Q 32 44 04 M H 92 13 45 M H 92 13 70 A A Ar en ar ia e Po a sin ai ca S te ud . s ub sp . s in ai ca So re ng & C ab i 9 24 9 (U S) Tu rk ey K X1 18 74 8 K X1 18 73 1 K X1 18 76 6 K Y3 78 88 6 K Y3 78 85 2 A A Ar en ar ia e Po a tim ole on tis H eld r. ex B oi ss. So re ng et a l. 75 09 -1 (U S) G re ec e K X1 18 75 0 K X1 18 73 2 K X1 18 76 8 M H 92 13 54 M H 92 13 79 E E Li nd be rg ell a Li nd be rg ell a sin ten isi i ( H . L in db .) Bo r H an d 61 02 (U S) C yp ru s M H 92 13 26 M H 92 13 10 M H 92 13 93 M H 92 13 42 M K 06 01 17 E E Ps eu do po a Er em op oa a tta lic a H . S ch ol z G ill esp ie et al . 1 06 12 (C AN ) Tu rk ey M H 92 13 13 M H 92 12 97 M H 92 13 80 M H 92 13 29 M H 92 13 55 E E Ps eu do po a Er em op oa m ul tir ad ia ta (T ra ut v.) R os he v. So re ng & C ab i 9 24 0 (U S) Tu rk ey M H 92 13 14 M H 92 12 98 M H 92 13 81 M H 92 13 30 M H 92 13 56 E E Ps eu do po a Er em op oa ox yg lu m is (B oi ss. ) R os he v. G ill esp ie & L ev in 1 03 13 (C AN ) Tu rk ey M H 92 13 16 M H 92 13 00 M H 92 13 83 M H 92 13 32 M H 92 13 58 E E Ps eu do po a Er em op oa ox yg lu m is G ill esp ie et al . 1 05 78 (C AN ) Tu rk ey M H 92 13 17 M H 92 13 01 M H 92 13 84 M H 92 13 33 M H 92 13 59 E E Ps eu do po a Er em op oa ox yg lu m is G ill esp ie et al . 1 05 84 (C AN ) Tu rk ey M H 92 13 18 M H 92 13 02 M H 92 13 85 M H 92 13 34 M H 92 13 60 E E Ps eu do po a Er em op oa ox yg lu m is So re ng & C ab i 8 85 5 (U S) Tu rk ey M H 92 13 15 M H 92 12 99 M H 92 13 82 M H 92 13 31 M H 92 13 57 E E Ps eu do po a Er em op oa p er sic a (T rin .) Ro sh ev . As sa di & V os ou gh i ( TA RI 2 49 39 ) Ira n M H 92 13 21 M H 92 13 05 M H 92 13 88 M H 92 13 37 M H 92 13 63 E E Ps eu do po a Er em op oa p er sic a M oz aff ar ia n (T AR I 5 36 71 ) Ira n M H 92 13 20 M H 92 13 04 M H 92 13 87 M H 92 13 36 M H 92 13 62 E E Ps eu do po a Er em op oa p er sic a So re ng & C ab i 9 21 5 (U S) Tu rk ey K Y3 78 81 2 K Y3 78 82 3 K Y3 78 81 6 K Y3 78 87 9 K Y3 78 84 5 E E Ps eu do po a Er em op oa p er sic a Ya zd an fa rd (I RA N 5 19 68 ) Ira n M H 92 13 19 M H 92 13 03 M H 92 13 86 M H 92 13 35 M H 92 13 61 E E Ps eu do po a Er em op oa p er sic a M oz aff ar ia n & N ow ro zi (T AR I 35 08 2) Ira n M H 92 13 22 M H 92 13 06 M H 92 13 89 M H 92 13 38 M H 92 13 64 E E Ps eu do po a Er em op oa so ng ar ica (S ch re nk ex F isc h. & C .A . M ey .) Ro sh ev . As sa di & M oz aff ar ia n (T AR I 36 86 7) Ira n M H 92 13 24 M H 92 13 08 M H 92 13 91 M H 92 13 40 M H 92 13 66 E E Ps eu do po a Er em op oa so ng ar ica Ira ns ha hr (I RA N 2 03 57 ) Ira n M H 92 13 23 M H 92 13 07 M H 92 13 90 M H 92 13 39 M H 92 13 65 E E Ps eu do po a Er em op oa so ng ar ica So re ng & G ün ey 4 16 5 (U S) Tu rk ey EU 79 24 00 G Q 32 43 11 D Q 35 39 88 .2 K Y3 78 86 8 K Y3 78 83 4 Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 99 pl nr Se ct io n Ta xo n Vo uc he r C ou nt ry IT S ET S T LF m at K rp oB -t rn C E E Ps eu do po a Er em op oa so ng ar ica So re ng & C ab i 9 32 0 (U S) Tu rk ey M H 92 13 25 M H 92 13 09 M H 92 13 92 M H 92 13 41 M H 92 13 67 E E Sp elu nc ar ae Po a sp elu nc ar um J. R. E dm . So re ng et a l. 82 02 (U S) Tu rk ey M H 92 13 28 M H 92 13 12 M H 92 13 95 M H 92 13 53 M H 92 13 78 H P+ H un cla ssi fie d Po a ps eu do bu lb os a Bo r So re ng et a l. 82 46 (U S) Tu rk ey K X1 18 74 7 K X1 18 72 9 K X1 18 76 5 M H 92 13 52 M H 92 13 77 H P+ H Ac ut ifo lia e Po a pl an ifo lia K un tz e Pe ter so n et al . 1 92 33 (U S) Ar ge nt in a K M 52 38 00 K M 52 37 27 K M 52 40 87 K M 52 38 96 K M 52 40 09 H P+ H Br iz oi de s Po a po ifo rm is (L ab ill .) D ru ce G ill esp ie et al . 7 38 1 (C AN ) Au str ali a G Q 32 45 34 G Q 32 43 61 G Q 32 44 45 K M 52 38 97 K M 52 40 10 H P+ H H om al op oa s.l . Po a re fle xa V as ey & S cr ib n. So re ng 7 42 2 (U S) U SA C ol or ad o G Q 32 45 43 K X1 18 73 0 G Q 32 44 50 K Y3 78 88 2 K Y3 78 84 8 H P+ H H om al op oa s.s . Po a as ia e- m in or is H . S ch ol z & B yfi eld So re ng et a l. 81 00 (U S) Tu rk ey M H 92 13 27 M H 92 13 11 M H 92 13 94 M H 92 13 43 M H 92 13 68 H P+ H H om al op oa s.s . Po a ch ai xi i V ill . So re ng 4 67 7 (U S) Ru ssi a EU 79 24 04 G Q 32 42 99 EU 85 45 90 K M 52 38 90 K M 52 40 03 H P+ H H om al op oa s.s . Po a ch ai xi i So re ng 7 52 4 (U S) G er m an y G Q 32 44 93 G Q 32 43 00 G Q 32 44 05 M H 92 13 46 M H 92 13 71 H P+ H H om al op oa s.s . Po a m as en da ra na F re yn & S in t. As sa di (T AR I 7 32 54 ) Ira n K X1 18 74 3 K X1 18 72 5 K X1 18 76 1 M H 92 13 51 M H 92 13 76 H P+ H H om al op oa s.s . Po a oc cid en ta lis V as ey Pe ter so n & V al de s R en a 18 91 8 (U S) M ex ico K U 75 65 40 K U 76 34 36 K U 76 35 14 K Y3 78 87 7 K Y3 78 84 3 H P+ H H om al op oa s.s . Po a re m ot a Fo rse lle s So re ng et a l. 75 40 (U S) K yr gy z R ep ub lic G Q 32 45 45 G Q 32 43 72 G Q 32 44 52 K Y3 78 88 3 K Y3 78 84 9 H P+ H M ad ro po a Po a fen dl er ia na (S te ud .) Va se y G ill esp ie 62 92 (C AN ) U SA , C ol or ad o EU 79 24 03 G Q 32 43 19 D Q 35 40 27 K Y3 78 86 9 K Y3 78 83 5 H P+ H un cla ssi fie d (su pe rse ct . H om al op oa ) Po a ca lyc in a (J . P re sl) K un th Pe ter so n et al . 1 79 23 (U S) Pe ru EU 79 24 25 K U 76 33 95 EU 79 24 67 K Y3 78 86 4 K Y3 78 83 0 H P+ H un cla ssi fie d (su pe rse ct . H om al op oa ) Po a m ar sh al lii T ov ar Pe ter so n et al . 