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Abstract

Background: Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard
corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular
phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and
zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad
patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians
collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular
phylogenetic analysis to date of the order Scleractinia.

Methodology: Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined
for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158
published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.

Principal Findings/Conclusions: There was a striking discrepancy between the taxonomic validity of coral families consisting
predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate
species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous
studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae,
Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency
may be the greater environmental stability of deep-sea environments, effectively removing taxonomic ‘‘noise’’ contributed by
phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary
corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical
to understanding anthozoan evolution and the origins of the Scleractinia.
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Introduction

Although principally known as the architects of coral reefs, the

order Scleractinia, or stony corals, comprises two distinct

ecological groups: the zooxanthellate species that live in symbiosis

with a photosynthetic dinoflagellate occur in shallow tropical

waters; and the azooxanthellate species, which are primarily

associated with deeper and colder waters. Of the approximately

1490 valid extant scleractinian species [1], more than 47% are

azooxanthellate [1,2] and occur from polar [3,4] to equatorial

regions, and from shallow to bathyal depths [5].

Scleractinians are first known in the fossil record as shallow-

water forms from the Middle Triassic (ca. 245 Ma), but by this

time were already highly diverged at the subordinal level [6].

However, the small number of reliable skeletal characteristics and

the uncertain impact of environmental variables on these

morphological characters [7] have severely hampered attempts

to infer relationships among families and suborders [8,9,10,11].

Traditionally the inference of evolutionary relationships among

corals has relied heavily on comparing extant and fossil material in

terms of micro- and macromorphological skeletal characteristics,

but this has resulted in several very different schemes [6,12,13,14].
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Attempts to establish phylogenetic relationships within coral

families based on skeletal characteristics have proved to be

challenging, and as a consequence have been applied to date to

only six of the 27 extant families – Fungiidae [15,16], Mussidae

[17,18], Siderastreidae [17], Turbinoliidae [19], Acroporidae [20]

and Dendrophylliidae [21].

During the last two decades, there have been various attempts to

infer coral phylogeny based on molecular sequence data independent

of skeletal morphology. To date, a wide range of markers have been

used, both mitochondrial [8,10,11,22,23,24,25,26,27,28] and nuclear

[8,11,24,25,26,28,29,30,31,32]. However, these studies imply quite

different evolutionary scenarios for scleractinians, particularly in

terms of relationships between suborders and families [8,22].

Furthermore, solitary azooxanthellate species have rarely been

included in these analyses, despite accounting for approximately a

third of the extant scleractinian species [1,33].

In an attempt to address these sampling biases and resolve some

of the taxonomic uncertainties, we have undertaken the most

comprehensive molecular phylogenetic study of the Scleractinia to

date. Molecular sequence data were obtained for a ,590 bp

fragment of the mitochondrial cytochrome oxidase subunit 1 gene

for 65 deep-sea azooxanthellate scleractinian species collected off

New Caledonia and Australia, representing 25 genera and 9

families. With the inclusion of 11 novel sequences from shallow-

water corals kindly provided by Dr. Hironobu Fukami (Kyoto

University) and 156 additional sequences from GenBank, the

dataset covered all of the scleractinian suborders, comprising a

total of 234 species from 104 genera representing 25 of the 27

extant families. Unfortunately, we were unable to include

representatives of the families Guyniidae and Schizocyathidae in

our analyses; these are small (comprising a total of only four

monotypic genera) families of deep-sea corals for which material

appropriate for molecular analyses rarely becomes available due to

their minute size (sometimes less than 2 mm in calicular diameter).

Database sequences for corallimorpharians (11 species), actiniar-

ians (2 species), zoanthids (3 species), an antipatharian, and

octocorals (4 species) were also included in the analyses as

outgroups. The results imply that most families composed

predominantly of deep-sea azooxanthellate taxa (Gardineriidae,

Micrabaciidae, Flabellidae, Dendrophylliidae, Fungiacyathidae,

and Turbinoliidae) are monophyletic, but the caryophylliids and

anthemiphylliids, as well as most of the shallow-water zooxanthel-

late families, require revision.

Results

The advantage of using CO1 sequence data for coral phylogeny

is that, unlike the 16S rDNA, 12S rDNA, and 28S rDNA genes,

the sequences are unambiguously alignable because they contain

no indels. In addition to 234 scleractinian species, our analysis also

included representatives of each of the anthozoan subclasses with

the exception of Ceriantharia. The list of all sequences used in the

present study is available as File S1. The saturation test showed

that there was no significant saturation (P,0.0001; Iss,Iss.c) in the

CO1 alignment. Sh-like returned likelihood value of 212912.35,

and the Bayesian convergence diagnostic returned a potential scale

reduction factor between 1.000 and 1.005, and 213457.44 as the

arithmetic mean of the likelihood values between the four runs.

Bayesian analyses were also conducted based on the same

alignment, but excluding either the third codon position or

excluding all transversions, and after translation. All of these kinds

of analyses resulted in phylogenies with lower resolution than those

based on the full nucleotide sequences, in each case generating

large polytomies for the robust shallow water corals. The Bayesian

bipartitions of taxon were analyzed for the original run, but none

of the generations retrieved a monophyletic Faviidae, Merulinidae,

Pectiniidae, or Mussidae family.

