DE\'ELOPMENT OF DC'vlOXTlA COSTORT;" 351 productjv(' organ~ of reel ,algae. IV. On lJtmumlw l, 20,351-361 (I 984} Wt'~l. J. A.. Polanshek. A. R. & Sht?.. lin. n. F.. j 978. Field and culLUre ~LUdit'~ all GigtlrlllWl1gllfdhll (Rhndnphpa). I Plmo{. 14:416-26. Womersle)', H. B. S. &: Shepley. E. A. 1982. Sourhern Au~traJian specit'S or HYf!(Igl'l,I.lUm (Oeles;,t'ria('eae, Rhnd"phVla). :\1"/)'. j. B'I/. 30,321-46. Zinnva, A. D. 1955. Op),,,'rJ)'III~{jkm,"I,w/r,'ndortl.,I.?j '''''I'nI.Wit tIItJr~j SSSR, Akad. Nauk SSSR. Mo;,b-:I. pp. 1;7-9. SEXUAL PROCESSES IN THE LIFE CYCLE OF C;YRODISfUJ,f USCATE.\'['A! (DINOPHYCEAE): A MORPHOGENETIC OVERVIEWI D. H'a,YlII) Coals Chesapeake Bay ltmiwte. Th~' Johm Hnpkill~ l'niversity. Shady Side. Maryland 20764 :~J(J1"Y A. Tvler College or Marillt' Studje~. tlni\'l'nity of j)(?laware. Lewe~, j)da\\'are 19958 and Donald i\if. A,I/(lerson Bi()log~' Deparuut'nT. Woods Hole On"ailO$I"aphIC Inslitution. Wood~ Hole, Massachusetts 02:l-l3 ABSTRACT Srxual Proft'SSI'S ill Ihl' t~fl' I),rte oj the rIillojlal{l'lIalr Gyrodinium unralenum Hulburt U't're imll'Jtigaled ill isola/cd field /JOjJulalirm.l. lUOIpJw!ogirll! and morpho? /{t'ul'lir asprrt.\ of gail/pIp In?ot!llrtion. IJlnno:ygo{1' jorma? tion, t'nr)'I{lI/ent. pxc.n/JllI'nI, (j ud planomeiocyfl' dh.'lsiun an' dr.\rri/Jt'd from oIHf/w/ti(lHS of Iii 'i 1/1( .lIJt'cimn/s. Pro? largo! sillier impTl'g1J(lf,rd malrria! and .~rmmil1g rlrrlron micro!ico!JI' IJre})(/ rations. TlU! .~f.'l:U(l! cyrtf' Wfl.\ in/tialn! b." gamde pJrmaliOll u'hifh im'oh'I'd hm (/,ll'xlIal dir'Bions rJr tlrl' 7'f'gf'lativf' organism. Calnl'tl's wpr(' flllt)' difjrl'l'ntialn! jollou'iug the S/'umd dii'isi,m ami imml'diflfr(\' m!Hlb!1' of forming pairs. Eilht'T iSt/gamoll., or aniwgamou.,' pain were JOT/lI/'(1 Ii)' Ihe mid-tlrn/rat union o/wnnl'le.l. Comfit's im'(J riably joined wilh flagf'llar bO,H'.1 in do.\/' jux/al}!)"i ? lioll. Com/dell' fusion OIK(wU'If'~ reqllirl'll fa. I h. im'oh'ed plas/1/ogamJ follo'wed b)' karyIJgnm,\' {{nd resulted ill (I quadriflagrtloled plnuozygotl'. Pia nozJgol/' I f'lll)'slfd ill 24-48 h /0 yil'ld (J h)'1moz.ygolr ml}(1b{e oj 01 'rr..I'inIf'ring ill ntutl rine s"dimt'lils. H.."pnoz)'WJ/rJ rollull?d /J'om SNJi? rtlrnt in la/r winln /"tladil)' e.'l:(~"!ill'd UPOIl I'xpusure 10 It'm? /)1' ra lures abot't' JJO C. A sing'l' qUti rl riflagl'ltalert pia11? omeilJ(J'lI' emerged from (h(' 1)'.11 Gnd limit'/' rul/ure conditions dh,jr/nl one to l;tIo days lain. Thrfour{fagrlJa iNre not t'l't'rI(1' liisiribult'd at t.llI' fint di7?i.\/on ami both bi- and /I'i-{fagfllatNI daughli'" crt(, U'l!reformnl. I Arrrplnl: J5 Frl>nwr.~ /984. Key illdf'x u'/mh' f1l()'.1/1rI1'1l/; rxcy~tml'Ht; j;(l/TII'/e: Gr? rodinium uncatenum; h.'fpno~yglJll': IJlano/flf'iof'yI/': I)/a noz)'gfJ if' The existence of ;lUdif)' and I'1H'i'Jtmeni. To determinE' the de\'e1? opmcntat" events associated with encystment. GJm? dinium u-ncaimUJn from a bloom was transferred [0 a large container and routinely monitored for sev? eral days. Subsequent to tapture, a large proportion of the G. unrtltf'llran cells began the