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Abstract

Regression dilution is a statistical inference bias that causes underestimation of the strength of
dependency between two variables when the predictors are error-prone proxies (EPPs). EPPs are
widely used in plant community studies focused on negative density-dependence (NDD) to quan-
tify competitive interactions. Because of the nature of the bias, conspecific NDD is often overesti-
mated in recruitment analyses, and in some cases, can be erroneously detected when absent. In
contrast, for survival analyses, EPPs typically cause NDD to be underestimated, but underestima-
tion is more severe for abundant species and for heterospecific effects, thereby generating spurious
negative relationships between the strength of NDD and the abundances of con- and heterospeci-
fics. This can explain why many studies observed rare species to suffer more severely from con-
specific NDD, and heterospecific effects to be disproportionally smaller than conspecific effects. In
general, such species-dependent bias is often related to traits associated with likely mechanisms of
NDD, which creates false patterns and complicates the ecological interpretation of the analyses.
Classic examples taken from literature and simulations demonstrate that this bias has been perva-
sive, which calls into question the emerging paradigm that intraspecific competition has been
demonstrated by direct field measurements to be generally stronger than interspecific competition.
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INTRODUCTION

Understanding and quantifying density-dependent population
regulation is essential to design effective measures to preserve
biodiversity and manage the planet’s ecosystems (Tilman
2000). The stable maintenance of local species diversity
requires conspecific negative density dependence (CNDD), in
which each species’ population growth rate declines as its
abundance increases (Chesson 2000). Because measures of
CNDD characterise deterministic forces that keep each species
from extinction when at low density, detecting and quantify-
ing CNDD have been principal goals of basic and applied
ecologists. The strength of CNDD has profound practical
implications in conservation, from the sizes of ecological
reserves to the design of interventions intended to rescue criti-
cally endangered species. The alternative hypothesis that spe-
cies abundances drift randomly relative to one another
without any CNDD (Hubbell 2009), implies a different set of
conservation measures. For example, in the presence of strong
CNDD, reserves can be much smaller than in the absence of
CNDD. Conversely, in presence of stochastic drift, human
intervention would be required to stop the drift to extinction
of rare species, even in pristine locations.
Over the last two decades, plant ecologists have developed a

large body of evidence purporting to detect CNDD in many
forest and grassland plant species and to quantify patterns in
the strength of CNDD and the relative strength of
heterospecific negative density dependence (HNDD) among

species and ecosystems (Adler et al. 2018). The body of work
on forest tree species is particularly comprehensive. CNDD is
reported to be nearly ubiquitous in tropical forests (Harms
et al. 2000), to be generally stronger in tropical than in tem-
perate forests (LaManna et al. 2017b), and within forests, to
be stronger for rare than common species (Comita et al.
2010). These three papers are part of a growing literature that
takes advantage of the network of permanent forest census
plots to measure CNDD and HNDD for many species within
each community and across communities. Here, we focus on
these community-scale studies and the striking results that
emerge from their statistical examination of many within- and
between-species density-dependent interactions.
Collectively, the results in Harms et al. (2000), Comita et al.

(2010) and LaManna et al. (2017b), hereafter H2000, C2010
and L2017, are consistent with the hypothesis that specialist
natural enemies maintain forest diversity (the Janzen-Connell
Hypothesis, Janzen, 1970), and maintain the tropical–temper-
ate gradient in tree species diversity. CNDD is also reported
to be generally stronger than HNDD in forests and grass-
lands, which would facilitate coexistence (Adler et al. 2018).
The growing prominence and maturation of this work has
now led to the first call to develop forest management prac-
tices that take advantage of CNDD (Cordonnier et al. 2018).
This development is reminiscent of a previous episode in

ecology that deserves more widespread visibility. Prior to the
publication of Walters & Ludwig (1981), CNDD was thought
to be strong and easily quantified in fish communities.
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Perhaps the most important relationship used to manage com-
mercial fisheries – the stock–recruitment curve – often showed
strong evidence of CNDD, like the red curves rather than the
black line in Fig. 1b,c. The black lines in Fig. 1 show no
CNDD because the number of seedlings or saplings (recruits)
is simply proportional to the number of seeds and parents
(stock). In contrast, the flatness of the red curves exhibits
strong CNDD because the number of recruits per unit stock
decreases as the amount of stock increases.
However, Walters & Ludwig (1981) argued that many pub-

lished examples of CNDD in stock–recruitment curves were
statistical artifacts, produced by errors in the predictor (the
stock) when used with regression methods that assume errors
only in the dependent variable (recruits). This ‘regression dilu-
tion’ problem was first explained more than a century ago
(Spearman 1904). Errors in the predictor of a generalised lin-
ear model (GLM) regression cause the estimated slope to be
too small, and induce curvilinearity if the intercept is forced
to be zero or the regression is performed after log-transforming
the abundances (see below). Indeed, the points in Fig. 1b,c
were obtained by introducing measurement errors in the con-
specific density (number of seeds or adults), and the red curve
was estimated from these points. Regression dilution caused
repeated crashes of fisheries around the world, by convincing
managers of the mistaken idea that they could harvest the
stock down to low levels and still maintain high recruitment
(Mason 2002). A similar problem has been recognised in ani-
mal ecology (Shenk et al. 1998; Dennis et al. 2006; Freckleton
et al. 2006).
In this paper, we argue that also many of the most promi-

nent results in the plant CNDD literature are likely to be
affected by statistical artifacts produced because of a wide
variety of errors in the predictors.
Note that the residuals in Figure 1c would be highly unbal-

anced if one were to fit a line with a zero intercept to the
data. These patterns, therefore, typically cause researchers to

fit a curvilinear relationship, often by log-transforming the
data before linear regression. For example, suppose that the
number of seedlings is constant times the number of seeds
raised to the power b:

seedlings ¼ a� seedsb:

If b = 1, the germination probability is the constant a and
so there is no CNDD. But, if b < 1, the fraction surviving
decreases as seeds increases, which is CNDD. Power functions
are often fitted using the equivalent linear log–log relation-
ship: log seedlingsð Þ ¼ log að Þ þ blogðseedsÞ. Thus, a test for the
presence of CNDD is that the slope of a linear regression of
log(seedlings) against log(seeds) is less than one. Because
regression dilution flattens slopes, estimates of b in situations
with no CNDD are biased beneath the correct value of one,
which falsely implies the presence of CNDD.