Forcing monophyly upon the robust shallow-water coral

families resulted in significantly worse likelihood scores than in

the absence of constraint (data not shown), implying that, large

taxonomical revisions should be carried out.

The results of phylogenetic analyses are summarized in figure 1;

the (four) octocoral sequences were used to root the phylogenetic

tree because of the sister group relationship between hexacor-

allians and octocorallians [29,31,34,35,36]. Maximum likelihood

and Bayesian analyses strongly supported monophyly of both

Scleractinia and Corallimorpharia (Fig. 1–B) [11,37], and

therefore contradict the ‘‘naked corals’’ hypothesis [27], which

suggested that corallimorphs are descended from scleractinians via

skeleton loss. In contrast to previous studies [24], Antipatharia

were not basal within the Hexacorallia in our analysis. Note,

however, the relatively weak support for the position of

Antipatharia in our tree.

Within the Scleractinia, the most deeply diverging clade was

composed of members of Gardineriidae and Micrabaciidae, two

exclusively solitary and azooxanthellate coral families. The overall

shape of the remainder of the scleractinian tree is that the ‘‘robust’’

coral clade branches from within the ‘‘complex’’ corals. However,

some morphologically defined families are split between these two

major groups as documented in several previous papers

[8,10,11,32] - the families Astrocoeniidae, Siderastreidae, Oculi-

nidae, Meandrinidae, Euphylliidae, and Caryophylliidae have

representatives within both the ‘‘complex’’ and ‘‘robust’’ corals. In

addition to members of these families, the ‘‘robust’’ clade

comprises Anthemiphyllidae*, Pocilloporidae, Stenocyathidae,

Faviidae*, Fungiidae, Mussidae*, Trachyphylliidae, Merulinidae*,

Rhizangiidae, and Pectiniidae*. The ‘‘complex’’ coral clade

consists of representatives of families Agariciidae*, Acroporidae,

Poritidae*, Dendrophylliidae, Flabellidae, Turbinoliidae and

Fungiacyathidae in addition to the six families that are split across

the ‘‘robust/complex’’ divide. Some families and suborders appear

to urgently require revision; those indicated above by asterisks are

paraphyletic within the complex or robust clades, whereas

oculinids and caryophylliids are paraphyletic within the robust

corals as well as in the complex clade.

Nucleotide composition did not differ significantly between

sequences in the ‘‘complex’’ and ‘‘robust’’ clades, with %(A+T)

mean composition of 61.7% and 67.9%, respectively, and the

basal scleractinian clade likewise did not differ significantly from

the ‘‘complex’’ or ‘‘robust’’ clade (Table 1). The average difference

between sequences within each scleractinian clade was no more

than 8%, and within the corallimorpharian clade was 4%, but

between ‘‘robust’’ and ‘‘complex’’, ‘‘robust’’ and ‘‘basal’’, and

‘‘robust’’ and corallimorpharian clades the corresponding values

were 19.1%, 20.1%, and 19.6%, respectively. Members of the

‘‘complex’’ clade displayed an average of 12.3% differences with

those of the ‘‘basal’’ clade, and 13.2% differences with

corallimorpharian sequences. In total, 27.4% of bases were

invariant across the Scleractinia, the transition: transversion ratio

was 2.21, and the average difference compared to corallimorphar-

ian sequences was 17.4% (Table 1).

For some genera, the molecular phylogeny is inconsistent with

family placements based on classical taxonomy, implying that the

positions of these should be re-evaluated. This category includes

the azooxanthellate genera Conotrochus, Madrepora, Stenocyathus,

Phyllangia, Cladocora, Trochocyathus, and Dactylotrochus, as well as the

zooxanthellate genera Pachyseris, Galaxea, Ctenella, Alveopora, and

most of the ‘‘robust’’ coral representatives.

CO1 Scleractinian Phylogeny
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Discussion

Both maximum likelihood and Bayesian analyses support the

distinction of two major clades (‘‘complex’’ and ‘‘robust’’ corals)

within the Scleractinia (Fig. 1–C and D), as was previously implied

by molecular analyses based on mitochondrial 16S rDNA

[8,10,22,23], 12S rDNA [25], and CO1 + Cyt B data [11], and

on (nuclear) 28S rDNA sequences [11,29,30,32]. However, rather

than the deep split between these two groups implied by analyses

of ribosomal sequences, our phylogeny places the ‘‘robust’’ coral

clade within the ‘‘complex’’ radiation, following the precedent of

Fukami et al. [11]. This topology has high Sh-like (ML) and

posterior probability (BI) support, and was not significantly

affected by weighting the analyses for codon position.

Our analyses imply that the families Gardineriidae and

Micrabaciidae, which are exclusively azooxanthellate and contain

only solitary species, represent the most basal lineage of modern

scleractinians, supporting the concept that deep-sea corals hold

important clues regarding the evolutionary history of the order.