sexual life cycle phase, thus permitting close examination of mor? phological and morphogenetic aspens of sexuality. At the time of isolation (To), G. unratPl1um numbered ca. 750- mL -I and resembled the species description of Hulburt (1957). Protargol stained specimens av? eraged 33 x 29 ~m with individuals ranKing through a two-fold difference in size (see Table 1). Trophic organisms possessed a spherical to slightly ovoid nu? deus with condensed chromosomes and generally two (range 1-5) nucleoli (Fig. 1). Cells had the typ? ical dinoflagellate complement of two flagella with the striated strand and flagellar bases (= basal body) also staining deeply (Figs. 1. 2, 8, 9). Early in the experiment, G. uncutenum increased significantly in size and had more than doubled in volume by T Ir, (see Table I). Other than their larger size, T lr, cells were indistinguishable from those of Til' During this period, G. ullwlnwm reproduced asexually and numbered ca. 930'mL -I at TJ~' Di? viding cells were infrequently encountered bet'ween Til and T 15 and never comprised more than 37f of an~' sample. In the following ten hours (T,>-T2~)' the abundance of dividing c.'ells was considerably higher and Protargol staining revealed the division sequence summarized in Figure 12. The first indi? cadon of division was the replication of Aagdlar bases resulting in four basal bodies arranged in two pairs (Fig. 12b). Elaboration of new flagella ensued immediately after basal body replicat ion and was completed by mid-division. As cytokinesis pro-? ceeded, flagellar hases moved apart and each daugh. ter cell received one old and one new basal bod ....? flagellum complex (Figs. 3, 4, 12c-e). Nuclear and nucleolar elongation accompanied flagellar separa? lion, and mitosis occurred as described in other free? living dinoflagellates (Dodge 1963). By late division, cells were loosely auached al the epicone and f1a? gellar bases of the two daughter c.ells were widely spaced (Figs. 5, 12f). . 353 T~~l\LF I. C~/f m.l' mu/ ,ltu/"Ilr ch<1r11(/~ri.,llnuf d,w/"lmIFlllnl,ta/{t" luwrillird with "Ilf)?., cells) and rather variable in size but otherwise indistinguishable from pre-division trophic individ? uals (see Table 1). Since vegetative organisms and gametes had very similar morphologies, nnly those cells which had begun fusion could be unt~quivocally identified as gametes. Therefore, meaSLlTemelll.s for gametes presented in Table 1 were taken from cells in very early stages of fusion, Most coupled gametes were of relatively equal size (Fig. 6), but a few were anisogamous. Anisogamous pairs were particularly abundant in old laboratory cultures and occasionally observed in field samples (Fig. 7). Paired gametes were typicaIly oriented as mirror images, but their longitudinal axes were occasionally skewed to per? pendicular as reported for Ptychorlisrul br!'1.'is (Walker 1982). Asymmetric confiRurations were common in cultures, and gamete pairs were observed where the epicone of one cell was acUacent to the partner's hypocone. Misaligned gametes of Wolos:.)'lukia a/li? eulata are reported