OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi CHAPTER 19 Estimating extinction with the fossil record Peter J. Wagner and S. Kathleen Lyons 19.1 Introduction Many ecological and palaeontological studies focus on extinction. The fossil record is particularly important for studying long-term patterns in extinction: although analyses of extant phyloge- nies can estimate extinction rates (e.g. Alfaro et al. 2009) and even suggest mass extinctions (e.g. Crisp & Cook 2009), they cannot imply trilobites ever existed or that sphenodonts (now represented only by the tuatara) were once as diverse as lepi- dosaurs (lizards and snakes). However, workers also use the fossil record to test ideas about the pace of major extinction events that use meth- ods similar to those that conservation biology might use. Here we will review current palaeobi- ological methods for inferring extinction patterns, spanning ?traditional? methods using stratigraphic ranges to methods using more exact information about distributions of finds within stratigraphic ranges. Palaeontological studies of diversity patterns also focus extensively on standing richness and origi- nation rates. We do not focus on either of these parameters for their own sake. However, stand- ing richness (usually referred to simply as ?diver- sity? in palaeontological studies) is an important parameter when discussing extinction as extinc- tion metrics necessarily rely on changes in stand- ing richness. Origination rates also can be an important parameter as the distribution of origi- nations within time spans (i.e. evenly throughout the interval vs concentrated in the beginning) have small but important effects on the predictions of extinction rate hypotheses. Moreover, palaeonto- logical techniques for estimating origination rates are essentially identical to those for estimating extinction, save that they are done ?in reverse?. Thus, discussions of how one estimates extinction rates using fossil data can almost double for dis- cussion of how one estimates origination from fossil data. The other parameter that will be important throughout this review is preservation (i.e. sam- pling) rate. Just as ecologists know that incom- plete sampling affects sampled richness (e.g. Hurl- bert 1971) and implied extinction (e.g. Solow 1993a), palaeontologists know that incomplete sam- pling affects the first and last appearances of fos- sils, both in local sedimentary sections (Signor & Lipps 1982) and globally (Sepkoski 1975). Work- ers have expressed concern that major extinctions are exaggerated by or possibly even illusions of intervals of poor preservation (Raup 1979; Smith et al. 2001; Peters & Foote 2002). Because sam- pling intensity is of interest to both fields, we shall also discuss how palaeontological studies address sampling when estimating diversity and diversity dynamics. 19.2 State of the field 19.2.1 Basic metrics Palaeontological studies of richness and diversity dynamics (i.e. extinction and origination) date back to the 19th century (Phillips 1860). Traditional palaeontological studies use synoptic databases (e.g. Sepkoski 1982, 2002), which catalogue the first and last appearances of taxa. These almost always are binned into chronostratigraphic units: typically stages and substages, but sometimes as fine as 265 OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 266 BIOLOGICAL DIVERS ITY Ti m e/ St ra ti gr ap h y I t3 t2 t1 II V IVIII Figure 19.1 Chronostratigraphic ranges of five hypothetical taxa. Each t gives a separate chronostratigraphic unit, with t1 the oldest. Dashed vertical line for V indicates that taxon V is not actually found in unit t2. Modified from Foote (2000), Fig. 1. faunal zones. (We use ?intervals? to refer chronos- tratigraphic units because of the correspondence between units of time and strata; see Grad- stein et al. (2005)). For numerous reasons, synop- tic studies typically use supraspecific taxa, with genera being the most common taxon since the mid 1980s. Fig. 19.1 presents a simple example. We use last appearances in each unit t to infer rates of extinction. Two types of metrics commonly are used: per taxon (pt) and per capita (pc; see Foote (2000)). Per-taxon metrics measure the propor- tion of standing richness, S, that have their last appearance in an interval. Per-taxon extinction thus is: ?pt = SL S (19.1) where SL is the number of taxa last appearing in an interval. In Fig. 19.1, taxa III and IV last appear in t2, so SL = 2. S is not the sum of taxa sampled in an interval, but the sum of taxa with chronostrati- graphic ranges spanning the interval. Taxon V in t2 illustrates the difference: because it first appears before t2 and last appears after t2, we assume that it existed in t2 even though V is not sampled in t2. This assumption is unsound only if taxon V is polyphyletic. As the synoptic data for taxa I and V are identical, we need a more detailed database to recognize cases like taxon V. Thus, St2 = 5 regardless of how many ?range-through? taxa (e.g. I and V) actually are sampled in t2, and ?pt = 0.40. (Per-taxon origination, ?pt, simply replaces SL with SF, the taxa first appearing in t2). Per-capita extinction rate measures the survivor- ship of taxa present at the outset of an interval. This is: ?pc = ln ( Sa Saz ) (19.2) where Sa is the number of taxa crossing the bound- ary from the prior interval and Saz is the number of the taxa also crossing through both the base and the top (i.e. the range-through taxa). Note that ?per capita? here refers not to individuals within a species, but to taxa as operational units. For t2 in Fig. 19.1, Sa is 3 (taxa I, III, and V) and Saz is 2 (taxa I and V), giving ?pc = 0.41. The most likely probability of a taxon becoming extinct in an inter- val is now 1 ? e?pc . However, this is identical to ?pc if we restrict per-taxon rates to only boundary crossers. Chronostratigraphic intervals vary considerably in temporal length (Gradstein et al. 2005). Accord- ingly, workers often divide rates by interval length to get rates per million years instead of rates per interval. This is appropriate if extinction is dis- tributed throughout an interval. One expectation of continuous turnover rates is that longer inter- vals should have higher extinction rates. However, Foote (1994) showed that ?raw? extinction metrics are random with respect to the length of chronos- tratigraphic units, whereas per million year rates show a negative correlation. We will return to this issue below when we summarize tests of pulsed vs continuous rates. The distribution of extinctions and originations plays a role in whether we should prefer per-taxon or per-capita extinction rates. If extinction and orig- ination happen throughout an interval, then per- taxon rates overestimate immediate extinction risk as well as exaggerating S from any one slice of time. ?Singletons,? that is those taxa known from only one interval, such as taxon IV in Fig. 19.1, exacerbate this problem. Singletons often reflect differences in research effort and/or available fos- sils (Raup & Boyajian 1988) and excluding single- tons greatly reduces the volatility of per-taxon rates (Alroy 1996). Although per-capita rates are excel- lent for describing continuous rates, they still can accurately reflected pulsed extinction. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi EST IMATING EXTINCTION WITH THE FOSSIL RECORD 267 19.2.2 Survivorship curves Per-capita rates lead conceptually to survivorship curves. The per-capita rate for any one interval reflects the proportion of taxa expected to survive the entire interval into the next interval. Survivor- ship curves reflect the proportion of taxa that sur- vive multiple successive intervals. Some survivor- ship analyses contrast rates among higher taxa in order to assess whether extinction rates in some groups differ markedly from those in other groups (e.g. Simpson 1944, 1953) or whether there are com- mon patterns among higher taxa (Van Valen 1973, 1979; Raup 1991). Alternatively, cohort analyses contrast sets of taxa that originate in the same inter- val (i.e. Raup 1978; Foote 1988) to examine whether extinction rates change markedly over time. Given a per-taxon extinction rate, we expect the pro- portion of taxa that survive N intervals, f (N), to be: f (N) = ?pc = e?N?pc (19.3) Given ?pc = ? ln( 32 ) from our example above, we expect 66.7% of the taxa to survive 1+ intervals, 44.4% to survive 2+ intervals, etc., and thus 33.3% of the taxa to have durations of 1 interval, 22.2% to have durations of 2 intervals, etc. Of course, in reality this will vary even if extinction rates are con- stant simply by chance. However, the slope of the logged frequency of taxa with durations of 1, 2, 3, etc. intervals plotted against duration approximates the average ?pc. Foote (1988) uses Monte Carlo simulations to demonstrate that survivorship slopes for cohorts of Cambrian trilobites are significantly steeper than those for cohorts of Ordovician trilobites. (Subse- quent revisions to the timescale greatly reduced the average longevity of Cambrian trilobites, making the pattern more pronounced than Foote reports; Bowring et al. 1993). Raup (1991) also uses this approach to demonstrate that survivorship slopes for Phanerozoic cohorts fit the expectations of a general ?kill curve? of extinction rates. 19.2.3 The importance of sampling For three reasons, equation 19.3 will not predict the distributions of stratigraphic ranges even if ?pc is constant over time and among taxa. First, if we measure stratigraphic ranges in discrete bins (as is almost always done), then f (N = 1) = e??pc only if all taxa originate at the very base of intervals. If origination is continuous throughout intervals, then we expect (for example) half of the taxa lasting one half an interval to span from tx to tx+1. Thus, only the slope from taxa with ranges of 2+ intervals will reflect ?pc under continuous diversification. Second, extinction rates do not make predictions about the ages of extant taxa: instead, the age distribution of contemporaneous taxa (i.e. a ?backwards survivor- ship? curve sensu Pease (1988) or a ?prenascence? curve sensu Foote (2001b)) reflects origination rates (Foote 2001b). The third reason is the most critical: extinc- tion rates make predictions about temporal dura- tions, but we can observe only stratigraphic ranges. As preservation rates strongly affect stratigraphic ranges, ?survivorship? curves using fossil ranges actually reflect both preservation and extinction (Sepkoski 1975; Pease 1988; Foote & Raup 1996). Consider a simple example of two clades where origination and extinction occur at the beginning and end of each interval, and for which ??pc = 0.69 (Fig. 19.2). For one clade, the probability of recov- 2 3 4 5 Duration (mpc = 0.69) Range (R = 0.50) Range (R = 0.05) 6 Intervals N u m be r of ta xa 7 8 9 10 111 100 101 102 103 Figure 19.2 The relationship between durations (time from birth to death) and stratigraphic ranges (= number of chronostratigraphic units from first to last appearances). This simulation of 5000 taxa uses ?pc = 0.69, which predicts half of the taxa present at the outset of an interval to go extinct in that interval. Sampled stratigraphic ranges reflect sampling intensity (R) of 0.5 and 0.05 per interval. Following palaeontological studies, both durations and ranges are binned into discrete intervals. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 268 BIOLOGICAL DIVERS ITY ery, R, is 0.5 per interval; for the other, R = 0.05 per interval. These illustrate two patterns empha- sized by Foote and Raup (1996). First, the slopes of the logged survivorship curves after the first interval parallel each other quite well. Second, the proportion of taxa sampled from 1 interval to those sampled over 2+ intervals increases as R decreases. At sufficiently low R, all taxa are known from single finds (and thus single intervals) only. From this, Foote and Raup derived preservation intensity as: RFR = S2sr=2 Ssr=1 ? Ssr=3 (19.4) where Ssr=x is the number of taxa with stratigraphic ranges of x intervals. In our example here, RFR = 0.53 when true R = 0.50 and RFR = 0.09 when true R = 0.05. The ability to contrast preservation rates over time or among taxa obviously interests palaeontolo- gists. However, subsequent work embraced the fact that joint hypotheses of preservation and extinction make exact predictions about distributions of strati- graphic ranges. This led to a shift from contrasting slopes of survivorship curves to contrasting the likelihoods of hypothesized extinction and preser- vation rates (Solow & Smith 1997; Foote 1997). Consider a simple system where origination and extinction occur at the beginning and end of inter- vals. Extinction here is a per-taxon metric giving the proportion of taxa expected to become extinct at the end of each interval. The expected proportion of taxa with a stratigraphic range (sr) of 1 interval is: f [sr = 1] = w ? d=sr [ P[?](1 ? P[?])(d?1) ? d(1 ? R)(d?sr ) R ] 1 ? w ? d=1 [ P[?](1 ? P[?])(d?1) ? (1 ? R)d ] (19.5a) while the expected proportion of taxa known from x = 2, . . . , w intervals (where w is the maximum possible) is: f [sr ]= w ? d=sr [ P[?](1?P[?])(d?1)?(1+ d? sr )(1?R)(d?sr ) ? sr?2 ? n=0 ( sr ? 2 n ) (1 ? R)(sr?2?n) R(n+2) ] / 1? w ? d=1 [ P[?](1 ? P[?])(d?1)?(1 ? R)d ] (19.5b) where d is the true duration and n is the number of intervals between the first and last interval in which a taxon might be found (Foote 1997). The three important recurring terms here are: ?(1 ? ?)d?1: the probability of avoiding extinction for d ? 1 intervals and becoming extinct in interval d , where ? is equivalent to ?pc for boundary crossers only; (1 ? R)x : the probability of being unsampled for x intervals; Ry: the probability of being sampled in y intervals. The denominator in both equations estimates the proportion of taxa that are sampled as one minus the proportion that are unsampled, i.e. the prob- ability of having duration d times the probability of going unsampled for d intervals summed over the entire range of possible durations (w). This is because we can test hypotheses based only on their predictions about sampled taxa. The numerator also sums over the range of possible durations. The second part of both numerators reflects the num- ber of ways a stratigraphic range of sr fits within a duration of d , which is simply 1 + (d ? sr ). For example, there is only one way to fit sr = 4 within d = 4(t1, . . . , t4) and two ways to fit sr = 4 within d = 5(t1, . . . , t4 and t2, . . . , t5), etc. The final term in equation 19.5a, sr?2 ? n=0 ( sr ? 2 n ) (1 ? R)(sr?2?n) R(n+2), sums the probabilities given R of all of the different stratigraphic records that match a synoptic range of sr. All taxa with sr = 4 are found in at least two intervals (the first and last). However, there are four possible stratigraphic records consistent with that synoptic range (Fig. 19.3), therefore the likelihood function must sum the probabilities of all four pos- sibilities given any R. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi EST IMATING EXTINCTION WITH THE FOSSIL RECORD 269 Ti m e/ st ra ti gr ap h y I t3 t4 t2 t1 II IVIII Figure 19.3 Four exact stratigraphic distributions resulting in a synoptic range of four intervals. Foote (1997) presents more complex variations of equation 19.5 for continuous stratigraphic ranges. As most palaeontological studies use discrete bins, we will not cover this in detail. However, we will return to the effects of continuous ? and ? (origi- nation) on the expectations for stratigraphic ranges below. At this point, equation 19.5 gives us an expected observed survivorship curve given any combination of ? and R. Multinomial probability then gives the probability of the data given that combination. However, this obviously is not wholly satisfactory for several reasons. In particular, this approach is useful for contrasting general differ- ences in average extinction rates between taxa while controlling for the possibility of different average preservation rates. Most of the interesting palaeoe- cological questions concern differences in extinction rates in particular intervals. We also have ample evidence that sampling varies over time (e.g. Peters 2006; McGowan & Smith 2008), which might affect our estimates of extinction. 19.2.4 Relevant studies Foote (2001c, 2003) modifies the approach outlined above to estimate interval-by-interval rates of ?, ? and R. One applies variations of equation 19.5 on ?birth? and ?death? cohorts, that is, how long do taxa first appearing in an interval last and how old are the taxa that last appear in an interval? In other words, instead of analysing a vector of ages at last appearance, one now analyses a matrix X where each cell Xi j gives the number of taxa first appear- ing in ti and last appearing in tj . Now, one can apply separate ?i and Ri (and ?i ) at each ti on variations of equation 19.5. The expected number of taxa origi- nating in ti with d = j now is affected by variation in ? from i to j , and the probability of any given sr ? d is affected by variation in R from i to j . Because the best Ri for any ti must accommodate both the back- wards survivorship curves as well as the forwards survivorship curve, ?i is relevant for estimating ?i . The algorithms to find the collection of parameters maximizing the probability of the observed matrix are computationally intensive. Foote?s (2003) analy- sis of Sepkoski?s (2002) compendium of marine gen- era shows, for example, that the major loss of taxa at the Big Five mass extinction events (Raup & Sep- koski 1982) and the high turnover of the Cambrian taxa (Sepkoski 1979) require high rates of extinction even in those cases where preservation rates were low. Finally, estimates of extinction and preservation from equation 19.5 effectively assume that taxa extant are present throughout all intervals within their durations. This can be true only if both orig- ination and extinction are pulsed, that is, concen- trated in some particular interval. However, if they are continuous, then true durations will span frac- tions of the first and last intervals for most taxa. This has two effects (Foote 2005). One, if origina- tion probabilities are uniform throughout intervals, then there is a 70% chance that a taxon with a true duration of 2.7 intervals exists in all or part of four intervals. Two, the probability of sampling a taxon in its first or last interval is not R, but 1 ? (1 ? R)x , where x is the fraction of the first/last interval in which the taxon occurs. Given this subtle differ- ence, Foote (2005) found strong support for pulsed extinctions and origination in most intervals. One implication of this is that the tradition of standard- izing extinction rates by millions of years often is highly misleading. 19.2.5 Occurrence-based diversity estimates We require approaches such as outlined in the prior section when synoptic ranges are our only OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 270 BIOLOGICAL DIVERS ITY A 21 20 19 18 17 16 15 14 13 12 H or iz on 11 10 9 8 7 6 5 4 3 2 1 B C D E F G H I J K L Figure 19.4 Hypothetical distribution of finds in a section, based on a single simulation. ?Horizons? represent fossiliferous beds. Black circles indicate that the species is sampled. White circles indicate that it is unsampled. Hatched circles represent the first fossiliferous horizon following the extinction event. Gray ellipses give the observed stratigraphic ranges. Although all 12 species are extant throughout the time represented, they appear to go extinct (and originate) gradually. data. However, in many cases we have data con- cerning the distributions of finds within strati- graphic ranges, such as the Paleobiology Data- base (http://pbdb.org; see, for example, Alroy et al. (2001)). This provides us with an independent means of estimating Ri using range-through taxa for any ti . In Fig. 19.4, four taxa are known to be extant during t2 and t3 because they were sampled before and after those intervals. This leads to a sim- ple estimate (Connolly & Miller 2001b): Ri = Si,obs Si,az (19.6) where Si,az is the number of range-through taxa for ti (see Fig. 19.1) and Si,obs is the subset of those taxa that we actually observe. If one uses empirical esti- mates of Ri instead of solving for Ri at the same time as ?i (and ?i ), then it becomes much easier to solve for the diversity parameters. Foote (2007a) uses the Paleobiology Database to measure R with range-through taxa and then assess the effect of preservation on recalibrated extinc- tion rates. This suggested that extinction is less continuous through the Phanerozoic than previ- ously thought, as immediate Ri explains the last appearances in many low extinction intervals. A corresponding result is that extinction rates of sub- sequent intervals increase, with the end result being that intervals with high extinction given ?face value? data have even higher extinction after optimizing for R. In particular, Foote?s analysis suggested that extinction rates in the intervals preceding the end- Permian, end-Triassic, end-Ordovician, and end- Devonian were lower than suggested by the ?face value? fossil record. Thus, accommodating preser- vation elevates rather than erases mass extinction episodes. Nevertheless, and as Foote emphasizes in that work, the ?face value? data leads to the same conclusions, for example estimates of discontinu- ity of extinction rates separating a few intervals of mass extinctions from other intervals remains (see Wang 2003). Connolly and Miller (2001b) use the distribu- tion of genus finds over time to estimate preserva- tion, extinction, and origination likelihoods using a capture?mark?recapture (CMR) approach. This represents a modification of the CMR methods used to estimate the same parameters for Recent taxa given conservation data (Pradel 1996). One obvi- ous advantage of this sort of approach is that one can estimate diversity parameters for separate envi- ronments or biogeographic units from the same stages (see, for example, Miller & Foote (1996) and Connolly & Miller (2001a)). Alroy (2000) uses likelihood estimates of these parameters to con- struct faunal ordinations that maximize the prob- ability of observed species lists. The further devel- opment of such techniques in conjunction with the OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi EST IMATING EXTINCTION WITH THE FOSSIL RECORD 271 expansion of large occurrence-based databases (e.g. the PBDB) represents an important future direction for palaeobiological studies (see Prospectus section below). 19.2.6 Gap analyses The use of exact numbers of finds within strati- graphic ranges and the issue of continuous ver- sus pulsed extinction rates points the way to the most exact methods for evaluating the timing of extinctions. This is perhaps best known in associ- ation with Alvarez et al.?s (1980) proposal that the end-Cretaceous extinction is a sudden event trig- gered by a major asteroid impact. However, the idea that extinction events are pulsed rather than gradual is not new (see, for example, Erwin (2006)). Some theory suggests that lower-level turnovers often are pulsed (Vrba 1985; Morris et al. 1995) and many of our concepts about stratigraphic zones tacitly assume pulsed turnovers (e.g. Shaw 1964). Foote?s (2005) study argues against ?gradual? extinc- tion mechanisms that distribute extinctions through entire stages. However, chronostratigraphic stages and substages typically are millions of years long whereas the ?gradual? extinction hypotheses often predict extinction over hundreds of thousands of years. Thus, although the ?pulsed? hypotheses of extinctions predict extinctions over tens of thou- sands of years or less, both ?pulsed? and ?gradual? might make the same predictions about synoptic data. We therefore must focus on the distributions of finds within chronostratigraphic units to find different predictions between gradual and pulsed extinction hypotheses. Preservation again is very important when ascer- taining the expectations of pulsed and gradual extinction hypotheses. The probabilistic nature of preservation and sampling means that we expect gradual disappearances of taxa from the fossil record even if all of the taxa share the same time of extinction (Signor & Lipps 1982). Simple simu- lations illustrate the Signor?Lipps effect (Fig. 19.4). Consider the first and last occurrences of 12 taxa over 21 fossiliferous beds (horizons), with the 12 taxa forming a Zipf abundance distribution (? = 2.0) and having equal preservation probability per spec- imen. Although all 12 taxa are present throughout the section, they appear to phase out gradually sim- ply because of sampling failure: although the com- mon taxa are sampled up to the top of the section, the less common taxa have highly truncated ranges. Solow (1993a) notes a similar problem for conser- vation biologists: it is easy to miss rare species for 5+ years by chance alone, so failing to sample one for a long period of time is weak evidence that it is extinct; conversely, it is difficult to miss a common species for any length of time, so failing to sample one is strong evidence that it is extinct. One advantage that palaeontologists have that conservation biologists do not is that they can con- tinue to sample all of the time planes. Ultimately, elevated sampling should reveal the rare taxa. However, this is too labour intensive and expen- sive to be done at many sites. Thus, we need solu- tions using the available data. This, in turn, leads to gap analyses, which attempt to use estimates of expected gaps between samples to evaluate both extinction and the Signor?Lipps effect. Strauss and Sadler (1989; see also Marshall (1990)) use a Dirichlet distribution to assess possible gaps between last appearance and true extinction at any given confidence interval (CI) as: g = sr ? ( [1 ? C1]? 1 H?1 ? 1 ) (19.7) where g is the hypothesized gap, sr is the observed stratigraphic range, H is the number of horizons, and C1 is the CI on one end of the stratigraphic range. Note that if we use continuous meters (e.g. Strauss & Sadler 1989) or time (e.g. Marshall 1990), then the stratigraphic range would be the last hori- zon minus the first horizon and single samples have no range; however, with binned horizons, the minimum range is 1. We use horizons here simply because the non-random distribution of horizons within units of strata or time require further mod- ifications to these approaches (Marshall 1994, 1997; but see Prospectus section below). Thus, for taxon E, g50% is 18 horizons ?([1 ? 0.5]? 1 7?1 ? 1) = 2.2 hori- zons beyond the last appearance. In other words, there is a 50% chance that the true extinction hap- pened between the last appearance and this point and a 50% chance that the true extinction happened after this point. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 272 BIOLOGICAL DIVERS ITY Marshall (1995) proposes using 50% confidence intervals to test the null hypothesis of simultaneous extinction. Marshall uses the range that is above g50% for half of the species as the optimal extinction zone. In Fig. 19.4, half of the taxa have g50% ? 2.2 and half have g50% ? 3.1. Thus, the 22nd horizon would be the optimum extinction horizon. As that follows the last appearance of all of the taxa, we cannot reject a single extinction. Using metres of sediment rather than fossiliferous horizons, Mar- shall (1995) shows that Cretaceous ammonoids not only fail to reject the simultaneous extinctions, but that the g50% values do an excellent job of predict- ing the iridium layer terminating the Cretaceous. Conversely, Marshall and Ward (1996) demonstrate that the 50% line for Late Cretaceous inoceramid bivalves precedes the last appearance of nearly half the species. As many species clearly existed after the optimal extinction time for half the species, there almost certainly are multiple extinction events for inoceramids. Marshall?s basic approach lends itself well to like- lihood tests of numbers of extinction events. Build- ing on a model initially presented by Solow (1996), Wang and Everson (2007) consider the likelihood of the hypothesized extinctions, ?1...S, of S taxa, noting that: L[?1...S|sr1...S, H1...S] ? S ? i=1 ( sri ?i ? F Ai + 1 )Hi (19.8a) where F Ai is the first appearance of taxon i , and therefore: ?i ? F Ai + 1 = gi + sri (19.8b) (i.e. the observed stratigraphic range, sr, plus the gap, g, implicit to the hypothesized extinction ?). Again, the ?