The evolutionary implications of the basal position of gardineriids

and micrabaciids are more fully explored elsewhere (Stolarski et al.,

in preparation), however, the basal position of these families

suggests that the ancestral scleractinian may also have been

solitary and azooxanthellate. According to Owens [38] and

Squires [39], ancestral micrabaciids probably inhabited shallow-

water environments but may have been essentially preadapted for

deep-sea life by having auto-mobile coralla [38], and thus been

able to gradually invade deeper waters, resulting in an increase of

skeleton porosity [39]. Similarly, fossils thought to represent the

oldest known gardineriid (Rodinosmilia elegantula) were described

from Morocco [40], suggesting that this family may also have first

appeared in shallow-water environments. Under this scenario, the

early Mesozoic appearance of diverse, highly integrated colonial

forms may reflect the advent of symbioses with the dinoflagellate

Symbiodinium, as has been suggested based on stable isotope data

[41]. Since all early Mesozoic records of Scleractinia represent

rather shallow-water ecological settings, it is not yet possible to

infer whether the Scleractinia were initially abyssal and then

colonized shallow waters (as hypothesized by Lindner et al. [42]

for the stylasterid corals), or vice-versa.

Recent molecular analyses are inconsistent with widely used

sub-ordinal classification schemes of Vaughan and Wells [43] and

Wells [6], which were based on morphology. Although morpho-

logical support for the ‘‘robust’’ and ‘‘complex’’ dichotomy is still

lacking, it is consistently supported by molecular analyses and the

three clades recovered here (‘‘basal’’, ‘‘complex’’, and ‘‘robust’’)

could represent a new sub-ordinal scheme for the classification and

evolutionary history of the order.

One general implication of the phylogenetic analyses reported

here is that the majority of the azooxanthellate coral families (six of

the eight) are monophyletic, whereas only a minority of families

(four of seventeen) that are predominantly or exclusively

zooxanthellate are supported strongly by the molecular data.

Thus many of the morphologically defined families of shallow-

water corals do not represent ‘‘natural’’ families. This conclusion is

broadly consistent with Fukami et al. [11], although this work was

based on more limited sampling of azooxanthellate corals. Below

we discuss the status of some individual families based on the

overall CO1 phylogeny.

Flabellidae
The flabellids are a large family of exclusively azooxanthellate

corals that formed a single well-supported clade in our analyses,

which were based on 27 species representing the full morpholog-

ical spectrum of the family (only missing genera with root-like

structures e.g. Rhizotrochus). Interestingly, the CO1 analyses suggest

Table 1. Nucleotide composition, proportion of invariant sites (Pinv), transition vs transversion rate (Ts/Tv), average distance
between sequences (DS), and average distance between clades calculated based on GTR+I+G evolution model.

Clades Nucleotide composition (%) Pinv (%) Ts/Tv DS (%) Average distance between clades (%)

A T C G R C B S

R 22.8 39.1 15.0 22.9 32.5 2.084 8 - - - -

C 22.7 39.0 16.8 21.3 33.6 2.565 8 19.1 - - -

B 22.0 35.9 18.0 23.9 69.8 2.954 8 20.1 12.3 - -

S 22.7 38.7 15.7 22.7 27.4 2.210 13 - - - -

Co 23.4 35.7 17.5 23.3 35.1 2.666 4 19.6 13.2 13.2 17.4

A 24.1 37.6 16.7 21.5 28.8 2.354 14 - - - -

R = ‘‘Robust’’ scleractinian clade.
C = ‘‘Complex’’ scleractinian clade.
B = ‘‘Basal’’ scleractinian clade.
S = Scleractinia clade (robust + complex + basal).
Co = Corallimorpharia clade.
A = All alignment (including Octocorallia, Antipatharia, Zoanthidea, Actiniaria, Corallimorpharia, Scleractinia).
doi:10.1371/journal.pone.0011490.t001

Figure 1. Phylogenetic analyses based on Bayesian inference and Maximum likelihood of the partial mitochondrial CO1 gene from
234 scleractinian species, 11 corallimorpharians, 2 actiniarians, 3 zoanthids, 1 antipatharian, and 4 octocorallians. Topology was
reconstructed under the GTR+I+G model of nucleotide evolution in MrBayes. Numbers on branches show Sh-like support (top) calculated using
PhyML, and posterior probability (bottom) calculated using MrBayes. Hyphen (2) indicates no support from the respective method. (A) Zoanthids,
actiniarians, and antipatharian clade. (B) Corallimorpharian clade. (C) ‘‘Basal’’ and ‘‘complex’’ scleractinian clades. (D) ‘‘Robust’’ scleractinian clade.
Colored names indicate families with azooxanthellate representatives that morphological revisions need to be carried out. Asterisks indicate
azooxanthellate deep-water scleractinians, carets indicate azooxanthellate shallow-water scleractinians, and plus signs indicate facultative
scleractinians.
doi:10.1371/journal.pone.0011490.g001
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that there may be a major dichotomy within the family, with

representatives of many genera examined occurring in both of the

resulting clades. The general pattern is that Truncatoflabellum

species occupy basal positions in both clades, with different Javania

species branching next. These results suggest that the relationship

of flabellids with substrata and their mode of reproduction

diversified during their evolution. To date we can infer that the

most basal form of substrata relationship and reproduction within

the extant flabellid genera is fixed (fragile pedicel), with transverse

division as the main reproduction mode respectively (as observed

in Truncatoflabellum). Subsequently, multiple, concentric layers of

sclerenchyme reinforcing the pedicel and the attachment of the

corallum to substrate (as observed in Javania and being a trait also

shared with the anthocaulus of Placotrochides) appears in our

analysis. Later, the substrate relationship became less evident, or

present only in very early developmental stages, with adult

specimens becoming free-living forms, such as observed within

Flabellum. The evolutionary position of different root-like attach-

ment structures present in other flabellid genera (e.g. Monomyces,

Polymyces, Rhizotrochus) needs to be further investigated.