to become reorientt,d prior to fusion (von Stosch 1973). The same appears true fOT G. unca/nlum since gametes of later fusion stages were always aligned as mirror images, Following the first division pulse, fusing gametes became progressively more numerous and peaked at ca. 22/k of total motile cells mid.way through the second division pulse (Fig. 13). The nearly simul? taneous rise in second division cells and coupled gametes suggests that gametes are fully differen? tiated and capable of fusing immediatel~' after the second of two sequential divisions. Fusing g'J.ffietes were abundant for ca. 7 h (1'22-T29) but persisted in verr low numbers until T~lj' Cytological staining per? mitted close examination of gamete fusion. and the morphological events leading to planozygote for? mation are illustrated in Figure 14. The inilial union of p;ametes occurred midvemrally at the location of 354 ------ 5 D. WAYNE COATS ET AL. Non-: scales - 10 ~m [or figures and:' JJm for figure insels. FI(,'o. 1-7. CJrot/lllllltfl l//lra/PIlIIIn_ FIG, I. Four l'romrgol :o.,ilvrr stained \ eg~lali\'(' t.elhl. Each orgalll1<.m has a :tingle Ir3n.s\Crse Aagdlum (tf) ""uh stri:ued sirand (arm\\s) and a decpl) slaining nucleus (n). IIl~t: Protargol statnt."d trophic nucleussho\\ ing the I) picaIcomplement of two nucleoli. FI(.. 2. Ilrolargol stained trophic cell shoh'ing the single poslcnor ftagellum (pi) alld the two f1ag'ellar base:> (arrows). FIl?. 3, An earl)' stage in asexual di\?jsion \'Iith oolh scu of paired bas-'ll bodies (bb) in focu'!. Also e\-idem IS the paremal poslerior flagellum (pi) and a nascent lr.U1s\'er!te Aagel1um (arrow): Protargo\ stain, Fu;. 4. A mid-asexual dl\isioll slaKc sno\\'lng an increased separalion bc:lwccn the lWO sets of bJ.531 bOOies (arro\\'s): Prolargul qain. fiG. 5. Kanokinc'il.'i is nearl)' l"ompleted in lhill late division specimen and the basal bodies (arrows) of the IWO daughter cells arc \\'idel) spaced. FIC:,. 6, A n'ry e:lrly stage ur Hamclc ru!>ion. Gametes are or equal size and aU\'crse flaRdlum (If) and pmll'rior 1t:lgdtllm (pf) or t:ach t.ell'lre also discernible: Prot:trgo] Slain. FIG, i. t\ pilir of anisoKamous G. 'I1Im/"III11I/ gametes isolalcd from Parish Creek. Phase contn'ISl of li\?jng malt?rial. SEXUAL l'ROCESSES LN CrnODIXIL'.\f 355 FIG'?. 8-11. G)rodHUUHI mlwtt'num. fit... Scanning electron micrograph of a trophic cell showing the lvpica! bod.. )hape and the lrans\'erse A3~ellum (If) displaced frum the girdle (g) during fixation. fIG. 9. PU~lerior vie.... or 3: \t"geI311\t:' cell ",ith the posterior Itagellum (pI) emerging from decp in the ..ulcus; trans\crse flagellum (I I). fiG. 10. A recentl~? excyslcd IllanomelOC) It' "uh fWO posterior flagl"lla. The tWO trans\er~ flagella were losl durinR s~imen prepar.lli(m. FIt.