Detection of CNDD and Error-Prone Proxies (EPPs)

A lot more is known about the biases created in regressions
by errors in predictors than when Walters & Ludwig (1981)
was written (Stefansky & Carroll 1985; Frost & Thompson
2000; Carroll et al. 2006; Buonaccorsi 2010; Grace 2017). The
subject is considerably more complex than simple regression
dilution and is also necessarily mathematical (see the typology
of measurement errors in Box ). Box summarises the most
common statistical methods to detect CNDD from observa-
tional data. When one or more of the covariates in eqn 1 con-
tains errors, parameter estimation can be biased leading to
biased or apparent CNDD (false detections), depending on
the type of data and model used. In general, we can identify
two sources of error: measurement errors, and errors induced
by choosing the wrong scale or the wrong metric (e.g. the
number of individuals as a proxy for below-ground biomass).
The first source of error can be accounted for by including
repeated measurements in the sampling. The other sources of
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Figure 1 Examples of apparent CNDD produced by errors in the independent variable (conspecific density). In all examples recruitment is drawn from a

Poisson distribution proportional to conspecific density, that is, no CNDD. (a) Conspecific density is observed without error. (b) Conspecific density is

observed with a small multiplicative error xobs ¼ xeu , where u is a random variable with variance r2
u\r2

logðxÞ. (c) Conspecific density is observed with a

large multiplicative error, r2
u � r2

logðxÞ. The black line is the true relationship between conspecific density and recruitment, the red line is fitted with the

model y ¼ axb.
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Box 1. Measurement error typology

Regression dilution is a problem in statistical inference first identified by Spearman (1904) which causes the underestimation of
the strength of dependency among variables when the predictors (independent variables) contain errors. To understand the
problem, consider the OLS estimator of the slope in a linear regression model y = a + bx, given by the ratio between the covari-
ance of x and y and the variance of x:

bOLS ¼ covðx; yÞ
r2
x

: ð1Þ

Errors in the observed response variable (yobs = y + err) increase the variability in the slope estimation without introducing bias,
as the errors are by nature uncorrelated with x and do not affect the covariance. For this reason, classical measuring errors (additive
and uncorrelated with the covariates) in the response variables are generally ignored in regression analysis as they are absorbed into
the error residuals (Abrevaya & Hausman 2004). However, errors in the observed predictor variable (xobs = x + u) cause an inflation
of the denominator in the ratio of eqn 1, so the magnitude of the slope is biased towards zero.

bOLS ¼ covðx; yÞ
r2
x þ r2

u

: ð2Þ

In general, the magnitude and the direction of the effect of measurement error depend on the model under consideration and
on the joint distribution of the measurement error and the other variables. The theory of measuring error distinguishes between
three types of error: classic, Berkson and differential (Carroll et al. 2006). OLS regression provides a tractable conceptual frame-
work for understanding the origin of the bias for each type of error. For classic additive errors, the true value x is observed as
xobs = x + u, where u represents random noise with mean zero and variance r2

u. The na€ıve OLS estimator bOLS can be expressed
as

bOLS ¼ b
r2
x

r2
x þ r2

u

; ð3Þ

From eqn 3 is clear that bOLS will always be underestimated, and the larger the error in the predictor (r2
u) the larger the bias.

Equation 3 also provides a means to correct for the bias if both, r2
x and r2

u are independently estimated. A similar problem
occurs with multiplicative errors, that is, xobs ¼ xeu, where u�Nð�r2

u=2;r
2
uÞ. Although a log-transformation will make the error

additive, some researchers prefer to perform the analyses in the original scale. The na€ıve OLS estimator is given by (Hwang
1986, eqn 2.12):

bOLS ¼ b
r2
x

r2
x þ l2x þ r2

x

� �
expðr2

uÞ � 1
� � ; ð4Þ

which is qualitatively similar to eqn 3, except that the bias depends also on the mean of x.
In contrast, Berkson error assumes that x ¼ xobs þ u and x ¼ xobse

u, for the additive and multiplicative error respectively, so
the error is independent of xobs but not of x (note that the positions of x and xobs are reversed relative to classical additive
case). Such error occurs, for example, when a continuous variable is forced into discrete categories, when random replicates of
a manipulative experiment are assigned to the same treatment or when an allometric relationship is used instead of a true size.
Berkson error always decreases the variance of the observed variables, whereas the opposite is true for the classic errors. Berk-
son error reduces statistical power without causing a bias in the OLS estimator. However, in nonlinear models, e.g. logistic
regression, Berkson errors produce bias (Heid et al. 2002).
In general, measuring errors will contain both, classic (u) and Berkson (v) components. The mixture of classic and Berkson

additive error is represented as:

x ¼ zþ v; ð5aÞ
xobs ¼ zþ u; ð5bÞ
where u and v are independent random noises and z a common random variable. Note that v = 0 corresponds to the classic
error and u = 0 to the Berkson error. The na€ıve OLS estimator can be expressed as

bOLS ¼ b
r2
z

r2
z þ r2

u

: ð6Þ

Differential error is defined as an error whose magnitude or direction depends on the response variable. In this case u can be
correlated with the error residual e, that is, cov(u,e) 6¼ 0. This can occur, for example, when individuals are divided in two
groups and one group is used as the response and the other group is used as the predictor in a regression analysis. Any classifi-
cation error will result in an overestimation of one variable and underestimation of the other, and vice versa, that is, cov(u,
e) < 0. For differential errors, the OLS estimator is given by (Carroll et al. 2006):
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error can only be resolved by mechanistic understanding of
the effects of conspecifics, in particular the nature and the
range of the interactions, including maternity when assessing
adult–recruitment relationships.