2 15 46 (U S) Pe ru K M 52 37 99 K M 52 37 26 K M 52 40 86 K M 52 38 95 K M 52 40 08 J J Ju ba ta e Po a ju ba ta A . K er n. So re ng et a l. 90 29 -2 (U S) Tu rk ey K Y3 78 81 0 K Y3 78 82 0 K Y3 78 81 4 K Y3 78 87 3 K Y3 78 83 9 J J Ju ba ta e Po a ju ba ta So re ng et a l. 92 66 (U S) Tu rk ey K Y3 78 81 1 K Y3 78 82 1 K Y3 78 81 5 K Y3 78 87 4 K Y3 78 84 0 M M M icr an th era e Po a in fir m a K un th Ca ta la n 3- 20 00 (U Z) Sp ain G Q 32 45 16 G Q 32 43 34 G Q 32 44 27 K Y3 78 87 1 K Y3 78 83 7 M M M icr an th era e Po a su pi na S ch ra d. So re ng & C ay ou ett e 5 95 0- 2 (U S) U SA , c ul t. (fr om Eu ro pe ) EU 79 23 87 G Q 32 43 83 D Q 35 39 84 K Y3 78 88 8 K Y3 78 85 4 N N N an op oa Po a tri ch op hy lla H eld r. & S ar t. ex B oi ss. So re ng et a l. 75 08 (U S) G re ec e G Q 32 45 54 G Q 32 43 86 G Q 32 44 61 K Y3 78 88 9 K Y3 78 85 5 N N un cla ssi fie d Po a do los a Bo iss . & H eld r. So re ng et a l. 74 95 -1 (U S) G re ec e G Q 32 45 02 G Q 32 43 12 G Q 32 44 14 K M 52 38 91 K M 52 40 04 .2 N N un cla ssi fie d Po a ico ni a va r. pe la sgi s ( H . S ch ol z) S or en g G ill esp ie et al . 1 04 92 (C AN ) Tu rk ey K X1 18 74 4 K X1 18 72 6 K X1 18 76 2 M H 89 88 27 M H 89 88 44 N N un cla ssi fie d Po a ur sin a Ve len . St on eb er g S H 17 (U S) Bu lg ar ia G Q 32 45 27 G Q 32 43 52 G Q 32 44 37 K Y3 78 89 2 K Y3 78 85 8 N S Se cu nd ae Po a cu rti fo lia S cr ib n. So re ng & S or en g 6 34 7c -1 (U S) U SA , W as hi ng to n EU 79 23 94 K Y3 78 81 9 D Q 35 39 94 .2 K Y3 78 86 7 K Y3 78 83 3 N S Se cu nd ae Po a sec un da J. P re sl. su bs p. se cu nd a So re ng & S or en g 5 81 2 (U S) U SA , N ev ad a EU 79 23 93 K U 76 34 50 D Q 35 39 91 K Y3 78 88 4 K Y3 78 85 0 Lynn J. Gillespie et al. / PhytoKeys 111: 69–101 (2018)100 pl nr Se ct io n Ta xo n Vo uc he r C ou nt ry IT S ET S T LF m at K rp oB -t rn C N S Se cu nd ae Po a ste na nt ha T rin . So re ng & S or en g 6 06 8- 1 (U S) U SA , A las ka K U 75 65 54 K U 76 34 55 D Q 35 40 57 .2 K Y3 78 88 7 K Y3 78 85 3 P P+ H M ac ro po a Po a de ns a T ro its ky So re ng & C ab i 9 30 6 (U S) Tu rk ey K X1 18 73 8 K X1 18 72 0 K X1 18 75 5 M H 92 13 47 M H 92 13 72 P P+ H M ac ro po a Po a bu ch ar ica R os he v. So re ng et a l. 76 62 (U S) K yr gy z R ep ub lic K X1 18 73 5 K X1 18 71 7 K X1 18 75 2 K Y3 78 86 2 K Y3 78 82 8 P P+ H M ac ro po a Po a di ve rsi fo lia (B oi ss. & B ala ns a) H ac k. ex B oi ss. G ill esp ie et al . 