>. II. High magnific..nion of the t"O tr.mSH'NC flagella (arro.... .) ofa planomcioqlr. Lhe Aagellar bases (Figs. 6 and 1?la). From the onseL, basal bodie of fusing gameLes were in close prox? imiL " in comra Lto lhe "figure-S" sLage 0 cell di? vision (Fig. 12f). The nuclei of early rusers were elongaLed to"'ard and linked to the basal bodies by an argemophyllic maLrix, At lhis sLage, the connec? tion between the twO gamete was similar to the fertilization tube of Pl'ridin;um tillclulIl f. OVop/llllum (SpecLor eL aI. 19SI); however, ka ryog-d my occu rred much later as reported for several other dinofla? gellaLe species (von SLosch 1973, Pl'eisler 1976, 1977, Walker and Steidinger 1979). As plasmogam)' pro? ceeded.lhe (wo longitudinal flagella became aligned and in living ?pecimens were seen to function in unison. SimuILaneousl)', the tranwerse Aagellum of one gamete migrated OUL 01' the girdle and eV'en? tually lay adjaCenllO the (r3llSVerse fiagellum orthe oLher gameLe (Figs, 14 b-d and 15-17). pon com? pletion of c),toplasmic fusion, rorming L)'goLes pos? sessed twO trailing flagella, twO transverse Aagdla beating together within the single girdle and two nuclei (Figs. 14d and IS). PlanOZ)gOle rormation was finalized by the I'll ion 01' the Iwo nuclei 10 produce a nucleus usuall), containing 4 or 5 (range 3-7) nu? cleoli (Figs. l4e-f, IS inseL. 19 and 20). PlanozygOle occurrence lagged behind and c1osel)' 356 D. WAYNF. COATS ET AL. ~':!J .. ~.': . b ~'($.; .:;C,'ii' \-..! .: r ft(;. 12a-f. Semi-diagramm'llit: camera lucida drawingsuf asexual division in Gyrodiuillm ,nwI/mum as revl'alecl by Prnt of a mid-:Ol=tge In g:.amt'u? fu!Oiun ..ho", Iht" proximil) of the ' ....'0 rosal bod~ pairs (" hitc arrov.s) and the lack. of a connection between the (..,'O nuclei. The posterior flagella (pI) are ~n in dose associallon. The Iran..-.. crS{' flagellum ofone cell (arro"') j!j displac-ed lrom i,<; girdle .....hHe Iht" other remain" firmh positioned: Protargol $Iain. Flc. 18. In this ad\'anccd stage of plasmogamy the twO gametic nuclei Temalll disunct and appho'A'ing four nucleoli IOC:lled pe:ripheralh "ilhllllhe l1uclcu~. Fit .. 26. A planomcioc)'lf' nearrng the firsl meiolic di,"ision. Tht> enlarged nucleus conlaim a single nucleolus and large' cil:.tint:t chromo:.omo: I)rolargol ~L:.Iin. fl(;. 2i. Lale in the firs! meiUlu.' division. alice the 1\0,'0 posterior nagclla of Ihe lo\\er daughler cell and the elongalcd chloroplasts (arro....'!o): pha.se COll1ra"L Ii\(. !lpecimen. SEXUAL PROCESSES.l~GrROfJI.V[(';\J 359 Surrl~jll\ I. w " L \" 9.!i'? 8.2-11.:\ 0.88 0.16 Cyst~ approaching excvstmem cr??) ReH'11 tl \. ex t:\'sled mt"ioc'yle ('1"-0) PrI'.Qj \'isi un meicX'yle (Tsu) X RanK" S Sf: X RanK(' S SF. X Range S SF. 46,7 38.1-59.7 4.66 0.85 35.0 29.9-42.2 :1.31 0.60 34.6 30.9-40.2 2.44 0.45 38.2 29.9-:10.5 4.55 0.83 28.2 24.7-35.0 2.60 0.47 :H.O 23.7-36.0 2,98 0.54 30 30 IVl 10.;1-17.5 1.46 0.27 17.0 13.4-20.6 2.16 0.39 11.4 ~1.3-14.2 1,09 0.20 14.5 12.4-17,5 1.24 0.23 30 30 3.B 3-6 o,n 0.14 :~.Il 2-6 0.9:. 0.17 1.4 I-:i 0.70 0.13 30 30 ? All obsen-alions arc of Jl.mlilrgol silver slaillt~d spetimt'ns. " Measuremems represent The diamett'r of tht' spht'rical cyst nucleus. F!(;. 