The analyses imply a close relationship between the Flabellidae

and two other exclusively azooxanthellate coral families –

Turbinoliidae and Fungiacyathidae. Both monophyly of Flabelli-

dae and the relationship between this family and Turbinoliidae

and Fungiacyathidae are consistent with previous work of Le Goff-

Vitry et al. [10].

Fungiacyathidae and Turbinoliidae
The five fungiacyathid representatives sequenced formed a

well-supported group notwithstanding the method used, corrob-

orating their family status [13]. In addition to the link with

Flabellidae and Fungiacyathidae outlined above, our analyses

imply a close relationship of Turbinoliidae with two caryophyl-

liids – Trochocyathus rhombcolumna and Deltocyathus magnificus.

Additional material is necessary to better understand the

relationships within the turbinoliids, as only two species

representing two genera are present in our phylogeny. To collect

fresh turbinoliids is particularly challenging because they are

among the smallest known scleractinians. The turbinoliids

Cyathotrochus pileus and Tropidocyathus lessoni grouped with D.

magnificus sharing a common ancestor with T. rhombcolumna.

Morphological support for this grouping is, however, lacking.

Similarity of the CO1 sequences between Deltocyathus magnificus

(four specimens from different collecting stations sequenced) and

turbinoliids is difficult to explain although they do share some

morphological characters (e.g. lamellar paliform lobes before all

but last septal cycle forming a chevron arrangement - not fusing

in Tropidocyathus but fusing in Deltocyathus and Cyathotrochus,

corallum invested with soft tissue, well developed costae, and a

papillose columella). All other Deltocyathus representatives se-

quenced in the present study grouped in a basal position in the

‘‘robust’’ clade, and could represent a distinctive family once the

other caryophylliid species have been separated into five distinct

clades.

Dendrophylliidae
With nearly 170 species [21], Dendrophylliidae is the third most

speciose family of extant scleractinians and in our analyses was the

only well-supported family with substantial representation of both

shallow and deep-water species. Within the family, a clade

comprising the deep-sea colonial species Enallopsammia rostrata

and a solitary deep-sea Balanophyllia sp. diverged most deeply,

followed by the shallow-water zooxanthellate colonial genus

Turbinaria. Representatives of the azooxanthellate genera Dendro-

phyllia (identification needs to be re-evaluated), Tubastraea, and

Balanophyllia, the first two of which are colonial and the last

solitary, appear as most recently diverged. The topology is

consistent with an azooxanthellate dendrophylliid ancestor, and

the possibility of multiple gains or losses of the colonial state within

the family. Dendrophylliids are a particularly interesting group

and could be highly informative with respect to the evolution of

coloniality and the symbiotic state.

Poritidae and Acroporidae
The families Poritidae and Acroporidae are the most speciose

and diverse of shallow-water scleractinians, and are exclusively

colonial and zooxanthellate. Our analyses support that the poritid

genus Alveopora (the only poritid genus with septa not formed by 3

to 8 nearly vertical trabeculae) should be transferred to the

Acroporidae (Fig. 1), as the single Alveopora sequence grouped with

those from Astreopora explanata and Astreopora myriophthalma within

the well-supported acroporid clade [10,11]. If Alveopora is

transferred to acroporids, Poritidae becomes monophyletic, as

the remaining poritid genera (Goniopora and Porites) form a well-

supported clade.

The molecular phylogeny (Fig. 1) implies a sister group

relationship between dendrophylliids and poritids, the latter of

which is one of the few families of zooxanthellate corals to have

strong support in our analyses. The common ancestry of Poritidae

and Dendrophylliidae implied by our analyses is consistent with

previous molecular analyses based on 28S rDNA [30], 16S rDNA

[8,23], and the nuclear rDNA, CO1 and Cyt B [11]. The earliest

record of poritids is from the Mid-Cretaceous [6], and for

dendrophylliids the Early Cretaceous [44]. Veron [14] suggested

that the (Late Cretaceous) Actinacididae might be ancestral to the

poritids. However, based on macro and microstructures of the

skeleton, Cairns [21] advocated that the actinacidids were

probably not the dendrophylliid ancestor.

In common with previous molecular analyses [8,10,11,25], the

family Acroporidae was monophyletic in our CO1 analyses.

Within the Acroporidae, Anacropora appears to be more related to

Montipora, and Acropora to Isopora, which was recently elevated to

genus level [45].