To get a flavour of the issues involved without mathemati-
cal formalism, consider the following three simple numerical
examples (Fig. 2), which qualitatively correspond to three of
the most prominent papers in the forest CNDD literature:

bOLS ¼ br2
x þ covðu; eÞ
r2
x þ r2

u

; ð7Þ

so the bias can be positive or negative and it depends not only on the magnitude of the error in x, r2u, but also on the magni-
tude and sign of the cov(u,e).
GLMs and nonparametric estimators also are affected by measuring errors (Armstrong 1985; Stefansky & Carroll 1985; Fan

& Young 1993). As the likelihood maximisation does not have a closed solution, the mathematical formulation of the bias is
not always available. (see Fig. S2–S3 for additional examples).
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Figure 2 Error-prone proxies can cause apparent CNDD or spurious trend. Case 1: Apparent CNDD in a simulated study of a system with random seed

germination. Colors in (a) give the intensity of the seed shadow. The seeds and seedlings are censused in paired 1m2 seed traps and seedling plots (white

and red quadrats, respectively, in (a) located 1 m from one another. The number of seeds before germination in each seedling plot is estimated with error,

causing an apparent curvilinear relationship between number of seeds and number of seedlings (red line in b). Case 2: Apparent CNDD in a simulated

study of a system in which saplings are randomly produced by adults. Recruits (blue points in c) are randomly produced by adults (red symbols) and

dispersed using a fat-tail dispersal kernel with mean dispersal equal to 15 m. The number of juveniles and adults are counted in 50x50 m quadrats. Because

some juveniles have parents outside their quadrat, the parents are measured with errors causing an apparent curvilinear relationship between numbers of

adults and juveniles in the quadrats (red line in d). Case 3: Apparent trend between species abundance and the strength of CNDD, in simulated study in

which the strength of CNDD is the same for all species. Density-dependent survival is simulated for saplings of 68 species that span a large range of

abundances on a 50 ha plot on Barro Colorado Island (Panama), using the actual locations and diameters of saplings (≤ 10 cm diameter) and adults

(> 10 cm) and local conspecific density given by the sum of the crown areas of conspecifics within 5 m. Each individual is assigned a ‘true’ crown area

using an empirical allometric equation for trees measured in central Panama (e, Cano et al., 2019) times a lognormal random variable with mean one and

variance equal to the residual variance from the allometric regression (insert in e). But, the measure of sum of local basal areas rather than sum of crown

areas is then used in the logistic regressions that estimate the strength of CNDD for each species. The error in the proxy, varðZproxy � ZtrueÞ=varðZproxyÞ,
caused by using basal area instead of the true crowns increases with the abundance of the species (g). Because of this, regression dilution increases with a

species’ abundance, and causes a false trend in which the estimated strength of CNDD increases as abundance decreases (f).
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Box 2. The estimation of CNDD

CNDD affecting transitions between life stages can be detected by fitting a demographic model to field data that describes the
transition from one stage to the next (e.g., from seed to seedling, from an initial size to a later size, etc.), of the form

N1 ¼ p N0;Z1;Z2; . . .;Zmð ÞN0; ð8Þ
where N0 and N1 are the abundance of individuals (or seeds) in the initial and subsequent stage, respectively, in specified areas
(not necessarly the same). The function p describes probabilities of moving from the initial to the subsequent stage (or per cap-
ita fecundity). Z1;Z2; ::;Zm are additional covariates that can include the densities of conspecifics in the various stages, corre-
sponding densities of heterospecifics and environmental factors. CNDD is detected if p is a decreasing function of the density of
conspecifics (N0 or any Z representing conspecific densities). The functional form of p depends on the precise nature of the
interaction (Pacala 1986; Freckleton & Lewis 2006), which is usually unknown so that phenomenological models are used. For
example, one of the simplest and widely used is the power law model (e.g. Wright et al. 2005; Kellner & Hubbell 2018):

N1 ¼ aNb
0; ð9Þ

where a is the transition probability when N0 ¼ 1 and b is a parameter that indicates CNDD when b < 1. A commonly fitted
version of this model is the offset-power model (Harms et al., 2000), which uses ordinary linear least squares (OLS) on log-
transformed variables, after adding one to handle the zeros:

log N1 þ 1ð Þ ¼ logðaÞ þ blogðN0 þ 1Þ; ð10Þ
We immediately noticed that eqns 9 and 10 are not equivalent. Log transformation and OLS, are known to perform poorly

on count data and should be replaced by methods based on likelihood maximisation (O’Hara & Kotze 2010), such as gener-
alised linear models (GLMs). In a GLM, the response variable is assumed to be generated by a particular distribution in the
exponential family. The mean response depends on the predictors through a link function g as follows:

EðpÞ ¼ g�1ðb0 þ b1N0 þ b2Z1 þ . . .þ bmþ1ZmÞ: ð11Þ
GLMs commonly used for the analyses of CNDD are listed in Table 1. For example, logistic regressions are appropriate to

model the survival probability of seedlings between census intervals. Logistic regressions assume a binomial distribution and a
logit link function (other link functions can also be used) :

log
p

1� p

� �
¼ b0 þ b1N0 þ b2Z1 þ . . .þ bmþ1Zm: ð12Þ

Ecological count data are often overdispersed, that is, they exhibit greater variation than predicted by the model, which can
result in erroneous model selection and too liberal hypothesis testing (Richards 2008). In order to take into account such varia-
tion, it is possible to use compound distributions, such as the beta-binomial for binary count data (e.g. survival) and the nega-
tive binomial for Poisson count data (Wright et al. 2005; Richards 2008; Gripenberg et al. 2014). For example, a log-linear
model and negative binomial distribution has been used to fit adult reproductive ratio as:

logðpÞ ¼ b0 þ b1N0 þ b2Z1 þ . . .þ bmþ1Zm: ð13Þ
It is easy to show that, excluding the Z covariates, the log-linear model is equivalent to the Ricker population model

(Br€annstr€om & Sumpter 2005).