28. Abundanct' of" major dewlopnwmal ~talol('s an:um? panying excysUnenl in G."r~di1mHllll>lmlpntl/li. PlanomeieX'ytes with "Knaud"-stage nuclei (o) weredetcrmiTlt'd from prulargol ~lained samples (n = ~O). The percentages of G,v'odinil<;n a~ hypnD~rgnle~ (e), dividing cetl~ (a) and IOtal plallomt"iuc~?t('s Wt."re de[el'mined from tixed unstained samples (n = 100). Planomeioq'tes withuul '"Knauel"-stag'-' Ilu(:lei (X) wen' ('(,mpult'd by sublraninn. ~;:~--'.')~-' d ~".~t::'.~" '.~',' "~i :. 11~-;~._-~.~.""I\.:?~~_'~~, J.: :~ r ~,~,':'-7.~';.1<'.: Ij b ~:~~.-, ? to?',. .J".... ? cystmem progressed and flagella wert" elaborated. Just prior to excystment, germinating cells still con? tained red pigment globules and numerous Clear storage granules (Fig. 23). With development of fla? ge lla , zygotes became active within the cyst and eventually exited through ruptures in the middle and. when present. outer cyst walk Excystmelll began at ca. T."" where Til = time of transfer to 20? C, and proceeded steadily until ea. 957r. of the cells Wf'I'e free swimming at T,(I' After excysting, G. lfllCllil'1lU11J had fc?w storage granules and little cytoplasmic coloration. but red pihrment globules generally persisted il1 a subequatorial po? sition (Fig. 24). The nuclei of these organisms were spherical to ovoid, slightly larger than those of cysts andusually contained four (range 2-6) nucleoli (Ta? ble 2, Fig. 25). Recently excysled G, lIl1m/fllum are presumably meiocytes, since planozygotes did not divide prior to encystment and only one cell emerged from the cysr. [n addition, the persistence of four nucleoli from planozygote formation through cyst germination argues against the existt'Ilce of nudear reorganil..ation during encystment. Like planozy? goLes, the meiocytes of G, IIllfalnlllm had two pos? terior and two lransvnse flagella (Figs. 10, II). and FIG. 29a-g, Semi-diagrammatic ('amera lucid;i iIIuslrations of [he sequenti'~led plal1? omeiocyle: (b) "Knauet"?stage: (c-g) fir~t meiotic division. /\ ~ ., .( ~ \ ~., "~, 10 u '0 .0:: " "0 .. 0. 30 '"~ lo ? 10 U ~ wall, which may represent the cell membrane(s), was flexible and often crenulated after staining and de? hvdration. ,Exc:,:simrnl awl plmw1fl/>iol}'fi' dil'i,ion. Cysts collect? ed from sediment in late wimer readily excysted upon exposure to temperaLUres above 15" C. Aspects of cySt and meiocyte development were examined by stimulating freshly collected cysts to germinate, These cysts were morphologically consistem with those formed in the isulated bloom population. Pig? ment accumulations, storage granules, nucleoli number. and nuclear and somatic size were com? parable for the two cyst populations (compare Ta? bles 1 and 2). Many of the overwintered cysts lacked an outer wall which was presumably lost during sam? ple preparation. The earliest indication of excystment was visible 30-35 h after cysts were transferred to 20" C. Mor? phological changes included a widening of the gap between the middle and inner cyst walls and slight indentations at the developing sulcus and girdle. These features became more pronounc('d as ex- 360 D. WAYNE COATS ET AL. following the recommendation of von SlOsch (1973) would be appropriately termed planom(?iocyr.es. ]n the 24-48 h