Agariciidae
The family Agariciidae occupies a special position in our

analyses, as the entire ‘‘robust’’ coral clade branches from within

a clade that captures the agariciids (excluding Pachyseris speciosa)

together with the caryophylliid genus Dactylotrochus. The Car-

yophylliidae is not a valid family, its members are scattered

throughout the phylogenetic tree (see below). There is morpho-

logical support for transferring Dactylotrochus to the Agariciidae–

for example, the shared presence of highly developed septal

menianae (Kitahara et al., in preparation; also see [46]).

Agariciids are shallow water, colonial corals. Whilst this transfer

would make Dactylotrochus the only exclusively solitary (and

azooxanthellate) extant member of the family, there are

precedents from the Cretaceous; the fossil agariciids Vaughanoseris

and Trochoseris were solitary. The latter is recorded from the Late

Cretaceous and Paleocene of Saudi Arabia and Pakistan

respectively [47], and could represent a genus related to

Dactylotrochus.

In our analyses, the agariciid clade formed by representatives of

Gardineroseris, Pavona, and Agaricia was strongly supported whereas,

pending morphological confirmation, Pachyseris speciosa may be

transferred to euphyllids. A number of other recent analyses

[8,10,11,32,48] also implied monophyly of the Agariciidae.

CO1 Scleractinian Phylogeny
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Meandrinidae, Astrocoeniidae and Anthemiphylliidae
Unlike the situation with the ‘‘complex’’ corals, where

morphology and molecular data are broadly consistent in support

of many families, in the case of ‘‘robust’’ corals, the opposite is

true. With the sole exception of the Pocilloporidae, every robust

family was para- or polyphyletic in our analyses.

In the case of meandrinids, the Atlantic genera (Meandrina,

Dichocoenia, Dendrogyra, and Eusmilia) formed a strongly supported

clade, but the only non-Atlantic meandrinid that we were able to

include in the present analysis (Ctenella chagius) grouped with the

euphylliids (see below), challenging the monophyly of this small

family. Clarifying the status of Meandrinidae will require data for

additional Indo-Pacific genera; Gyrosmilia and Montigyra, both

transferred to the family [49] are of particular interest.

Only two members of the family Astrocoeniidae were included

in our analyses, the Atlantic species Stephanocoenia michelinii and the

Indo-Pacific species Stylocoeniella guentheri; the former fell into the

‘‘complex’’ clade and the latter in the ‘‘robust’’ clade. The fossil

record implies an early origin for the family; astrocoeniid-like

corals with styliform and vertically continuous columella from the

Middle Triassic [6] are amongst the oldest scleractinian fossils yet

found. Our analysis supports the idea that Stylocoeniella is related to

pocilloporids [11]: S. guentheri forms a strongly supported group

with Pocillopora, Stylophora, Seriatopora, and Madracis, and this clade

diverges near the base of the radiation of ‘‘robust’’ corals (Fig. 1).

To date, no sequence data are available for Palauastrea, which was

suggested to belong to astrocoeniids [49], and to pocilloporids by

Yabe & Sugiyama [50].

Although Anthemiphylliidae affinities are as yet unclear, our

analyses support an early divergence of Anthemiphyllia patera costata

in the ‘‘robust’’ coral clade. Described to accommodate the genus

Anthemiphyllia, which according to Vaughan [51] ‘‘had puzzled

every student since its description’’, this family is composed of

seven species and two subspecies, all with free and solitary growth

form, and lobate to laciniate septal edges. Of the eight

Anthemiphyllia morphs, only A. patera patera is exclusively Atlantic,

the seven other morphs occurring mainly in Pacific waters (with

exception of A. dentata, which is recorded also in Indian Ocean

waters [52]). If the basal position of A. patera costata (and

presumably A. patera patera) holds with other genetic markers, it

may represent that the common anthemiphylliid ancestor was

morphologically very close to the extant A. patera morphs, and

probably inhabited the Tethys Sea 65 Mya. However, it is difficult

to understand why Anthemiphyllia dentata did not group with A. p.

costata, considering that all anthemiphylliids share skeletal micro-

structural characters (Stolarski, unpublished data).

Caryophylliidae
The family Caryophylliidae is the least cohesive of extant coral

families, as it is represented in distinct clades in both the complex

and robust parts of the tree. The affinity of Dactylotrochus cervicornis

with agariciids, and that of Deltocyathus magnificus and Trochocyathus

rhombcolumna with turbinoliids and other complex corals have been

discussed above. In addition, most members of the genus

Deltocyathus form a distinct clade of uncertain affinity.

One substantial grouping within Caryophylliidae comprises all

of the Caryophyllia species, Stenocyathus vermiformis, Dasmosmilia cf.

lymani, and Rhizosmilia robusta; support for association of Stephano-

cyathus spiniger with this clade is weak. Interestingly, the genus

Stenocyathus, which is one of the two genera assigned to the recently

proposed family Stenocyathidae, groups with strong statistical

support with Caryophyllia grayi, C. lamellifera, and C. rugosa (also see

[53]). This result corroborates the hypothesis that thecal pores

originated independently in different scleractinian lineages [54],

once S. vermiformis is grouping within the ‘‘robust’’ corals, and

Guynia annulata, another species that has pores groups within the

‘‘complex’’ corals in the 16S rDNA phylogeny (Kitahara et al.,

unpublished data and [22]). As advocated by Stolarski [54], this

hypothesis suggests stability of the basic microstructural architec-

ture of the skeleton, and places the family Stenocyathidae in the

superfamily Caryophyllioidea rather than Guynioidea.