N1 ¼ N0e
b0þb1N0 : ð14Þ

GLMs are fitted using maximum likelihood (Table S1).
A more sophisticated approach assumes that replicate observations of the predictor, N0, are available, N

0
0, and that N0 can be

treated as a latent variable (Muff et al. 2015). The parameters are fitted by coupling to the regression model, eqn 11, two addi-
tional models, named the error and exposure (predictor) models (e.g. Bagchi et al., 2014):

N
0
0x007C;N0 �NBðN0; kÞ; ð15aÞ

N0 � lognormðl;r2Þ; ð15bÞ
where k is an overdispersion parameter in the negative binomial distribution (NB). The parameters are then fitted using approx-
imate Bayesian inference for latent variables (Rue et al. 2009). All the above methods can be extended to include random effects
as species, treatments, locations and periods. For examples, generalised linear mixed models (GLMMs) are formulated as:

E pij
� � ¼ g�1 b0 þ b1N0;i þ b2Z1;i. . .þ b1Zm;i þ /i þ /j

� �
; ð16Þ

where / are normally distributed random intercepts for species i and location j. Another widely used class of models are hierar-
chical models (Gelman 2006). In these models the parameters can vary at more than one level as follows:

© 2019 John Wiley & Sons Ltd/CNRS
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H2000, C2010 and L2017 respectively. These examples are
provided as accessible cartoons, and are explicitly not
intended to substitute for the detailed modelling and analysis
that forms the bulk of this paper.
H2000 analysed seed-to-seedling transitions using census

plots that were spatially distributed in a tropical forest in
Central Panama. To detect CNDD, they regressed the seed-
ling abundances from a set of seedling census plots against
the seed abundances from a different set of collocated seed-
census plots. Similarly, the setup in Fig. 2a has paired seed-
census (white squares) and seedling-census (red squares) 1 m2

plots. Seeds were stochastically dispersed from randomly
located parent trees using a fat-tailed dispersal kernel (the col-
ors in Fig. 2a depict the intensity of the seed rain). Seeds in
the seedling-census plots were then converted into seedlings
with stochastic coin tosses (probability 0.1). Thus, there was
absolutely no CNDD in the simulation.
A regression of seedling numbers from the seedling plots

against the seed numbers from the collocated seed traps pro-
duces a curvilinear relationship (red line in Fig. 2b) that falsely
implies the presence of CNDD (the black line is the true rela-
tionship). The concave-down red curve falsely implies CNDD,
because it indicates that the probability of surviving from seed
to seedling falls as seed abundance increases. This is classical
regression dilution, exactly analogous to the stock–recruitment
problem. We get the red curve rather than the black line,
because of error in the predictor. The number of seeds counted
in a seed census plot is an error prone proxy (EPP) for the
number of seeds that actually fell into the paired seedling plot.
The main result in H2000, is that all species showed statisti-

cally significant CNDD. This led ecologists to believe that
CNDD is nearly ubiquitous among tropical plant species (Sil-
vertown & Charlesworth 2001; Terborgh 2012), causing the
paper to be cited more than 900 times and paving the way to

a long series of similar studies (e.g. Hille Ris Lambers et al.
2002; Bagchi et al. 2014; Umana et al. 2016; Krishnadas et al.
2018).
The recent study by L2017 (LaManna, 2016, 2017b) relied

on a single mapped census for each of many plots. They
imposed a spatial grid on each plot, assumed a size threshold
to separate ‘saplings’ from ‘adults’, and regressed the saplings
in each grid square against the adults in the same square. The
idea was to determine if and how the number of saplings pro-
duced per adult decreases with local abundances of con-
specifics and heterospecifics.
The simpler but analogous simulation in Fig. 2c shows

adults (blue dots) that stochastically produced an average of
three juveniles (red dots), which then randomly dispersed
according to a fat-tailed dispersal kernel. As before, there is
no CNDD in this simulation, simply because sapling produc-
tion by the adults is unaffected by abundance. However, the
curvilinear relationship (red line Fig. 2d) produced by a
regression of the number of juveniles in 50 m 9 50 m quad-
rats, against the number of adults in the same quadrats falsely
implies CNDD, because the number of adults in a quadrat is
a highly error prone proxy (EPP) of the parents that produced
the juveniles in the quadrat.
This example may seem analogous to the one in Fig. 2a and

b, but it is actually much more problematic. In the previous
example, the count in a seed census plot is an EPP, but one
knows what it is a proxy for: the actual number of seeds in
the paired seedling census plot before germination. This
means that one should be able to fix the problem with repli-
cate seed traps that would allow one to measuring the proxy
error and compensate for it in the statistical analysis (Muff
et al. 2015 and see examples below). However, there is no
additional census of quadrats that would quantify the con-
specific proxy error that biases the detection of CNDD in the

EðpiÞ ¼ g�1ðb0i þ b1iN0;i þ b2iZ1;i. . .þ b1iZm;iÞ; ð17aÞ
bki ¼ ck0 þ ck1W1i þ ck2W2i þ . . .þ cknWni; ð17bÞ
where W are n species traits or other species-level properties, e.g. relative abundance (e.g. Comita et al. 2010; Lebrija-Trejos

et al. 2016). These models can also include other random effects. The parameters can be estimated with the Bayesian or likeli-
hood method. A List of GLMs used in the detection of CNDD is presented in Table 1.

Table 1 List of generalised linear models (GLMs) used in the detection of CNDD and demographic variables and applications for which each GLM has

been used. A GLM is expressed as EðpÞ ¼ g�1ðgÞ, where p ¼ N1=N0 and g ¼ b0 þ b1N0 þ b2Z1 þ . . .þ bmþ1Zm is a linear function of the model predictors.