following excystmem. planomeiocytes lost their red pigment globules, developed lal'ge chloroplasts characteristic of G. 1I11((/lrIW/II, and took on an even reddish-brown coloration. During this time, the nucleus dramaticallv increased in silt' and eventually occupied much ot the anterior ponion of the cell (Fig. 26, Table 2). Enlarged nuclei pos? sessed only OIle nucleolus and large. wt'll defined chromosornf's which wert.' often paired. This con? dition represents the "Kn of Maq?land, College Park for lISt~ of thdr fadlity: Mrs. C. Q. Eisner f(lr re.:hnka[ help: Ms. L. A. Reid fot graphic ill ustrariOll5: and tht' Caplain and ('re\\' of the R/V Warfield for ship operations and on?dcrk assistance. Anderson, D. M. 1980. ?1?('("(s of temperature wndil.loning (In de\'c!opme'lll and germinatioll of G/)//.~?tltllll,\ Imllllrt'lui,1 (Di? [lophy<:eae) hypno1.ygotes. j. Plwol. 16: 166-72. Andersun, D. M. 8.: Morel. f. M. M, 1979. The M'f'ding of t\\'u red tide blooms by tht? germinali.m of benthic GOII.Wlt/lux IUlllllrt'lI:li, hypnocpl5. E.,IIU/rine COfl\(al .Hrlr. Sn. 8:279-93, Andersun, D. M. 8.: Wall. D. 1978. Potential importance of ben? thic cysts of GUIIYllu/ax 1/l1Iwrnais and G. ".wut'IlIIJ in initialing toxic dinoflagellat(' blooms. j. Ph.\'tol. 14:224-34. Bibby, B, T. 8.: Dodge.]. D. 1972. The ellrystmenl (If a fresh? water dinotlagellau~:alight and electron-mirrosmpit'al Mud)'. Br. P/ry(l){. I 7:85-100. Borgert. A. 1910. Kt'rn? and Zdlteilullg bei marinen Ceratit'n? Arten. :\1"(11. P",li.'(I',tkt/. 20: 1-4t:i. Cai) Vien, M. 1967. Sur I'existence de pht'nomi'ne~st'xuels dwz un peridinien libn-. I'AmflhulilllWIl far/at. C. R. H,'bd, S~a1lCf5 lJ,md. Sci. Sa. [) S(i Nat. 264: I006-8. -- 1968. Sur la germinal ion du zygote el sur un modt' par? tJculier d" multiplication vegetative (hc7 Ie p.'ridinicn [ibn' ?.lam/,hl/futrum rarll'ri, C. R. up/uJ. S,'nlru, ..1?(l(J. Sn Sa. D, SrI. 'vat. 2r37:701-3. Chapman, D. V., Dl)dge, J. O. & Heant'y. S. I. 1982. CVSl I'm? mation in the freshwater dinoHagdlatt' CI'fIJII(lm II/nmdil[,>/flt (Dinophyceaf'). [>h,wulrJgill 18: 121 ~9, Chapman, D. V., Living:ilone. D. & Dodge?./- D. 198 L An elec? tron microscope study of the excystment and early de\'el? opment of tht? dinoflagellate CfI"rlllUI1l Jllrwu/illflill. Dr. Phyrol. j. 16:183-94. Coal.~. D. W. & Ht>inookel, J. F. 1982. A study nl" reprorluction and other Iil"e cyde plwnomt'n3 in planktonic protists using an acridint;" or-lIlgt' Huorescencl' technique. Mil,.. Bi/ll. (B",./.) 67:71~9. Dodge. J. D. J963. The nudeus and nuclear di ... isirll1 in the Dinophyceae. Arch. Protistmhd. 106;442-52. Galigber. A. E. & KOlloff. E. 1'<. 1971. [:sUlllilJ/, ,1 Pmrllfld '\-11' crQ(Uhlll!(IU. 2nd ed. Le-.I. and Febiger, Philadt'lphia. 531 pp, Guillard. R. R. L. &: Ryther,J. H, 1962, Studies of marin/" plank? tonic dialom~. I, C.\?r/",..tfllulttlll Jtustedt and D"'oul/la nmfrr. ]?Il ..~a ((;Ie...,,) Gran. CU,I. J. .\Ji<:TQl>i,,1. 