The clade formed by Caryophyllia diomedeae, Caryophyllia atlantica,

and Dasmosmilia cf. lymani also received strong support regardless

the method used, and is consistent with the hypothesis that

Dasmosmilia is a sister genus of Caryophyllia [53]. The last

representative of the genus Caryophyllia, C. ralphae, groups with

Rhizosmilia robusta. C. ralphae is one of the most distinctive of

Caryophyllia species [53], and resembles three other species (C.

capensis, C. paucipalata and C. eltaninae) in terms of the placement of

paliform lobes [55]. Morphologically, C. ralphae is distinguished by

its highly exsert septa and very deep fossa, but can be confused

with R. robusta, both having about the same adult corallum size,

septal symmetry and exsertness, colour, and fossa depth. The

presence of concentric rings of partitioned chambers in the base

cross section of R. robusta is one of the few morphological

characters that distinguish it from C. ralphae. However, the CO1

data demonstrate that the morphological similarity of these two

species reflects a close evolutionary relationship. According to

Zibrowius & Gili [56], C. capensis is not a true Caryophyllia, and

Cairns [55] suggested that if this species belongs to a different

genus, C. ralphae should be placed with it. If the genetic relationship

between C. ralphae and R. robusta stands, the presence of the

concentric rings of partitioned chamber in the base cross section in

the genus Rhizosmilia was acquired only recently from a solid-based

ancestor.

The placement of Stephanocyathus spiniger in the Stenocyathus/

Caryophyllia/Dasmosmilia/Rhizosmilia clade is unexpected, since the

other two representatives of this genus, S. weberianus and S. coronatus

group have quite different affinities on the basis of 16S rDNA

sequence analysis (Kitahara et al., unpublished data).

Based on the presence of 12–18 short basal tubercles in

Stephanocyathus (Odontocyathus), 6 long costal spines corresponding to

each first costae cycle in S. (Acinocyathus), and no tubercles or spines

in S. (Stephanocyathus), the genus Stephanocyathus is divided into the

above three subgenera. S. weberianus and S. coronatus belonging to S.

(Odontocyathus) and S. spiniger to S. (Acinocyathus). If the segregation of

Stephanocyathus subgenus is detected with one molecular marker,

not the case presented above, which is the comparison between

16S rDNA phylogeny for Odontocyathus (Kitahara et al., unpub-

lished data), and CO1 phylogeny for the Acinocyathus, it may

indicate that the subgenus should be elevated to genus status

(belonging to different families). Their macro-morphological

similarity (if the genetically distance between them is confirmed)

could be an evolutionary throwback, such as phenotypic

characters preserved in DNA reappearing through different

lineages from the same ancestor.

Another caryophylliid genus that needs re-evaluation regarding

hierarchical status is the exclusively azooxanthellate Phyllangia. The

basal position of this genus regarding almost all ‘‘robust’’ shallow

water corals can represent an azooxanthellate shallow-water

ancestor for them (the genus Phyllangia is reported exclusively

from waters shallower than 100 m [57]).

Siderastreidae
Another family that has representatives within both major

clades is the exclusively shallow water Siderastreidae. The genus

Siderastrea (represented in our analysis by three Atlantic species: S.

radians; S. siderea; and S. stellata, and by the Indo-Pacific S.
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savignyana) forms a well-supported clade within the ‘‘complex’’

corals. Nonetheless, representatives of Coscinaraea and Psammocora

form a clade within the ‘‘robust’’ corals sharing the same common

ancestor with the massive faviid genera Leptastrea and large solitary

fungiids Heliofungia, Fungia and Herpolitha. Combined CO1 and

Cyt-B analysis [11] also recovered this clade, but nuclear

phylogenies from the same study did not. The position of Oulastrea

crispata within the ‘‘robust’’ corals and its relationship to the

‘‘robust’’ siderastreids and fungiids did not receive good statistical

support from ML and BI.

Using 16S rDNA sequences, Romano & Palumbi [23] and

Romano & Cairns [8] also found that Coscinaraea, Psammocora,

Fungia, and Leptastrea are closely related. Partial 5.8S and ITS2

sequences, and skeletal microstructure analysis clearly suggest that

Psammocora and Coscinaraea are closer to fungiids than to side-

rastreids, however, both genera are not monophyletic [58].

According to the same study, the genus Pseudosiderastrea grouped

with the ‘‘Siderastrea’’ clade.

The ‘‘siderastreids’’ that clustered in the ‘‘robust’’ coral clade

are distinct from Siderastrea on the basis of both morphology [17]

and molecular data, and probably do not belong to this family,

once the type genus of this family was established as Siderastrea [43].

Forsman et al. [59] also concluded that the Atlantic species of

Siderastrea form a monophyletic group, and S. glynni (the only

Eastern Pacific representative of this genus) also appears to be

closed related to the Atlantic species.