The estimation of the parameters can be biased if there are errors in the predictors (N0 and/or Z)

Model

Distributions

(exponential family)

Link function

gðpÞ ¼ g
Mean function

EðpÞ ¼ g�1ðgÞ Applications

Linear Normal p g Relative and absolute growth

Logistic BinomialBeta-Binomial log p=ð1� pÞð Þ ð1þ e�gÞ�1 Seedling survival, seed germination

Log-linear(Ricker model) Poisson, Binomial,Negative

Binomial

logðpÞ eg Seedling recruitment, seed germination, seedling survival

Complementary log-log BinomialBeta-Binomial log � logð1� pÞð Þ 1� e� expðgÞ Seedling survival, seed germination

Power-law† PoissonNegative Binomial logðpÞ e~g Sapling recruitment, seed germination, adult recruitment

*The power law model is made linear by log-transformation: ~g ¼ b0 þ b1 logðN0Þ þ b2 logðZ1Þ þ :::

© 2019 John Wiley & Sons Ltd/CNRS

6 M. Detto et al. Review and Synthesis



−1.0 −0.5 0.0 0.5

(a)

bOLS − bNULL

ARRV
BEIP

BROA
CHRC
COCP
CORL
COUC
DENA
DESP
DOL1
DOLO
DRYS
EUGO
FARO
GUAS
GUSS
HAM2
HEIC
HIPV
HIR1
HIRF
HIRG
HIRT

HYBP
INMA
JACC
LACP

MACU
MARP
MASH
MASN
MOUM
OCOP
OENM
PALG
PARP
PETA
PITC

POUU
PRIA

PROT
PYHO
QUA1
RANA
SER1
SIMA
SOL5
SORA
TET2
THIM
TRI3
TRIC

(b)

Paired trap correlation

N
um

be
r o

f s
pe

ci
es

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

0.0 0.2 0.4 0.6 0.8 1.0

−0
.4

−0
.3

−0
.2

−0
.1

0.
0

(c)

Paired trap correlation

b
O

LS
−

H
1

R2 = 0.25***

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.
0

0.
1

0.
2

0.
3

0.
4

(d)

bmodel

b
O

LS

R2 = 0.56***

Figure 3 (a) Original estimates of the slope b in H2000 of the model: logðNseedling þ 1Þ ¼ aþ blogðNseed þ 1Þ, minus the null hypotheses H0 (●): bOLS = 1;

H1 (red, ): bOLS is obtained assuming constant species-specific germination probability (constant with location), but without considering collocation error;

H2 (blue, ): bOLS is obtained assuming constant species-specific germination probability and accounting for collocation error (Appendix A in

supplementary material). Horizontal bars represent 95% confidence intervals, negative deviations indicate stronger CNDD. b) Histogram of the observed

spatial correlation among paired traps. c) Relationship between the spatial correlations among paired traps and the deviance from null hypothesis H1. d)

Relationship between the original estimates of the slope parameter bOLS and an approximate analytical model which assumes no CNDD and accounts for

colocation error, eqn 18. 1:1 shown for reference.
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sapling–adult regressions. Instead, one would need the mecha-
nistic understanding provided by genetic analyses that identify
each sapling’s mother and consider that some of the mothers
might be dead at the time of the inventory. Without a way to
eliminate or measure conspecific proxy error, there is no way
to design a reliable statistical test to detect CNDD from a sin-
gle census.
This problem is just one of several related problems in the

L2017 study that are examined below in the body of the
paper. Other problems have been pointed out by published
critiques of L2017 (see Damgaard & Weiner 2017b; Chisholm
& Fung 2018; H€ulsmann & Harting 2018).
Our third example, concerns the quantification rather than

the detection of CNDD. C2010 studied the survivorship of
rainforest tree seedlings with repeated censuses of permanently
tagged individuals. They used logistic regressions to fit the
probability of seedling survival against distance-weighted mea-
sures of the local abundances of conspecific and heterospecific
neighbors. They reported the amazing result that CNDD
increases as a species’ abundance decreases, which is

commonly taken as evidence that rare species are rare because
they suffer strong CNDD. The simpler but analogous simula-
tion in Fig. 2e and f, shows how a relationship like the one in
C2010 could also have been a false signal, caused by a seem-
ingly benign predictor error. In this case, the false pattern is
caused by systematic errors in the measure of local abun-
dance, but the general point is that EPP’s can do more than
imply CNDD where none exists. They can also create false
patterns.
The simulation behind Fig. 2e and f uses the actual spatial

coordinates and diameters of all saplings and adults of 68 spe-
cies on the 50 hectare plot in Barro Colorado Island Panama
(Condit et al. 2019). We assumed that a sapling’s probability
of survival, p, decreases as a logistic function:

p ¼ 1þ e�a�bZ
� ��1

:

for all species, where b governs the strength of CNDD
(�0.5 in this example), a sets the survivorship with no con-
specifics in the neighbourhood (set to 1.4 in this example),
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Figure 4 The species-specific quantification of CNDD between individuals with odd and even tag number in 20x20 quadrats (b and d) resembles CNDD

between juveniles and adults (a and c) and varies in the same way with a species’ abundance. Regression lines and 95% confidence bounds are shown for

reference in red. bOLS is the OLS estimator of the slope of the model logðNsapling þ 1Þ ¼ aþ blogðNadult þ 1Þ, where Nsapling and Nadult are respectively the

numbers of small and large individuals in the same grid square. (e) The median slope of the OLS estimator is lower for a high-diversity tropical forest

compared to a low-diversity temperate forest. Bootstrap 95% confidence intervals are shown as red error bars. The area of the tropical plot is 50 ha and

the analysis includes 208 species. The area of the temperate plot is 16 ha and the analysis includes 40 species. Species with less than 0.5 individuals per

hectare were excluded. See Appendix B in supplementary material for further details on the analysis.
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and Z is the sum of the crown areas of conspecifics within
5 m of each sapling. Note that CNDD, as measured by b, is
equally strong for all species. We assigned each sapling a
crown area using the mean from an empirical allometric equa-
tion with diameter and exponent 1.3 (Fig. 2e, Cano et al.
2019), times a lognormal random number estimated from the
regression’s residuals (Fig 2e, insert).
As the true Z is unknown in reality, we included predic-