8:229-39. Hulburt. F.. M. 1957. Tht' taxonomy ofunarmOl't"d Dinoph}'('('ae of shallo..... embaymt'l1ts on Cape C:od. ~assacll\uetls. Bull. Bull. (W"ad.? 1I0fO 112: 196-219. ParduCl, B, 1967, Ciliary mO\'ement and coordination in ciliat('s. 1111. Rn.?. Cw~J. 21 :91-128. Pfiester, L. A.' 197~. Sexual reproduction of PrrulmlU1Jl ,;lIl"lu/II f. IT/.'oplll,/U/ll (Dinophyceae). j. Ph.,'m/. I 1:259-65. -- 1976. Sexual reproduni')TJ uf PI'r"Ji"ilwlwi/Jfl (Oinophr? ccae). j. PhmJI. 12:234~8, -- 1977, Sexual reproou<:tiol1 of PnidillitHII gll/llIlt"'.'" (Oi? nnphyfcae). j. Ph)",?"I. 13:92~5. Pfie51er, L. A. & Anderson, D. M. 1984. DilloflaKdlate life 9'de~ and their environmental ccHllmJ.lt, Ta~?lor. f.J. R.IEd,1 Th,' Bi"lrig)"if I/.( Dir"'flllf~dll1/('.\. Blackwell Scientific Publications, Ltd.? Oxford, (in press). Skoczylas. O. 1958. l:ebcr dit, MiloSf' Hili Ca(l/IIIIII mrmstulII und einigen ande-ren ?eridinieen. ,41'& Protlll...llrd. 103: 19:1-228. SEXUAL PROCESSES IN GrRODlXn'M 361 Spf'~?tor, D. L., Pfiester, L.. A. & Trit?mer. R. E. 1981. Ultra? slrunure of the diT1Clflagellat", Prndiijl'lW' (inrtutll r. I1l'nl'/'" ?m1/!. 11. Light and e1enrun micrust:opic obsen'at.iuns on fer? tilization. Am. j. BM. 68:34-43. TufTrau. M. 1967. Perfeniollnt'rnentset prdtiquf'dt'la lechnitfue d'impregnation au protargol dt?s infusoires cilies. Pru/i,llil", gu" 3:91-8, Turpin. D. H., DolH:-1. P. F.. R. &: Ta~?lnr, F. J. R. 1978. St'xualiry and q Sl filrmat ion in PadIiot rai liS ufthe lOX ic di no Iia gella te GD11}(W/(/X Ifl11wrrJl,j,. j. Pltyro( 14:235-8. Tyler,M.A.,Coats.D.W.&Andf'rsoll.D.M, J982. En{,\,slm~nl in a dynamiC' ('nvirO/unen!: dt'p'lSitiull of dinofiagt'll~le('~'SlS b}' a Irollial convergencf'. Alar. Eml. Prog. Sn. 7:163-78. \"lin SloSt:h, H.?A. 1964-. Zum Pl'Ublem cler sl'xllt'llen Furtpflall' wng in cit'f P~ridineengal.tLl1lgCrmlill/1/, Hrlgu/. Wi." . .Hu? rUlI1l1rn. 10:140-52. -- 1965. Sexualitat bei Crm/rum conlulum? .\'fJlltru}J'j~n"dl{ljl? Til 52; 112-3. -- 1972. La signification cywlogique cit' la "C'ydnse IlU? di:aire" dan~ Ie.' erelt' elf' \'ie dt's dilloH;lgl'lli~. Mrlll. S'/L Bill. Fr. 1972:201-12. j. Ph~'cDI. 20,361-368 (1984) -- 1973. Obsel'V;llions on H'Kelalive reprudunion ,HId Sf'X' ua[ lifecydes of IWll fresll\..aref dinuflal'l"ellatn, Gym,ro,lillium p.,,,u,/"!)(II1lJITt' and Wa/rJ>~YI,kill 11/Jimla/a sp. nov, 8r. Ph}(ol. j. 8: 105-34, Walker. L M. 1982. E\-idenct" for a sexual cycle in the Florida n~d tide dinoflagellate, P('i<'h"di;cU< brt>t?l.i (=G_WlltIotlIIltUm b"~'f')' TTflIH. Alii ..'vlICTO.\t. Soc. 101:287-93. Walker, L. M. & Steiding~r. K. A. 1979. S(~xual reprudunioll in lh(' loKi,? dinoflaW'llate (;rlIlyJII/IIX mOlll/iJ./a j. Ph)wl. Ei: 312-5. Wall, D. & Dale, B. 1968. Mnc1ern dinolbgdlalf' "p15 and evo? lution of thf' Peridiniale5. Mirmplllm/lIt,log;i 14:265-304. Walanabe, M. M., Watanabe, M. & Ful<.u~?o. Y. 1982. El1l:yslme11l and f'xcptment of red lide flagellates, L [nclu(!ion of en? ('yMnH'Ul of Sm!,/wdltJ IrocJlOldra. Nat.. (Jpll.) l11sL Environ. Swd., Res. Rep. :'\io. 30: Eltlr,.plura/iml fmd [{cd Tid~; HI tlte Cn(/.,f/ll Mal'ltlc Elwhow'U?'II. pp. 27 -42. Zingmark, R. G. 1970. Sexual rf'prUdU('liol1 in lht' dirlOHauellate .Vorll/rH?11 mi/lllri.