+1? is necessary only when stratigraphic ranges are in discrete rather than continuous units. Note also that the likelihood is 0 rather than a nega- tive number if g < 0 as this is an impossible hypoth- esis. For any taxon i , the likelihood decreases as gi increases. The number of parameters is equal to the number of different extinction events. Thus, the simplest (minimum varying parameter) hypothesis has all taxa sharing the same extinction events and the most likely single-parameter (single-extinction) hypothesis sets all ?i to the latest last appearance (e.g. horizon 20 in Fig. 19.4). Conversely, the most complex possible hypothesis posits a separate extinction for each taxon. The single most likely version of this basic model is one in which gi = 0 for all taxa, and thus can have as many differ- ing ? values (and thus as many different parame- ters) as there are taxa. The support (log-likelihood rescaled to the maximum) for this hypothesis is 0. There are a large number of alternatives of inter- mediate complexity, for example one can examine a two-parameter hypothesis that posits two separate extinctions giving ?A ... F at horizon 20 and ?G ... L at horizon 19. Log-likelihood ratio tests (e.g. Edwards 1992) now can assess whether the more complex hypoth- esis predicts the data significantly better than the simpler hypothesis. In Fig. 19.4, the sup- port (i.e. the log-likelihood rescaled to the most likely hypothesis) for ?A ... L = ?7.34. Whether we can reject this in favour of continuous extinction depends on how many parameters we ascribe to the best ?continuous? hypothesis. Wang and Everson (2007) use S on the grounds that there is one extinction for each of the S taxa. How- ever, in this example there are only seven last appearance beds. This means that we need only seven extinction events to eliminate all 12 taxa, and that the degrees of freedom should be 6 (7 ? 1) rather than 11. This is important because we would not reject the null hypothesis of a sin- gle extinction if we assume that the overall most likely hypothesis requires 12 parameters (p = 0.20) whereas we would if we assume that the over- all most-likely hypothesis requires seven parame- ters (p = 0.02). However, a two-parameter hypoth- esis (?A ... C = 20, ?D ... L = 19) represents a signifi- cant improvement over the one-parameter hypoth- esis (support = ?4.45; p = 0.02) while withstanding rejection from the overall most likely hypothesis given the assumption of either 12 parameters (p = 0.54) or seven parameters (p = 0.11) or from the most-likely three-parameter hypothesis (?A ... C = 20, ?D ... F = 19, ?G ... L = 18; support = ?3.13, p = 0.10). This clearly is erroneous given that all 12 taxa share the same time of extinction in the simulations, but restricting all 12 extinctions to the final two beds strongly contradicts the idea of a prolonged extinc- tion event. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi EST IMATING EXTINCTION WITH THE FOSSIL RECORD 273 Information theory criteria give an alternative means for assessing the hypothesis. An appealing aspect is that these criteria can lead one to conclude that the simpler hypothesis is superior to the more complex hypothesis rather than simply unrejected (Burnham & Anderson 2002). Here, Akaike?s infor- mation criteria (AIC; Akaike 1973), modified for sample size (Burnham & Anderson 2002), is: AICc = ?2 ln L[?A...L] + 2K ( S S ? K ? 1 ) where K is the number of parameters and the taxon richness, S = 12, is the number of data points. Because the AICc[?A ... L = 20] = 17.1 whereas AICc[7 separate ?i] = 42, we now prefer the single extinction to the mostly-likely seven- extinction hypothesis. However, we still prefer the best two-parameter hypothesis (AICc[?A ... C = 20, ?D ... L = 19] = 14.2) to the best single-extinction hypothesis. On one hand, one might fault the method for failing to corroborate the correct hypothesis that all of the extinctions happened after the last bed. However, it is reassuring that the favoured hypothesis is a near miss that concentrates all of the extinctions in the last two beds. Huelsenbeck and Rannala (1997) estimate the probability of zero finds over some interval given preservation rate, R. Although this is intuitively reasonable, R itself is an unknown. R is not explic- itly addressed in the Wang and Everson approach, but uncertainty about R should be a concern there too. An intuitive estimate of Ris simply: R = H sr (19.9a) As Fig. 19.4 illustrates, this is biased towards overe- stimating preservation rates because the denomina- tor under-estimates the true duration (Wagner 2000; Foote 2001a). Instead, an unbiased estimate is given by the finds within the known range, i.e.: R = H ? 2 sr ? 2 (19.9b) Even so, we should not estimate the likelihood of hypothesized extinction as: L[?|H, sr, R] = ( 1 ? H ? 2 sr ? 2 )g First, the uncertainty around the most likely R can be very large, especially for taxa sampled from a few beds over a short duration. Although the prob- ability of the stratigraphic data is maximized with equation 19.7b, the joint probability of the observed data and the hypothesized gap (and thus the joint likelihood of ? and R; Wagner 2000) is maximized at: R? = H ? 1 g + sr ? 1 (19.10) giving the maximum: max L[?, R|sr, H] ? (1 ? R)g ? ([1 ? R]sr?H ? RH?1) (19.11a) ? (1 ? R)g+sr?H ? RH?1 (19.11b) where the first term in equation 19.9a is the proba- bility of zero finds over the gap and the second term is the sufficient statistic from the binomial probabil- ity of H ? 1 finds over the observed stratigraphic range after the first find. (The binomial combina- toric is constant for all hypotheses.) Note that we now subtract only one horizon as one end of the ?true? duration is implicit to the hypothesis and we truncate only the base. We now can estimate the likelihood of one or more extinction events using the product of equa- tion 19.11 for all species with H ? 2. Returning to our example in Fig. 19.4, the log-likelihood of a single extinction at horizon 20 for the 10 species with Hi ? 2 is ?18.70. The log-likelihood of each species going extinct at its last appearance increases only to ?14.65, which is insufficient to reject the single ? hypothesis even when assuming only seven-parameters (p = 0.23) and which fares far worse given information theory (AICc[?A ... L = 20] = 39.8 vs AICc[?A ... L = LAA ... L] = 71.3). However, a hypothesis of extinctions at horizons 19 and 20 still is preferable (ln L = 16.25) given either log- likelihood ratio tests (p = 0.03) or AIC (AICc[?A...C = 20, ?D...L = 19] = 37.8). The potential advantage of this approach over the approach of Solow/Wang and Everson is that it allows one to assess whether preservation rates change within a stratigraphic range. If so, then change in R can be explicitly accommodated (see Solow 1993b; Wagner 2000). For example, a sim- OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 274 BIOLOGICAL DIVERS ITY ple test of linearly increasing/decreasing R over horizons would simply test the exact sequence of finds and misses with changing probabilities of finds and misses. Alternatively, one might posit a sudden shift in preservation rate. If the fre- quency of misses increases/decreases, then the gap between last appearance and extinction will increase/decrease. For example, taxon I in Fig. 19.4 shows an increasing recovery rate over time: it is found once over 10 horizons (2?11) then twice over the next five horizons (12?16). The most likely sin- gle R, 5?217?2 = 0.2 (equation 19.7b) has a support of ?7.51(= ln[0.23 ? 0.812]). The best gradually shift- ing R, with R2 = 0.05 ? R16 = 0.34, increases the support only to ?7.14. The best two-phase R, R2...11 = 0.1 and R12...16 = 0.4, increases the support only to ?6.86. In neither case would we reject the idea that sampling was homogeneous throughout taxon I?s range and thus we have no particular reason to distrust the likelihood given sampling over those 20 horizons. However, Wagner (2000) presents empirical examples where this approach does reject homogeneous R and thus leads to dif- ferent likelihoods on hypothesized extinctions. 19.3 Prospectus The study of extinction can proceed in many direc- tions, many of which workers have tentatively explored already. In particular, the use of databases such as the PBDB to ascertain more exact tests of extinction pacing and preservation rates within taxa represents the logical next steps to the meth- ods described above. For example, using observed range-through taxa to estimate R provides an aver- age sampling intensity within an interval. This obviously will not represent all genera. With higher taxa in particular, species richness within a genus or family will strongly affect preservation rate, as will other factors, such as the geographic distributions of the species within the taxa. Foote (2007b) shows that the occurrences of genera typically follow a bell curve over time, that is, occurrences are low both in the early and late intervals of a genus? range and typically peak in the middle. Because genera originate throughout time, this means that different genera will be at different points in their bell curves in any given interval. Moreover, the peaks of these distributions (i.e. the maximum numbers of occur- rences) differ among genera. These two factors com- bined means that it should be possible to derive a distribution of preservation intensities within each interval rather than a single R ?per genus?. What is most intriguing is that we might use the bell curves themselves in a Bayesian context to assess extinction risk (see, for example, Solow (1993b)). In other words, extinction risk should be relatively low at the peak of an occurrence distribution, when a genus typically is widespread and fairly speciose (see, for example, Foote et al. (2008)). Conversely, the extinction risk should be relatively high near the tail. Whether or not we wish to assume normal curves for occurrences over time requires further testing; however, data such as the PBDB make it possible to assess whether ?commonness? of genera is linked to extinction risk. Part of the reason why we should expect common genera to be less extinction prone than uncom- mon genera is that we expect geographically wide- ranging genera to be more common in the fos- sil record than contemporaneous geographically narrow-ranging genera (e.g. Jablonski 2000). How- ever, because sampling is not randomly distributed over geography, we cannot simply equate occur- rences with geographic range. Instead, we need to actually examine occurrences in particular geo- graphic units (see, for example, Foote et al. (2008)). Alroy (in Alroy et al. (2008)) presents methods for accommodating geographic dispersal in sampling standardized estimates of richness over time. We should adopt similar approaches for summarizing geographic distributions when examining the pre- dictions of alternative extinction models. Even occurrences within temporal and geo- graphic units obscure important information about abundances within localities. In general, there is a good correlation between abundances and occur- rences, in that taxa that are abundant anywhere within their geographic range tend to have many occurrences (Buzas et al. 1982; Alroy et al. 2008). However, in gap analyses of particular sections, variation in abundances of specimens has an impor- tant effect on the plausibility of missing an extant species (see, for example, Hurlbert (1971)). The sim- ulations sample equal numbers of ?specimens? per bed. However, in reality, all beds are not equal: due OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi EST IMATING EXTINCTION WITH THE FOSSIL RECORD 275 to access, taphonomy, weathering, etc., some beds in the same section will yield many more speci- mens than others. Weiss and Marshall (1999) explic- itly accommodate this when examining extinction boundaries for late Cambrian trilobites. Similarly, McElwain et al. (2009) examine the end-Triassic extinction in plants not in loss of richness, but in shifts on most likely relative abundance distribu- tions. A combination of the two approaches would assess the likelihoods of hypothesized abundances over time/strata, with extinction being an abun- dance of 0. The logic of shifting R over a section would apply here, except that we now would ask whether we could sample X specimens without finding a species given that it is known from n of N specimens prior to that. Another promising avenue of research involves the use of ordination techniques to describe fossil turnover without assuming a particular chronostratigraphic scale (e.g. Alroy 1992, 1994, 2000; Sadler and Cooper 2003). Although presented as techniques for repeatable, high- resolution chronostratigraphy, these methods also describe fossil distributions in the same manner needed for confidence interval studies, but at the geographic and geologic scales of synoptic studies. Finally, one might ask whether gap analyses of extinction events frame the basic hypotheses properly. As done above, the ?complexity? of the hypotheses is the number of extinction events. A single-extinction event thus is the null because it is only one event. Statistically, this is also appropriate because a single event necessarily is less likely than (as in Fig. 19.4) seven events, as it maximizes the minimum number of necessary gaps. However, this is not quite the appropriate null hypothesis if we look at extinction rates. A single event requires two rates: a ?background? rate of no extinction and a single pulsed rate of (nearly) 100% extinction. Thus, we can ask, what is the probability of X extinctions from Y remaining taxa given a hypothesized extinc- tion rate per bed? As Weiss and Marshall (1999) note, the extinction rate provides a prior probability of a lineage existing 1, 2, 3, etc., beds after its last find. This multiplied by likelihood of the gap gives a posterior probability of the taxon existing 1, 2, 3, etc., beds after its last finds. The sum of these poste- rior probabilities is what we would use as the count of the number of extinctions per bed. For example, in Fig. 19.4, we would have numerous extinctions in the last two beds given a hypothesis of uni- form extinction rates and the sampling data. This would be strong evidence against a gradual hypoth- esis. However, if last appearances were distributed more evenly throughout the section, then it would be much more difficult to extend the durations to the top of the section as not only would they become increasingly improbable, but the plausibil- ity of the taxon still being extant also would become increasingly improbable. 19.4 Key points 1. The fossil record provides data capable of testing a wide variety of extinction hypotheses. 2. This can be done at very broad temporal scales as well as over intervals closer to ?ecological time?. 3. Accommodating preservation is critical at all temporal scopes of palaeontological analyses of extinction. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi References Abbot, I. (1983) The meaning of z in species/area regres- sion and the study of species turnover in island biogeog- raphy. Oikos, 41, 385?390. Abella, P., Bilton, N. D., Millan, A., Sanchez-Fernandez, D., & Ramsay, P. M. (2006) Can taxonomic distinctness assess anthropogenic impacts in inland waters? A case study from a Mediterranean river basin. Freshwater Biology, 51, 1744?1756. Abrams, P. A. (2001) A world without competition. Nature, 412, 858?859. Adler, P. B. (2004) Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 85, 1265?1272. Adler, P. B. & Lauenroth, W. K. (2003) The power of time: spatiotemporal scaling of species diversity. Ecology Let- ters, 6, 749?756. Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A., & Rusak, J. A. (2005) Evidence for a general species-time-area relationship. Ecology, 86, 2032?2039. Agosti, D., Majer, J., Alonso, E., & Schultz, T. R. (eds) (2000) Ants: Standard Methods for Measuring and Monitor- ing Biodiversity. Smithsonian Institution Press, Wash- ington, DC. Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. International Sym- posium on Information Theory, 2, 267?281. Ak?akaya, H. R., Radeloff, V. C., Mladenoff, D. J., & He, H. S. (2004) Integrating landscape and metapopula- tion modeling approaches: viability of the sharp-tailed grouse in a dynamic landscape. Conservation Biology, 18, 526?537. Albrecht, M., Duelli, P., Schmidm, B., & Muller, C. B. (2007) Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. Journal of Animal Ecology, 76, 1015?1025. Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale, G., & Harmon, L. J. (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, 106, 13410?13414. Alldredge, M. W., Pollock, K. H., Simons, T. R., & Shriner, S. A. (2007) Multiple-species analysis of point count data: a more parsimonious modelling framework. Jour- nal of Applied Ecology, 44, 281?290. Allen, A. P., & E. P. White. 2003. Effects of range size on species?area relationships. Evolutionary Ecology Research, 5, 493?499. Allen, B., Kon, M., & Bar-Yam, Y. (2009) A new phyloge- netic diversity measure generalizing the Shannon index and its application to phyllostomid bats. The American Naturalist, 174, 236?243. Alonso, D. & McKane, A. J. (2004) Sampling Hubbell?s neutral theory of biodiversity. Ecology Letters, 7, 901?910. Alroy, J. (1992) Conjunction among taxonomic distribu- tions and the Miocene mammalian biochronology of the Great Plains. Paleobiology, 18, 326?343. Alroy, J. (1994) Appearance event ordination: a new biochronologic method. Paleobiology, 20, 191?207. Alroy, J. (1996) Constant extinction, constrained diver- sification, and uncoordinated stasis in North Amer- ican mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 127, 285?311. Alroy, J. (2000) New methods for quantifying macroevo- lutionary patterns and processes. Paleobiology, 26, 707?733. Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., F?rsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack- Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., John, J., Sepkoski, J., Sommers, M. G., Wagner, P. J., & Webber, A. (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversity. Proceedings of the National Academy of Sciences USA, 98, 6261?6266. Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., F?rsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., 295 OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 296 REFERENCES Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., N?rnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., & Visaggi, C. C. (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science, 321, 97?100. Altermatt, F., Baumeyer, A., & Ebert, D. (2009) Experimen- tal evidence for male biased flight-to-light behavior in two moth species. Entomologia experimentalis et appli- cata, 130, 259?265. Altschul, S. F. & Lipman, D. J. (1990) Equal animals. Nature, 348, 493?494. Alvarez, L. W., Alvarez, W., Asaro, F., & Michel H. V. (1980) Extraterrestrial cause for the Cretaceous?Tertiary extinction. Science, 208, 1095?1108. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995) Phy- logenetic identification and in-situ detection of individ- ual microbial-cells without cultivation. Microbiological Reviews, 59, 143?169. Amaro, A. M., Chamorro, D., Seeger, M., Arredondo, R., Peirano, I., & Jerez, C. A. (1991) Effect of external pH perturbations on invivo protein-synthesis by the aci- dophilic bacterium thiobacillus-ferrooxidans. Journal of Bacteriology, 173, 910?915. Anderson, S. (1977) Geographic ranges of North Ameri- can terrestrial mammals. American Museum novitates, 2629, 1?15. Anderson, N. H. & Sedell, J. R. (1979) Detritus processing by macroinvertebrates. Annual Review of Entomology, 24, 351?357. Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006) Multivariate dispersion as a measure of beta diversity. Ecology Letters, 9, 683?693. Andrewartha, H. G. & Birch, L. C. (1954) The Distribu- tion and Abundance of Animals. University of Chicago Press, Chicago. Andrewartha, H. G. & Birch, L. C. (1984) The Eco- logical Web: More on the Distribution and Abun- dance of Animals. University of Chicago Press, Chicago. Angilletta, M. J. (2009) Thermal Adaptation. A Theoret- ical and Empirical Synthesis. Oxford University Press, Oxford. Anonymous (1999) The World at Six Billion. United Nations Population Division, New York. Anscombe, F. J. (1950) Sampling theory of the nega- tive binomial and logarithmic series distributions. Bio- metrika, 37, 358?382. Anselin, L. (1995) Local indicators of spatial association- LISA. Geographical Analysis, 27, 93?115. Ansorge, W. J. (2009) Next-generation DNA sequencing techniques. New Biotechnology, 25, 195?203. Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G., & Middlebrook, R. (2009) Energetics approach to predicting mortality risk from environmen- tal stress: a case study of coral bleaching. Functional Ecology, 23, 539?550. Arita, H. T., Christen, J. A, Rodr?guez, P., & Sober?n, J. (2008) Species diversity and distribution in presence- absence matrices: mathematical relationships and bio- logical implications. The American Naturalist, 172, 519?532. Arntz, W. E. & Rumohr, H. (1982) An experimental study of macrobenthic colonization and succession, and the importance of seasonal variation in temperate latitudes. Journal of Experimental Marine Biology and Ecology, 64, 17?46. Barker, G. M. (2002) Phylogenetic diversity: a quantitative framework for measurement of priority and achieve- ment in biodiversity conservation. Biological Journal of the Linnean Society, 76, 165?194. Baselga, A., Jim?nez-Valverde, A., & Niccolini, G. (2007) A multiple-site similarity measure independent of rich- ness. Biology Letters, 3, 642?645. Bawa K. S. & Seidler R. (1998) Natural forest management and conservation of biodiversity in tropical forests. Con- servation Biology, 12, 46?55. Bayley P. B. & Herendeen R. A. (2000) The efficiency of a seine net. Transactions of the American Fisheries Soci- ety, 129, 901?923. Bazzaz, F. A. (1975) Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485?488. Beals, E. W. (1984) Bray?Curtis ordination: An effective strategy for analysis of multivariate ecological data. Advances in Ecological Research, 15, 1?55. Begon, M., Harper, J. L., & Townsend, C. R. (2006) Ecol- ogy: From Individuals to Ecosystems, 4th edn. Sinauer Associates, Sunderland, MA. Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., & DeLong, E. F. (2001) Proteorhodopsin phototrophy in the ocean. Nature, 411, 786?789. Bell, G. (2000) The distribution of abundance in neutral communities. The American Naturalist, 155, 606?617. Bell, G. (2001) Neutral macroecology. Science, 293, 2413?2418. Bell, G. (2003) The interpretation of biological sur- veys. Proceedings of the Royal Society London, 270, 2531?2542. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 297 Bender, E. A., Case, T. J., & Gilpin, M. E. (1984) Pertur- bation experiments in community ecology: theory and practice. Ecology, 65, 1?13. Ben-Moshe, A., Dayan, T., & Simberloff, D. (2001) Conver- gence in morphological patterns and community orga- nization between Old and New World rodent guilds. The American Naturalist, 158, 484?495. Bent, S. J., Pierson, J. D., & Forney, L. J. (2007) Measuring species richness based on microbial community finger- prints: The emperor has no clothes. Applied and Envi- ronmental Microbiology, 73, 2399?2399. Berger, W. H. & Parker, F. L. (1970) Diversity of plank- tonic foraminifera in deep-sea sediments. Science, 168, 1345. Bersier, L. F. & Sugihara, G. (1997) Species abundance patterns: the problem of testing stochastic abundance models. Journal of Animal Ecology, 66, 179?774. Bettoli, P. W. & Maceina, M. J. (1996) Sampling with toxi- cants. In: Fisheries Techniques, Murphy, B. R. & Willis, D. W. (eds). American Fisheries Society Bethesda, MD, pp. 303?333. Bhaya, D., Grossman, A. R., Steunou, A.-S., Khuri, N., Cohan, F. M., Hamamura, N., Melendrez, M. C., Bate- son, M. M., Ward, D. M., & Heidelberg, J. F. (2007) Pop- ulation level functional diversity in a microbial com- munity revealed by comparative genomic and metage- nomic analyses. The ISME Journal, 1, 703?713. Bianchi, G., Gislason, H., Graham, K., Hill, L., Jin, X., Koranteng, K., Manickchand-Heileman, S., Paya, I., Sainsbury, K., Sanchez,F., & Zwanenburg, K. (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES Journal of Marine Sci- ence, 57, 558?571. Bianchi, F., Booij, C. J. H., & Tscharntke, T. (2006) Sustain- able pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society London B, 273, 1715?1727. Bibby, C. J. (1999) Making the most of birds as environ- mental indicators. Ostrich, 70, 81?88. Biggs, R., Carpenter, S. R., & Brock, W. A. (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proceedings of the National Academy of Sciences USA, 106, 826?831. Bivand, R. S., Pebesma, E. J., & G?mez-Rubio, V. (2008) Applied spatial data analysis with R. Springer, D?sseldorf. Blackburn, T. M. & Gaston, K. J. (1998) Some methodolog- ical issues in macroecology. The American Naturalist, 151, 68?83. Blackburn, T. M., Cassey, P., & Gaston, K. J. (2006) Vari- ations on a theme: sources of heterogeneity in the form of the interspecific relationship between abun- dance and distribution. Journal of Animal Ecology, 75, 1426?1439. Blake, J. & Loiselle, B. (2000) Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk, 117, 663?686. Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., & Eyualem-Abebe (2005) Defining opera- tional taxonomic units using DNA barcode data. Philo- sophical Transactions of the Royal Society London B, 360, 1935?1943. Blow, M. J., Zhang, T., Woyke, T., Speller, C. F., Krivoshapkin, A., Yang, D. Y., Derevianko, A., & Rubin, E. M. (2008) Identification of ancient remains through genomic sequencing. Genome Research, 18, 1347?1353. Bockstaller, C. & Girardin, P. (2003) How to validate environmental indicators. Agricultural Systems, 76, 639?653. Boik, R. J. (2004) Commentary on: Why Likelihood? In: The Nature of Scientific Evidence: Statistical, Phili- sophical, and Empirical considerations, Taper, M. L. & Lele, S. R. (eds). University of Chicago Press, Chicago, pp. 167?180. Bonar, S. A. & Hubert, W. A. (2002) Standard sampling of inland fish: Benefits, challenges, and a call for action. Fisheries, 27, 10?16. Bonar, S. A., Thomas, G. L., Thiesfeld, S. L., & Pauley, G. B. (1993) Effect of triploid grass carp on the aquatic macrophyte community of Devils Lake, Oregon. North American Journal of Fisheries Management, 13, 757? 765. Bonar, S. A., Divens, M., & Bolding, B. (1997) Methods for sampling the distribution and abundance of bull trout and Dolly Varden. Washington Department of Fish and Wildlife, Fish Management Program, Inland Fisheries Investigations, Resource Assessment Division, Olympia, WA. Bonar, S. A., Hubert, W. A., & Willis, D. W. (2009a) The North American freshwater fish standard sampling project: Improving fisheries communication. Fisheries, 34, 340?344. Bonar, S. A., Hubert, W. A., & Willis, D. W. (2009b) Stan- dard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda. Bonham, C. D. (1989) Measurements for terrestrial vegeta- tion. Wiley, New York. Borcard, D., Legendre, P., & Drapeau, P. (1992) Partialling out the spatial component of ecological variation. Ecol- ogy, 5, 1045?1055. Borchers, D. L., Buckland, S. T., & Zucchini, W. (2002) Estimating animal abundance: closed populations. Springer, London. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 298 REFERENCES Borregaard, M. K. & Rahbek, C. (2006) Prevalence of intraspecific relationships between range size and abun- dance in Danish birds. Diversity & Distributions, 12, 417?422. Boswell, M. T. & Patil, G. P. (1970) Chance mechanisms generating the negative binomial distribution. In: Ran- dom Counts in Scientific Work, Vol 1, Patil, G. P. (ed). Pennsylvania State, University Press, University Park, pp. 3?22. Botta-Duk?t, Z. (2005) Rao?s quadratic entropy as a mea- sure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 33?540. Boulinier, T., Nichols, J., Sauer, J., Hines, J., & Pollock, K. (1998) Estimating species richness: the importance of heterogeneity in species detectability. Ecology, 79, 1018?1028. Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., & Kolosov, P. (1993) Calibrat- ing rates of early Cambrian evolution. Science, 261, 1293?1298. Bray, J. R. & Curtis, J. T. (1957) An ordination for the upland forest communities of southern Wisconsin. Eco- logical Monographs, 27, 325?349. Brewer, A. & Williamson, M. (1994) A new relationship for rarefaction. Biodiversity and Conservation, 3, 373?379. Brook, B., Sodhi, N., & Ng, P. (2003) Catastrophic extinc- tions follow deforestation in Singapore. Nature, 424, 420?426. Brose, U., Martinez, N. D., & Williams, R. J. (2003) Estimat- ing species richness: sensitivity to sample coverage and insensitivity to spatial patterns. Ecology, 84, 2364?2377. Brown, J. H. (1987) Variation in desert rodent guilds: pat- terns, processes, and scales. In: Organization of Com- munities: Past and Present, Gee, J. H. R. & Giller, P. S. (eds). Blackwell, London, pp. 185?203. Brown, J. H. (1999) Macroecology: progress and prospect. Oikos, 87, 3?14. Brown, J. H. & Kodric-Brown, A. (1977) Turnover rates in insular biogeography: effect of immigration on extinc- tion. Ecology, 58, 445?449. Brown, J. H. & West, G. B. (2000) Scaling in Biology. Oxford University Press, Oxford. Brown, J. H., Mehlman, D. H., & Stevens, G. C. (1995) Spatial variation in abundance. Ecology, 76, 2028?2043. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001) Introduc- tion to Distance Sampling. Oxford University Press, Oxford. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2004) Advanced Distance Sampling. OUP, Oxford. Buckland, S. T., Magurran, A. E., Green, R. E., & Few- ster, R. M. (2005) Monitoring change in biodiversity through composite indices. Philosophical Transactions of the Royal London B, 360, 243?254. Buckley, L. B. & Jetz, W. (2008) Linking global turnover of species and environments. Proceedings of the National Academy of Sciences. USA, 105, 17836?17841. Buckley-Beason, V. A., Johnson, W. E., Nash, W. G., Stanyon, R., Menninger, J. C., Driscoll, C. A., Howard, J., Bush, M., Page, J. E., Roelke, M. E., Stone, G., Martelli, P. P., Wen, C., Ling, L., Duraisingam, R. K., Lam, P. V., O?Brien, S. J. (2006) Molecular evidence for species-level distinctions in clouded leopards. Current Biology, 16, 2371?2376. Bulla, L. (1994) An index of evenness and its associated diversity measure. Oikos, 70, 167?171. Bulmer, M. G. (1974) Fitting Poisson Lognormal Dis- tribution to species-abundance data. Biometrics, 30, 101?110. Bunge, J., Epstein, S. S., & Peterson, D. G. (2006) Comment on ?Computational improvements reveal great bacterial diversity and high metal toxicity in soil?. Science, 313, 918. Burnham, K. P. & Anderson, D. R. (1998) Model Selec- tion and Inference, a Practical Information-Theoretic Approach. Springer, New York. Burnham, K. P. & Anderson, D. R. (2002) Model Selec- tion and Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, New York. Burnham, K. P. & Overton. W. S. (1979) Robust estima- tion of population size when capture probabilities vary among animals. Ecology, 60, 927?936. Bush, A. & Bambach, R. (2004) Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases in the study of paleocommunities. Journal of Geology, 112, 625?642. Butler, B. J. & Chazdon, R. L. (1998) Species richness, spa- tial variation, and abundance of the soil seed bank of a secondary tropical rain forest. Biotropica, 30, 214?222. Buzas, M. A. & Hayek, L. -A. C. (1996) Biodiversity res- olution: an integrated approach. Biodiversity Letters, 3, 40?43. Buzas, M. A. & Hayek, L. -A. C. (1998) SHE Analy- sis for biofacies identification. Journal of Foraminiferal Research, 28, 233?239. Buzas, M. A., Koch, C. F., Culver, S. J., & Sohl, N. F. (1982) On the distribution of species occurrence. Paleobiology, 8, 143?150. Byrd, I. B. (1973) Homer Scott Swingle, 1902?1973. Wildlife Society Bulletin, 1, 157?159. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 299 Cadotte, M. W., Cardinale, B. J., & Oakley, T. H. (2008) Evo- lutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences. USA, 105, 17012?17017. Cadotte, M. W., Cavender-Bares, J., Tilman, D., & Oakley, T. H. (2009) Using phylogenetic, functional, and trait diversity to understand patterns of plant community productivity. PLoS One, 4, e5695. Cadotte, M. W., Davies, T. J., Regetz, J., Kembel, S. W., Clevand, E., & Oakley, T. (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 13(1), 96?105. Cam, E., Nichols, J., Hines, J., Sauer, J., Alpizar-Jara, R., & Flather, C. (2002) Disentangling sampling and ecologi- cal explanations underlying species-area relationships. Ecology, 83, 1118?1130. Camargo, J. A. (1993) Must dominance increase with the number of subordinate species in competitive interac- tions? Journal of Theoretical Biology, 161, 537?542. Cardinale, B. J., Palmer, M. A., & Collins, S. L. (2002) Species diversity enhances ecosystem func- tioning through interspecific facilitation. Nature, 415, 426?429. Cardinale, M., Brusetti, L., Quatrini, P., Borin, S., Puglia, A. M., Rizzi, A., Zanardini, E., Sorlini, C., Corselli, C., & Daffonchio, D. (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied and Environmental Microbiology, 70, 6147?6156. Carroll, C. (2006) Interacting effects of climate change, landscape conversion, and harvest on carnivore pop- ulations at the range margin: marten and lynx in the northern Appalachians. Conservation Biology, 21, 1092?1104. Caruso, T. & Migliorini, M. (2006) A new formulation of the geometric series with applications to oribatid (Acari, Oribatida) species assemblages from human-disturbed Mediterranean areas. Ecological Modelling, 195, 402?406. Casas, F., Mougeot, F., Vi?uela, J., & Bretagnolle, V. (2009) Effects of hunting on the behaviour and spatial distri- bution of farmland birds: importance of hunting-free refuges in agricultural areas. Animal Conservation, 12, 346?354. Castoe, T. A., Poole, A. W., Gu, W., Jason de Koning, A. P., Daza, J. M., Smith, E. N., & Pollock, D. D. (2009) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Molecular Ecology Resources, 341?347. Cavender-Bares, J., Ackerly, D. A., Baum, D., & Bazzaz, F. A. (2004) Phylogenetic overdispersion in Floridean oak communities. The American Naturalist, 163, 823?843. Cavender-Bares, J., Kozak, K. H., Fine, P. V.A., & Kembel, S. W. (2009) The merging of community ecology and phylogentic biology. Ecology Letters, 12, 693?715. CBOL Plant Working Group. (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106, 12794?12797. Chao, A. (1984) Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Sta- tistics, 11, 265?270. Chao, A. (1987) Estimating the population-size for capture recapture data with unequal catchability. Biometrics, 43, 783?791. Chao, A. (2001) An overview of closed capture-recapture models. Journal of Agricultural, Biological and Environ- mental Statistics, 6, 158?175. Chao, A. (2005) Species estimation and applications. In: Encyclopedia of Statistical Sciences, Balakrishnan, N., Read, C. B., & Vidakovic, B. (eds), 2nd edn. Wiley, New York, Vol. 12, pp. 7907?7916. Chao, A. & Bunge, J. (2002) Estimating the number of species in a Stochastic abundance model. Biometrics, 58, 531?539. Chao, A. & Lee, S. -M. (1992) Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87, 210?217. Chao, A. & Shen, T. -J. (2003a) SPADE: Species Prediction And Diversity Estimation. Program and user?s guide at http://chao.stat.nthu.edu.tw/softwareCE.html. Chao, A. & Shen, T. -J. (2003b) Nonparametric estimation of Shannon?s index of diversity when there are unseen species. Environment and Ecological Statistics, 10, 429?443. Chao, A., Yip, P., & Lin, H. S. (1996) Estimating the number of species via a martingale estimating function. Statis- tica Sinica, 6, 403?418. Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. -J. (2005) A new statistical approach for assessing simi- larity of species composition with incidence and abun- dance data. Ecology Letters, 8, 148?159. Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. -J. (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics, 62, 361?371. Chao, A., Jost, L., Chiang, S. -C., Jiang, Y. -H., & Chaz- don, R. (2008) A two-stage probabilistic approach to multiple-community similarity indices. Biometrics, 64, 1178?1186. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 300 REFERENCES Chao, A., Colwell, R. K., Lin, C. -W., & Gotelli, N. (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90, 1125?1133. Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & D?az, S. (2000) Consequences of changing biodiversity. Nature, 405, 234?242. Chave, J., Muller-Landau, H. C., & Levin, S. A. (2002) Comparing classical community models: theoretical consequences for patterns of diversity. The American Naturalist, 159, 1?23. Chen, I. C., Shiu, H., Benedick, S., Holloway, J. D., Chey, V. K., Barlow, H. S., Hill, J. K., & Thomas, C. D. (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences. USA, 106, 1479?1483. Chiarucci, A., Wilson, J. B., Anderson, B. J., & De Domini- cis, V. (1999) Cover versus biomass as an estimate of species abundance: does it make a difference to the con- clusions? Journal of Vegetation Science, 10, 35?42. Chiarucci, A., Bacaro, G., Rocchini, D., & Fattorini, L. (2008) Discovering and rediscovering the sample-based rarefaction formula in the ecological literature. Commu- nity Ecology, 9, 121?123. Chivian, D., Brodie, E. L., Alm, E. J., Culley, D. E., Dehal, P. S., DeSantis, T. Z., Gihring, T. M., Lapidus, A., Lin, L. -H., Lowry, S. R., Moser, D. P., Richardson, P. M., Southam, G., Wanger, G., Pratt, L. M., Andersen, G. L., Hazen, T. C., Brockman, F. J., Arkin, A. P., & Onstott, T. C. (2008) Environmental genomics reveals a single- species ecosystem deep within Earth. Science, 322, 275? 278. Chown, S. L. & Gaston, K. J. (2008) Macrophysiology for a changing world. Proceedings of the Royal Society Lon- don, B, 275, 1469?1478. Chown, S. L. & Gaston, K. J. (2010) Body size varia- tion in insects: a macroecological perspective. Biological Reviews, 85, 139?169. Chown, S. L. & Terblanche, J. S. (2007) Physiological diver- sity in insects: ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50?152. Chown, S. L., Gaston, K. J., & Williams, P. H. (1998) Global patterns in species richness of pelagic seabirds: the Pro- cellariiformes. Ecography, 21, 342?350. Chown, S. L., van Rensburg, B. J., Gaston, K. J., Rodrigues, A. S. L., & van Jaarsveld, A. S. (2003) Energy, species richness, and human population size: conservation implications at a national scale. Ecological Applications, 13, 1233?1241. Chytr?, M., Sedl?kov?, I., & Tich?, L. (2009) Species rich- ness and species turnover in a successional heathland. Applied Vegetation Science, 4, 89?96. CIA Fact Book. (2009) https://www.cia.gov/library/ publications/the-world-factbook/geos/XX.html. Accessed 12 July 2009 12h17 UTC. Cianciaruso, M. V., Batalha, M. A., Gaston, K. J., & Petchey, O. L. (2009) Including intraspecific variability in func- tional diversity. Ecology, 90, 81?89. Clarke, K. R. (1990) Comparisons of dominance curves. Journal of Experimental Marine Biology and Ecology, 138, 143?157. Clarke, J. A, & May, R. M. (2002) Taxonomic bias in con- servation research. Science, 297, 191?192. Clarke, K. R. & Warwick, R. M. (1998) A taxonomic dis- tinctness index and its statistical properties. Journal of Applied Ecology, 35, 523?531. Clarke, K. R. & Warwick, R. M. (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (PRIMER-E). Plymouth Marine Labora- tory, Plymouth. Clifford, H. T. & Stephenson, W. (1975) An Intro- duction to Numerical Classification. Academic Press, New York. Clough, Y., Holzschuh, A., Gabriel, D., Purtauf, T., Kleijn, D., Kruess, A., Steffan-Dewenter, I., & Tscharn- tke, T. (2007) Alpha and beta diversity of arthropods and plants in organically and conventionally man- aged wheat fields. Journal of Applied Ecology, 44, 804?812. Cochran, W. G. (1977) Sampling Techniques. Wiley, New York. Coddington, J. A., Agnarsson, I., Miller, J. A., Kuntner, M., & Hormiga, G. (2009) Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology, 78, 573?584. Cohen, J. E. (1995) How Many People Can the Earth Sup- port? W. W. Norton, New York. Coleman, B. D., Mares, M. A., Willig, M. R., & Hsieh, Y. -H. (1982) Randomness, area, and species richness. Ecology, 63, 1121?1133. Collins, S. L. & Glenn, S. M. (1997) Effects of organis- mal and distance scaling on analysis of species dis- tribution and abundance. Ecological Applications, 7, 543?551. Collins, S. L., Micheli, F., & Hartt, L. (2000) A method to determine rates and patterns of variability in ecological communities. Oikos, 91, 285?293. Collins, S. L., Suding, K. N., Cleland, E. E., Batty, M., Pennings, S. C., Gross, K. L., Grace, J. B., Gough, L., Fargione, J. E., & Clar, C. M. (2008) Rank clocks and plant community dynamics. Ecology, 89, 3534?3541. Colwell, R. K. (2009) Estimates: Statistical Estima- tion of Species Richness and Shared Species from Samples User?s Guide and application published at: http://purl.oclc.org/estimates. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 301 Colwell, R. K. & Coddington, J. A. (1994) Estimating ter- restrial biodiversity through extrapolation. Philosophi- cal Transactions of the Royal Society, London, Series B, 345, 101?118. Colwell, R. K., Mao, C. X., & Chang, J. (2004) Interpolating, extrapolating, and comparing incidence- based species accumulation curves. Ecology, 85, 2717?2727. Colwell, R. K., Brehm, G., Cardel?s, C., Gilman, A. C., & Longino, J. T. (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258?261. Condit, R., Hubbell, S. P., LaFrankie, J. V., Sukumar, R., Manokaran, N., Foster, R. B., & Ashton P. S. (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. Journal of Ecology, 84, 549?562. Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E., Manokaran, N., Sukumar, R., & Yamakura, T. (2000) Spatial patterns in the distribution of tropical tree species. Science, 288, 1414?1418. Conlisk, E., Bloxham, M., Conlisk, J., Enquist, B., & Harte, J. (2007) A new class of models of spatial distribution. Ecological Monographs, 77, 269?284. Conlisk, E., Conlisk, J., Enquist, B., Thompson, J., & Harte, J. (2009) Improved abundance prediction from presence-absence data. Global Ecology and Biogeogra- phy, 18, 1?10. Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302?1310. Connell, J. H. & Sousa, W. P. (1983) On the evidence needed to judge ecological stability or persistence. The American Naturalist, 121, 789?824. Connolly, S. R. & Miller, A. I. (2001a) Global Ordovi- cian faunal transitions in the marine benthos: proximate causes. Paleobiology, 27, 779?795. Connolly, S. R. & Miller, A. I. (2001b) Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiol- ogy, 27, 751?767. Connolly, S. R., Hughes, T. P., Bellwood, D. R., & Karlson R. H. (2005) Community structure of corals and reef fishes at multiple scales. Science, 309, 1363?1365. Connolly, S. R., Dornelas, M., Bellwood, D. R., & Hughes, T. P. (2009) Testing species abundance models: a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology, 90, 3138?3149. Connor, E. F. & Simberloff, D. (1979) The assembly of species communities: chance or competition? Ecology, 60, 1132?1140. Constanza, R. et al. (1997) The value of the world?s ecosystem services and natural capital. Nature, 387, 253?257 . Cornelissen, J. H. C., Lavorel, S., Garnier, E., D?az, S., Buch- mann, N., Gurvich, D. E., Reich, P. B., Ter, Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G., and Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335?380. Cornwell, W. K. & Ackerly, D. D. (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109?126. Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology, 87, 1465?1471. Costello, M. J., Pohle, G., & Martin, A. (2004) Evaluating biodiversity in marine environmental assessments. In: Research and Development Monograph Series, Series RaDM (ed.), Ottawa. Cowley, M. J.R., Thomas, C. D., Wilson, R. J., Le?n-Cort?s, J. L., Guti?rrez, D., & Bulman, C. R. (2001) Density- distribution relationships in British butterflies: II. An assessment of mechanisms. Journal of Animal Ecology, 70, 426?441. Crame, J. A. (2001) Taxonomic diversity gradients through geological time. Diversity & Distributions, 7, 175?189. Cressie, N. (1992) Statistics for Spatial Data. Wiley Inter- science, Chichester. Crisp, M. D. & Cook, L. G. (2009) Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution, 63, 2257?2265. Crist, T. O. & Veech, J. A. (2006) Additive partitioning of rarefaction curves and species-area relationships: unify- ing alpha, beta, and gamma diversity with sample size and area. Ecology Letters, 9, 923?932. Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S. (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. The American Naturalist, 162, 734?743. Crozier, R. H. (1997) Preserving the information content of species: genetic diversity, phylogeny, and conservation worth. Annual Review of Ecology and Systematics, 28, 243?268. Cunningham, S. A., Summerhayes, G., & Westoby, M. (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradi- ents. Ecology, 69, 569?588. Curtis, T. P. & Sloan, W. T. (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Current Opinion in Microbiology, 7, 221?226. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 302 REFERENCES Curtis, T. P., Sloan, W. T., & Scannell, J. W. (2002) Estimat- ing prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America, 99, 10494?10499. Daily, G. C., Alexander, S., Ehrlich, P. R., Goulder, L., Lubchenco, J., Matson, P. A., Mooney, H. A., Postel, S., Schneider, S. H., & Tilman, D. (1997) Ecosystem services: benefits supplied to human societies by natural ecosys- tems. Issues in Ecology, 1, 1?18. Dale, M. R.T. & Fortin, M. J. (2002) Spatial autocorre- lation and statistical tests in ecology. Ecoscience, 9, 162?167. Dale, M. R.T., Dixon, P., Fortin, M.-J., Legendre, P., Myers, D. E., & Rosenberg, M. S. (2002) Conceptual and mathe- matical relationships among methods for spatial analy- sis. Ecography, 25, 558?577. Dalton, H. (1920) The measurement of the inequality of incomes. Economic Journal, 119, 348?361. Dampier, J. E. E., Luckai, N., Bell, F. W., & Towill, W. D. (2007) Do tree-level monocultures develop following Canadian boreal silviculture? Tree-level diversity tested using a new method. Biodiversity and Conservation, 16, 2933?2948. Damschen, E. I., Haddad, N. M., Orrock, J. L., Tewks- bury, J. J., & Levey, D. J. (2006) Corridors increase plant species richness at large scales. Science, 313, 1284?1286. Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London. Dauvin, J. C. (1984) Dynamique d??cosyst?mes macroben- thiques des fonds s?dimentaires de la baie de Mor- laix et leur perturbation par les hydrocarbures de l?Amoco Cadiz?. Th?se d?Etat, Universit? de Paris, Paris, 456pp. Davis, M. B. & Shaw, R. G. (2001) Range shifts and adap- tive responses to Quaternary climate change. Science, 292, 673?679. Davison, A., Blackie, R. L. E., & Scothern, G. P. (2009) DNA barcoding of stylommatophoran land snails: a test of existing sequences. Molecular Ecology Research, 9, 1092?1101. Dawson, W., Burslem, D. F. R. P., & Hulme, P. E. (2009) The suitability of weed risk assessment as a conservation tool to identify invasive plant threats in East African rainforests. Biological Conservation, 142, 1018?1024. Dayan, T. & Simberloff, D. (2005) Ecological and community-wide character displacement: the next gen- eration. Ecology Letters, 8, 875?894. Deagle, B. E., Kirkwood, R., & Jarman, S. N. (2009) Analy- sis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Molecular Ecology, 18, 2022?2038. Death, R. G. & Zimmerman, E. M. (2005) Interac- tion between disturbance and primary productivity in determining stream invertebrate diversity. Oikos, 111, 392?402. de Bello, F., Thuiller, W., Lep?, J., Choler, P., Cl?ment, J. -C., Macek, P., Sebasti?, M. T., & Lavorel, S. (2009) Partitioning of diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20, 475?486. DeLong, E. E. & Pace, N. R. (2001) Environmental diver- sity of Bacteria and Archaea. Systematic Biology, 50, 470?478. de Mazancourt, C., Johnson, E., & Barraclough, T. G. (2008) Biodiversity inhibits species? evolutionary responses to changing environments. Ecology Letters, 11, 380?388. DeQuiroz, K. (2007) Species concepts and species delimi- tations. Systematic Biology, 56, 879?886. Dewdney, A. K. (1998) A general theory of the sampling process with applications to the ?veil line?. Theoretical Population Biology, 54, 294?302. Dewdney, A. K. (2000) A dynamical model of commu- nities and a new species-abundance distribution. The Biological Bulletin, 198, 152?165. Diamond, J. M. & May, R. M. (1977) Species turnover rates on islands: dependence on census intervals. Science, 197, 266?270. D?az, S. & Cabido, M. (2001) Vive la diff?rence: plant func- tional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16, 646?655. D?az, S., Lavorel, S., de Bello, F., Qu?tier, F., Grigulis, K., & Robson, T. M. (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Pro- ceedings of the National Academy of Sciences, 104, 20684?20689. Diggle, P. J. (1983) Statistical Analysis of Spatial Point Pat- terns. Academic Press, London. Diniz, J. A. F., Bini, L. M., & Hawkins, B. A. (2003) Spatial autocorrelation and red herrings in geograph- ical ecology. Global Ecology and Biogeography, 12, 53?64. Diserud, O. H. & Engen, S. (2000) A general and dynamic species abundance model, embracing the lognormal and the gamma models. The American Naturalist, 155, 497?511. Diserud, O. H. & ?degaard, F. (2007) A multiple-site sim- ilarity measure. Biology Letters, 3, 20?22. Dobyns, J. R. (1997) Effects of sampling intensity on the collection of spider (Araneae) species and the estima- tion of spider richness. Environmental Entomology, 26, 150?162. Donaldson, J., N?nni, I., Zachariades, C., & Kemper, J. (2002) Effects of habitat fragmentation on pollinator OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 303 diversity and plant reproductive success in renosterveld shrublands of South Africa. Conservation Biology, 16, 1267?1276. Dormann, C. F. (2007a) Assessing the validity of autologis- tic regression. Ecological Modelling, 207, 234?242. Dormann, C. F. (2007b) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129?138. Dormann, C. F., McPherson, J. M., Ara?jo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., & Kissling, W. D. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609. Dornelas, M. & Connolly, S. R. (2008) Multiple modes in a coral species abundance distribution. Ecology Letters, 11, 1008?1016. Dornelas, M., Connolly, S. R., & Hughes, T. P. (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature, 440, 80?82. Dornelas, M., Moonen, A. C., Magurran, A. E., & Barberi, P. (2009) Species abundance distributions reveal envi- ronmental heterogeneity in modified landscapes. Jour- nal of Applied Ecology, 46, 666?672. Dornelas, M., Phillip, D. A. T., and Magurran, A. E. (2010) Abundance and dominance become less predictable as species richness decreases. Global Ecology and Biogeog- raphy, in press. Doroghazi, J. R. & Buckley, D. H. (2008) Evidence from GC-TRFLP that bacterial communities in soil are lognor- mally distributed. Plos One, 3, e2910. Dray, S. & Legendre, P. (2008) Testing the species traits- environment relationships: the fourth-corner problem revisited. Ecology, 89, 3400?3412. Dray, S., Legendre, P., & Peres-Neto, P. R. (2006) Spa- tial modelling: a comprehensive framework for princi- pal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483?493. Drayton, B. & Primack, R. B. (1996) Plant species lost in an isolated conservation area in metropolitan Boston from 1894 to 1993. Conservation Biology, 10, 30?39. Driscoll, C. A., Menotti-Raymond, M., Roca, A., Hupe, K., Johnson, W. E., Geffen, E., Harley, E. H., Delibes, M., Pontier, D., Kitchener, A. C., Yamaguchi, N., O?Brien, S. J., & Macdonald, D. W. (2007) The near eastern origin of cat domestication. Science, 317, 519?523. Drobner, U., Bibby, J., Smith, B., & Wilson, J. B. (1998) The relation between community biomass and even- ness: What does community theory predict, and can these predictions be tested? Oikos, 82, 295?302. Dunn, R. R., Sanders, N. J., Menke, S. B., Weiser, M. D., Fitzpatrick, M. C., Laurent, E., Lessard, J. -P., Agosti, D., Andersen, A., Bruhl, C., Cerda, X., Ellison, A., Fisher, B., Gibb, H., Gotelli, N., Gove, A., Gu?nard, B., Janda, M., Kaspari, M., Longino, J. T., Majer, J., McGlynn, T. P., Menke, S. B., Parr, C., Philpott, S., Pfeiffer, M., Retana, J., Suarez, A., & Vasconcelos, H. (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 12, 324?333. Dutilleul, P., Clifford, P., Richardson, S., & Hemon, D. (1993) Modifying the t test for assessing the corre- lation between two spatial processes. Biometrics, 49, 305?314. DuToit, J. T. (2003) Large herbivores and savanna hetero- geneity. In: The Kruger Experience: Ecology and Man- agement of Savanna Heterogeneity, DuToit, J. T., Rogers, K. H., & Biggs, H. C. (eds). Island Press, Washington, pp. 292?309. Dykhuizen, D. E. (1998) Santa Rosalia revisited: Why are there so many species of bacteria? Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 73, 25?33. EASAC. (2009) Ecosystem Services and Biodiversity in Europe. The Royal Society, London. Economo, E. & Kiett, T. (2008) Species diversity in neutral metacommunities: a network approach. Ecology. Letters 11, 52?62. Edwards, A. W.F. (1992) Likelihood ? Expanded Edition. Johns Hopkins University Press, Baltimore. Efron, B. & Thisted, R. (1976) Estimating the number of unseen species: how many words did Shakespeare know? Biometrika, 63, 35?41. Efron, B. & Tibshirani, R. J. (1993) An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, FL. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., Phillips, S. J., Richard- son, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006) Novel methods improve prediction of species? distribu- tions from occurrence data. Ecography, 29, 129?151. Ellis, E. C. & Ramankutty, N. (2008) Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439?447. Ellison, A. M., Record, S., Arguello, A., & Gotelli, N. J. (2007) Rapid inventory of the ant assemblage in a temperate hardwood forest: species composition and assessment of sampling methods. Environental Ento- mology, 36, 766?775. Elton, C. (1946) Competition and the structure of ecologi- cal communities. Journal of Animal Ecology, 15:54?68. Elzinga, C. L., Salzer, D. W., & Willoughby, J. W. (1998) Measuring & Monitoring Plant Populations. US Dept. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 304 REFERENCES of the Interior, Bureau of Land Management; Nature Conservancy, Denver, CO. Engen, S. & Lande, R. (1996a) Population dynamic models generating species abundance distributions of the gamma type. Journal of Theoretical Biology, 178, 325?331. Engen, S. & Lande, R. (1996b) Population dynamic models generating the lognormal species abundance distribu- tion. Mathematical Biosciences, 132, 169?183. Engen, S., Lande, R., Walla, T., & DeVries, P. J. (2002) Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. The American Naturalist, 160, 60?73. Engen, S., Saether, B. E., Sverdrup-Thygeson, A., Grotan, V., & Odegaard, F. (2008) Assessment of species diver- sity from species abundance distributions at different localities. Oikos, 117, 738?748. Epperson, B. K. (2003) Geographical Genetics. Princeton University Press, Princeton. Erickson, R. O. (1945) The Clematis fremontii var. riehlii population in the Ozarks. Annals of the Missouri Botan- ical Garden, 32, 413?460. Erwin, D. H. (2006) Extinction: How life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton. Etienne, R. S. (2005) A new sampling formula for neutral biodiversity. Ecology Letters, 8, 253?260. Etienne, R. S. (2007) A neutral sampling formula for mul- tiple samples and an ?exact? test of neutrality. Ecology Letters, 10, 608?618. Etienne, R. S. & Alonso, D. (2005) A dispersal-limited sam- pling theory for species and alleles. Ecology Letters, 8, 1147?1156. Etienne, R. S. & Olff, H. (2004) A novel genealogical approach to neutral biodiversity theory. Ecology Let- ters, 7, 170?175. Etienne, R. S. & Olff, H. (2005) Confronting different mod- els of community structure to species-abundance data: a Bayesian model comparison. Ecology Letters, 8, 493? 504. Etienne, R. S., Latimer, A. M., Silander, J. A., & Cowling, R. M. (2006) Comment on ?Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot?. Science, 311, 610. Etienne, R. S., Alonso, D., & McKane, A. J. (2007a) The zero-sum assumption in netural biodiversity theory. Journal of Theoretical Biology, 248, 522?536. Etienne, R. S., Apol, M. E. F., Olff, H., & Weissing, F. J. (2007b) Modes of speciation and the neutral theory of biodiversity. Oikos, 116, 241?258. Evans, K. L., Rodrigues, A. S. L., Chown, S. L., & Gas- ton, K. J. (2006a) Protected areas and regional avian species richness in South Africa. Biology Letters, 2, 184?188. Evans, K. L., van Rensburg, B. J., Gaston, K. J., & Chown, S. L. (2006b) People, species richness and human pop- ulation growth. Global Ecology and Biogeography, 15, 625?636. Evans, K. L., Gaston, K. J., Sharp, S. P., McGowan, A., & Hatchwell, B. J. (2009) The effect of urbanisation on avian morphology and latitudinal gradients in body size. Oikos, 118, 251?259. Evans, M., Hastings, N., & Peacock, B. (1993) Statistical Distributions, 2nd edn. Wiley, New York. Faith, D. P. (1992) Conservation evaluation and phyloge- netic diversity. Biological Conservation, 61, 1?10. Fargione, J., Brown, C. S., & Tilman, D. (2003) Community assembly and invasion: an experimental test of neu- tral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916?8920. Farrell, L. E., Roman, J., & Sunquist, M. E. (2000) Dietary separation of sympatric carnivores identified by molec- ular analysis of scats. Molecular Ecology, 9, 1583?1590. Felsenstein, J. (1985) Phylogenies and the comparative method. The American Naturalist, 125, 1?15. Felsenstein, J. (2004) Inferring Phylogenies. Sinauer Asso- ciates, Sunderland, MA, USA. Feng, M. C., Nowierski, R. M., & Zeng, Z. (1993) Popu- lations of Sitobion avenae and Aphidius ervi on sprint wheat in the northwestern United States. Entomologia Experimentalis et Applicata, 67, 109?117. Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R., & Watson, J. D. (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology, 81, 1970?1984. Fiedler, K. & Schulze, C. H. (2004) Forest modification affects diversity (but not dynamics) of speciose tropical pyraloid moth communities. Biotropica, 36, 615?627. Figueiredo, M. S. L. & Grelle, C. E. V. (2009) Predicting global abundance of a threatened species from its occur- rence: implications for conservation planning. Diversity & Distributions, 15, 117?121. Filippi-Codaccioni, O., Clobert, J., & Julliard, R.. (2009) Urbanization effects on the functional diversity of avian agricultural communities. Acta Oecologia, 35, 705?710. Finch, S., Skinner, G., & Freeman, G. H. (1975) The distrib- ution and analysis of cabbage root fly egg populations. The Annals of Applied Biology, 79, 1?18. Fisher, J. A. D. & Frank, K. T. (2004) Abundance- distribution relationships and conservation of exploited marine fishes. Marine Ecology Progress Series, 279, 201?213. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 305 Fisher, M. M. & Triplett, E. W. (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology, 65, 4630?4636. Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943) The relation between the number of species and the number of individuals in a random sample of an animal popu- lation. Journal of Animal Ecology, 12, 42?58. Fisher, J. A. D., Frank, K. T., Petrie, B., Leggett, W. C., & Shackell, N. L. (2008) Temporal dynamics within a con- temporary latitudinal diversity gradient. Ecology Let- ters, 11, 883?897. Flaten, G. R., Botnen, H., Grung, B., & Kvalheim, O. M. (2007) Quantifying disturbances in benthic communi- ties ? comparison of the community disturbance index (CDI) to other multivariate methods. Ecological Indica- tors, 7, 254?276. Flather, C. (1996) Fitting species-accumulation functions and assessing regional land use impacts on avian diver- sity. Journal of Biogeography, 23, 155?168. Fleishman, E., Thomson, J. R., Mac Nally, R., Murphy, D. D., & Fay, J. P. (2005) Using indicator species to predict species richness of multiple taxonomic groups. Conservation Biology, 19, 1125?1137. Folch, J., Cocero, M. J., Chesn?, P., Alabart, J. L., Dominguez, V., Cogni? , Y., Roche, A., Vern?ndez-?riaz, A., Marti, J. I., S?nchez, P., Echegoyen, E., Beckers, J. F., S?nchez Bonastre, A., & Vignon, X. (2009) First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 71, 1026?1034. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C. S. (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics, 35, 557?581. Foote, M. (1988) Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology, 14, 258?271. Foote, M. (1994) Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology, 20, 424?444. Foote, M. (1997) Estimating taxonomic durations and preservation probability. Paleobiology, 23, 278?300. Foote, M. (2000) Origination and extinction components of taxonomic diversity: general problems. In: Deep time ? Paleobiology?s perspective, Erwin, D. H. & Wing, S. L. (eds). Paleobiology Memoir, Paleontological Soci- ety and University of Chicago Press, pp. 74?102. Foote, M. (2001a) Estimating completeness of the fossil record. In: Paleobiology II, Briggs, D. E. G. & Crowther, P. R. (eds). Blackwell, Oxford, pp. 500?504. Foote, M. (2001b) Evolutionary rates and the age distribu- tion of living and extinct taxa. In: Evolutionary Patterns ? Growth, Form, and Tempo in the Fossil Record, Jack- son, J. B. C., Lidgard, S., & McKinney, F. K. (eds). The University of Chicago Press, Chicago, pp. 245?294. Foote, M. (2001c) Inferring temporal patterns of preser- vation, origination, and extinction from taxonomic sur- vivorship analysis. Paleobiology, 27, 602?630. Foote, M. (2003) Origination and extinction through the Phanerozoic: a new approach. The Journal of Geology, 111, 125?148. Foote, M. (2005) Pulsed origination and extinction in the marine realm. Paleobiology, 31, 6?20. Foote, M. (2007a) Extinction and quiescence in marine ani- mal genera. Paleobiology, 33, 261?272. Foote, M. (2007b) Symmetric waxing and waning of marine invertebrate genera. Paleobiology, 33, 517?529. Foote, M. & Raup, D. M. (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology, 22, 121?140. Foote, M., Crampton, J. S., Beu, A. G., & Cooper, R. A. (2008) On the bidirectional relationship between geo- graphic range and taxonomic duration. Paleobiology, 34, 421?433. Foran, D. R., Crooks, K. R., & Minta, S. C. (1997) Species identification from scat: an unambiguous genetic method. Wildlife Society Bulletin, 25, 835?839. Ford, N. B. & Lancaster, D. L. (2007) The species- abundance distribution of snakes in a bottomland hard- wood forest of the southern United States. Journal of Herpetology, 41, 385?393. Forest, F., Grenyer, R., Rouget, M., Davies, T. J., Cowling, R.M, Faith, D. P., Balmford, A., Manning, J. C., Proches, S., van der Bank, M., Reeves, G., Hedderson, T. A. J., & Salvolainen, V. (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757?760. Fornara, D. A. & Tilman, D. (2009) Ecological mechanisms associated with the positive diversity ? productivity relationship in an N-limited grassland. Ecology, 90, 408?418. Fortin, M. J. & Dale, M. R.T. (2005) Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge. Foster, S. D. & Dunstan, P. K. (2009) The analysis of biodi- versity using rank abundance distributions. Biometrics, 661, 186?195. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002) Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester. Foxcroft, L. C., Rouget, M., Richardson, D. M., & Mac- Fadyen, S. (2004) Reconstructing 50 years of Opun- OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 306 REFERENCES tia stricta invasion in the Kruger National Park, South Africa: environmental determinants and propagule pressure. Diversity & Distributions, 10, 427?437. Foxcroft, L. C., Richardson, D. M., Rouget, M., & Mac- Fadyen, S. (2009) Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Diversity & Distributions, 15, 367?378. Frankham, R., Ballou, J. D., & Briscoe, D. A. (eds) 2002. Introduction to Conservation Genetics. Cambridge Uni- versity Press. Freckleton, R. P., Gill, J. A., Noble, D., & Watkinson, A. R. (2005) Large-scale population dynamics, abundance- occupancy relationships and the scaling from local to regional population size. Journal of Animal Ecology, 74, 353?364. Freeman, S. N., Noble, D. G., Newson, S. E., & Baillie S. R. (2007) Modelling population changes using data from different surveys: the Common Birds Census and the Breeding Bird Survey. Bird Study, 54, 61?72. Freese, L., Auster, P. J., Heifetz, J., & Wing, B. L. (1999) Effects of trawling on seafloor habitat and associated invertebrate taxa in the Gulf of Alaska. Marine Ecology- Progress Series, 182, 119?126. Frezal, L. & Leblois, R. (2008) Four years of DNA barcod- ing: current advances and prospects. Infection, Genetics and Evolution, 8, 727?736. Frontier, S. (1985) Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology ? An Annual Review, 23, 253?312. Gans, J., Wolinsky, M., & Dunbar, J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387?1390. Garcia, L. V. (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos, 105, 657. Garcia-Martinez, J., Acinas, S. G., Anton, A. I., & Rodriguez-Valera, F. (1999) Use of the 16S-23S ribo- somal genes spacer region in studies of prokary- otic diversity. Journal of Microbiological Methods, 36, 55?64. Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkin- son, A. R. (2003) Long-term region-wide declines in Caribbean corals. Science, 301, 958?960. Gardner, T. A., Barlow, J., Aruajo, I. S., ?vila-Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. M., Hoogmoed, M. S., Lieite, R. N., Lo-Man-Hung, N. F., Malcolm, J. R., Mar- tins, M. B., Mestre, L. A. M., Miranda-Santos, R., Overal, W. L., Parry, L., Peters, S. L., Roberio-Junior, M. A., da Silva, M. N. F., Motta, C. D. S., & Peres, C. A. (2007) The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters, 11, 139?150. Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthe- lier, P., Ducout, B., Roumet, C., & Navas, M.-L. (2001) Consistency of species ranking based on functional leaf traits. The New Phytologist, 152, 69?83. Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Lep?, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V. P., Quested, H., Qu?tier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., Theau, J.-P., Th?bault, A., Vile, D., & Zarovali, M. P. (2006) Assessing the effects of land- use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European Sites. Annals of Botany, 99, 967?985. Gaston, K. J. (1991) How large is a species? geographic range? Oikos, 61, 434?438. Gaston, K. J. (1994) Rarity. Chapman & Hall, London. Gaston, K. J. (ed) (1996) Biodiversity: A biology of num- bers and difference. Wiley, New York. Gaston, K. J. (1996a) Species-range size distributions: pat- terns, mechanisms and implications. Trends in Ecology and Evolution, 11, 197?201. Gaston, K. J. (1996b) Biodiversity ? latitudinal gradients. Progress in Physical Geography, 20, 466?476. Gaston, K. J. (2003) The Structure and Dynamics of Geo- graphic Ranges. Oxford University Press, Oxford. Gaston, K. J. (2006) Biodiversity and extinction: macroeco- logical patterns and people. Progress in Physical Geog- raphy, 30, 258?269. Gaston, K. J. (2009) Geographic range limits: achieving synthesis. Proceedings of the Royal Society London, B, 276, 1395?1406. Gaston, K. J. & Blackburn, T. M. (2000) Pattern and Process in Macroecology. Blackwell, Oxford. Gaston, K. J. & Fuller, R. A. (2008) Commonness, pop- ulation depletion and conservation biology. Trends in Ecology and Evolution, 23, 14?19. Gaston, K. J. & Fuller, R. A. (2009) The sizes of species? geographic ranges. Journal of Applied Ecology, 46, 1?9. Gaston, K. J. & Lawton, J. H. (1989) Insect herbivores on bracken do not support the core-satellite hypothesis. The American Naturalist, 134, 761?777. Gaston, K. J. & Lawton, J. H. (1990) Effects of scale and habitat on the relationship between regional distribu- tion and local abundance. Oikos, 58, 329?335. Gaston, K. J. & He, F. (2002) The distribution of species range size: a stochastic process. Proceedings of the Royal Society London, B, 269, 1079?1086. Gaston, K. & May, R. M. (1992) The taxonomy of taxono- mists. Nature, 356, 281?283. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 307 Gaston, K. J. & McArdle, B. H. (1994) The temporal vari- ability of animal abundances: measures, methods and patterns. Philosophical Transactions of the Royal Soci- ety, London Lond. B, 345, 335?358. Gaston, K. J. & Warren, P. H. (1997) Interspecific abundance-occupancy relationships and the effects of disturbance: a test using microcosms. Oecologia, 112, 112?117. Gaston, K. J., Blackburn, T. M., & Lawton, J. H. (1997) Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 66, 579?601. Gaston, K. J., Blackburn, T. M., & Gregory, R. D. (1998a) Interspecific differences in intraspecific abundance- range size relationships of British breeding birds. Ecog- raphy, 21, 149?158. Gaston, K. J., Blackburn, T. M., Gregory, R. D., & Greenwood, J. J.D. (1998b) The anatomy of the inter- specific abundance-range size relationship for the British avifauna: I. Spatial patterns. Ecology Letters, 1, 38?46. Gaston, K. J., Blackburn, T. M., & Gregory, R. D. (1999a) Does variation in census area confound den- sity comparisons? Journal of Applied Ecology, 36, 191?204. Gaston, K. J., Blackburn, T. M., & Gregory, R. D. (1999b) Intraspecific abundance-range size relationships: case studies of six bird species in Britain. Diversity & Dis- tributions 5, 197?212. Gaston, K. J., Blackburn, T. M., Greenwood, J. J.D., Gregory, R. D., Quinn, R. M., & Lawton, J. H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37 (Suppl. 1), 39?59. Gaston, K. J., Borges, P. A.V., He, F., & Gaspar, C. (2006) Abundance, spatial variance, & occupancy: species dis- tribution in the Azores. Journal of Animal Ecology, 75, 646?656. Gaston, K. J., Chown, S. L., & Evans, K. L. (2008a) Eco- geographic rules: elements of a synthesis. Journal of Biogeography, 35, 483?500. Gaston, K. J., Jackson, S. F., Cant?-Salazar, L., & Cruz- Pi??n, G. (2008b) The ecological performance of pro- tected areas. Annual Review of Ecology, Evolution and Systematics, 39, 93?113. Gaston, K. J., Chown, S. L., Calosi, P., et al. (2009) Macro- physiology: a conceptual re-unification. The American Naturalist, 174, 595?612. Gebremedhin, B., Ficetola, G. F., Naderi, S., Rezaei, H. R., Maudet, C., Rioux, D., Luikart, G., Flagstad, ?., Thuiller, W., & Taberlet, P. (2009) Frontiers in identifying conser- vation units: from neutral markers to adaptive genetic variation. Animal Conservation, 12, 107?109. Gelman, A. (2003) A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. International Statistical Review, 71, 369?382. Genome 10K Community of Scientists. (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. Journal of Heredity, 100, 659?674. Gerrodette, T. (1993) TRENDS: Software for a power analysis of linear regression. Wildlife Society Bulletin, 21, 515?516. Gibbs, J. E. (1995) MONITOR: Software for power analysis in population monitoring programs. In. USGS Pautux- ent Wildlife Research Center Laurel, Maryland. Gibbs, J. P., Droege, S., & Eagle, P. (1998) Monitor- ing populations of plants and animals. BioScience, 48, 935?940. Gienapp, P., Leimu, R., & Meril?, J. (2007) Responses to climate change in avian migration time ? microevolu- tion versus phenotypic plasticity. Climate Research, 35, 25?35. Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., & Meril?, J. (2008) Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecol- ogy, 17, 167?178. Gilchrist, G. W., Huey, R. B., Balany?, J., Pascual, M., & Serra, L. (2004) A time series of evolution in action: a lat- itudinal cline in wing size in South American Drosophila subobscura. Evolution, 58, 768?780. Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser- Liggett, C. M., & Nelson, K. E. (2006) Metagenomic analysis of the human distal gut microbiome. Science, 312, 1355?1359. Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P., & Saatchi S. (2008) Measuring and modelling biodiver- sity from space. Progress in Physical Geography, 32, 203?221. Gislason, H. & Rice, J. (1998) Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES Journal of Marine Science, 55, 362?370. Gleason, H. A. (1929) The significance of Raunkiaer?s law of frequency. Ecology, 10, 406?408. Golicher, D. J., O?Hara, R. B., Ruiz-Montoya, L., & Cayuela, L. (2006) Lifting a veil on diversity: a Bayesian approach to fitting relative-abundance models. Ecologi- cal Applications, 16, 202?212. Good, I. J. (1953) The population frequencies of species and the estimation of population parameters. Bio- metrika, 40, 237?264. Good, I. J. (2000) Turing?s anticipation of empirical Bayes in connection with the cryptanalysis of the naval OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 308 REFERENCES Enigma. Journal of Statistical Computation and Simu- lation, 66, 101?111. Go?ner, M., Chao, A., Bailey, R., & Prinzing, A. (2009) Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phy- tophages on two lineages of trees. The American Nat- uralist, 173, 599?614. Gotelli, N. J. (1991) Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypoth- esis. The American Naturalist, 138, 768?776. Gotelli, N. J. (2008) A Primer of Ecology, 4th edn. Sinauer Associates, Sunderland, MA. Gotelli, N. J. & Colwell, R. K. (2001) Quantifying bio- diversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379?391. Gotelli, N. & Entsminger, G. L. (2009) EcoSim: Null Models Software for Ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear, Jericho, VT 05465. http://garyentsminger.com/ecosim.htm. Gotelli, N. J. & Graves, G. R. (1996) Null Models in Ecol- ogy. Smithsonian Institution Press, WA, USA. Gotelli, N., Anderson, M. J., Arita, H. T., Chao, A., Colwell, R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., Grytnes, J. A., Jiang, Y.-H., Jetz, W., Lyons, S. K., McCain, C. M., Magurran, A. E., Rahbek, C., Rangel, T. F.L. V.B., Soberon, J., Webb, C. O., & Willig, M. R. (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 12, 873?886. Govender, N., Trollope, W. S. W., & van Wilgen, B. W. (2006) The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegeta- tion in South Africa. Journal of Applied Ecology, 43, 748?758. Gower, J. C. (1971) A general coefficient of similarity and some of its properties. Biometrics, 27, 857?871. Gower, J. C. (1985) Measures of similarity, dissimilarity and distance. In Enclopedia of Statistical Sciences, Kotz, S. & Johnson, N. L. (eds). Wiley, New York, Vol. 5, pp. 397?405. Grace, J. B. (2006) Structural Equation Modeling and Nat- ural Systems. Cambridge University Press, Cambridge. Gradstein, F., Ogg, J., & Smith, A. (2005) A geolog- ical Times Scale 2004. Cambridge University Press, Cambridge. Graham, C. H. & Fine, P. V. A. (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265?1277. Graham, C. H. & Hijmans, R. J. (2006) A comparison of methods for mapping species ranges and species rich- ness. Global Ecology and Biogeography, 15, 578?587. Graham, J. H., Hughie, H. H., Jones, S., Wrinn, K., Krzysik, A. J., Duda, J. J., Freeman, D. C., Emlen, J. M., Zak, J. C., Kovacic, D. A., Chamberlin-Graham, C., & Balbach, H. (2004) Habitat disturbance and the diversity and abun- dance of ants (Formicidae) in the Southeastern Fall- Line Sandhills ? art. no. 30. Journal of Insect Science, 4, 30?30. Grant, P. R. & Schluter, D. (1984) Interspecific competition inferred from patterns of guild structure. In: Ecological Communities: Conceptual Issues and the Evidence, Strong, D. R., Simberloff, D., Abele, L. G., & Thistle, A. B. (eds). Princeton University Press, Princeton, USA, pp. 201?233. Grassle, J. F. & Smith, W. (1976) A similarity measure sen- sitive to the contribution of rare species and its use in investigation of variation in marine benthic communi- ties. Oecologia, 25, 13?22. Gray, J. S. (1979) Pollution-induced changes in popula- tions. Philosophical Transactions of the Royal Society of London B, 286, 545?561. Gray, J. S. (1981) Detecting pollution induced changes in communities using the log-normal distribution of indi- viduals among species. Marine Pollution Bulletin, 12, 173?176. Gray, J. S. (1983) Use and misuse of the log-normal plotting method for detection of effects of pollution ? a reply. Marine Ecology-Progress Series, 11, 203?204. Gray, J. S. (1987) Species-abundance patterns. In: Orga- nization of communities ? past and present, Gee, J. H. R. & Giller, P. S. (eds). Blackwell, Oxford, pp. 53?67. Gray, J. S. & Mirza, F. B. (1979) Possible method for the detection of pollution-induced disturbance on marine benthic communities. Marine Pollution Bulletin, 10, 142?146. Gray, J. S., Clarke, K. R., Warwick, R. M., & Hobbs, G. (1990) Detection of the initial effects of pollution on marine benthos: an example from the Ekofisk and Eldfisk oilfields, North Sea. Marine Ecology Progress Series, 66, 285?299. Gray, J. S., Bjogesaerter, A., & Ugland, K. I. (2005) The impact of rare species on natural assemblages. Journal of Animal Ecology, 74, 1131?1139. Gray, J. S., Bjorgesaeter, A., & Ugland, K. I. (2006) On plot- ting species abundance distributions. Journal Of Animal Ecology, 75, 752?756. Green, J. L. & Plotkin, J. B. (2007) A statistical theory for sampling species abundances. Ecology Letters, 10, 1037?1045. Gregorius, H. R. (1987) The relationship between the con- cepts of genetic diversity and differentiation. Theoreti- cal and Applied Genetics, 74, 397?401. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 309 Gregorius, H. R. (1996) Differentiation between popu- lations and its measurement. Acta Biotheoretica, 44, 23?36. Gregorius, H. R. (2010) Linking diversity and differentia- tion. Diversity, 2, 370?394. Gregory, R. D., Noble, D., Field, R., Marchant, J., Raven, M., & Gibbons, D. W. (2003) Birds as indicators of biodi- versity. Ornis Hungarica, 12?13, 11?24. Greig-Smith, P. (1957) Quantitative Plant Ecology. Butter- worth, London. Greig-Smith, P. (1983) Quantitative Plant Ecology, 3rd edn. Blackwell, London. Greve, M. (2007) Avifaunal responses to environmental conditions and land-use changes in South Africa: diver- sity, composition and body size. M.Sc. Thesis, Stellen- bosch University, 185pp. Greve, M., Gaston, K. J., van Rensburg, B. J., & Chown, S. L. (2008) Environmental factors, regional body size distributions, and spatial variation in body size of local avian assemblages. Global Ecology and Biogeography, 17, 514?523. Grime, J. P. (1973a) Control of species density in herba- ceous vegetation. Journal of Environmental Manage- ment, 1, 151?167. Grime, J. P. (1973b) Competitive exclusion in herbaceous vegetation. Nature, 242, 344?347. Grinnell, J. (1922) The role of the ?accidental?. Auk, 39, 373?380. Groves, R. M. (1989) Survey Errors and Survey Costs. Wiley, New York. Gunnarsson, T. (2006) A Mirror of Nature: Nordic Land- scape Painting 1840?1910. Statens Museum for Kunst, Copenhagen, pp. 11?37. Guo, Q., Brown, J. H., & Valone, T. J. (2000) Abun- dance and distribution of desert annuals: are spatial and temporal patterns related? The Journal of Ecology, 88, 551?560. Gurd, D. B. 2007. Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology. The American Nat- uralist, 169, 334?343. Halfpenny, J. 1986. A Field Guide to Mammal Track- ing in Western America. Johnson Books, Boulder, CO, pp. 134?148. Hall, S. J. & Greenstreet, S. P. (1998) Taxonomic dis- tinctness and diversity measures: responses in marine fish communities. Marine Ecology Progress Series, 166, 227?229. Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305, 1457?1462. Hannah, L. & Kay, J. A. (1977) Concentration in the mod- ern industry: theory, measurement, and the U. K. expe- rience. MacMillan, London. Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210?221. Hanski, I. (1994) A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151?162. Hanski, I. (1997) Metapopulation dynamics, from concepts and observations to predictive models. In: Metapopula- tion Biology, Hanski, I. & Gilpin, M. E. (eds). Academic Press, San Diego, pp. 69?91. Hanski, I. & Gyllenberg, M. (1997) Uniting two general patterns in the distribution of species. Science, 275, 397?400. Hardy, O. J. (2008) Testing the spatial phylogenetic struc- ture of local communities: statistical performances of different null models and test statistics on a locally neu- tral community. The Journal of Ecology, 96, 914?926. Hardy, O. J. & Jost, L. (2008) Interpreting and estimating measures of community phylogenetic structuring. The Journal of Ecology, 96, 849?852. Hardy, O. J. & Senterre, B. (2007) Characterizing the phylo- genetic structure of communities by additive partition- ing of phylogenetic diversity. The Journal of Ecology, 95, 493?506. Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947?959. Harper, J. L. (1981) The meanings of rarity. In: The Biolog- ical Aspects of Rare Plant Conservation, Synge, H. (ed). Wiley, New York, pp. 189?203. Harrison, P. (1992) The Third Revolution. Population, Environment and a Sustainable World. Penguin Books, London. Harrison, S., Ross, S. J., & Lawton, J. H. (1992) Beta diver- sity on geographic gradients in Britain. Journal of Ani- mal Ecology, 61, 151?158. Harte, J. (2008) From spatial pattern in the distribution and abundance of species to a unified theory of ecology: the role of maximum entropy methods. Applied Optimiza- tion, 102, 243. Harte, J., Kinzig, A., & Green, J. (1999) Self-similarity in the distribution and abundance of species. Science, 284, 334?336. Harte, J., Conlisk, E., Ostling, A., Green, J. L., & Smith, A. B. (2005) A theory of spatial structure in ecologi- cal communities at multiple spatial scales. Ecological Monographs, 75, 179?197. Harte, J., Zillio, T., Conlisk, E., & Smith, A. B. (2008) Maxi- mum entropy and the state variable approach to macro- ecology. Ecology, 89, 2700?2711. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 310 REFERENCES Hartley, S., Kunin, W. E., Lennon, J. J., & Pocock, M. J. O. (2004) Coherence and discontinuity in the scaling of species? distribution patterns. Proceedings of the Royal Society London, B, 271, 81?88. Hassell, M. P., Southwood, T. R. E., & Reader, P. M. (1987) The dynamics of the viburnum whitefly (Aleurotrachelus jelinekii): a case study of population regulation. Journal of Animal Ecology, 56, 283?300. Hauer, R. F. & Resh, V. H. (2006) Macroinvertebrates. In: Methods in Stream Ecology, Hauer, F. R. & Lamberti, G. A. (eds). Academic Press/Elsevier San Diego, CA, pp. 435?463. Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000) Development and evaluation of predic- tive models for measuring the biological integrity of streams. Ecological Applications, 10, 1456?1477. Hawkins, B. A., Diniz-Filho, J. A. F., Bini, L. M., De Marco, P., & Blackburn, T. M. (2007) Red herrings revisited: spa- tial autocorrelation and parameter estimation in geo- graphical ecology. Ecography, 30, 375. Hayden, E. C. (2009) 10,000 genomes to come. Nature, 462, 21. He, F. & Condit, R. (2007) The distribution of species: occu- pancy, scale, and rarity. In: Scaling Biodiversity, Storch, D., Marquet, P. A., & Brown, J. H. (eds). Cambridge University Press, Cambridge, pp. 32?50. He, F. & Gaston, K. J. (2000a) Estimating species abun- dance from occurrence. The American Naturalist, 156, 553?559. He, F. & Gaston, K. J. (2000b) Occupancy-abundance rela- tionships and sampling scales. Ecography, 23, 503?511. He, F. & Gaston, K. J. (2003) Occupancy, spatial variance and the abundance of species. The American Naturalist, 162, 366?375. He, F. & Tang, D. (2008) Estimating the niche preemption parameter of the geometric series. Acta Oecologica, 33, 105?107. He, F., Gaston, K. J., & Wu, J. (2002) On species occupancy- abundance models. ?coscience, 9, 119?126. Heard, S. B. (1992) Patterns in tree balance among cladis- tic, phenetic, and randomly generated phylogenetic trees. Evolution, 46, 1818?1826 4pt plus4pt minus4pt Hebert, P. D. N., Cywinsky, A., Ball, S. L., & deWaard, J. R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Soci- ety London, B, 270, 313?321. Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004) Identification of birds through DNA bar- codes. PLoS, Biology, 2, 1657?1663. Heck, K. L., Jr., van Belle, G., & Simberloff, D. (1975) Explicit calculation of the rarefaction diversity measure- ment and the determination of sufficient sample size. Ecology, 56, 1459?1461. Hector, A., Schmid, B., Beierkuhnlein, C., Caldeira, M. C., Diemer, M., Dimitrakopoulos, P. G., Finn, J. A., Freitas, H., Giller, P. S. Good, J., Harris, R., H?gberg, P., Huss-Danell, K., Joshi, J., Jumpponen, A., K?rner, C., Leadley, P. W., Loreau, M., Minns, A., Mulder, C. P.H., O?Donovan, G., Otway, S. J., Pereira, J. S., Prinz, A., Read, D. J., Scherer-Lorenzen, M., Schulze, E.-D., Siamantziouras, A.-S. D., Spehn, E. M., Terry, A. C., Troumbis, A. Y., Woodward, F. I., Yachi, S., & Lawton, J. H. (1999) Plant diversity and productivity in European grasslands. Science, 286, 1123?1127. Heemsbergen, D. A., Berg, M. P., Loreau, M., van Hal, J. R., Faber, J. H., & Verhoef, H. A. (2004) Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019?1020. Heino, J. (2005) Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or habitat niche position? Ecography, 28, 345?354. Heino, J. (2008) Temporally stable abundance-occupancy relationships and occupancy frequency patterns in stream insects. Oecologia, 157, 337?347. Helmus, M. R., Bland, T. J., Williams, C. K., & Ives, A. R. (2007) Phylogenetic measures of biodiversity. The American Naturalist, 169, E68?E83. Heltshe, J. & Forrester, N. E. (1983) Estimating species richness using the jackknife procedure. Biometrics, 39, 1?11. Henderson, P. A. (2007) Discrete and continuous change in the fish community of the Bristol Channel in response to climate change. Journal of the Marine Biological Associ- ation, 87, 589?598. Henderson, P. A. & Holmes, R. H. A. (1991) On the population dynamics of dab, sole and flounder within Bridgwater bay in the lower severn Estuary, England. Netherlands Journal of Sea Research, 27, 337?344. Henderson, P. A. & Magurran, A. E. (2010) Linking species abundance distributions in numerical abundance and biomass through simple assumptions about commu- nity structure. Proceedings of the Royal Society London, published online, 277, 1561?1570. Hendry, A. P. & Kinnison, M. T. (1999) The pace of modern life: measuring rates of contemporary microevolution. Evolution, 53, 1637?1653. Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008) Human influences on rates of phenotypic change in wild populations. Molecular Ecology, 17, 20?29. Hengeveld, R. (1990). Dynamic Biogeography. Cambridge University Press, Cambridge. Hesse, R., Allee, W. C., & Schmidt, K. P. (1937) Ecological Animal Geography. Wiley, New York. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 311 Hewitt, J. E., Anderson, M. J., & Thrush, S. F. (2005) Assessing and monitoring ecological community health in marine systems. Ecological Applications, 15, 942?953. Hickerson, M. J., Meyer, C. P., & Moritz, C. (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Systems Biology, 55, 729?739. Hicks, G. R. F. (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat com- plexity and turbidity. Journal of experimental marine Biology and Ecology, 44, 157?192. Hilborn, R. & Mangel, M. (1997) The Ecological Detective, Confronting Models with Data. Princeton University Press, New Jersey. Hill, M. O. (1973) Diversity and evenness: a uni- fying notation and its consequences. Ecology, 54, 427?432. Hillebrand, H. (2004) On the generality of the latitudi- nal diversity gradient. The American Naturalist, 163, 192?211. Hillebrand, H., Bennett, D. M., & Cadotte, M. W. (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecol- ogy, 89, 1510?1520. Hilt, N., Brehm, G., & Fiedler, K. (2006) Diversity and ensemble composition of geometrid moths along a suc- cessional gradient in the Ecuadorian Andes. Journal of Tropical Ecology, 22, 155?166. Hinsley, S. A., Pakeman, R., Bellamy, P. E. & New- ton, I. (1996) Influences of habitat fragmentation on bird species distributions and regional population size. Proceedings of the Royal Society London, B, 263, 307?313. Hobbs, R. J., Arico, S., Aronson, J., et al. (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Bio- geography, 15, 1?7. Hoehn, P., Tscharntke, T., Tylianakis, J. M., & Steffan- Dewenter, I. (2008) Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society London, B, 275, 2283?2291. Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T., & Tosi, J. A. (1971) Forest Environments in Tropical Life Zones. Pergamon Press, Oxford. Holmes, S. (2003) Bootstrapping phylogenetic trees, the- ory and methods. Statistical Science, 18, 241?255. Holt, R. (2008) Theoretical perspectives on resource pulses. Ecology, 89, 671?681. Holt, A. R., Gaston, K. J., & He, F. (2002a) Occupancy- abundance relationships and spatial distribution. Basic and Applied Ecology , 3, 1?13. Holt, A. R., Warren, P. H., & Gaston, K. J. (2002b) The importance of biotic interactions in abundance- occupancy relationships. Journal of Animal Ecology, 71, 846?854. Holt, A. R., Warren, P. H., & Gaston, K. J. (2004a) The importance of habitat heterogeneity, biotic interactions and dispersal in abundance-occupancy relationships. Journal of Animal Ecology, 73, 841?851. Holt, R. D., Knight, T. M., & Barfield, M. (2004b) Allee effects, immigration, and the evolution of species? niches. The American Naturalist, 163, 253?262. Holyoak, M., Jarosik V., & Novak, I. (1997) Weather- induced changes in moth activity bias measurement of long-term population dynamics from light trap samples. Entomologia Experimentalis et Applicata, 83, 329?335. Holyoak, M., Leibold, M., & Holt, R. (2005) Metacommu- nities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago. Hong, S. H., Bunge, J., Jeon, S. O., & Epstein, S. S. (2006) Predicting microbial species richness. Proceedings of the National Academy of Sciences of the United States of America, 103, 117?122. Hooper, D. U. & Vitousek, P. M. (1997) The effects of plant composition and diversity on ecosystem processes. Sci- ence, 277, 1302?1305. Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005) Effects of biodiversity on ecosystem functioning: a consen- sus of current knowledge. Ecological Monographs, 75, 3?35. Horn, H. S. (1966) Measurement of ?overlap? in compar- ative ecological studies. The American Naturalist, 100, 419?424. Horn, H. I. (ed.) (1975) Markovian Properties of Forest Succession. Harvard University Press, Cambridge, MA. Horner-Devine, M. C., Lage, M., Hughes, J. B., & Bohan- nan, B. J. M. (2004) A taxa ? area relationship for bacte- ria. Nature, 432, 750?753. Hortal, J., Borges, P. A. V., & Caspar, C. (2006) Evaluating the performance of species richness estimators: sensitiv- ity to sample grain size. Journal of Animal Ecology, 75, 274?287. Houchmandzadeh, B. (2008) Neutral clustering in a simple experimental ecological community. Physical Review Letters, Aug 15, 101(7), 078103. Epub 2008. Huang, D., Meier, R., Todd, P. A., & Chou, L. M. (2008) Slow mitochondrial COI evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution, 66, 167?174. Hubalek, Z. (1982) Coefficients of association and similar- ity, based on binary (presence-absence) data: an evalua- tion. Biological Reviews, 57, 669?689. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 312 REFERENCES Hubbell, S. P. (2001) A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. Hubbell, S. P., Foster, R. B., O?Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J., & De Lao, S. L. (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554. Huber, J. A., Mark Welch, D., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., & Sogin, M. L. (2007) Microbial population structures in the deep marine biosphere. Science, 318, 97?100. Huelsenbeck, J. P. & Rannala, B. (1997) Maximum like- lihood estimation of topology and node times using stratigraphic data. Paleobiology, 23, 174?180. Hugenholtz, P. & Pace, N. R. (1996) Identifying micro- bial diversity in the natural environment: a molecu- lar phylogenetic approach. Trends in Biotechnology, 14, 190?197. Hughes, R. G. (1986) Theories and models of species abun- dance. The American Naturalist, 128, 879?899. Hughes, J. B. (2000) The scale of resource specialization and the distribution and abundance of lycaenid butter- flies. Oecologia, 123, 375?383. Hughes, J. B., Hellmann, J. J., Ricketts, T. H., & Bohan- nan, B. J. M. (2000) Counting the uncountable: statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology, 67, 4399?4406. Hui, C. & McGeoch, M. A. (2007a) A self-similarity model for the occupancy frequency distribution. Theoretical Population Biology, 71, 61?70. Hui, C. & McGeoch, M. A. (2007b) Modeling species dis- tributions by breaking the assumption of self-similarity. Oikos, 116, 2097?2107. Hui, C. & McGeoch, M. A. (2007c) Capturing the ?droopy- tail? in the occupancy-abundance relationship. Eco- science, 14, 103?108. Hui, C. & McGeoch, M. A. (2008) Does the self-similar dis- tribution model lead to unrealistic predictions? Ecology, 89, 2946?2952. Hui, C., McGeoch, M. A., & Warren, M. (2006) A spatially explicit approach to estimating species occupancy and spatial correlation. The Journal of Animal Ecology, 75, 140?147. Hui, C., Veldtman, R., & McGeoch, M. A. (2010) Measures, perceptions and scaling patterns of aggregated species distributions. Ecography, 33, 95?102. Hurlbert, S. H. (1971) The nonconcept of species diver- sity: a critique and alternative parameters. Ecology, 52, 577?586. Hurlbert, S. H. (1984) Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187?211. Hurlbert, S. H. (1990) Spatial distribution of the montane unicorn. Oikos, 58, 257?271. Hurlbert, A. H. & Jetz, W. (2007) Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences. USA, 104, 13384?13389. Hurlbert, A. H. & White, E. P. (2005) Disparity between range map ? and survey-based analyses of species rich- ness: patterns, processes and implications. Ecology Let- ters, 8, 319?327. Huston, M. A. (1979) A general hypothesis of species diversity. The American Naturalist, 113, 81?101. Huston, M. A. (1994) Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge Uni- versity Press, Cambridge. Huston, M. L. (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449?460. Hutchings, J. A. (2000) Collapse and recovery of marine fishes. Nature, 406, 882?885. Hutchinson, G. E. (1957) Homage to Santa Rosalia; or why are there so many kinds of animals? The American Nat- uralist, 93, 145?159. Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C., & Baillie, J. E. M. (2007) Mammals on the EDGE: conser- vation priorities based on threat and phylogeny. PLoS ONE, 2, e296. Izsak J. (2006) Some practical aspects of fitting and testing the Zipf-Mandelbrot model ? a short essay. Scientomet- rics, 67, 107?120. Jablonski, D. (2000) Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. In: Deep time ? Paleobiology?s Perspective, Erwin, D. H. & Wing, S. L. (eds). Paleobiology Memoir, Paleontolog- ical Society and University of Chicago Press, Chicago, pp. 15?52. Jaccard, P. (1900) Contribution an Probl?me de l?immi- gration post-glaciaire de la flore alpine. Bulletin de la Soci?t? Vaudoise des Sciences Naturelles, 36, 87?130. Jaccard, P. (1901) Etude compararative de la distribution florale dans une portion des Alpes et du Jura. Bulletin de la Soci?t? Vaudoise des Sciences Naturelles, 37, 647?579. Jackson, S. F. & Gaston, K. J. (2008) Land use change and the dependence of national priority species on protected areas. Global Ecology and Biogeography, 14, 2132?2138. Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629?638. James, F. C. & Wamer, N. O. (1982) Relationships between temperate forest bird communities and vegetation structure. Ecology, 63, 159?171. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 313 Janson, S. & Vegelius, J. (1981) Measures of ecological asso- ciation. Oecologia, 49, 371?376. Jansen G, Savolainen R, & Vers?l?inen K. (2009) DNA barcoding as a heuristic tool for classifying unde- scribed Nearctic Myrmica ants (Hymenoptera: Formici- dae). Zoologica Scripta, 38, 527?536. Janzen, D. H., Hallwachs, W., Blandin, P., Burns, J. M., Cadiou, J.- M., Chacon, I., Dapkey, T., Deans, A. R., Epstein, M. E., Espinoza, B., Franclemont, J. G., Haber, W. A., Hajibabei, M., Hall, J. P. W., Hebert, P. D. N., Gauld, I. D., Harvey, D. J., Hausmann, A., Kitching, I. J., Lafontaine, D., Landry, J. -F., Lemaire, C., Miller, J. Y., Montero, J., Munroe, E., Green, C. R., Ratnasingham, S., Rawlins, J. E., Robbins, R. K., Rodriguez, J. J., Rougerie, R., Sharkey, M. J., Smith, M. A., Solis, M. A., Sullivan, J. B., Thiaucourt, .P, Wahl, D. B., Weller, S. J., Whitfield, J. B., Willmott, K. R., Wood, D. M., Woodley, N. E., & Wilson, J. J. (2009) Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Research, 9(Suppl. 1), 1?26. J?rvinen, O. (1982) Species-to-genus ratios in biogeog- raphy: a historical note. Journal of Biogeography, 9, 363?370. Jetz, W. & Rahbek, C. (2002) Geographic range size and determinants of avian species richness. Science, 297, 1548?1551. Johnson, J. B. & Omland, K. S. (2004) Model selection in ecology and evolution. Trends in Ecology and Evolu- tion, 19, 101?108. Jones, M. M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D. B., & Olivas, P. C. (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593?604. Jorgensen, S. E., Xu, F. -L., Salas, F., & Marques, J. C. (eds.) (2005) Application of indicators for the assessment of ecosystem health. CRC Press, Boca Raton, FL. Jost, L. (2006) Entropy and diversity. Oikos, 113, 363?375. Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427?2439. Jost, L. (2008) GST and its relatives do not measure differ- entiation. Molecular Ecology, 17, 4015?4026. Jost, L. (2009) Mismeasuring biological diversity: response to Hoffman and Hoffman (2008). Ecological Economics, 68, 925?927. Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A., & Ricotta, C. (2010) Partitioning diversity for conservation analyses. Diversity and Distributions, 16, 65?76. Jurasinski, G., Retzer, V., & Beierkuhnlein, C. (2009) Inven- tory, differentiation, and proportional diversity: a con- sistent terminology for quantifying species diversity. Oecologia, 159, 15?26. Karjalainen, J., Rahkola, M., Viljanen, M., Andronikova, I. N., & Avinskii, V. A. (1996) Comparison of methods used in zooplankton sampling and counting in the joint Russian-Finnish evaluation of the trophic state of Lake Ladoga. Hydrobiologia, 322, 249?253. Kearney, M. & Porter, W. P. (2009) Mechanistic niche mod- elling: combining physiological and spatial data to pre- dict species? ranges. Ecology Letters, 12, 334?350. Keating, K. A. & Quinn, J. F. (1998) Estimating species richness: the Michaelis-Menten model revisisted. Oikos, 81, 411?416. Keddy, P. A. (1992) Assembly and response rules: two goals for predictive community ecology. Journal of Veg- etation Science, 3, 157?164. Kelly, A. E. & Goulden, M. L. (2008) Rapid shifts in plant distribution with recent climate change. Proceed- ings of the National Academy of Sciences. USA, 105, 11823?11826. Kembel, S. W. & Hubbell, S. P. (2006) The phylogenetic structure of a neotropical forest tree community. Ecol- ogy, 87, S86?S99. Kempton, R. A. (1979) The structure of species abundance and measurement of diversity. Biometrics, 35, 307?321. Kempton, R. A. & Taylor, L. R. (1974) Log-series and log- normal parameters as diversity discriminants for Lepi- doptera. Journal of Animal Ecology, 43, 381?399. Kempton, R. A. & Taylor, L. R. (1976) Models and statistics for species diversity. Nature, 262, 818?820. Kempton, R. A. & Taylor, L. R. (1978) The Q-statistic and the diversity of floras. Nature, 275, 252?253. Kempton, R. A. & Wedderburn, R. W.M. (1978) A compar- ison of three measures of species diversity. Biometrics, 34, 25?37. Kendrick, G. A., Holmes, K. W., & Van Niel, K. P. (2008) Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography, 31, 191. Kennedy, C. E. J. & Southwood, T. R. E. (1984) The num- ber of species of insects associated with British trees: a reanalysis. Journal of Animal Ecology, 53, 455?478. Kevan, P. G., Greco, C. F., & Belaoussoff, S. (1997) Log- normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. Journal of Applied Ecology, 34, 1122?1136. King, T. A., Williams, J. C., Davies, W. D., & Shelton, W. L. (1981) Fixed versus random sampling of fishes in a large reservoir. Transactions of the American Fisheries Soci- ety, 110, 563?568. Kinzig, A., Tilman, D., & Pacala, S. (2001) The Func- tional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton, NJ. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 314 REFERENCES Kissling, W. D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive mod- els. Global Ecology and Biogeography, 17, 59?71. Kitchener, A. C., Beaumont, M. A., & Richardson, D. (2006) Geographical variation in the clouded leopard, Neofe- lis nebulosa, reveals two species. Current Biology, 16, 2377?2383. Kleijn, D., Baquero, R. A., Clough, Y., et al. (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 9, 243?254. Klein Goldewijk, K. (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemical Cycles, 15, 417?33. Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A., & Holt, R. D. (2005) Trophic cascades across ecosystems. Nature, 437, 880?883. Kobayashi, S. & Kimura, K. (1994) The number of species occurring in a sample of a biotic community and its connections with species-abundance relation- ship and spatial distribution. Ecological Research, 9, 281?294. Koch, L. F. (1957) Index of biotal dispersity. Ecology, 38, 145?148. Kohn, M., Knauer, F., Stoffella, A., Schr?der, W., & P??bo, S. (1995) Conservation genetics of the European brown bear ? a study using excremental PCR of nuclear and mitochondrial sequences. Molecular Ecology, 4, 95?103. Kohn, M. H., Murphy, W. J., Ostrander, E. A., & Wayne, R. K. (2006) Genomics and conservation genetics. Trends in Ecology and Evolution, 21, 629?637. Kolasa, J. (1989) Ecological systems in hierarchical per- spective: breaks in community structure and other con- sequences. Ecology, 70, 36?47. Kolb, A., Barsch, F., & Diekmann, M. (2006) Determinants of local abundance and range size in forest vascular plants. Global Biogeochemical Cycles, 15, 237?247. Koleff, P., Gaston, K. J., & Lennon, J. J. (2003) Measuring beta diversity for presence ? absence data. Journal of Animal Ecology, 72, 367?382. Konig, G. (1835) Die Forst-Mathematik. Beckersche Buch- handlung, Gotha. Kosso, P. (1992) Reading the book of nature: an introduc- tion to the philosophy of science. Cambridge University Press, Cambridge. Kraft, N. J. B. & Ackerly, D. D. (2009) Response to Com- ment on ?Functional Traits and Niche-Based Tree Com- munity Assembly in an Amazonian Forest?. Science, 324, 1015. Kraft, N. J. B., Cornwell, W. K., Webb, C. O., & Ackerly, D. D. (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271?283. Krausman, P. R. (2002) Introduction to Wildlife Manage- ment: The Basics. Prentice-Hall, Upper Saddle River, NJ. Krebs, C. J. (1972) Ecology. Harper & Row, New York. Krebs, C. J. (1989) Ecological Methodology. Harper and Row, New York. Krebs, C. J. (1999) Ecological Methodology, 2nd edn. Addi- son Wesley Longman, Menlo Park, CA. Kreft, H. & Jetz, W. (2007) Global patterns and determi- nants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104, 5925. Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Pro- ceedings of the National Academy of Sciences, 106, 18621?18626. Kruskal, J. (1964) Nonmetric multidimensional scaling: a numerical method. Phychometrika, 29, 115?129. Kulczynski, S. (1928) Die Pflanzenassoziationen der Pieni- nen. Bulletin international de l?Academie Polonaise des Sciences et des Lettres, Classe des sciences math?ma- tiques et naturelles, S?rie B Suppl 2, 57?203. Kunin, W. E. (1998) Extrapolating species abundance across spatial scales. Science, 281, 1513?1515. Kunin, W. E. & Gaston, K. J. (eds) (1997) The Biology of Rarity: Causes and Consequences of Rare-Common Differences. Chapman & Hall, London. Kuno, E. (1986) Evaluation of statistical precision and design of efficient sampling for the population estimates based on frequency of sampling. Research in Population Ecology, 28, 305?319. Kvitrud, M. A., Riemer, S. D., Brown, R. F., Bellinger, M. R., & Banks, M. A. (2005) Pacific harbor seals (Phoca vit- ulina) and salmon: genetics presents hard numbers for elucidating predator-prey dynamics. Marine Biology, 147, 1459?1466. Lack, D. L. (1947) Darwin?s Finches. Cambridge Univer- sity Press, Cambridge. Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gogot, G., Maurin, O., Duthoit, S., Barra- clough, T. G., & Savolainen, V. (2008) DNA barcoding in floras of biodiversity hotspots. Proceedings of the National Academy of Sciences, 105, 2923?2928. Lalibert?, E. & Legendre, P. (2010) A distance-based frame- work for measuring functional diversity from multiple traits. Ecology, 91, 299?305. Lalibert?, E. and Shipley, W. (2009) http://ftp3.ie. freebsd.org/pub/CRAN/web/packages/FD/FD.pdf. Lambshead, P. J. D., Platt, H. M., & Shaw, K. M. (1983) The detection of differences among assemblages of marine benthic species based on an assessment of dominance and diversity. Journal of Natural History, 17, 859?874. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 315 Lamouroux, N., Doledec, S., & Gayraud, S. (2004) Bio- logical traits of stream macroinvertebrate commu- nities: effects of microhabitat, reach, and basin fil- ters. Journal of North American Benthic Society, 23, 449?466. Lance, G. N. & Williams, W. T. (1967) Mixed-data classifi- catory programs. I. Agglomerative systems. Australian Computational Journal, 1, 15?20. Lande, R. (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5?13. Lande, R., Engen, S., & Saether, B. -E. (2003) Stochas- tic Population Dynamics in Ecology and Conservation. Oxford University Press, Oxford. Lankau, R. A. & Strauss, S. Y. (2007) Mutual feedbacks maintain both genetic and species diversity in a plant community. Science, 317, 1561?1563. Larsen, D. P., Kincaid, T. M., Jacobs, S. E., & Urquhart, N. S. (2001) Designs for evaluating local and regional scale trends. BioScience, 51, 1069?1078. Larsen, D., Kaufmann, P., Kincaid, T., & Urquhart, N. (2004) Detecting persistent change in the habitat of salmon-bearing streams in the Pacific Northwest. Cana- dian Journal of Fisheries and Aquatic Sciences, 61, 283?291. La Sorte, F. A. & Boecklen, W. J. (2005) Tempo- ral turnover of common species in avian assem- blages in North America. Journal of Biogeography, 32, 1151?1160. Latimer, A. M., Silander, J. A., Gelfand, A. E., Rebelo, A. G., & Richardson, D. M. (2004) Quantifying threats to biodiversity from invasive alien plants and other fac- tors: a case study from the Cape Floristic Region. South African Journal of Science, 100, 81?86. Lauer, T. E. & Spacie, A. (2004) Space as a limiting resource in freshwater systems: competition between zebra mussels (Dreissena polymorpha) and freshwater sponges (Porifera). Hydrobiologia, 517, 137?145. Lawes, J., Gilbert, J., & Masters, M. (1882) Agricultural, botanical and chemical results of experiments on the mixed herbage of permanent meadow, conducted for more than twenty years on the same land. II. The botani- cal results. Philosophical Transactions of the Royal Soci- ety, London B., 173, 1181?1413. Lawton, J. H. (1990) Species richness and population dynamics of animal assemblages. Patterns in body size: abundance space. Philosophical Transactions of the Royal Society, London, Series B, 330, 283?291. Lawton, J. H. (1999a) http://www.worries. Oikos, 85, 190?192. Lawton, J. H. (1999b) Are there general laws in ecology? Oikos, 84, 177?192. Lawton, J. H. & Gaston, K. J. (2001) Indicator species. In: Encyclopedia of Biodiversity, Levin, S. A. (ed). Acad- emic Press, New York, Vol. 3, pp. 437?450. Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G. F., Eggleton, P., Hammond, P. M., Hodda, M., Holt, R. D., Larsen, T. B., Mawdsley, N. A., Stork, N. E., Srivastava, D. S., & Watt, A. D. (1998) Bio- diversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391, 72?76. Legendre, P. & Legendre, L. (1998) Numerical Ecology 2nd edn. Elsevier, Amsterdam. Legendre, P., Galzin, R., & Harmelin-Vivien, M. L. (1997) Relating behaviour to habitat: solutions to the fourth- corner problem. Ecology, 78, 547?562. Legendre, P., Borcard, D., & Peres-Neto, P. R. (2008) Ana- lyzing or explaining beta diversity? Comment. Ecology, 89, 3238?3244. Leger, E. A. & Forister, M. L. (2009) Colonization, abun- dance, and geographic range size of gravestone lichens. Basic and Applied Ecology, 10, 279?287. Leitner, W. A. & Rosenzweig, M. L. (1997) Nested species- area curves and stochastic sampling: a new theory. Oikos, 79, 503?512. Lekve, K., Boulinier, T., Stenseth, N. C., G?saeter, J., Fro- mentin, J. -M., Hines, J. E., & Nichols, J. D. (2002) Spatio- temporal dynamics of species richness on coastal fish communities. Proceedings of the Royal Society London, 269, 1781?1789. Lennon, J. J. (2000) Red-shifts and red herrings in geo- graphical ecology. Ecography, 23, 101?113. Lennon, J. J., Koleff, P., Greenwood, J. J.D., & Gaston, K. J. (2001) The geographical structure of British bird distri- butions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966?979. Lennon, J. J., Kunin, W. E., Hartley, S., & Gaston, K. J. (2007) Species distribution patterns, diversity scaling and testing for fractals in southern African birds. In: Scaling Biodiversity, Storch, D., Marquet, P. A., & Brown, J. H. (eds). Cambridge University Press, Cam- bridge, pp. 51?76. Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., & Brosse, S. (2008) Fish invasions in the world?s river systems: when natural processes are blurred by human activities. PLoS Biology, 6, e28 (1?7). Lep?, J. & Smilauer, P. (2003) Multivariate Analysis of Eco- logical Data using CANOCO. Cambridge University Press, Cambridge. Lep?, J., de Bello, F., Lavorel, S., & Berman, S. (2006) Quan- tifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78, 481?501. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 316 REFERENCES le Roux, P. C. & McGeoch, M. A. (2008) Rapid range expansion and community reorganization in response to warming. Global Change Biology, 14, 2950?2962. Lichstein, J. W., Simons, T. R., Shriner, S. A., & Franzreb, K. E. (2003) Spatial autocorrelation and autoregres- sive models in ecology. Ecological Monographs, 72, 445?463. Limpert, E., Stahel, W. A., & Abbt, M. (2001) Log-normal distributions across the sciences: keys and clues. Bio- Science, 51, 341?352. Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516?4522. Locke, J. W. (1994) Statistical measurement control. In: Quality and Statistics: Total Quality Management, Kowalewski, M. J. (ed). ASTM Philadelphia, PA, pp. 30?42. Loehle, C. (2006) Species abundance distributions result from body size-energetics relationships. Ecology, 87, 2221?2226. Loehle, C. & Hansen, A. (2005) Community structure and scaling relations for the avifauna of the US pacific and inland northwest. Ecological Complexity, 2, 59?70. Loh, J., Green, R. E., Ricketts, T., Lamoreux, J., Jenkins, M., Kapos, V., & Randers, J. (2005) The Living Planet Index: using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society, London, Series B, 360, 289?295. Longino, J. T., Coddington, J., & Colwell, R. K. (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83, 689?702. Lopez, J. V., Culver, M., Stephens, J. C., Johnson, W. E., & O?Brien, S. J. (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Molecular Biology and Evolution, 14, 277?286. Loreau, M. (2010) Linking biodiversity and ecosystems: towards a unifying ecological theory. Philosophical Transactions of the Royal Society, London, Series B, 365, 49?60. Loreau, M., Naeem, S., & Inchausti, P. (2002) Biodiver- sity and Ecosystem Functioning: Synthesis and Perspec- tives. Oxford University Press, USA. Luck, G. W. (2007) A review of the relationships between human population density and biodiversity. Biological Reviews, 82, 607?645. Lukhtanov, V. A., Sourakov, A., Zakharov, E. V., & Hebert, P. D.N. (2009) DNA barcoding Central Asian butter- flies: increasing geographical dimension does not sig- nificantly reduce the success of species identification. Molecular Ecology and Research, 9, 1302?1310. Lynch, M. & Lande, R. (1993) Evolution and extinction in response to environmental change. In: Biotic Inter- actions and Global Change, Kareiva, P. M., Kingsolver, J. G., & Huey, R. B. (eds). Sinauer Associates, Sunder- land, pp. 234?250. Lyons, J. (1986) Capture efficiency of a beach seine for seven freshwater fishes in a north-temperate lake. North American Journal of Fisheries Management, 6, 288?289. Mabunda, D., Pienaar, D. J., & Verhoef, J. (2003) The Kruger National Park: a century of management and research. In: The Kruger Experience: Ecology and Man- agement of Savanna Heterogeneity, DuToit, J. T., Rogers, K. H., & Biggs, H. C. (eds). Island Press, Washington, pp. 3?21. MacArthur, R. (1957) On the relative abundance of bird species. Proceedings of the National Academy of Sci- ences, 43, 293?295. MacArthur, R. (1960) On the relative abundance of species. The American Naturalist, 94, 25?36. MacArthur, R. H. (1965) Patterns of species diversity. Bio- logical Reviews, 40, 510?533. MacArthur, R. H. (1972) Geographical Ecology: Patterns in the Distribution of Species. Princeton University Press, Princeton, NJ. MacArthur, R. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377?385. MacArthur, R. H. & Wilson, E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. Mace, G.M & Baillie, J. E. M. (2007) The 2010 biodiversity indicators: challenges for science and policy. Conserva- tion Biology, 21, 1406?1413. Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Ak?akaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., & Stuart, S. N. (2008) Quantification of extinction risk: IUCN?s system for classifying threatened species. Conservation Biology, 22, 1424?1442. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S, Royle, J. A, & Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248?2255. MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003) Estimating site occu- pancy, colonization, and local extinction when a species is detected imperfectly. Ecology, 84, 2200?2207. MacKenzie, D. I., Nichols, J. D., Royle J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2006) Occupancy Estima- tion and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press, San Diego. MacNally, R. (2007) Use of the abundance spectrum and relative-abundance distributions to analyze assemblage OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 317 change in massively altered landscapes. The American Naturalist, 170, 319?330. Magurran, A. E. (1988) Ecological Diversity and its Mea- surement. Princeton University Press, Princeton, NJ. Magurran, A. E. (2004) Measuring Biological Diversity. Blackwell Science, Oxford. Magurran, A. E. (2005) Evolutionary Ecology: The Trinida- dian Guppy. Oxford University Press, Oxford. Magurran, A. E. (2007) Species abundance distributions over time. Ecology Letters, 10, 347?354. Magurran, A. E. (2008) Diversity over time. Folia Geob- otanica, 43, 319?327. Magurran, A. E. (2009) Threats to freshwater fish. Science, 325, 1215?1216. Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. McP., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., Watt, A. D. (2010) Long-term data sets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology and Evo- lution, in press. Magurran, A. E. & Henderson, P. A. (2003) Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714?716. Magurran, A. E. & Phillip, D. A. T. (2001) Implications of species loss in freshwater fish assemblages. Ecography, 24, 645?650. Mandelbrot, B. B. (1963) New methods in statistical eco- nomics. Journal of Political Economy, 71, 421?440. Mandelbrot, B. B. (1982) The fractal geometry of nature. W. H. Freeman and Co, New York. Manly, B. F. J. (1991) Randomisation and Monte Carlo Methods in Biology. Chapman & Hall, London. Manly, B. F. J. (2004) Multivariate Statistical Methods: A Primer. Chapman & Hall/CRC. Manley, P. N., Zielinski, W. J., Schlesinger, M. D., & Mori, S. R. (2004) Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecological Applications, 14, 296?310. Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209?220. Mao, C. X. & Colwell, R. K. (2005) Estimation of species richness: mixture models, the role of rare species, and inferential challenges. Ecology, 86, 1143?1153. Mao, C. X. & Li, J. (2009) Comparing species assem- blages via species accumulation curves. Biometrics, 65, 1063?1067. Mao, C. X., Colwell, R. K., & Chang, J. (2005) Estimating species accumulation curves using mixtures. Biomet- rics, 61, 433?441. Marques, T. A., Thomas, L., Fancy, S. G., & Buckland, S. T. (2007) Improving estimates of bird density using multiple covariate distance sampling. The Auk, 124, 1229?1243. Marquet, P. A., Keymer, J. A., & Hernan, C. (2003) Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species. In: Macroecology: Concepts and Consequences, Blackburn, T. M. & Gaston, K. J. (eds). Blackwell Science, Oxford, pp. 64?86. Marriott, E. (2002) The Plague Race. A Tale of Fear, Science and Heroism. Picador, London. Marshall, C. R. (1990) Confidence intervals on strati- graphic ranges. Paleobiology, 16, 1?10. Marshall, C. R. (1994) Confidence intervals on strati- graphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology, 20, 459?469. Marshall, C. R. (1995) Distinguishing between sudden and gradual extinctions in the fossil record: predicting the position of the iridium anomaly using the ammonite fossil record on Seymour Island, Antarctica. Geology, 23, 731?734. Marshall, C. R. (1997) Confidence intervals on strati- graphic ranges with nonrandom distributions of fossil horizons. Paleobiology, 23, 165?173. Marshall, C. R. & Ward, P. D. (1996) Sudden and gradual molluscan extinctions in the latest Cretaceous of west- ern European Tethys. Science, 274, 1360?1363. Martin, J., Runge, M. C., Nichols, J. D., Lubow, B. C., & Kendall, W. L. (2009) Structured decision making as a conceptual framework to identify thresholds for con- servation and management. Ecological Applications, 19, 1079?1090. Martinez, W. L. & Martinez, A. R. (2002) Computa- tional Statistics Handbook with MATLAB. Chapman & Hall/CRC, Boca Raton. Mason, N. W.H., MacGillivray, K., Steel, J. B., & Wilson, J. B. (2003) An Index of functional diversity. Journal of Vegetation Science, 14, 571?578. Mason, N. W.H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005) Functional richness, functional evenness and functional divergence: the primary components of func- tional diversity. Oikos, 111, 112?118. Maurer, B. A. (1999) Untangling Ecological Complexity. University of Chicago Press, Chicago. May, R. M. (1975) Patterns of species abundance and diver- sity. In: Ecology and Evolution of Communities, Cody, M. L. & Diamond, J. M. (eds). Harvard University Press Cambridge, MA, pp. 81?120. May, R. M. (1990) Taxonomy as destiny. Nature, 347, 129?130. May, R. M. (2007) Unanswered questions and why they matter. In Theoretical Ecology: Principles and OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 318 REFERENCES Applications, 3rd edn, May, R. M. & McLean, A. R. (eds), pp. 205?215. Oxford University Press, Oxford. Mayfield, M., Boni, M., Daily, G., & Ackerly, D. D. (2005) Species and functional diversity of native and human-dominated plant communities. Ecology, 86, 2365?2372. Mazancourt, C. (2001) Consequences of community drift. Science, 293, 1772. McDonald, R. I., Kareiva, P., & Forman, R. T. T. (2008) The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological Conservation, 141, 1695?1703. McElwain, J. C., Wagner, P. J., & Hesselbo, S. P. (2009) Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in Greenland. Science, 324, 1554?1556. McGeoch, M. A. (1998) The selection, testing and appli- cation of terrestrial insects as bioindicators. Biological Reviews, 73, 181?201. McGeoch, M. A. (2007) Insects and bioindication: theory and practice. In: Insect Conservation Biology, Stewart, A. J., New, T. R., & Lewis, O. T. (eds), CABI, Wallingford, pp. 144?174. McGeoch, M. A. & Gaston, K. J. (2002) Occupancy fre- quency distributions: patterns, artefacts and mecha- nisms. Biological Reviews, 77, 311?331. McGeoch, M. A., Van Rensburg, B. J., & Botes, A. (2002) The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology, 39, 661?672. McGeoch, M. A., Kalwij, J. M., & Rhodes, J. I. (2009) A spatial assessment of Brassica napus gene flow potential to wild and weedy relatives in the Fynbos Biome. South African Journal of Science, 105, 109?115. McGeoch, M. A., Schroeder, M., Ekbom, B., & Larsson, S. (2007) Saproxylic beetle diversity in a managed boreal forest: importance of stand characteristics and forestry conservation measures. Diversity & Distributions, 13, 418?429. McGill, B. (2003a) Does Mother Nature really prefer rare species or are log-left-skewed SADs a sampling arte- fact? Ecology Letters, 6, 766?773. McGill, B. J. (2003b) A test of the unified neutral theory of biodiversity. Nature, 422, 881?885. McGill, B. J. (2003c) Strong and weak tests of macroecolog- ical theory. Oikos, 102, 679?685. McGill, B. J. (2006) A renaissance in the study of abun- dance. Ecology, 314, 770?772. McGill, B. J. (2010) Towards a unification of unified theo- ries of biodiversity. Ecology Letters, 13, 627?642. McGill, B. & Collins, C. (2003) A unified theory for macro- ecology based on spatial patterns of abundance. Evolu- tionary Ecology Research, 5, 469?492. McGill, B. J. & Nekola, J. C. (2010) Mechanisms in macro- ecology: AWOL or purloined letter? Towards a prag- matic view of mechanism. Oikos, 119, 591?603. McGill, B. J., Hadly, E. A., & Maurer, B. A. (2005) Commu- nity inertia of quaternary small mammal assemblages in North America. Proceedings of the National Acad- emy of Sciences of the United States of America, 102, 16701?16706. McGill, B. J., Maurer, B. A., & Weiser, M. D. (2006a) Empirical evaluation of the neutral theory. Ecology, 87, 1411?1423. McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006b) Rebuilding community ecology from func- tional traits. Trends in Ecology and Evolution, 21, 178?185. McGill, B. J., Etienne, R. S., Gray, J. S., Alonso, D., Ander- son, M. J., Benecha, H. K., Dornelas, M., Enquist, B. J., Green, J. L., He, F., Hurlbert, A. H., Magurran, A. E., Marquet, P. A., Maurer, B. A., Ostling, A., Soykan, C. U., Ugland, K. I., & White, E. P. (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995?1015. McGowan, A. J. & Smith, A. B. (2008) Are global Phanero- zoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology, 34, 80?103. McIntire, E. J. B. & Fajardo, A. (2009) Beyond description: the active and effective way to infer processes from spa- tial patterns. Ecology, 90, 46?56. McIntosh, R. P. (1962) Raunkiaer?s ?Law of Frequency?. Ecology, 43, 533?535. McIntosh, R. P. (1967) An index of diversity and the relation of certain concepts of diversity. Ecology, 48, 392?404. McKinney, M. L. (2002) Influence of settlement time, human population, park shape and age, visitation and roads on the number of alien plant species in pro- tected areas in the USA. Diversity & Distributions, 8, 311?318. McKinney, M. L. (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation, 127, 247?260. McKinney, M. L. & Lockwood, J. L. (1999) Biotic homog- enization: a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution, 14, 450?453. McNaughton, S. J. & Wolf, L. L. (1970) Dominance and the niche in ecological systems. Science, 167, 131?139. McPeek, M. A. (2007) The macroevolutionary conse- quences of ecological differences among species. Pale- ontology, 50, 111?129. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 319 McPeek, M. A. (2008) The ecological dynamics of clade diversification and community assembly. The American Naturalist, 172, E270?E284. McPherson, J. M. & Jetz, W. (2007) Type and spatial struc- ture of distribution data and the perceived determinants of geographical gradients in ecology: the species rich- ness of African birds. Global Ecology and Biogeography, 16, 657?667. McRae, B. H., Schumaker, N. H., McKane, R. B., Busing, R. T., Solomon, A. M., & Burdick, C. A. (2008) A multi- moldel framework for simulating wildlife population response to land-use and climate change. Ecological Modelling, 219, 77?91. Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. L. (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology, 55, 715?728. Meier, R., Zhang, G., & Ali, F. (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the ?Barcoding Gap? and leads to misiden- tification. Systematic Biology, 57, 809?813. Mercado-Silva, N. & Escandon-Sandoval, D. S. (2008) A comparison of seining and electrofishing for fish com- munity bioassessment in a Mexican Atlantic slope mon- tane river. North American Journal of Fisheries Manage- ment, 28, 1725?1732. Milesi, C., Hashimoto, H., Running, S. W., & Nemani, R. W. (2005) Climate variability, vegetation productivity and people at risk. Global and Planetary Change, 47, 221?231. Millar, C. D., Huynen, L., Subramanian, S., Mohandesan, E., & Lambert, D. M. (2008) New developments in ancient genomics. Trends in Ecology and Evolution, 23, 386?393. Millennium Ecosystem Assessment. (2005) Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute, Washington, DC. Miller, A. I. & Foote, M. (1996) Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 22, 304?309. Minchin, P. R. (1987) An evaluation of the relative robust- ness of techniques for ecological ordination. Vegetatio, 69, 89?107. Misra, M. K. & Misra, B. N. (1981) Species diversity and dominance in a tropical grassland community. Folia Geobotanica, 16, 309?316. Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggle- ton, P., Barraclough, T. G., & Vogler, A. P. (2009) Acceler- ated species inventory on Madagascar using coalescent- based models of species delineation. Systematic Biology, 58, 298?311. Montroll, E. & Shlesinger, M. F. (1982) On 1/f noise and other distributions with long tails. Proceedings of the National Academy of Sciences, 79, 3380?3383. Moodley, Y. & Bruford, M. W. (2007) Molecular biogeogra- phy: towards an integrated framework for conserving pan-African biodiversity. PLoS ONE, 5, e454. Mooers, A. O. & Heard, S. B. (1997) Evolutionary process from phylogenetic tree shape. The Quarterly Review of Biology, 72, 31?54. Mooers, A. O., Heard, S. B., & Chrostowski, E. (2005) Evo- lutionary heritage as a metric for conservation. In: Phy- logeny and Conservation, Purvis, A., Brooks, T. L., & Gittleman, J. L. (eds). Oxford University Press, Oxford, pp. 120?138. Mora, C., Tittensor, D. P., & Myers, R. A. (2008) The completeness of taxonomic inventories for describ- ing the global diversity and distribution of marine fishes. Proceedings of the Royal Society London, B, 275, 149?155. Moreno, C. E. & Halffter, G. (2001) Spatial and temporal analysis of ?, ? and ? diversity of bats in a fragmented landscape. Biodiversity and Conservation, 10, 367?382. Morin, P. J. (1999) Community Ecology. Wiley-Blackwell, Malden, PA. Morisita, M. (1959) Measuring of interspecific association and similarity between communities. Memoires of the Faculty of Science, Kyushu University, Series E (Biolol- ogy), 3, 65?80. Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Ken- fack, D., Thomas, D., Valencia, R., & Green, J. L. (2008) A general framework for the distance ? decay of sim- ilarity in ecological communities. Ecology Letters, 11, 904. Morlon, H., White, E. P., Etienne, R. S., Green, J. L., Ostling, A., Alonso, D., Enquist, B. J., He, F., Hurlbert, A., Magurran, A. E., Maurer, B. A., McGill, B. J., Olff, H., Storch, D., & Zillio T. (2009) Taking species abundance distributions beyond individuals. Ecology Letters, 12, 488?501. Morris, P. J., Ivany, L. C., Schopf, K. M., & Brett, C. E. (1995) The challenge of paleoecological stasis: reassess- ing sources of evolutionary stability. Proceedings of the National Academy of Sciences, USA, 92, 11269?11273. Moss, D., Furse, M. T., Wright, J. F., & Armitage, P. D. (1987) The prediction of the macroinvertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology, 17, 41?52. Motomura, I. (1932) On the statistical treatment of com- munities. Zoological Magazine, Tokyo, 44, 379?383. Mouchet, M., Guilhaumon, F., Vill?ger, S., Mason, N. W. H., Tomasini, J. A., & Mouillot, D. (2008) Towards a consensus for calculating dendrogram-based func- tional diversity indices. Oikos, 117, 794?800. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 320 REFERENCES Mouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. B. (2005) Functional regularity: a neglected aspect of func- tional diversity. Oecologia, 142, 353?359. Moulton, M. P. & Pimm, S. L. (1987) Morphological assort- ment in introduced Hawaiian passerines. Evolutionary Ecology, 1, 113?124. Mulder, C. P. H., Uliasi, D. D., & Doak, D. F. (2001) Phys- ical stress and diversity-productivity relationships: the role of positive interactions. Proceedings of the National Academy of Sciences USA, 98, 6704?6708. Murphy, B. R. & Willis, D. W. (1996) Fisheries Techniques. American Fisheries Society, Bethesda, MD, USA. Murray, R. D., Holling, M., Dott, H. E. M., & Vandome, P. (1998) The Breeding Birds of South-East Scotland. A tetrad atlas 1988?1994. The Scottish Ornithologists Club, Edinburgh. Murray, B. R., Rice, B. L., Keith, D. A., Myerscough, P. J., Howell, J., Floyd, A. G., Mills, K., & Westoby, M. (1999) Species in the tail of rank-abundance curves. Ecology, 80, 1806?1816. Muyzer, G., Dewaal, E. C., & Uitterlinden, A. G. (1993) Profiling of complex microbial-populations by dena- turing gradient gel-electrophoresis analysis of poly- merase chain reaction-amplified genes-coding for 16s ribosomal-RNA. Applied and Environmental Microbi- ology, 59, 695?700. Nachman, G. (1981) A mathematical model of the func- tional relationship between density and spatial distri- bution of a population. Journal of Animal Ecology, 50, 453?460. Nachman, G. (1984) Estimates of mean population den- sity and spatial distribution of Tetranychus urticae (Aca- rina: Tetranychidae) and Phytoseiulus persimilis (Aca- rina: Phytoseiidae) based upon the proportion of empty sampling units. Journal of Applied Ecology, 21, 903?913. Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Per- rings, C. (2009) Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective. Oxford University Press, Oxford. Nakatsu, C. H. (2007) Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci- ence Society of America Journal, 71, 562?571. Nanney, D. L. (2004) No trivial pursuit. BioScience, 54, 720?721. National Research Council. (2000) Ecological Indicators for the Nation. National Academy Press, Washington, DC. Nee, S. (2003) The unified phenomenological theory of biodiversity. In: Macroecology: Concepts and Conse- quences, Blackburn, T. M. & Gaston, K. J. (eds). Black- well Science, Oxford, pp. 31?44. Nee, S., Harvey, P. H., & Cotgreave, P. (1992) Population persistence and the natural relationship between body size and abundance. In Conservation of Biodiversity for Sustainable Development, Sandlund, O. T., Hindar, K., & Brown, A. H. D. (eds). Scandavanian University Press, Oslo, pp. 124?136. Nemani, R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., & Running, S. W. (2003) Climate-driven increases in global terres- trial net primary production from 1982 to 1999. Science, 300, 1560?1563. Newson, S. E., Woodburn, R., Noble, D. G., & Baillie, S. R. (2005) Evaluating the breeding bird survey for produc- ing national population size and density estimates. Bird Study, 52, 42?54. Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D., & Gaston, K. J. (2008) Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. Journal of Applied Ecology, 45, 1330?1338. Nicholls, H. (2009) Darwin 200: Let?s make a mammoth. Nature, 456, 310?314. Nixon, K. C. & Wheeler, Q. D. (1992) Measures of phyloge- netic diversity. In: Extinction and Phylogeny, Novacek, M. J. & Wheeler, Q. D. (eds). Columbia University Press, New York, pp. 216?234. Norden, N., Chazdon, R., Chao, A., Jiang, Y. -H., & Vilchez-Alvarado, B. (2009) Resilience of tropical rain forests: rapid tree community reassembly in secondary forests. Ecology Letters, 12, 385?394. Nusslein, K. & Tiedje, J. M. (1999) Soil bacterial commu- nity shift correlated with change from forest to pasture vegetation in a tropical soil. Applied and Environmental Microbiology, 65, 3622?3626. Ochiai, A. (1957) Zoogeographic studies on the soleoid fishes found in Japan and its neighboring regions. Bul- letin of the Japanese Society of Scientific Fisheries, 22, 526?530. O?Dwyer, J. P., Lake, J. K., Ostling, A., Savage, V. M., & Green, J. L. (2009) An integrative framework for stochas- tic size-structured community assembly. Proceedings of the National Academy of Science, 106, 6170?6175. Ogutu, J. O. & Owen-Smith, N. (2003) ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecology Letters, 6, 412?419. O?Hara, R. B. (2005) Species richness estimators: how many species can dance on the head of a pin. Journal of Animal Ecology, 74, 375?386. Oksanen,J.,Kindt,R.,Legendre,P.,O?Hara,B.,Simpson,G.L., & Stevens, M. H. H. (2008) vegan: Community Ecology Package. In: R package version. http://cran.r-project.org. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 321 Olden, J. D. (2006) Biotic homogenization: a new research agenda for convervation biogeography. Journal of Bio- geography, 33, 2027?2039. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R., & Stahl, D. A. (1986) Microbial ecology and evolution ? a ribosomal-RNA approach. Annual Review of Microbi- ology, 40, 337?365. Olson, V. A., Davies, R. G., Orme, C. D. L., Thomas, G. H., Meiri, S., Blackburn, T. M., Gaston, K. J., Owens, I. P. F., & Bennett, P. M. (2009) Global biogeography and ecology of body size in birds. Ecology Letters, 12, 249?259. Oremland, R. S., Capone, D. G., Stolz, J. F., & Fuhrman, J. (2005) Whither or wither geomicrobiology in the era of ?community metagenomics?. Nature Reviews Micro- biology, 3, 572?578. Osborn, A. M., Moore, E. R. B., & Timmis, K. N. (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of micro- bial community structure and dynamics. Environmen- tal Microbiology, 2, 39?50. ?vre?s, L. (2000) Population and community level approaches for analyzing microbial diversity in natural environments. Ecology Letters, 3, 236?251. Ovreas L. & Torsvik, L. Microbial diversity and commu- nity structure in two different agricultural soil commu- nities. Microbial Ecology, 36, 303?315. ?vre?s, L., Daae, F. L., Torsvik, V., & Rodriguez-Valera, F. (2003) Characterization of microbial diversity in hyper- saline environments by melting profiles and reasso- ciation kinetics in combination with terminal restric- tion fragment length polymorphism (T-RFLP). Micro- bial Ecology, 46, 291?301. Owen-Smith, N., Kerley, G. I. H., Page, B., Slotow, R., & van Aarde, R. J. (2006) A scientific perspective on the management of elephants in the Kruger National Park and elsewhere. South African Journal of Science, 102, 389?394. Pace, N. R. (1997) A molecular view of microbial diversity and the biosphere. Science, 276, 734?740. Pace, N. R., Stahl, D. A., Lane, D. J., & Olsen, G. J. (1986) The analysis of natural microbial-populations by ribosomal-RNA sequences. Advances in Microbial Ecol- ogy, 9, 1?55. Packer, L., Gibbs, J., Sheffield, C., & Hanner, R. (2009) DNA barcoding and the mediocrity of morphology. Molecu- lar Ecology and Research, 9(Suppl. 1), 42?50. Palomares, F., Godoy, J. A., Piriz, A., O?Brien, S. J., & John- son, W. E. (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility of the Iberian Lynx. Molecular Ecology, 11, 2171?2182. Palumbi, S. R. & Cipriano, F. (1998) Species identification using genetic tools: the value of nuclear and mitochon- drial gene sequences in whale conservation. The Journal of Heredity, 89, 459?464. Pan, H. Y., Chao, A., & Foissner, W. (2009) A non- parametric lower bound for the number of species shared by multiple communities. Journal of Agri- cultural, Biological and Environmental Statistics, 14, 452?468. Pardo, L. (2006) Statistical Inference Based on Divergence Measures. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, FL. Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637?669. Parr, C. L. & Chown, S. L. (2003) Burning issues for con- servation: a critique of faunal fire research in Southern Africa. Austral Ecology, 28, 384?395. Parr, C. L., Robertson, H. G., Biggs, H. C., & Chown, S. L. (2004) Response of African savanna ants to long- term fire regimes. Journal of Applied Ecology, 41, 630?642. Parsons, R. F. & Cameron, D. G. (1974) Maximum plant species diversity in terrestrial communities. Biotropica, 6, 202?203. Parsons, K. M., Piertney, S. B., Middlemas, S. J., Ham- mond, P. S., & Armstrong, J. D. (2005) DNA-based iden- tification of salmonid prey species in seal faeces. Journal of Zoology, 266, 275?281. Passmore, A. J., Jarman, S. N., Swadling, K. M., Kawaguchi, S., McMinn, A., & Nicol, S. (2006) DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Journal of Marine Biotechnology, 8, 686?696. Patr?cio, J., Salas, F., Pardal, M. A., J?rgensen, S. E., & Marques, J. C. (2006) Ecological indicators performance during a re-colonisation field experiment and its com- pliance with ecosystem theories. Ecological Indicators, 6, 43?57. Patuxent Wildlife Research Center (2001) Breeding Bird Survey FTP site. URL ftp://www.mp2-pwrc.usgs.gov/ pub/bbs/Datafiles/ Pausas, J. G. & Verd?, M. (2008) Fire reduces mor- phospace occupation in plant communities. Ecology, 89, 2181?2186. Pautasso, M. & Gaston, K. J. (2005) Resources and global avian assemblage structure in forests. Ecology Letters, 8, 282?289. Pavoine, S., Ollier, S., & Pontier, D. (2005a) Measur- ing diversity from dissimilarities with Rao?s quadratic entropy: are any dissimilaries suitable? Theoretical Pop- ulation Biology, 67, 231?239. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 322 REFERENCES Pavoine, S., Ollier, S., & Dufour, A. B. (2005b) Is the originality of a species measurable? Ecology Letters, 8, 579?586. Pavoine, S., Love, M., & Bonsall, M. B. (2009) Hierarchical partitioning of evolutionary and ecological patterns in the organization of phylogenetically-structured species assemblages: application to rockfish (genus: Sebastes) in the Southern California Bight. Ecology Letters, 12, 898?908. Payton, M. E., Greenstone, M. H., & Schenker, N. (2003) Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical sig- nificance? 6 pp. Journal of Insect Science, 3, 34, available online: insectscience.org/3.34. Pearson, T. H. (1975) The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. IV. Changes in the benthic fauna attributable to organic enrichment. Journal of Experimental Marine Biology and Ecology, 20, 1?41. Pease, C. M. (1988) Biases in the survivorship curves of fossil taxa. Journal of Theoretical Biology, 130, 31?48. Peet, R. K. (1974) The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285?307. Perry, J. N., Liebhold, A. M., Rosenberg, M. S., Dun- gan, J., Miriti, M., Jakomulska, A. & Citron-Pousty, S. (2002) Illustrations and guidelines for selecting statisti- cal methods for quantifying spatial pattern in ecological data. Ecography, 25, 578. Perry, J. N. & Woiwod, I. P. (1992) Fitting Taylor?s power law. Oikos, 65, 538?542. Perry, J. N. & Taylor, L. R. (1985) Ad?s: new ecologi- cal families of species-specific frequency distributions that describe repeated spatial samples with an intrinsic power-law variance-mean property. Journal of Animal Ecology, 54, 931?953. Perry, J. N. & Taylor, L. R. (1986) Stability of real interacting populations in space and time: implications, alterna- tives and the negative binomial kc. Journal of Animal Ecology, 55, 1053?1068. Pertoldi, C., W?jcik, J. M., Malgorzata, T., Kawalko, A., Kristensen, T. N., Loeschcke, V., Gregersen, V. R., Colt- man, D., Wilson, G. A., Randi, E., Henryon, M., & Bendixen, C. (2009) Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conservation Genetics, 11, 627?634. doi: 10.1007/s10592?009?9977-y. Petchey, O. L. & Gaston, K. J. (2002) Functional diver- sity (FD), species richness and community composition. Ecology Letters, 5, 402?411. Petchey, O. L. & Gaston, K. J. (2004) How do different measures of functional diversity perform? Ecology, 85, 847?857. Petchey, O. L. & Gaston, K. J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741?758. Petchey, O. L. & Gaston, K. J. (2007) Dendrograms and measuring functional diversity. Oikos, 116, 1422?1426. Petchey, O. L., O?Gorman, E. J., & Flynn, D. F. B. (2009) A functional guide to functional diversity measures. In: Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective, Naeem, S., Bunker, D. E., Hector, A., Loreau, M., & Perrings, C. (eds). Oxford University Press, Oxford, pp. 49?59. Peters, S. E. (2006) Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology, 32, 387?407. Peters, S. E. & Foote, M. (2002) Determinants of extinction in the fossil record. Nature, 416, 420?424. Peterson, J. T. & Paukert, C. P. (2009) Converting non- standard fish sampling data to standardized data. In: Standard Methods for Sampling North American Fresh- water Fishes, Bonar, S. A., Hubert, W. A., & Willis, D. W. (eds). American Fisheries Society, Bethesda, MD. Phillips, J. (1860) Life on Earth: its Origin and Succession. Macmillan, Cambridge. Phillip, D. A. (1998) Biodiversity of freshwater fishes of Trinidad and Tobago, West Indies. In: School of Biology. University of St Andrews, St Andrews, p. 99. Pianka, E. R. (1989) Latitudinal gradients in species diver- sity. Trends in Ecology and Evolution, 4, 223. Pielou, E. C. (1975) Species abundance distributions. In: Ecological Diversity. Wiley Interscience, New York, pp. 19?31. Pielou, E. C. (1977) Mathematical Ecology. Wiley, New York. Pillans, S., Ortiz, J.-C., Pillans, R. D., & Possingham, H. P. (2007) The impact of marine reserves on nekton diver- sity and community composition in subtropical eastern Australia. Biological Conservation, 136, 455?469. Pi?a-Alguilar, R. E., Lopez-Saucedo, J., Sheffield, R., Ruiz- Galaz, L. I., Barroso-Padilla, J. J., & Guti?rrez-Guti?rrez, A. 2009. Revival of extinct species using nuclear trans- fer: hope for the mammoth, true for the Pyrenean ibex, but is it time for ?conservation cloning??. Cloning and Stem Cells, 11, 341?346. Pi?eyro-Nelson, A., Van Heerwaarden, J., Perales, H. R. et al. (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Molecular Ecology, 18, 750?761. Platt, J. R. (1964) Strong inference. Science, 146, 347?353. Platt, H. M., Shaw, K. M., & Lambshead, P. J.D. (1984) Nematode species abundance patterns and their use in OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 323 the detection of environmental perturbations. Hydrobi- ologia, 118, 59?66. Plotkin, J. B. & Muller-Landau, H. C. (2002) Sampling the species composition of a landscape. Ecology, 83, 3344?3356. Podani, J. (2005) Multivariate exploratory data analysis of ordinal data in ecology: pitfalls, problems and solutions. Journal of Vegetation Science, 16, 497?510. Podani, J. & Schmera, D. (2006) On dendrogram-based measures of functional diversity. Oikos, 115, 179?185. Podani, J. & Schmera, D. (2007) How should a den- drogram based measure of functional diversity func- tion? A rejoinder to Petchey and Gaston. Oikos, 116, 1427?1430. Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., & Kondratieff, B. C. (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relation- ships. Journal of North American Benthic Society, 25, 730?755. Pollard, E. (1979) A national scheme for monitoring the abundance of butterflies. The first three years. Proceed- ings and Transactions of the British Entomological and Natural History Society, 12, 77?90. Poon, E. L. & Margules, C. R. (2004) Searching for new populations of rare plant species in remote locations. In: Sampling Rare or Elusive Species, Thompson, W. L. (ed). Island Press, Washington, DC, pp. 189?207. Poos, M. S., Walker, S. C., & Jackson, D. A. (2009) Functional-diversity indices can be driven by method- ological choices and species richness. Ecology, 90, 341?347. Popper, K. R. (1959) The Logic of Scientific Discovery. Hutchinson. Porter, W. P., Sabo, J. L., Tracy, C. R., Reichman, O. J., & Ramankutty, N. (2002) Physiology on a landscape scale: plant-animal interactions. Integrative and Comparative Biology, 42, 431?453. Pradel, R. (1996) Utilization of Capture-Mark-Recapture for the study of recruitment and population growth rate. Biometrics, 52, 703?709. Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C., & Gibbons, D. W. (1993) Rare Species, the Coin- cidence of Diversity Hotspots and Conservation Strate- gies. Nature, 365, 335?337. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge. Preston, F. W. (1948) The commonness and rarity of species. Ecology, 29, 254?283. Preston, F. W. (1960) Time and space and the variation of species. Ecology, 41, 612?627. Preston, F. W. (1962) The canonical distribution of com- monness and rarity: Parts 1 and 2. Ecology, 43, 185?215, 410?432. Price, P. W., Diniz, I. R., Morais, H. C., & Marques, E. S. A. (1995) The abundance of insect herbivore species in the tropics: the high local richness of rare species. Biotrop- ica, 27, 468?478. Primack, R. B. (1998). Essentials of Conservation Biology, 2nd edn. Sinauer Associates, Sunderland, MA. Pueyo, S. (2006) Diversity: between neutrality and struc- ture. Oikos, 112, 392?405. Pueyo, Y., Alados, C. L., & Ferrer-Benimeli, C. (2006) Is the analysis of plant community structure better than com- mon species-diversity indices for assessing the effects of livestock grazing on a Mediterranean arid ecosystem? Journal of Arid Environments, 64, 698?712. Purvis, A. & Hector, A. (2000) Getting the measure of biodiversity. Nature, 405, 212?219. Pybus, O. G. & Harvey, P. H. (2000) Testing macro- evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society London, B, 267, 2267?2272. Quince, C., Curtis, T. P., & Sloan, W. T. (2008) The rational exploration of microbial diversity. The ISME Journal, 2, 997?1006. Quince, C., Lanzen, A., Curtis, T. P., Davenport, R. J., Hall, N., Head, I. M., Read, L. F., & Sloan, W. T. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods 6, 639?641. Quinn, G. P. & Keough, M. J. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge. R Development Core Team. (2005) R: A Language and Enviornment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rabeni, C. F., Peterson, J. T., Lyons, J., & Mercado-Silva, N. (2009) Sampling fish in warmwater wadeable streams. In: Standard Methods for Sampling North American Freshwater Fishes, Bonar, S. A., Hubert, W. A., & Willis, D. W. (eds). American Fisheries Society, Bethesda. Rabinowitz, D. (1981) Seven forms of rarity. In: Biological Aspects of Rare Plant Conservation, Synge, H. (ed.). Wiley, Chichester, pp. 205?217. Rabinowitz, D., Cairns, S., & Dillon, T. (1986) Seven forms of rarity and their frequency in the flora of the British Isles. In: Conservation Biology: The Science of Scarcity and Diversity, Soul?, M. J. (ed). Sinauer, Sunderland, MA, pp. 182?204. Rahbek, C. & Graves, G. R. (2001) Multiscale assess- ment of patterns of avian species richness. Proceed- ings of the National Academy of Sciences. USA, 98, 4534?4539. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 324 REFERENCES Rand, T. A., Tylianakis, J. M., & Tscharntke, T. (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology Letters, 9, 603?614. Rangel, T., Diniz-Filho, J. A. F., & Bini, L. M. (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15, 321?327. Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gour- biere, F., Thioulouse, J., & Nazaret, S. (2000) Hetero- geneous cell density and genetic structure of bacte- rial pools associated with various soil microenviron- ments as determined by enumeration and DNA fin- gerprinting approach (RISA). Microbial Ecology, 39, 263?272. Rao, C. R. (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24?43. Rapoport, E. H. 1982. Areography: Geographical Strate- gies of Species. Pergamon, Oxford. Ratnasingham, S. & Hebert, P. D. N. (2007) BOLD: the bar- code of life data system (www.barcodinglife.org). Mole- cular Ecology Notes 7:355?364. Raunkaier, C. (1909) Formationsundersogelse og Forma- tionsstatistik. Svensk Botanisk Tidskrift, 30, 20?132. Raunkaier, C. (1934) Life Forms and Statistical Plant Geog- raphy. Oxford University Press, Oxford. Raup, D. M. (1975) Taxonomic diversity estimation using rarefaction. Paleobiology, 1, 333?342. Raup, D. M. (1978) Cohort analyses of generic survivor- ship. Paleobiology, 4, 1?15. Raup, D. M. (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206, 217?218. Raup, D. M. (1991) A kill curve for Phanerozoic marine species. Paleobiology, 17, 37?48. Raup, D. M. & Boyajian, G. E. (1988) Patterns of generic extinction in the fossil record. Paleobiology, 14, 109?125. Raup, D. M. & Sepkoski, J. J., Jr. (1982) Mass extinctions in the marine fossil record. Science, 215, 1501?1503. Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., Rakoton- drazafy, A. M., Ramanamanjato, J.-B., Raselimanana, A. P., Wu, S., Nussbaum, R. A., & Stone, D. A. (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology, 14, 1703?1720. Redding, D. W. & Mooers, A. O. (2006) Incorporating evolutionary measures into conservation prioritisation. Conservation Biology, 20, 1670?1678. Redding, D. W., Hartmann, K., Mimoto, A., Bokal, D., DeVos, M., & Mooers, A. O. (2008) Evolutionarily distinctive species often capture more phylogenetic diversity than expected. Journal of Theoretical Biology, 251, 606?615. Regan, H. M., Hierl, L. A., Franklin, J., Deutschman, D. H., Schmalbach, H. L., Winchell, C. S., & Johnson, B. S. (2008) Species prioritization for monitoring and management in regional multiple species conservation plans. Diversity & Distributions, 14, 462?471. Reid, W. V. (1998) Biodiversity hotspots. Trends in Ecology and Evolution, 13, 275?280. Renkonen, O. (1938) Statistisch-?kologische Untersuchun- gen ?ber die terrestrische K?ferwelt der finnischen Bruchmoore. Annale Zoologici Societatis Zoologicae- Botanicae Fennicae Vanamo, 6, 1?231. Rice, J. C. (2000) Evaluating fishery impacts using metrics of community structure. ICES Journal of Marine Sci- ence, 57, 682?688. Richards, P. W. 1969. Speciation in the tropical rain forest and the concept of the niche. Biological Journal of the Linnean Society, 1, 149?153. Richardson, D. M., Holmes, P. M., Esler, K. J., Galatow- itsch, S. M., Stromberg, J. C., Kirkman, S. P., Py?ek, P., & Hobbs, R. J. (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diver- sity & Distributions, 13, 126?139. Ricklefs, R. E. 2008. Disintegration of the ecological com- munity. The American Naturalist, 172, 741?750. Ricklefs, R. E. & Travis, J. (1980) A morphological approach to the study of avian community organiza- tion. Auk, 97, 321?338. Ricotta, C. (2004) A parametric diversity measure combin- ing the relative abundances and taxonomic distinctive- ness of species. Diversity & Distributions, 10, 143?146. Ricotta, C. (2005) A note on functional diversity measures. Basic and Applied Ecology, 6, 479?486. Ricotta, C. & Moretti, M. (2008) Quantifying functional diversity with graph-theoretical measures: advantages and pitfalls. Community Ecology, 9, 11?16. Ricotta, C. & Szeidl, L. (2009) Diversity partitioning of Rao?s quadratic entropy. Theoretical Population Biol- ogy, 76, 299?302. Riitters, K. H., O?Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, S. P., Jones, K. B., & Jack- son, B. L. (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 10, 23?39. Robbins, C. S., Bystrak, D., & Geissler, P. H. (1986) The Breeding Bird Survey: Its First Fifteen Years, 1965?1979. US Dept of the Interior, Fish and Wildlife Service, Wash- ington, DC. Roca. A. L., Georgiadis, N., Pecon-Slattery, J., & O?Brien, S. J. (2001) Genetic evidence for two species of elephant in Africa. Science, 293, 1747?1477. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 325 Roche Diagnostics. (2009) Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry ? Basic MID Set. Technical Bulletin Genome Sequencer FLX System, Mannheim, Germany, pp. 1?11. Rodrigues, A. S. L., Gregory, R. D., & Gaston, K. J. (2000) Robustness of reserve selection procedures under tem- poral species turnover. Proceedings of the Royal Society London, 267, 49?55. Roe, A. D. & Sperling, F. A. H. (2007) Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. Molecular Phylo- genetics and Evolution, 44, 325?345. Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Had- win, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G., & Triplett, E. W. (2007) Pyrose- quencing enumerates and contrasts soil microbial diver- sity. The ISME Journal, 1, 283?290. Romanov, M. N., Tuttle, E. M., Houck, M. L., Modi, W. S., Chemnick, L. G., Karody, M. L., Stremel Mork, E. M., Otten, C. A., Renner, T., Jones, K. C., Dandekar, S., Papp, J. C., Da, Y., NISC Comparative Sequencing Program, Green, E. D., Magrini, V., Hickenbotham, M. T., Glass- cock, J., McGrath, S., Mardis, E. R., & Ryder, O. A. (2009) The value of avian genomics to the conservation of wildlife. BMC Genomics, 10: doi:10.1186/1471?2164? 10-S2-S10. Romanuk, T. N. & Kolasa, J. (2001) Simplifying the com- plexity of temporal diversity dynamics: a differentiation approach. Ecoscience, 8, 259?263. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H., & Possingham, H. P. (2006) Tradeoffs of different types of species occurrence data for use in systematic conserva- tion planning. Ecology Letters, 9, 1136?1145. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J., & Goodman, R. M. (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diver- sity of uncultured microorganisms. Applied and Envi- ronmental Microbiology, 66, 2541?2547. Rosenfeld, J. S. (2002) Functional redundancy in ecology and conservation. Oikos, 98, 156?162. Rosenzweig, M. L. (1992) Species diversity gradients: we know more and less than we thought. Journal of Mam- malogy, 73, 715?730. Rosenzweig, M. L. (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. Rosenzweig, M. L. (1998) Preston?s ergodic conjec- ture: the accumulation of species in space and time. In: Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities, McKinney, M. L. & Drake, J. A. (eds). Columbia University Press New York, pp. 311?348. Rosenzweig, M. L. (2003) Reconciliation ecology and the future of species diversity. Oryx, 37, 194?205. Rosenzweig, M. L. (2004) Applying species-area relation- ships to the conservation of species diversity. In: Fron- tiers of Biogeography: New Directions in the Geogra- phy of Nature, Lomolino, M. V. & Heany, L. (eds). Sin- auer Associates, Sunderland, MA, pp. 325?343. Rosenzweig, M. L., Turner, W. R. Cox, J. G., & Ricketts, T. H.. (2003) Estimating diversity in unsampled habitats of a biogeographical province. Conservation Biology, 17, 864?874. Rosewell, J., Shorrocks, B., & Edwards, K. (1990) Competi- tion on a divided and ephemeral resource: testing the assumptions. I. Aggregation. Journal of Animal Ecol- ogy, 59, 977?1001. Rosing, M. T. & Frei, R. (2004) U-rich Archaean sea-floor sediments from Greenland ? indications of > 3700 Ma oxygenic photosynthesis. Earth and Planetary Science Letters, 217, 237?244. Rossi, R. E., Mulla, D. J., Journel, A. G., & Franz, E. H. (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62, 277?314. Roughgarden, J. (2009) Is there a general theory of community ecology? Biology and Philosophy, 24, 521?529. Routledge, R. (1979) Diversity indices: which ones are admissible? Journal of Theoretical Biology, 76, 503?515. Routledge, R. D. & Swartz, T. B. (1991) Taylor?s power law reexamined. Oikos, 60, 107?112. Rovito, S. M., Parra-Olea, S., V?squez-Almaz?n, C. R., Papenfuss, T. J., & Wake, D. B. (2009) Dramatic declines in neotropical salamander populations are an impor- tant part of the global amphibian crisis. Proceed- ings of the National Academy of Sciences. USA, 106, 3231?3236. Royal Society. (2003) Measuring Biodiversity for Conser- vation. The Royal Society, London. Royle, R. A., Nichols, J. D., & K?ry, M. (2005) Modelling occurrence and abundance of species when detection is imperfect. Oikos, 110, 353?359. Rubinoff, D., Cameron, S., & Will, K. (2006) A genomic perspective on the shortcomings of mitochondrial DNA for ?barcoding? identification. The Journal of Heredity, 97, 581?594. Li, R., Fan, W., Tian, G., Zhu, H., He, L., Cai, J., Huang, Q., Cai, Q., Li, B., Bai, Y., Zhang, Z., Zhang, Y., Wang, W., Li, J., Wei, F., Li, H., Jian, M., Li, J., Zhang, Z., Nielsen, R., Li, D., Gu, W., Yang, Z., Xuan, Z., Ryder, O. A., Leung, F. C.-C., Zhou, Y., Cao, J., Sun, X., Fu, Y., Fang, X., Guo, X., OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 326 REFERENCES Wang, B., Hou, R., Shen, F., Mu, B., Ni, P., Lin, R., Qian, W., Wang, G., Yu, C., Nie, W., Wang, J., Wu, Z., Liang, H., Min, J., Wu, Q., Cheng, S., Ruan, J., Wang, M., Shi, Z., Wen, M., Liu, B., Ren, X., Zheng, H., Dong, D., Cook, K., Shan, G., Zhang, H., Kosiol, C., Xie, X., Lu, Z., Zheng, H., Li, Y., Steiner, C., Lam, T., Lin, S., Zhang, Q., Li, G., Tian, J., Gong, T., Liu, H., Zhang, D., Fang, L., Ye, C., Zhang, J., Hu, W., Xu, A., Ren, Y., Zhang, G., Bruford, M. W., Li, Q., Ma, L., Guo, Y., An, N., Hu, Y., Zheng, Y., Shi, Y., Li, Z., Liu, Q., Chen, Y., Zhao, J., Qu, N., Zhao, S., Tian, F., Wang, X., Wang, H., Xu, L., Liu, X., Vinar, T., Wang, Y., Lam, T.-W., Yiu, S.-M., Liu, S., Zhang, H., Li, D., Huang, Y, Wang, X., Yang, G., Jiang, Z., Wang, J., Qin, N., Li, L., Li, J., Bolund, L., Kristiansen, K., Wong, G. K.-S., Olson, M., Zhang, X., Li, S., Yang, H., Wang, J., & Wang, J. (2010). The sequence and de novo assembly of the giant panda genome. Nature, 463, 311?317. Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback, T., Rogers, Y. -H., Falc?n, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, D. M., Sathendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M. R., Straus- berg, R. L., Nealson, K., Friedman, R., Frazier, M., & Venter, J. C. (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern tropical Pacific. PLoS Biology, 5, 398?431. Russell, G. J., Diamond, J. M., Pimm, S. L., & Reed, T. M. (1995) A century of turnover: community dynam- ics at three timescales. Journal of Animal Ecology, 64, 628?641. Rust, K. F. & Rao, J. N. K. (1996) Variance estimation for complex surveys using replication techniques. Statisti- cal Methods in Medical Research, 5, 283?310. Ryti, R. T. & Case, T. J. (1986) Overdispersion of ant colonies: a test of hypotheses. Oecologia, 69, 446?453. Sachs, J. D. (2008) Common Wealth: Economics for a Crowded Planet. Penguin Press, London. Sadler, P. M. & Cooper, R. A. (2003) Best-fit intervals and consensus sequences: a comparison of the resolv- ing power of traditional biostratigraphy and computer assisted correlation. In: High-Resolution Stratigraphic Approaches in Paleontology, Harries, P. (ed). Plenum Press, New York, pp. 49?94. Saint-Germain, M., Buddle, C. M., Larriv?e, M., Mercado, A., Motchula, T., Reichert, E., Sackett, T. E., Sylvain, Z., & Webb, A. (2007) Should biomass be considered more frequently as a currency in terrestrial arthropod community analysis. Journal of Applied Ecology, 44, 330?339. Salas, F., Marcos, C., Neto, J. M., Patr?cio, J., Perez- Ruzafa, A., & Marques, J. C. (2006a) User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean and Coastal Manage- ment, 49, 308?331. Salas, F., Patr?cio, J., Marcos, C., Pardal, M. A., Perez- Ruzafa, A., & Marques, J. C. (2006b) Are taxonomic dis- tinctness measures compliant to other ecological indi- cators in assessing ecological status? Marine Pollution Bulletin, 52, 162?174. Samways, M. J. (1989) Insect conservation and the distur- bance landscape. Agriculture, Ecosystems & Environment, 27, 183?194. Sanders, H. (1968) Marine benthic diversity: a compara- tive study. The American Naturalist, 102, 243. Sara, M. (2008) Breeding abundance of threatened rap- tors as estimated from occurrence data. The Ibis, 150, 776?778. Sawyer, A. J. (1989) Inconstancy of Taylor?s b: simulated sampling with different quadrat sizes and spatial distri- butions. Research in Population Ecology, 31, 11?24. Scharff, N., Coddington, J. A., Griswold, C. E., Hormiga, G., & De Place Bj?rn, P. (2003) When to quit? Estimating spider species richness in a northern European decidu- ous forest. Journal of Arachnology, 31, 246?273. Scheaffer, R. L., Mendenhall, W., & Ott, L. (2006) Elemen- tary Survey Sampling. Thomson Brooks/Cole, South- bank, Vic., Belmont, CA. Schechtman, E. & Wang, S. (2004) Jackknifing two-sample statistics. Journal of statistical Planning and Inference, 119, 329?340. Scheiner, S. M., Cox, S. B., Willig, M., Mittelbach, G. G., Osenberg, C., & Kaspari, M. (2000) Species richness, species-area curves and Simpson?s paradox. Evolution- ary Ecology Research, 2, 791?802. Schiermeier, Q. (2005) Hurricane link to climate change is hazy. Nature, 437, 461?461. Schleper, C., Jurgens, G., & Jonuscheit, M. (2005) Genomic studies of uncultivated archaea. Nature Reviews Micro- biology, 3, 479?488. Schloss, P. D. & Handelsman, J. (2006a) Introducing SONS, a tool for operational taxonomic unit-based com- parisons of microbial community memberships and structures. Applied Environmental Microbiology, 72, 6773?6779. Schloss, P. D. & Handelsman, J. (2006b) Toward a census of bacteria in soil. Plos Computational Biology, 2, 786?793. Schmera, D., Er?s, T., & Podani, J. (2009) A measure for assessing functional diversity in ecological communi- ties. Aquatic Microbial Ecology, 43, 157?167. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 327 Schulze, E. -D. & Mooney, H. A. (1994) Biodiversity and Ecosystem Function. Springer, Berlin, Germany. Schulze, C. H., Waltert, M., Kessler, P. J. A., et al. (2004) Biodiversity indicator groups of tropical land-use sys- tems: comparing plants, birds, and insects. Ecological Applications, 14, 1321?1333. Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461?464. Schwieger, F. & Tebbe, C. C. (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16s rRNA gene-based microbial community analy- sis. Applied and Environmental Microbiology, 64, 4870?4876. Schweiger, O., Klotz, S., Durka, W., & K?hn, I. (2008) A comparative test of phylogenetic diversity indices. Oecologia, 157, 485?495. Seeger, M. & Jerez, C. A. (1992) Phosphate limita- tion affects global gene-expression in Thiobacillus- ferrooxidans. Geomicrobiology Journal, 10, 227?237. Seigel, A. F. & German, R. Z. (1982) Rarefaction and taxo- nomic diversity. Biometrics, 38, 235?2411. Selmi, S. & Boulinier, T. (2004) Distribution-abundance relationship for passerines breeding in Tunisian oases: test of the sampling hypothesis. Oecologia, 139, 440?445. Sepkoski, J. J., Jr. (1975) Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology, 1, 343?355. Sepkoski, J. J., Jr. (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology, 5, 222?251. Sepkoski, J. J., Jr. (1982) A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology, 51, 139. Sepkoski, J. J. Jr. (1988) Alpha, beta, or gamma: where does all the diversity go? Paleobiology, 14, 221?234. Sepkoski, J. J., Jr. (2002) A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, 1?563. Shaw, A. B. (1964) Time in Stratigraphy. McGraw-Hill, New York. Shaw, J., Lickey, E. B., Schilling, E. E., & Small, R. L. (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94, 275?288. Shen, T., Chao, A., & Lin, C. (2003) Predicting the number of new species in further taxonomic sampling. Ecology, 84, 798?804. Sherwin, W. B., Jabot, F., Rush, R., & Rossetto, M. (2006) Measurement of biological information with applica- tions from genes to landscapes. Molecular Ecology, 15, 2857?2869. Shimida, A. (1984) Whittaker?s plant diversity sampling method. Israel Journal of Botany, 33, 41?46. Shimitani, K. (2001) On the measurement of species diversity incorporating species differences. Oikos, 93, 135?147. Shorrocks, B. & Rosewell, J. (1986) Guild size in drosophilids: a simulation model. Journal of Animal Ecology, 55, 527?541. Shurin, J. B. (2007) How is diversity related to species turnover through time? Oikos, 116, 957?965. Siddall, M. E., Fontanella, F. M., Watson, S. C., Kvist, S., & Ers?us, C. (2009) Barcoding bamboozled by bac- teria: convergence to metazoan mitochondrial primer targets by marine microbes. Systematic Biology, 58, 445?451. Signor, P. W., III & Lipps, J. H. (1982) Sampling bias, gradual extinction patterns and catastrophes in the fos- sil record. Geological Society of America Special Paper, 190, 291?296. Sileshi, G., Hailu, G., & Mafongoya, P. L. (2006) Occupancy-abundance models for predicting densities of three leaf beetles damaging the multipurpose tree Sesbania sesban in eastern and southern Africa. Bulletin of Entomological Research, 96, 61?69. Simberloff, D. S. (1972) Properties of the rarefaction diversity measurement. The American Naturalist, 106, 414?418. Simberloff, D. (1978) Use of rarefaction and related meth- ods in ecology. In: Biological Data in Water Pollu- tion Assessment: Quantitative and Statistical Analyses, Dickson, K. L., Cairns, J., Jr., & Livingston, R. J. (eds). American Society for Testing and Materials, Philadel- phia, pp. 150?165. Simberloff, D. & Connor, E. F. (1979) Q-mode and R-mode analyses of biogeographic distributions: null hypothe- ses based on random colonization. In: Contemporary Quantitative Ecology and Related Econometrics, Patil, G. P. & Rosenzweig, M. L. (eds), International Coopera- tive Publishing House, Fairland, pp. 123?128. Simkov?, A., Kadlec, D., Gelnar, M., & Morand, S. (2002) Abundance-prevalence relationship of gill congeneric ectoparasites: testing the core satellite hypothesis and ecological specialisation. Parasitology Research, 88, 682?686. Simpson, E. H. (1949) Measurement of diversity. Nature, 163, 688. Simpson, G. G. (1944) Tempo and Mode in Evolution. Columbia University Press, New York. Simpson, G. G. (1953) The Major Features of Evolution. Columbia University Press, New York. Singh, J., Behal, A., Singla, N., Joshi, A., Birbian, N., Singh, S., Bali, V., & Batra, N. (2009) Metagenomica: concept, OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 328 REFERENCES methodology, ecological inference and recent advances. Biotechnology Journal, 4, 480?494. Sitran, R., Bergamasco, A., Decembrini, F., & Guglielmo, L. (2009) Microzooplankton (tintinnid ciliates) diver- sity: coastal community structure and driving mecha- nisms in the southern Tyrrhenian Sea (Western Mediter- ranean). Journal of Plankton Research, 31, 153?170. ?izling, A. L. & Storch, D. (2004) Power-law species ? area relationships and self-similar species distributions within finite areas. Ecology Letters, 7, 60?68. ?izling, A. L. & Storch, D. (2007) Geometry of species distributions: random clustering and scale invariance. In: Scaling Biodiversity, Storch, D., Marquet, P. A., & Brown, J. H. (eds). Cambridge University Press, Cam- bridge, pp. 77?100. ?izling, A. L., ?izlingov?, E., Storch, D., Reif, J., & Gaston, K. J. (2009) Rarity, commonness and the contribution of individual species to species richness patterns. The American Naturalist, 174, 82?93. Sloan, W. T., Quince, C., & Curtis, T. P. (2008) The Uncount- ables. In: Accessing Uncultivated Microorganisms: from the Environment to Organisms and Genomes and Back, Zengler, K. (ed). ASM Press: Washington, DC, pp. 35?54. Smith, M. D. & Knapp, A. K. (2003) Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509?517. Smith, W. & Grassle, F. (1977) Sampling properties of a family of diversity measures. Biometrics, 33, 283?292. Smith, B. & Wilson, J. B. (1996) A consumer?s guide to evenness indices. Oikos, 76, 70?82. Smith, E. P. & Zaret, T. M. (1982) Bias in estimating niche overlap. Ecology, 63, 1248?1253. Smith, K. W., Dee, C. W., Fearnside, J. D., Fletcher, E. W., & Smith, R. N. (1993) The Breeding Birds of Hertfordshire. TheHertfordshireNaturalHistorySociety,Hertfordshire. Smith, W., Solow, A. R., & Preston, P. E. (1996) An estima- tor of species overlap using a modified beta-binomial model. Biometrics, 52, 1472?1477. Smith, A. B., Gale, A. S., & Monks, N. E. (2001) Sea- level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleo- biology, 27, 241?253. Smith, D. R., Brown, J. A., & Lo, N. C.H. (2004) Appli- cations of adaptive sampling to biological populations. In: Sampling for Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters, Thompson, W. L. (ed). Island Press, Wash- ington, pp. 77?122. Sobek S., Steffan-Dewenter I., Scherber C., & Tscharntke T. (2009) Spatiotemporal changes of beetle communities across a tree diversity gradient. Diversity & Distribu- tions, 15, 660?670. Sober?n, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115?1123. Sober?n, J. & Llorente, J. (1993) The use of species accumu- lation functions for the prediction of species richness. Conservation Biology, 7, 480?488. Sogin, M. L., Morrison, H. G., Huber, JA., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., & Herndl, G. J., (2006) Microbial diversity in the deep sea and the under- explored ?rare biosphere?. Proceedings of the National Academy of Sciences, 103, 12115?12120. Solow, A. R. (1993a) Inferring extinction from sighting data. Ecology, 74, 962?963. Solow, A. R. (1993b) Inferring extinction in a declin- ing population. Journal of Mathematical Biology, 32, 79?82. Solow, A. R. (1996) Tests and confidence intervals for a common upper endpoint in fossil taxa. Paleobiology, 22, 406?410. Solow, A. R. & Smith, W. K. (1997) On fossil preservation and the stratigraphic ranges of taxa. Paleobiology, 23, 271?277. Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear, mitochondrial pseudogenes are coamplified. Proceed- ings of the National Academy of Sciences, 105, 13486?13491. S?rensen, T. (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1?34. Sorensen, L. L., Coddington, J. A., & Scharff, N. (2002) Inventorying and estimating subcanopy spider diver- sity using semiquantitative sampling methods in an Afromontane forest. Environmental Entomology, 31, 319?330. Soule, M. E. (1986) Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, MA. Sousa, W. P. (1979) Disturbance in marine intertidal boul- der fields: the nonequilibrium maintenance of species diversity. Ecology, 60, 1225?1239. Sousa, W. P. (1984) The role of disturbance in natural com- munities. Annual Review of Ecology and Systematics, 15, 353?391. Southwood, T. R. E. (1977) Habitat: the templet for ecological strategies. Journal of Animal Ecology, 46, 337?365. Southwood, T. R. E. (1978) Ecological Methods. Chapman & Hall, London. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 329 Southwood, T. R. E. (1996) The Croonian Lecture 1995. Natural communities: structure and dynamics. Philo- sophical Transactions of the Royal Society, London Lond. B., 351, 1113?1129. Southwood, R. & Henderson, P. A. (2000) Ecological Meth- ods. 3rd edn. Blackwell Science, Oxford. Soykan, C., McGill, B., Magurran, A., Dornelas, M., Bahn, V., Ugland, K., & Gray, J. S. (in prep.) An Assessment of Indicator Performance along Human Disturbance Gradients. Spiegelhalter, D., Best, N., Calin, B., & van der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, 64, 583?639. Staley, J. T. & Konopka, A. (1985) Measurement of in- situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321?346. Steffan-Dewenter, I., Muenzenberg, U., Buerger, C., Thies, C., & Tscharntke, T. (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83, 1421?1432. Stein, B. A., Scott, C., & Benton, N. (2008) Federal lands and endangered species: the role of military and other federal lands in sustaining biodiversity. Bioscience, 58, 339?347. Steinke, D., Vences, M., Salzburger, W., & Meyer, A. (2005) TaxI: a software tool for DNA barcoding using distance methods. Philosophical Transactions of the Royal Soci- ety, London B, 360, 1075?1980. Stewart, J. G., Schieble, C. S., Cashner, R. C., & Barko V. A. (2005) Long-term Trends in the Bogue Chitto River Fish Assemblage: a 27 Year Perspective. Southeastern Natu- ralist, 4, 261?272. Stirling, G. & Wilsey, B. (2001) Empirical relation- ships between species richness, evenness, and pro- portional diversity. The American Naturalist, 158, 286?299. Stohlgren, T. J. (2007) Measuring Plant Diversity: Lessons from the Field. Oxford University Press, Oxford, New York. Stohlgren, T. J., Jarnevich, C., Chong, G. W., & Evangelista, P. H. (2006) Scale and plant invasions: a theory of biotic acceptance. Preslia, 78, 405?426. Storch, D. & ?izling, A. L. (2002) Patterns in commoness and rarity in Central European birds: reliability of the core-satellite hypothesis. Ecography, 25, 405?416. Storch, D., ?izling, A., Reif, J., Polechov?, J., ?izlingov?, E., & Gaston, K. J. (2008) The quest for a null model for macroecological patterns: geometry of species dis- tributions at multiple spatial scales. Ecology Letters, 11, 771?784. Storfer, A., Eastman, J. M., & Spear, S. F. (2009) Modern molecular methods for amphibian conservation. Bio- Science, 59, 559?571. Strauss, D. & Sadler, P. M. (1989) Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21, 411?427. Strong, D. R., Simberloff, D., Abele, L. G., & Thistle, A. B. (1984) Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Princeton, USA. Sugihara, G. (1980) Minimal community structure: an explanation of species abundance patterns. The Amer- ican Naturalist, 116, 770?787. Sugihara, G., Bersier, L. F., Southwood, T. R. E., Pimm, S. L., & May, R. M. (2003) Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences of the United States of America, 100, 5246?5251. Sutherland, W. J., Bailey, M. J., Bainbridge, I. P., et al. (2008) Future novel threats and opportunities facing UK biodiversity identified by horizon scanning. Journal of Applied Ecology, 45, 821?833. Swenson, N. G. & Enquist, B. J. (2007) Ecological and evo- lutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94, 451?459. Swingle, H. S. (1950) Relationships and Dynamics of Bal- anced and Unbalanced Fish Populations. Agricultural Experiment Station of the Alabama Polytechnic Insti- tute, Auburn, AL. Swingle, H. S. (1952) Farm pond investigations in Alabama. Journal of Wildlife Management, 16, 243?249. Taberlet, P. & Fumagalli, L. (1996) Owl pellets as a source of DNA for genetic studies of small mammals. Molecu- lar Ecology, 5, 301?305. Taper, M. L. & Lele, S. R. (2004) The Nature of Scientific Evidence: Statistical, Philosophical, and Empirical Con- siderations.. University of Chicago Press, Chicago. Tavares, E. S. & Baker. A. J. (2008) Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evolutionary Biology, 8, 81. Taylor, L. R. (1961) Aggregation, variance and the mean. Nature, 189, 732?735. Taylor, L. R. (ed.) (1978) Bates, Williams, Hutchinson ? A Variety of Diversities. Blackwell Publishing, Oxford. Taylor, L. R. (1984) Assessing and interpreting the spatial distributions of insect populations. Annual Review of Entomology, 29, 321?357. Taylor, L. R., Kempton, R. A., & Woiwod, I. P. (1976) Diversity statistics and the log series model. Journal of Animal Ecology, 45, 255?271. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 330 REFERENCES Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1978) The density-dependence of spatial behaviour and the rarity of randomness. Journal of Animal Ecology, 47, 383?406. Taylor, L. R., Woiwod, I. P., & Perry, J. N. (1979) The negative binomial as a dynamic ecological model for aggregation and the density dependence of k. Journal of Animal Ecology, 48, 289?304. Taylor, C. M., Millican, D. S., Roberts, M. E., & Slack, W. T. (2008) Long-term change to fish assemblages and the flow regime in a southerneastern U. S. river system after extensive aquatic ecosystem fragmentation. Ecography, 31, 787?797. Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W., & Meril?, J. (2008) Bergmann?s rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population. Proceedings of the National Academy of Sciences. USA, 105, 13492?13496. Terborgh, J. T. (1983) Five New World Primates: a Study in Comparative Ecology. Princeton University Press, Princeton, NJ. Terborgh, J., Foster, R. B., & N??ez, V. P. (1996) Tropical tree communities: a test of the nonequilibrium hypoth- esis. Ecology, 77, 561?567. The H. John Heinz III Center for Science, Economics, and the Environment (2008) The Nation?s Ecosystems: core Indicators, Pn: The State of the Nation?s Ecosys- tems 2008; Measuring the Land, Waters, and Living Resources of The United States. Island Press, Washing- ton, DC., 13?62. Thibault, K., White, E., & Ernest, S. K.M. (2004) Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649?2655. Thomas, C. D. & Mallorie, H. C. (1985) Rarity, species rich- ness and conservation: butterflies of the Atlas Moun- tains of Morocco. Biological Conservation, 33, 95?117. Thomas, L., Buckland, S. T., Rexstad, E. R., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., & Burnham, K. P. (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5?14. Thomaz, D., Guiller, A., & Clarke, B. (1996) Extreme diver- gence of mitochondrial DNA within species of pul- monate land snails. Proceedings of the Royal Society London, B, 263, 363?368. Thompson, W. L. (2004) Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Pop- ulation Parameters. Island Press, Washington. Thrush, S. F., Hewitt, J. E., Dayton, P. K., Coco, G., Lohrer, A. M., Norkko, A., Norkko, J., & Chiantore, M. (2009) Forecasting the limits of resilience: integrating empirical research with theory. Proceedings of the Royal Society London, 276, 3209?3217. Tiedje, J. M., Asuming-Brempong, S., Nusslein, K., Marsh, T. L., & Flynn, S. J. (1999) Opening the black box of soil microbial diversity. Applied Soil Ecology, 13, 109?122. Tilman, D. (2001) Functional diversity. In: Encyclopaedia of Biodiversity, Levin, S. A. (ed). Academic Press, San Diego, CA, pp. 109?120. Tilman, D., Lehman, C. L., & Kareiva, P. (1997a) Popula- tion dynamics in spatial habitats. In: Spatial Ecology, Tilman, D. & Kareiva, P. (eds). Princeton University Press, New Jersey, pp. 3?20. Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., & Siemann, E. (1997b) The influence of functional diver- sity and composition on ecosystem processes. Science, 277, 1300. Tipper, J. C. (1979) Rarefaction and rarefiction?the use and abuse of a method in paleoecology. Paleobiology, 5, 423?434. Tobler, W. R. (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234?240. Todd, S. W. (2006) Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in rela- tion to distance from livestock watering points. Journal of Applied Ecology, 43, 293?304. Tokeshi, M. (1990) Niche apportionment or random assortment: species abundance patterns revisited. Jour- nal of Animal Ecology, 59, 1129?1146. Tokeshi, M. (1993) Species abundance patterns and com- munity structure. Advances in Ecological Research, 24, 112?186. Tokeshi, M. (1996) Power fraction: a new explanation of relative abundance patterns in species-rich assem- blages. Oikos, 75, 543?550. Tokeshi, M. (1999) Species Coexistience. Blackwell Sci- ences Ltd, Oxford. Toma?ov?ch, A. & Kidwell, S. M. (2009) Fidelity of vari- ation in species composition and diversity partition- ing by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology, 35, 94?118. Torsvik, V., Goksoyr, J., & Daae, F. L. (1990a) High diver- sity in DNA of soil bacteria. Applied and Environmen- tal Microbiology, 56, 782?787. Torsvik, V., Salte, K., Sorheim, R., & Goksoyr, J. (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacte- ria. Applied and Environmental Microbiology, 56, 776?781. Torsvik, V., Daae, F. L., Sandaa, R. A., & Ovreas, L. (1998) Novel techniques for analysing microbial diver- sity in natural and perturbed environments. Journal of Biotechnology, 64, 53?62. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 331 Torsvik, V., Ovreas, L., & Thingstad, T. F. (2002) Prokary- otic diversity ? magnitude, dynamics, and controlling factors. Science, 296, 1064?1066. Tosh, C. A., Reyers, B., & van Jaarsveld, A. S. (2004) Estimating the abundances of large herbivores in the Kruger National Park using presence-absence data. Ani- mal Conservation, 7, 55?61. Toth, M. 2008. A new noninvasive method for detecting mammals from birds? nests. Journal of Wildlife Manage- ment, 72, 1237?1240. Tratalos, J., Fuller, R. A., Evans, K. L., Davies, R. G., New- son, S. E., Greenwood, J. J.D., & Gaston, K. J. (2007) Bird densities are associated with household densities. Global Change Biology, 13, 1685?1695. Travis, J. & Ricklefs, R. E. (1983) A morphological compar- ison of island and mainland assemblages of Neotropical birds. Oikos, 41, 434?441. Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P., & Rubin, E. M. (2005) Comparative metagenomics of microbial communities. Science, 308, 554?557. Tscharntke, T., Gathmann, A., & Steffan-Dewenter, I. (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology, 35, 708?719. Tscharntke, T., Klein, A., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005) Landscape perspectives on agricul- tural intensification and biodiversity ? ecosystem ser- vice management. Ecology Letters, 8, 857?874. Tscharntke, T., Sekercioglu, C. H., Dietsch, T. V., Sodhi, N. S., Hoehn, P., & Tylianakis, J. M. (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology, 89, 944?951. Tuomisto, H. (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diver- sity. Ecography, 33, 2?22. Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W., & Rodriguez, Z. (1995) Dissecting Ama- zonian biodiversity. Science, 269, 63?66. Turner, W., Leitner, W. A., & Rosenzweig, M. L. (2000) Ws2m.exe. http://eebweb.arizona.edu/diversity. Tylianakis, J. M., Klein, A. -M., & Tscharntke, T. (2005) Spa- tiotemporal variation in the diversity of hymenopters across a tropical habita gradient. Ecology, 86, 3296?3302. Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., & Banfield, J. F. (2004) Commu- nity structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, 37?43. Ugland, K. I. & Gray, J. S. (1982) Lognormal distributions and the concept of community equilibrium. Oikos, 39, 171?178. Ugland, K. I., Gray, J. S., & Ellingsen, K. E. (2003) The species ? accumulation curve and estimation of species richness. Journal of Animal Ecology, 72, 888?897. Ugland, K. I., Lambshead, F. J. D., McGill, B., Gray, J. S., O?Dea, N., Ladle, R. J., & Whittaker, R. J. (2007) Mod- elling dimensionality in species abundance distribu- tions: description and evaluation of the Gambin model. Evolutionary Ecology Research, 9, 313?324. Ulrich, W. & Buszko, J. (2003) Self-similarity and the species-area relation of Polish butterflies. Basic and Applied Ecology, 4, 263?270. Ulrich, W. & Ollik, M. (2004) Frequent and occasional species and the shape of relative-abundance distribu- tions. Diversity & Distributions, 10, 263?269. Ulrich, W. & Zalewski, M. (2006) Abundance and co- occurrence patterns of core and satellite species of ground beetles on small lake islands. Oikos, 114, 338?348. Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W., & Hoffmann, A. A. (2005) A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science, 308, 691?693. Urich, T., Lanzen, A., Qi, J., Huson, D. H., Schleper, C., & Schuster, S. C. (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the Meta-Transcriptome. PLoS ONE, 3, e2527. Urquhart, N. S. & Kincaid, T. M. (1999) Designs for detect- ing trend from repeated surveys of ecological resources. Journal of Agricultural, Biological, and Environmental Statistics, 4, 404?414. Urquhart, N. S., Paulsen, S. G., & Larsen, D. P. (1998) Mon- itoring for policy-relevant regional trends over time. Ecological Applications, 8, 246?257. Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E., Pompanon, F., Gielly, L., Cruaud, C., Nascetti, G., Wincker, P., Swenson, J. E., & Taber- let, P. (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Research, 9, 51?60. Vamosi, S. M., Heard, S. B., Vamosi, J. C., & Webb, C. O. (2009) Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572?592. van der Gast, C. J., Ager, D., & Lilley, A. K. (2008) Temporal scaling of bacterial taxa is influences by both stochas- tic and deterministic ecological factors. Environmental Microbiology, 10, 1411?1418. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 332 REFERENCES Vandermeer, J., Granzow de la Cerda, I., Perfecto, I., Boucher, D., Ruiz, J. & Kaufmann, A. (2004) Multi- ple basins of attraction in a tropical forest: evidence for a nonequilibrium community structure. Ecology, 85, 575?579. van Rensburg, B. J., McGeoch, M. A., Matthews, W., Chown, S. L., & van Jaarsveld, A. S. (2000) Testing gen- eralities in the shape of patch occupancy frequency dis- tributions. Ecology, 81, 3163?3177. van Rensburg, B. J., Chown, S. L., & Gaston, K. J. (2002) Species richness, environmental correlates, and spatial scale: a test using South African birds. The American Naturalist, 159, 566?577. van Straalen, N. M. (1998) Evaluation of bioindicator systems derived from soil arthropod communities. Applied Soil Ecology, 9, 429?437. van Straalen, N. M. & Verhoef, H. A. (1997) The devel- opment of a bioindicator system for soil acidity based on arthropod pH preferences. The Journal of Applied Ecology, 34, 217?232. Van Valen, L. (1973) A new evolutionary law. Evolutionary Theory, 1, 1?30. Van Valen, L. (1979) Taxonomic survivorship curves. Evo- lutionary Theory, 4, 129?142. Vane-Wright, R. I., Humphries, C. J., & Williams, P. H. (1991) What to protect? ? Systematics and the agony of choice. Biological Conservation, 55, 235?254. Veech, J. A., Summerville, K. S., Crist, T. O., & Gering, J. C. (2002) The additive partitioning of species diver- sity: recent revival of an old idea. Oikos, 99, 3?9. Veldtman, R. & McGeoch, M. A. (2004) Spatially explicit analyses unveil density dependence. Proceedings of the Royal Society London, B, 271, 2439?2444. Vellend, M. (2001) Do commonly used indices of ?- diversity measure species turnover? Journal of Vegeta- tion Science, 12, 545?552. Vellend, M., Harmon, L. J., Lockwood, J. L., Mayfield, M. M., Hughes, A. R., Wares, J. P., & Sax, D. F. (2007) Effects of exotic species on evolutionary diversification. Trends in Ecology and Evolution, 22, 481?488. Vences, M., Thomas, M., Bonett, R. M., & Vieites, D. R. (2005a) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophi- cal Transactions of the Royal Society, London B 360: 1859?1868. Vences, M., Thomas, M., van der Meijden, A., Chiari, Y., & Vieites, D. R. (2005b) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Frontiers in Zoology, 2, 5. Venier, L. A. & Fahrig, L. (1998) Intraspecific abundance- distribution relationships. Oikos, 82, 438?490. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D. Y., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., & Smith, H. O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Sci- ence, 304, 66?74. Vera, M., Guiliani, N., & Jerez, C. A. (2003) Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy, 71, 125?132. Vera, J. C., Wheat, C. W., Fescemyer, H. W., Frilander, M. J., Crawford, D. L., Hanski, I., & Marden, J. H. (2008) Rapid transcriptome characterization for a nonmodel organ- ism using 454 pyrosequencing. Molecular Ecology, 17, 1636?1647. Vile, D., Shipley, B., & Garnier, E. (2006) Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters, 9, 1061?1067. Vill?ger, S., Mason, N. W.H., & Mouillot, D. (2008) New multidimensional functional diversity indices for a mul- tifaceted framework in functional ecology. Ecology, 89, 2290?2301. Violle, C. & Jiang, L. (2009) Towards a trait-based quan- tification of species niche. Journal of Plant Ecology, 2, 87?93. Virginia Natural Heritage Program. (2006) DCR-DNH vegetation plots database, ver. 3.0. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond. Vitousek, P. M., Ehrlich, P. R., Ehlrich, A. H., & Matson, P. A. (1986) Human appropriation of the products of photosynthesis. BioScience, 36, 368?373. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997) Human domination of Earth?s ecosystems. Science, 277, 494?499. Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A. (2003) Neutral theory and relative species abundance in ecology. Nature, 424, 1035?1037. Volkov, I., Banavar, J. R., Hubbell, S. P., & Maritan, A. (2007) Patterns of relative species abundance in rain- forests and coral reefs. Nature, 450, 45?49. Vrba, E. S. (1985) Environment and evolution: alter- native causes of the temporal distribution of evolu- tionary events. South African Journal of Science, 81, 229?236. Wagner, P. J. (2000) Likelihood tests of hypothesized dura- tions: determining and accommodating biasing factors. Paleobiology, 26, 431?449. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 333 Walker, B., Kinzig, A., & Langridge, J. (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95?113. Walker, S. C., Poos, M. S., & Jackson, D. A. (2008) Func- tional rarefaction: estimating functional diversity from field data. Oikos, 117, 286?296. Walther, B. A. & Moore, J. L. (2005) The concepts of bias, precision and accuracy, and their use in testing the per- formance of species richness estimators, with a litera- ture review of estimator performance. Ecography, 28, 815?829. Walther, B. A. & Morand, S. (1998) Comparative perfor- mance of species richness estimation method. Parasitol- ogy, 116, 395?405. Wang, S. C. (2003) On the continuity of background and mass extinction. Paleobiology, 29, 455?467. Wang, S. C. & Everson, P. J. (2007) Confidence intervals for pulsed mass extinction events. Paleobiology, 33, 324?336. Ward, R. D. (2009) DNA barcoding divergence among species and genera of birds and fishes. Molecular Ecol- ogy Research, 9, 1077?1085. Ward, S. A., Sunderland, K. D., Chambers, R. J. & Dixon A. F. G. (1986) The use of incidence counts for estimation of cereal aphid populations. 3. Population development and the incidence-density relation. Netherlands Journal of Plant Pathology, 92, 175?183. Ware, D. M. & Thomson, R. E. (2005) Bottom-up ecosys- tem trophic dynamics determine fish production in the northeast Pacific. Science, 308, 1280?1284. Ware, S. J., Rees, H. L., Boyd, S. E., & Birchenhough, S. N. (2008) Performance of selected indicators in evaluating the consequences of dredged material relocation and marine aggregate extraction. Ecological Indicators, 9, 704?718. Warming, E. 1909. Oecology of Plants. Clarendon Press, Oxford. Warren, P. H. & Gaston, K. J. (1997) Interspecific abundance-occupancy relationships: a test of mecha- nisms using microcosms. Journal of Animal Ecology, 66, 730?742. Wartenberg, D., Ferson, S., & Rohlf, F. J. (1987) Putting things in order: a critiqye of detrended cor- respondence analysis. The American Naturalist, 129, 434?448. Warwick, R. M. (1986) A new method for detecting pol- lution effects on marine macrobenthic communities. Marine Biology, 92, 557?562. Warwick, R. M. & Clarke, K. R. (1991) A comparison of some methods for analysing changes in benthic commu- nity structure. Journal of the Marine Biological Associa- tion of the United Kingdom, 71, 225?244. Warwick, R. M. & Clarke, K. R. (1993) Comparing the severity of disturbance: a meta-analysis of marine mac- robenthic community data. Marine Ecology Progress Series, 92, 221?231. Warwick, R. M. & Clarke, K. R. (1994) Relearning the ABC ? taxonomic changes and abundance biomass rela- tionships in disturbed benthic communities. Marine Biology, 118, 739?744. Warwick, R. M. & Clarke, K. R. (1995) New ?biodiversity? measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress Series, 129, 301?305. Warwick, R. M. & Clarke, K. R. (1998) Taxonomic distinct- ness and environmental assessment. Journal of Applied Ecology, 35, 532?543. Watling, L. & Norse, E. A. (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcut- ting. Conservation Biology, 12, 1180?1197. Webb, C. O. (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145?155. Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475?505. Webb, T. J., Noble, D., & Freckleton, R. P. (2007) Abundance-occupancy dynamics in a human- dominated environment: linking interspecific and intraspecific trends in British farmland and woodland birds. Journal of Animal Ecology, 76, 123?134. Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008) Phy- locom: software for the analysis of phylogenetic com- munity structure and trait evolution. Bioinformatics, 24, 2098?2100. Weiher, E. (2004) Why should we constrain stress and limitation? ? Why conceptual terms deserve broad definitions. Journal of Vegetation Science, 15, 569?571. Weiher, E. & Keddy, P. A. (1995) Assembly rules, null models, and trait dispersion, new questions from old patterns. Oikos, 74, 159?164. Weiher, E., Clarke, G. D.P., & Keddy, P. A. (1998) Commu- nity assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309?322. Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E., & Eriksson, O. (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. Journal of Vegetation Science, 10, 609?620. OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi 334 REFERENCES Weiss, R. E. & Marshall, C. R. (1999) The uncertainty in the true end point of a fossil?s stratigraphic ranges when stratigraphic sections are sampled discretely. Mathe- matical Geology, 31, 435?453. Weitzman, M. L. (1992) On diversity. Quarternary Journal of Economics, 107, 363?405. Wellington, E. M. H., Berry, A., & Krsek, M. (2003) Resolv- ing functional diversity in relation to microbial commu- nity structure in soil: exploiting genomics and stable isotope probing. Current Opinion in Microbiology, 6, 295?301. Westoby, M. (1999) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213?227. White, E. P. (2007) Spatiotemporal scaling of species rich- ness: patters, processes, and implications. In: Scaling Biodiversity, Storch, D., Marquet, P. A., & Brown, J. H. (eds). Cambridge University Press, Cambridge, pp. 325? 346. White, G. C., Burnham, K. P., & Anderson, D. R. (2001) Advanced features of Program MARK. In: Wildlife, Land, and People: Priorities for the 21st Century, Field, R., Warren, R. J., Okarma, H., & Sievert, P. R. (eds). The Wildlife Society, Bethesda, MD, pp. 368?377. White, E. P., Ernest, S. K. M., & Thibault, K. M. (2004) Trade-offs in community properties through time in a desert rodent community. The American Naturalist, 164, 670?676. White, E. P., Adler, P. B., Lauenroth, W. K., Gill, R. A., Greenberg, D., Kaufman, D. M., Rassweiler, A., Rusak, J. A., Smith, M. D., Steinbeck, J. R., Waide, R. B., & Yao, J. (2006) A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos, 112, 185?195. White, E. P., Enquist, B. J., & Green, J. L. (2008) On estimat- ing the exponent of power-law frequency distributions. Ecology, 89, 905?912. Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998) Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578?6583. Whittaker, R. H. (1952) A study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs, 22, 1?44. Whittaker, R. H. (1960) Vegetation of the Siskiyou moun- tains, Oregon and California. Ecological Monographs, 30, 279?338. Whittaker, R. H. (1965) Dominance and diversity in land plant communities. Science, 147, 250?260. Whittaker, R. H. (1972) Evolution and measurement of species diversity. Taxon, 12, 213?251. Whittaker, R. H. (1975) Communities and Ecosystems. 2nd edn. MacMillan Publishers, New York. Wiegand, T. & Moloney, K. A. (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 104, 209. Wilcox, B. A. (1978) Supersaturated island faunas: a species-age relationship for lizards on post-pleistocene land-bridge islands. Science, 199, 996?998. Williams, C. B. (1964) Patterns in the Balance of Nature and Related Problems in Quantitative Ecology. Acad- emic Press, London. Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002) Analysis and Management of Animal Populations. Aca- demic Press, San Diego. Williamson, M. & Gaston, K. J. (2005) The lognormal dis- tribution is not an appropriate null hypothesis for the species-abundance distribution. Journal of Animal Ecol- ogy, 74, 409?422. Willis, J. C. (1922) Age and Area: A Study in Geographical Distribution and Origin of Species. Cambridge Univer- sity Press, Cambridge. Willis, D. W. & Murphy, B. R. (1996) Planning for sam- pling. In: Fisheries Techniques, Murphy, B. R. & Willis, D. W. (eds). American Fisheries Society, Bethesda, MD, USA, pp. 1?15. Wilsey, B. J., Chalcraft, D. R., Bowles, C. M., & Willig, M. R. (2005) Relationships among indices suggest that richness is an incomplete surrogate for grassland biodi- versity. Ecology, 86, 1178?1184. Wilson, J. B. (1991) Methods for fitting domi- nance/diversity curves. Journal of Vegetation Science, 2, 35?46. Wilson, J. B. (1993) Would we recognise a broken- stick community if we found one? Oikos, 67, 181? 183. Wilson, L. T. & Room, P. M. (1983) Clumping patterns of fruit and arthropods in cotton, with implications for binomial sampling. Environmental Entomology, 12, 296?302. Wilson, J. B., Wells, T. C. E., Trueman, I. C., Jones, G., Atkinson, M. D., Crawley, M. J., Dodd, M. E., & Sil- vertown, J. (1996a) Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends? Journal of Ecology, 84, 527?538. Wilson, D. E., Nichols, J. D., Rudran, R., & Southwell, C. (1996b) Introduction. In: Measuring and Monitoring Biological Diversity, Standard Methods for Mammals, Wilson, D. E., Cole, R. F., Nichols, J. D., Rudran, R., & Foster, M. S. (eds). Smithsonian Institution Press, Wash- ington, DC, pp. 1?7. Wilting, A., Buckley-Beason, V. A., Feldhaar, H., Gadau, J., O?Brien, S. J., & Linsenmair, K. E. (2007) Clouded leop- ard phylogeny revisited: support for species recognition OUP CORRECTED PROOF ? FINAL, 18/10/2010, SPi REFERENCES 335 and population division between Borneo and Sumatra. Frontiers in Zoology, 4, 15. Wimberly, M. C., Yabsley, M. J., Baer, A. D., Dugan, V. G., & Davidson, W. R. (2008) Spatial heterogeneity of cli- mate and land-cover constraints on distributions of tick- borne pathogens. Global Ecology and Biogeography, 17, 189?202. Winemiller, K. O. (1990) Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs, 60, 331?367. Winker, K. (2009) Reuniting phenotype and genotype in biodiversity research. BioScience, 59, 657?665. Woese, C. R. (1987) Bacterial evolution. Microbiological Reviews, 51, 221?271. Wolda, H. (1981) Similarity indices, sample size and diver- sity. Oecologia, 50, 296?302. Wolda, H. (1983) Diversity, diversity indices and tropical cockroaches. Oecologia, 58, 290?298. Wolf, J. H. D. (2005) The response of epiphytes to anthro- pogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management, 212, 376?393. Woodcock, S., van der Gast, C. J., Bell, T., Lunn, M., Curtis, T. P., Head, I. M., & Sloan, W. T. (2006) Neutral assembly of bacterial communities. In: Joint Symposium of the Environmental-Microbiology- Group/British-Ecological-Society/Society-for- General- Microbiology, York, pp. 171?180. Woodcock, S., van der Gast, C. J., Bell, T., Lunn, M., Curtis, T. P., Head, I. M., & Sloan, W. T. (2007) Neutral assembly of bacterial communities. FEMS Microbiology Ecology, 62, 171?180. Wootton, J. T. (2005) Field parameterization and experi- mental test of the neutral theory of biodiversity. Nature, 433, 309?312. Wright, S. (1951) The genetic structure of populations. Annals of Eugenics, 15, 323?354. Wright, D. H. (1991) Correlations between incidence and abundance are expected by chance. Journal of Biogeog- raphy, 18, 463?466. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., & Villar, R. (2004) The worldwide leaf economics spectrum. Nature, 428, 821?827. Wright, J. F. (2000) An introduction to RIVPACS. In: Assessing the Biological Quality of Fresh Waters: RIV- PACS and Other Techniques, Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (eds). Freshwater Biological Asso- ciation, Ambleside, Cumbria, pp. 1?24. Yang, L. H. (2004) Periodical cicadas as resource pulses in North American forests. Science, 306, 1565?1567. Yin, Z. Y., Ren, H., Zhang, Q. M., Peng, S. L., Guo, Q. F., & Zhou, G. Y. (2005) Species abundance in a forest community in south China: a case of Poisson lognormal distribution. Journal of Integrative Plant Biology, 47, 801?810. Yoccoz, N. G., Nichols, J. D., & Boulinier, T. (2001) Moni- toring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446?453. Zahariev, M., Dahl, V., Chen, W., & L?vesque, C. A. (2009) Efficient algorithms for the discovery of DNA oligonu- cleotide barcodes from sequence databases. Molecular Ecology Research, 9(Suppl. 1), 58?64. Zamora, J., Verd?, J. R., & Galante, E. (2007) Species rich- ness in Mediterranean agroecosystems: spatial and tem- poral analysis for biodiversity conservation. Biological Conservation, 134, 113?121. Zapiola, M. L., Campbell, C. K., Butler, M. D., & Mallory- Smith, C. A. (2008) Escape and establishment of trans- genic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. Journal of Applied Ecology, 45, 486?494. Zar, J. H. (1996) Biostatistical Analysis, 3rd edn. Prentice- Hall, Upper Saddle River, New Jersey, USA Zhang, D. A., Brecke, P., Lee, H. F., He, Y.-Q., & Zhang, J. (2007) Global climate change, war, and population decline in recent history. Proceedings of the National Academy of Sciences. USA, 104, 19214?19219. Zillio, T. & Condit, R. (2007) The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos, 116, 931?940. Zuckerberg, B., Porter, W. F., & Corwin, K. (2009) The consistency and stability of abundance-occupancy rela- tionships in large-scale population dynamics. Journal of Animal Ecology, 78, 172?181. Zuckerka, E. & Pauling, L. (1965) Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357.