tor error in the logistic regressions by calculating Z using the
basal areas of neighbors, as done for example in C2010 and
others, which is equivalent to assuming an allometry with
exponent 2 and no residual variation. We then estimated val-
ues of a and b for each species with logistic regressions using
the survival probability computed with the true Z. Because
the variance of a sum of independent random variables is the
sum of the variances, and because each Z is a sum over con-
specific neighbours, the predictor error is larger for abundant
species, which tend to have many conspecific neighbours, than
for rare species, which tend to have few neighbours (Fig. 2g).
This, in turn, dilutes regressions of common species more than
rare ones, and causes the analysis to produce a false inverse
relationship between the strength of CNDD and abundance
(Fig. 2f), like the trend reported in C2010.
The simulations producing Fig. 2f contain both good news

and bad news. The good news is that studies that estimate vital
rates by following individuals through time are not biased to
detect CNDD where there is none, unlike H2000 or L2017. This
is because longitudinal data allows the regression of observed
individual performance (i.e. survival, growth, or fecundity),
against local densities, in which the null hypothesis of no den-
sity dependence is that the slopes should be zero. Errors in the

predictors flatten estimated slopes, and thus bias the detection
of CNDD in the direction of a type 2 error whenever the null
hypothesis implies zero slope. The implication is that C2010’s
analysis is conservative when detecting NDD.
The corresponding bad news is that regressions with longi-

tudinal data are still biased by errors in the predictors, and
these biases may produce exciting but false patterns, like the
false relationship between the strength of CNDD and abun-
dance in Fig. 2f, produced only because the regressions used
basal area as a proxy for actual crown area. Although one
could compensate for predictor errors by measuring them and
then including them in the statistical analysis, this presupposes
that they are understood well enough to be measured. Is basal
area in C2010 a proxy for fine root mass, foliar mass or some-
thing else? Is the distance weighting in C2010 appropriate for
competition for light, water or nutrients, or for the risk of
infection by pathogens or herbivores infesting neighbours?
How much error is caused by assuming that the distance
weighting is the same for all focal and neighbouring species?
How much error is built into estimates of the local abundance
of heterospecifics by the practice of summing the basal areas
of all heterospecific species? Note that summing all
heterospecific neighbors generally means that the local abun-
dances of heterospecifics will greatly exceed the local abun-
dance of conspecific neighbours.
In what follows, we perform new analyses of three data sets

that extend H2000, L2017 and C2010, and in each section
provide new formulae for the biases caused by the use of
EPPs. These sections assume some mathematical knowledge,
but the most technical material is relegated to Appendices.
We then describe a series of modelling studies aimed at
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Figure 5 (a) The aggregation of individuals explains interspecific variation in the fitted slope parameter bOLS for the relationship between juveniles and

adults (R2 = 0.84). �N and r2
N are the mean and variance of individuals across quadrats. Linear regression lines (dashed) are shown for reference. In the

inset, the boxplot of bOLS for species with explosive dispersal (EX) and species with other dispersal syndrome (OT) for BCI, showing that explosively

dispersed species have statistically higher mean (one-way ANOVA, P < 1e�7). (b) The median bOLS across species decreases for small quadrat size,

suggesting that CNDD is stronger for small quadrat size. Panel A is for 20 m by 20 m quadrat size.
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quantifying impacts of the most likely sources of predictor
error in the above studies and the many similar studies.
Our analysis shows that predictor errors in these studies are

likely to be large enough to account for most, but not all, of
their results. The problems we study are generic to the vast
majority of studies reviewed by Adler et al. (2018), and this
brings into question the emerging paradigm that CNDD is
generally stronger than HNDD in plant communities and
makes it unwise to assume strong CNDD when designing
conservation measures. Although sobering, these results also
point to a path forward, which we offer in the Discussion.

RESULTS

Seedling–seed relationships

H2000 quantified CNDD by estimating the slope parameter
bOLS of the model: log(seedlings + 1) = a + b log(seeds + 1),
hereafter referred as offset-power model, which is an inexact
linearisation of the power law model (inexact because 1 is
added to the abundances to avoid having to take the log of
zero). Here, we reanalyse the same seed-to-seedling transition
data from Barro Colorado Island in Central Panama (BCI),
after first obtaining estimates of the errors between traps and

plots from new field data (Appendix A in supplementary
material). We show that the estimates H2000 were biased and
that the primary result that CNDD is pervasive among tropi-
cal species disappears when a more conservative test is
applied.
There were two sources of error in the paper (Appendix A

in supplementary material), bias caused by adding one to the
abundances in the offset-power model (Hille Ris Lambers
et al. 2002), and bias caused by a colocation error – using the
abundances of seeds in one place (a seed trap) as a proxy for
the seeds that dispersed into another (a nearby seedling census
plot as in Fig. 2a). In order to test the significance of the esti-
mated parameter bOLS, we used three null models, H0, H1 and
H2. Null model H0 contains both sources of error (as does the
original paper); H1 removes the error caused by adding one to
the abundances in the offset-power model and H2 removes
both sources of error. All null models assume that b = 1,
which is the expectation under no CNDD, whereas a negative
deviation (b < 1) implies CNDD.
The deviations from the null model H1 are much closer to

zero than the deviations from the null model H0 (compare
black and red dots in Fig. 3a). However, deviations from the
null model H1 were still significantly negative, which implies
CNDD, for all species. The null model H2 takes into account
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Figure 6 The density dependence of sapling (individuals with diameter at breast height DBH ≤ 10 cm) survival evaluated for eight censuses (1982–2015) of the
BCI 50 ha plot. The analysis includes 76 species with DBHmax > 20 cm that average more than 200 individuals in the 50 ha plot over the eight censuses.