\ Suriray. j. Phyn>l. 6; 122-6. OBSERVATIONS ON NORTH AMERICAN GO,\IPH01I./E/S (BACILLARIOPHYCEAE). I. VALVE ULTRASTRUCTURE OF G. AVtAIMILLA WITH COMMENT ON THE TAXONOMIC STATUS OF THE GENUSJ.2 John P. Kociolf'R and Ba 1'1)' H RO.H'I/.~\??l Great Lakes ReSt'art'l1 Di\'i~ion, The Uni\'t'nil)' of Midligan. Ann Arbor. Michigan 48109 ABSTRACT RpCi'nl qUl's!iOl/.S ronunlinK Ihl' taxonomic Jlatus of tIll' din/um genw Gomphoneis Clrt'/' haVf jJl'Ompll'd ai/iral exami/wliOlI oj Ihe mh'nr mOll)holof!J' oj a species ol'igi? nail)' inrluded ill Jhe gPl/l1.\. Light (lnd fleftrotl mi(ro.~l'Oj)if o/wm.'alioll.l Oil G. mammilla (Elrr.) C/. shmt l that IIU' charartrristio put forth b)' Cl",'E' to dl'linratf Ihl' gnws ar/' /Jresl'Ill ill tlti.. taxon. Striaf com/Jasnl of two mu's oj sImpl/' arl'ola.e lorall'd in d('pl'I'Hion"~ on thr <'a/;'I' and longitudinal line.~.fim"nl II.'? (J hroad inlel'1!al f1xial/)lall' lUI'I' ohJPI'7.'l'f1 ill G, mammilla. The Prl'.IPllff oj (-l1.'O apical spiPH!) ollthi' headpolf' and lllf ,1(l'llctU 1'(' ola hilobi'd apical jJ(}rr field ll/tnted at the fuol/Nll' are lieu-yilti'd, in addition to oth.rr valveft'aturl's. \'11/<'1' morpJwlog." (JIG. mammilla iJ t.:omparE'd wi/II. that 0/ dOl/Uy"punctate Gomphonema JPUIfJ u,jth the r('sutt thai U'f l'('romml'lUl thl' two f!,nll'ra I"l'maln Jepamtr. Ke,l' index u'ol'rh: axial pIalI'; diatomu!tnutruc/uye: Gomphoneis: Gomphonema: longitudinal tilll'.l; (ax? OIwmy I :\rcrpud: n Frlmul1)' 1984. ? Contribution number 382 of I.he Crt'at Lakt,s Rf'search Di? \?isiOTl. ? Department of Botany. Ohio State Vnh'erlSly, Columbus, Ohio 43210. ? Pr['~en. Address: Departmf'nl of BiololO'. Virginia Common? wealth l:nh'ersil~', Richmund, Virginia 23284. The. diatom genus Gomphollei,i was erected by Cleve in 1894 to segregate forms prtoviously placed in the genus Gampho/l.l'lna, but which differed in having striae composed of two rows of puncta (i.e. doubly? punctate striae) and a shadow line running longi? tudinally on each side of the axial area (i.e. longi? tudinal lines). Cleve (1894) originally transferred three species from Gomplwnnna to Gom/J!wm'ls. mak? ing the new combinations Gomj/lwlll'iJ I'hga f/S (Crun.) CL, G. hl'mdeailll (F.hr.) CL and G. 11/(/I1/1l1illo (Ehr.) CI. Since that timl.'" additional Coml)hotlris taxa have been described by Schmidt (1899), SkVOrlZOW and Meyer (1928) and recently by Stoermer (in Reimer (982). Observations with light and electron microscopy have revealed species in the genus Gompluml'ma which also possess doubly-punctate striae. Hustedt (1942) described G. inlt'l'medium as possessing striae com? posed of twO rows of pun(:ta. Studies using electron microscopy have shown that taxa such as G. olit'rlceu/lt (Lyngb.) Klitz. (Drum 1969, Helmcke and Krieger 1953. Dawson 1974), C. fjuadripulI((atum (0str.) WisL (Dawson 1974) and C.curlam (Lange~Berlalot 1978) also have this characteristic. Striae characteristics led Dawson (1974) and Lange.Bena!o( (1978) to transfer these taxa to the genus Gom/)lIoIlPiI. A reexamination of the GomphnnfmalGomphonl'is question by Lange-Bertalot (1980) led him to sug-