1 05 29 (C AN ) Tu rk ey K X1 18 73 9 K X1 18 72 1 K X1 18 75 6 M H 92 13 48 M H 92 13 73 P P+ H M ac ro po a Po a i be ric a Fi sc h. & C .A . M ey . So re ng et a l. 79 77 (U S) Ru ssi a, C ab ar di no - Ba lk ar ia K X1 18 74 1 K X1 18 72 3 K X1 18 75 8 M H 92 13 49 M H 92 13 74 P P+ H M ac ro po a Po a lon gi fo lia T rin . s ub sp . l on gi fo lia So re ng et a l. 79 45 (U S) Ru ssi a, C ab ar di no - Ba lk ar ia K X1 18 74 2 K X1 18 72 4 K X1 18 76 0 M H 92 13 50 M H 92 13 75 P P+ H M ac ro po a Po a sib iri ca R os he v. su bs p. si bi ric a O lon ov a 20 03 -4 5 (C AN ) Ru ssi a, K ha ka sia G Q 32 45 47 K Y3 78 82 4 G Q 32 44 55 K Y3 78 88 5 K Y3 78 85 1 P P+ H Po a Po a irk ut ica R os he v. Ka sa no vs ki y 2 00 2- 7 (C AN ) Ru ssi a, Irk ut sk EU 79 24 02 G Q 32 43 35 D Q 35 40 07 .2 K Y3 78 87 2 K Y3 78 83 8 P P+ H Po a Po a pr at en sis L . s ub sp . p ra ten sis G ill esp ie et al . 1 05 92 (C AN ) Tu rk ey K X1 18 74 6 K X1 18 72 6 K X1 18 76 4 K Y3 78 88 0 K Y3 78 84 6 P X M al ac an th ae Po a ar cti ca R . B r. su bs p. a rc tic a G ill esp ie & A ik en 5 70 1 (C AN ) C an ad a, N un av ut G Q 32 44 87 G Q 32 42 91 D Q 35 40 09 K Y3 78 86 0 K Y3 78 82 6 R R Pa ro di oc hl oa Po a co ok ii (H oo k. f.) H oo k. f. H en ni on G en 1 (P ) Su ba nt ar ct ic Isl an ds , C ro ze t I . EU 79 23 83 G Q 32 43 06 EU 79 24 54 K Y3 78 86 6 K Y3 78 83 2 R R Pa ro di oc hl oa Po a fla be lla ta (L am .) Ra sp ail W rig ht 9 N SG (n ot v ou ch er ed ) So ut h G eo rg ia Isl an ds EU 79 23 81 G Q 32 43 21 EU 79 24 53 K M 52 38 92 K M 52 40 05 S S Ab br ev ia ta e Po a fle xu os a Sm . s ub sp . fl ex uo sa Br oc hm an n 20 00 -3 -1 (C AN ) N or w ay G Q 32 45 20 G Q 32 43 42 G Q 32 44 18 K Y3 78 87 5 K Y3 78 84 1 S S Ab br ev ia ta e Po a ps eu do ab br ev ia ta R os he v. So re ng & S or en g 6 03 2- 1 (U S) U SA , A las ka EU 79 23 98 G Q 32 43 70 D Q 35 39 97 K Y3 78 88 1 K Y3 78 84 7 S S St en op oa Po a bi eb er ste in ii H .N . P oj ar k. (c f) G ill esp ie & C ab i 1 03 27 (C AN ) Tu rk ey K Y9 44 70 6 K Y9 44 66 8 K Y9 87 08 9 K Y9 44 62 2 K Y9 87 04 4 S S St en op oa Po a gla uc a Va hl G ill esp ie 58 04 (C AN ) C an ad a, N un av ut AY 23 78 39 G Q 32 43 24 G Q 32 44 21 K Y3 78 87 0 K Y3 78 83 6 S S St en op oa Po a pa lu str is L. G ill esp ie 64 61 (C AN ) C an ad a, O nt ar io EU 79 23 96 K Y3 78 82 2 D Q 35 40 00 K Y3 78 87 8 K Y3 78 84 4 S S Ti ch op oa Po a co m pr ess a L. G ill esp ie 64 57 (C AN ) C an ad a, Q ue be c EU 79 23 95 K Y3 78 81 8 D Q 35 40 03 K Y3 78 86 5 K Y3 78 83 1 V V Pa nd em os Po a tri vi al is L. su bs p. tr iv ia lis So re ng 4 68 1- 1 (U S) U SA , M ar yl an d (in tro d. ) G Q 32 45 55 G Q 32 43 87 G Q 32 44 62 K Y3 78 89 1 K Y3 78 85 7 V V Pa nd em os Po a tri vi al is su bs p. sy lv ico la (G us s.) H . Li nd b. G ill esp ie et al . 