CNDD and HNDD were estimated for each species using GLMMs with a logistic regression: log pi
1�pi

� �
¼ b0 þ b1Z

c
1i þ b2Z

c
2i þ /i, where pi is the individual

survival probability in the ith census interval, Z1 and Z2 are distance-weighted sums of basal area of conspecifics and heterospecifics respectively, and /i a

random effect for census interval. The exponent c regulates the functional shape of the local interactions and was varied between 0.01 and 1. Individuals in a

10 m buffer zone were excluded to minimise edge effects. (a) Estimated parameters b1 and b2 as function of plot level species basal area for c = 1. (b) Log-

likelihood as a function of the exponent c. The log-likelihood is the sum of the log-likelihoods of each individual species. The red dots indicate the maximum

value of the log-likelihood (labelled C) and the log-likelihood for c = 1 (labelled A), where the labels A and C correspond to panels in this figure. (c) Same as

A, but for c = 0.22, the value corresponding to the maximum log-likelihood. Trend lines for CNDD are also shown for reference (blue lines).
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the collocation error by including the observed spatial correla-
tion between two paired seed traps in randomisations
(Appendix A in supplementary material). These paired seed-
trap data, which were not available at the time of H2000,
revealed large interspecific variation in spatial correlation
among paired traps. The correlation is sometimes very low,
implying that seeds observed in traps are poor proxies for
unobserved seeds in collocated seedling plots (Fig. 3b). As a
consequence, the deviations from H1 reduced with increasing
spatial correlation q (R2 = 0.29), indicating that bias in
CNDD increased as correlation among paired traps decreased
(Fig. 3c). Consistent with this test, the original estimates in
H2000 were well described by an approximate statistical
model that accounts for the degree of correlation, and derived
under the assumption of no CNDD (Fig. 2d, R2 = 0.57, see
supplementary material Appendix A for the derivation of the
approximate solution). Thus, the apparent CNDD obtained
under H1 is an artifact caused by colocation error. With both
sources of error accounted for, there is no species left with
statistically significant CNDD according to H2.
The following equation provides a simple solution for bOLS

in absence of CNDD and when seeds and seedlings are cen-
sused in separate plots (Appendix A in supplementary mate-
rial):

bOLS ffi
�Nseed þ 1
�Nseed þ �p�1

q; ð18Þ

where p ¼ Nseedling=Nseed, is the mean germination probability,
Nseed the mean seed density and q the correlation between the
seeds observed in the seed traps and the (usually unknown)
true number of seeds that dispersed into each seedling census
plot. Larger collocation errors are associated with smaller val-
ues of q and larger underestimation of bOLS (Fig. 3c).

Adult–juvenile relationships

The analysis in this section is similar to the one above, but
targets CNDD affecting the numbers of juveniles produced by
adults. Like L2017 (LaManna et al. 2016, 2017a), we use stem
maps of forest plots to study the spatial relationship between
juvenile and adult trees. There are many sources of error
inherent in using individuals larger than a threshold size in a
grid square as a proxy for the parents of those smaller than
the threshold in the same square. Mothers of the plants in the
small-sized group could be located outside the square, could
have died, or could even be other individuals beneath the size
threshold in the same square. In this section, we show that
the surprising results in L2017 are obtained no matter how we
divide the individuals in each square into two classes – for
example, assigning individuals with odd census tags as juve-
niles and even census tags as adults. We show that the pat-
terns reported in L2017 are simply caused by patterns of
species aggregation.
In this analysis, the number of juveniles (defined as individ-

uals below an arbitrary size threshold) in a specified area
(usually 10 9 10 or 20 9 20 quadrats) are regressed against
the number of adults (defined as individuals above the same
threshold) using the offset-power and other models (as in
L2017). Figure 4a and c show that OLS estimates of the

slope, bOLS, are smaller than one for almost all of the species
analysed, as in L2017, which appears to imply CNDD. The
OLS estimates of the slope of the offset-power model also
reproduce two other patterns in L2017. Slopes were inversely
correlated with the abundance of the species (strongest
CNDD for rare species) and the median slope was signifi-
cantly lower in the tropical forest plot than in the temperate
plot (Fig. 4e), which indicates stronger CNDD in the tropics.
The same results was obtained if the median was calculated
only for rare species (species with basal area < 0.1 m2 ha�1),
that is, when results are compared on a common abundance
axis.
When we applied the same method to the same forest data,

but instead of splitting trees into the biologically meaningful
but error-prone categories, we divided trees into biologically
meaningless categories: for example even tag versus odd cen-
sus tag, the same patterns were obtained (Fig. 4b and d). As
before, the spurious CNDD decreased with abundance and
the median slope was lower for the tropical than for the tem-
perate plot. Similar results were obtained by splitting the indi-
viduals with other meaningless criteria and by fitting different
models, such as the Ricker model (Fig. 3 and 4).
This result that any arbitrary grouping of the individuals

(a.k.a. random labelling) produced the same patterns, chal-
lenges the ecological interpretation of the mechanisms under-
lying such patterns. In particular, assuming that the slope is
one as a null hypothesis for the absence of CNDD is not
totally justified. For instance, using random labelling, we
derived an expression for bOLS which is independent of how
individuals are classified, and it depends only on how individ-
uals are distributed in space (Appendix B in supplementary
material):

bOLS ffi r2
N=

�N� 1

r2
N=

�Nþ 1
; ð19Þ

where r2N and �N are the variance and the mean number of
individuals per quadrat. Equation 19 shows that any process
that affects the spatial variability among individuals can gen-
erate bOLS < 1. Note that for a complete spatially random
process (e.g. Poisson), r2N= �N ¼ 1 and bOLS = 0.
Importantly, r2

N=
�N is not necessarily constant with abun-

dance, and lower values of bOLS for rare or common species
are expected if r2

N=
�N increases or decreases with abundance.