Oculinidae
As in previous studies [8,10], the oculinids were polyphyletic in

our analyses, with Galaxea falling into the ‘‘complex’’ clade, and

Madrepora, Oculina, and Cyathelia occupying distinct positions within

the ‘‘robust’’ clade. The strongly-supported grouping of Galaxea

with the meandrinid Ctenella chagius and the euphyllids Euphyllia

glabrescens, E. ancora, and E. divisa seen in our analyses (Fig. 1)

support Fukami’s [11] suggestion that Galaxea and Ctenella should

be transferred to the Euphylliidae. Le Goff-Vitry et al. [10]

suggested that the genus Madrepora should be elevated to family

status; the poorly resolved position of M. oculata in our analysis is

consistent with this, although the remaining four congeners (M.

arbuscula, M. carolina, M. minutiseptum, and M. porcellana) need to be

examined. In our analysis, strong support was obtained for a clade

containing Oculina and members of three other families-Cladocora,

Solenastrea, and Astrangia–but it is unclear whether this clade has

morphological support. The significance of the grouping of

Cyathelia axillaris with a shallow-water massive faviid and a solitary

azooxanthellate caryophylliid is also unclear. Representatives of

Bathelia, Petrophyllia, Shizoculina, Sclerhelia, and Simplastrea have not

been sequenced to date, and their position within the oculinids

needs to be re-evaluated.

Other families
One of the most heterogeneous groups formed in our analysis is

composed by five different families: Mussidae (Blastomussa wellsi );

Euphylliidae (Physogyra lichtensteini and Plerogyra); Caryophylliidae

(in part: Trochocyathus efateensis); Oculinidae (in part: C. axillaris); and

Faviidae (Plesiastrea versipora). This clade is strongly supported by all

phylogenetic methods and agrees with Fukami et al. [11] who,

excluding T. efateensis, recovered the same clade. In fact, the

presence of the solitary deep-water azooxanthellate Indo-Pacific

species T. efateensis within this clade (otherwise all zooxanthellate

and colonial) is difficult to explain and requires further

investigation. On the basis of 16S rDNA analyses (Kitahara et

al., unpublished data) T. efateensis groups with two other deep-

water caryophylliids (Trochocyathus cepula and Tethocyathus virgatus).

Kitahara et al. [53] briefly discussed the relationship between the

latter two genera.

Most of the remaining species included in our phylogenetic tree

are from exclusively zooxanthellate coral families, and the CO1

data imply that these species diverged relatively recently. Our

results are consistent with previously analyses [11,18,26,32], which

found that most of these coral families are polyphyletic–most

strikingly, phylogenetics often splits Pacific and Atlantic represen-

tatives of the same genus or family (see [26]). One of the most

highly fragmented families in our analyses is Faviidae, which is

split into ten different groups (Fig. 1–D). As reported by Fukami et

al. [11], the Indo-Pacific faviids appear to be clearly distinct from

their Atlantic counterparts, and the latter should probably be

transferred to an Atlantic mussid clan/clade, with the following

composition: Isophyllia spp. Mycetophyllia spp., Mussismilia spp.,

Diploria spp., Manicina spp., Colpophyllia spp., Scolymia cubensis, Favia

fragum and F. leptophyllia (see also [60]).

According to our results and following Fukami et al. [11], the

Trachyphylliidae does not merit recognition at the family level and

should be incorporated into the Indo-Pacific ‘‘faviid-pectinid-

merulinid’’ clan/clade. Montastraea cavernosa did not group with its

congeners, but rather diverged near the base of the ‘‘robust’’ clade,

and few conclusions can be drawn concerning the remaining

faviids in our phylogeny.

Conclusions
Maximum Likelihood and Bayesian analyses of the CO1 data

set indicate that most of the exclusively zooxanthellate coral

families are not monophyletic, and require morphological revision.

By contrast, the majority of families consisting exclusively or

predominantly of azooxanthellate corals appears to be monophy-

letic. An important exception is the azooxanthellate family

Caryophylliidae; here, special attention should be given to the

genera Deltocyathus, Trochocyathus, and the heterogeneous group

formed by Stephanocyathus, Vaughanella, Conotrochus, Paraconotrochus,

Gen. nov. A sensu Stolarski (1996), and Ceratotrochus.

Whereas the deepest dichotomy identified in previous studies

was the complex/robust split, our analyses (the present study and

Stolarski et al., in preparation) also identified a deeply-diverging

clade consisting of members of the exclusively azooxanthellate

families Gardineriidae and Micrabaciidae. On the basis of our

analyses, these may be the oldest scleractinian families with extant

representatives. Although estimates of divergence times among

gardineriids/micrabaciids and the complex and robust lineages

must be further investigated, the placement of these families as

basal to the complex/robust coral lineages implies that scleracti-

nians may have co-existed with rugose corals but, unlike the latter,

survived the Permian/Triassic mass-extinction event.

The deep-sea holds important clues to anthozoan evolution, and

overall, our phylogenetic reconstruction shows that the most basal

extant scleractinians are azooxanthellate corals from deep-water

(probably with azooxanthellate shallow-water ancestors), not only

in the case of gardineriids/micrabaciids, but also in relation to the

‘‘robust’’ coral clade, and possibly within extant agariciids.