1 03 68 (C AN ) Tu rk ey K Y3 78 81 3 K Y3 78 82 5 K Y3 78 81 7 K Y3 78 89 0 K Y3 78 85 6 Y Y Sy lv est re s Po a au tu m na lis E lli ot t So re ng 4 68 0 (U S) U SA , M ar yl an d EU 79 23 79 G Q 32 42 94 D Q 35 39 79 K M 52 38 89 K M 52 40 02 Y Y Sy lv est re s Po a sa ltu en sis F er na ld & W ieg an d G ill esp ie 70 43 (C AN ) C an ad a, O nt ar io EU 79 23 78 G Q 32 43 74 EU 79 24 51 K M 52 38 99 K M 52 40 12 Y Y Sy lv est re s Po a w olfi i S cr ib n. So re ng & S or en g 5 80 0 (U S) U SA , M iss ou ri EU 79 23 77 G Q 32 43 89 .2 AH 01 55 56 .2 K Y3 78 89 3 K Y3 78 85 9 ou tg ro up Ar cta gr os tis la tif oli a (R . B r.) G ris eb . G ill esp ie et al . 6 58 6 (C AN ) C an ad a, N un av ut EU 79 23 51 G Q 32 42 45 D Q 35 39 69 K M 52 39 24 K M 52 39 54 ou tg ro up M ili um eff us um L . So re ng 7 77 1 (U S) Sw ed en K M 52 37 85 K M 52 37 11 K M 52 40 72 K M 52 38 70 K M 52 39 83 ou tg ro up N ico ra ep oa a nd in a (T rin .) So re ng & L .J. G ill es pi e So re ng & S or en g 7 18 2 (U S) C hi le EU 79 23 54 G Q 32 42 75 D Q 35 39 71 K M 52 38 74 K M 52 39 87 ou tg ro up Ph leu m m on ta nu m K . K oc h G ill esp ie et al . 1 06 14 -2 (C AN ) Tu rk ey K M 52 37 93 K M 52 37 20 K M 52 40 81 K M 52 38 83 K M 52 39 96 ou tg ro up Ph leu m p ra te ns e L . So re ng 7 94 3 (U S) Ru ssi a, St av ro po l K M 52 37 96 K M 52 37 23 K M 52 40 84 K M 52 38 86 K M 52 39 99 Phylogeny and taxonomic synopsis of Poa subgenus Pseudopoa... 101 Supplementary material 1 Table S1. Characteristics of the DNA alignments and data partitions and param- eters and summary statistics of the PAUP and Bayesian analyses Authors: Lynn J. Gillespie, Robert John Soreng, Evren Cabi, Neda Amiri Data type: (measurement/occurence/multimedia/etc.) Explanation note: Five DNA sequence alignments for Poa were analysed: ETS, ITS, matK, rpoB-trnC and trnT-trnL-trnF (TLF). For each data partition (five individ- ual markers, plastid, nuclear and combined), the number of samples and the total number of aligned characters are given. For the PAUP analyses, the following statis- tics are given: the number of parsimony informative (PI) characters, percentage of characters that are parsimony informative, maximum parsimony (MP) tree length (L), number of most parsimonious trees, consistency index excluding uninforma- tive characters (CI) and retention index (RI). Parameters used and statistics of the Bayesian analyses, as determined by the Akaike Information Criterion (AIC) im- plemented in jModeltest, are given as follows: likelihood score (-InL), number of substitution schemes, substitution rates (rAC, rAG, rAT, rCG, rCT, rGT), charac- ter state frequencies (fA, fC, fG, fT), substitution model, proportion of invariable sites and gamma shape parameter. Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited. Link: https://doi.org/10.3897/phytokeys.111.28081.suppl1