Another conclusion can be drawn within the acquisition or loss

of solitary/colonial state. Even though most of the groups

apparently arouse from solitary life forms, the opposite was also

detected (e.g. pocilloporids and M. oculata in relation to

Caryophyllia).

Finally, our data supports that the order Corallimorpharia is the

sister group of scleractinians [11,37] and are therefore inconsistent

with the ‘‘naked coral’’ hypothesis, which implies that coralli-

morphs are corals that have undergone skeleton loss.
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Materials and Methods

Between 1993 and 2007, French and Australian expeditions

collected and preserved in ethanol hundreds of specimens of deep-

water scleractinians (ranging in depth from 170 to 1434 m) from

off New Caledonia and Australian waters (including Pacific and

Indian Ocean). Based on morphological characters all these

specimens were identified to the lower taxonomic level possible,

and genomic DNA was extracted from most of them. The

definition used here to delimit the upper depth boundary of deep-

water corals is 50 m [1], since very few zooxanthellate corals occur

below this depth.

Tissue was collected from a whole mesentery using a forceps

when the species was large, or an entire sector (including the

skeleton) was taken when the species was small. However,

intending to preserve museum vouchers, if just one specimen of

a small solitary species was available, the specimen was completely

submerged in the lysis buffer to have its genomic DNA extracted.

Genomic DNA was extracted using DNeasy Tissue and Blood Kit

(QIAGEN) following the manufacturer’s instructions. For each

species the concentration of genomic DNA extracted was

measured using a Nanodrop 1000 (Thermo Scientific), and when

necessary, an aliquot of the genomic DNA was diluted or

concentrated to achieve the final concentration of 25 ng/ul.

Using the primers developed by Folmer et al. [61] (LCO1 490-

GGTCAACAAATCATAAAGATATTGG and HCO2 198-

TAAACTTCAGGGTGACCAAAAAATCA) a fragment of the

mitochondrial cytochrome oxidase subunit 1, ranging between 700

and 710 bp according to the species, was amplified. Reactions were

carried out in 50 ml, with 5 ml of 106 PCR Buffer, 5 ml of 2 mM

dNTPs, 5 ml of 25 mM MgCl2, 2.5 ml of each primer (10 mM each),

0.4 ml of Taq polymerase, and 2 ml of template. PCR conditions used

were: a denaturation first step of 95uC for 1 min, followed by 35

cycles of 30 s at 95uC, 30 s at 40uC, and 90 s at 72uC, followed by

10 min at 72uC. If the amplification using this protocol failed, a new

reaction using the Advantage-2 kit (Clontech) with the same template,

primers and PCR conditions were performed following the

manufacturer’s instructions. All cycles were performed using Bio-

Rad DNA engine (Peltier Thermal Cycler). The PCR products were

then purified using Ultra Clean PCR clean up (Mo-Bio) spin

columns, and then submitted to Macrogen (Korea) sequencing

facility to be sequenced using ABI3730XL (Applied Byosystems).

Sequences were verified and manipulated with Sequencher ver. 4.8

(Gene Codes Corporation). A Blast search was performed on

GenBank for each sequence and the matching homologous

Scleractinian sequences were retained for subsequent alignment.

Using this protocol, 158 previously published sequences were added

to the alignment (File S1).

All sequences were aligned in ClustalW (EBI) using default

settings. The resultant alignment was then checked using JalView

ver. 8.0 [62], totaling 595 bp in the final alignment (File S2). The

alignment was then submitted to the test of substitution saturation

[63] available in DAMBE [64].

Using the final alignment, GTR + Gamma + Proportion

Invariant (GTR+G+I) model of DNA evolution was determined

by the hierarchical likelihood ratio test implemented in MrMo-

deltest [65] as the best model for the data. The phylogenetic

analysis was performed using PhyML for maximum likelihood

[66] and MrBayes for Bayesian inference [67,68].

The most likely topology was calculated based on Shimodaira and

Hasegawa (Sh-like) branch support implemented in PhyML. For the

Bayesian inference, four runs with 10 million generations each were

calculated with topologies saved at each 1000 generations. One

fourth of the 10000 topologies were discarded as burnin, and the

remaining used to calculate the posterior probability. Additional

Bayesian analyses were conducted using BEAST [69] specifically to

test the hypothesis that the ‘‘robust’’ shallow water scleractinian

families are monophyletic. The BEAST analyses were based on the

same alignment as the PhyML and MrBayes phylogenetic analysis,

but with and without the constraint of monophyly of the ‘‘robust’’

shallow water scleractinian families.

Supporting Information

File S1 Species of Scleractinia sequenced for CO1, including

station, location of skeletal voucher, and accession number.

Found at: doi:10.1371/journal.pone.0011490.s001 (0.36 MB

DOC)

File S2 Partial CO1 gene alignment from 255 anthozoans,

including 234 scleractinians from 104 genera representing 25 of

the 27 extant families.

Found at: doi:10.1371/journal.pone.0011490.s002 (9.97 MB TIF)
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