Taking r2
N=

�N as a measure of species aggregation, eqn 19
indicates that less aggregated species, according to this metric,
would indeed result in lower bOLS. Therefore, everything else
being equal, a relationship is expected between apparent
CNDD and spatial aggregation. Many biological processes
affect spatial aggregation, including dispersal strategies and
habitat heterogeneity as well as CNDD. For this reason, the
analysis of L2017 is an inappropriate test for CNDD.
The trends in Fig. 4 are expected according to eqn 19,

because r2
N=

�N increased with abundance in both forests
(Spearman’s r = 0.50, P < 10�9), and thus any arbitrary
grouping of the data will inevitably find stronger CNDD in
rare species. Equation 19 explains a large proportion of the
variation in bOLS for both sites (Fig. 5, 2a R2 = 0.84). Impor-
tantly, the relation between bOLS and

r2N=
�N�1

r2
N
= �Nþ1

does not differ
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among forest types (Fig. 5a), which indicates that aggregation
alone is responsible for variability in CNDD, within and
among forests. Dispersal limitation is one of the main factors
causing aggregation. For example, some of the shrubs on BCI
have limited dispersal strategies (e.g. explosive capsule) and
display strong clumping (Clark et al. 2017), which might
result in higher values of bOLS (apparent weak CNDD). A
one-way ANOVA revealed that explosively dispersed species
have significantly higher bOLS than species with other dispersal
syndromes (P < 1e�7, insert in Fig. 5a).
Furthermore, bOLS decreased with the size of the quadrat

(Fig. 5b). Small quadrats increase the error in quantifying the
number of parents, because many offspring will be dispersed
outside their mother’s quadrat, and consequently aggravate
the regression dilution problem. However, a lower value of
bOLS indicates stronger apparent CNDD, so the results might
be erroneously interpreted as support of the hypothesis that
CNDD operates over small distances.

Survival analyses

In this last case, we evaluate NDD by analysing the survival
of focal juveniles as a function of local density of conspecifics
and heterospecifics similar to C2010, and others (e.g. Johnson
et al. 2017; Zhu et al. 2018) as in Fig. 2e and f, using saplings
from periodic censuses of mapped individuals in the same
BCI forest. Also, in contrast to the previous two cases, this
analysis cannot generate NDD when absent. However, the
choice of the functional form of local interactions can bias the
estimation of the parameter b, and the bias can be more sev-
ere for heterospecific negative density dependence (HNDD)
than for CNDD and more severe for abundant species than
rare species. This can generate spurious interspecific trends
and give the appearance that HNDD is negligible compared
to CNDD.
This analysis classifies as saplings individuals with diameter

at breast height ≤ 10 cm, which were mapped and censused
eight times from 1982 to 2015 in the BCI 50 ha plot. It
includes 76 species with at least one individual with a diame-
ter > 20 cm and with at least 200 individuals on average per
census. CNDD and HNDD were estimated for each species
using logistic regressions as in C2010:

log
pi

1� pi

� �
¼ b0 þ b1Z

c
1i þ b2Z

c
2i þ /i; ð20Þ

where pi is the individual survival probability in the ith census
interval, Z1 and Z2 are distance-weighted sums of basal areas
of conspecifics and heterospecifics respectively, and /i a ran-
dom effect for census interval. The exponent c regulates the
functional shape of the local interactions; for c = 1 local inter-
actions increase linearly with Z, as in the original analysis of
C2010, for c < 1 the marginal effect decreases as Z increases.
The model was fitted for different values of c and the model
with maximum likelihood was selected.
For c = 1, estimated CNDD was consistently greater than

HNDD (by an order of magnitude) and stronger for rare spe-
cies than for common (Fig. 6a). These results mirror the seed-
ling analysis in C2010, suggesting a dominant role for CNDD
across life stages for rare species. However, the likelihood was

maximised for c = 0.22 (Fig. 6b). 10-fold cross-validation con-
firmed that the model with c = 0.22 outperformed c = 1
(Fig. C3). With c = 0.22, the trend with abundance disap-
peared, demonstrating that the trend was highly dependent on
the nonlinearity of the density metric used (Fig. 6c). Further-
more, the differences in magnitude between b1 and b2
decreased. Note that the exponent c can only account for
nonlinearity in the functional shape of the interactions, but
not for measurement errors, which might still be responsible
for differences between CNDD and HNDD. Furthermore, the
optimal c might differ across species and life stages.
The potential problems in this analysis appear to be caused

by a different mechanism that the problems in H2000 and
L2017 – the use of an inappropriate functional form rather
than the presence of random errors in the predictors. How-
ever, this distinction is less than sharp. Here, density was
quantified by a relatively complex function (sums of distance-
weighted basal areas), that is likely to include both systematic
and random errors. For example, the case in Fig. 2e–g
includes systematic error because the fitted model assumes a
different allometric exponent in the density metric than the
exponent used to generate the data (Fig. 2e). This example
also includes random errors, because random residuals from
the allometric regression were added to the ‘actual’ crown
areas when generating the data, whereas the fitted model sim-
ply summed distance-weighted basal areas. Both systematic
and random errors in density metrics can create false patterns
involving the strength of density dependence (Appendix C in
supplementary material). If C2010 had used a saturating den-
sity metric with properties similar to Zc

1 instead of Z1, then
the analysis might not have detected the reported relationship
between abundance and the strength of CNDD or reported
the result that CNDD is generally much stronger than
HNDD. The point here is that the distinction between a sys-
tematic error in the functional form in a regression and sys-
tematic and random errors in the density measure used for
predictors is blurred once the density metric becomes com-
plex.

DISCUSSION

False or biased detection of CNDD has been recognised as a
major problem in ecological population studies with serious
practical implications for species conservation practices (Wal-
ters & Ludwig 1981; Shenk et al. 1998; Mason 2002; Freckle-
ton et al. 2006). Accurate estimates of CNDD rely on precise
model formulations and error-free predictors, conditions that
have never been carefully assessed in plant studies (Freckleton
& Lewis 2006), despite the large body of work conducted on
this subject in plant community ecology (Adler et al. 2018).
As this body of work claims to have empirically demonstrated
a basic tenet of modern coexistence theory - that ‘intraspecific
competition is stronger than interspecific competition’, which
paves the road to applications in ecosystem and reserve man-
agement (Cordonnier et al. 2018) – the time is ripe for a criti-
cal review.
The estimation of CNDD in plants from observational data

is challenging, as it requires evaluating individual level perfor-
mance as a function of conspecific interactions in the
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neighborhood of focal individuals. So, quantifying CNDD
ideally requires a metric of conspecific density measured at an
appropriate spatial scale which depends on the precise nature
of the interaction (Gripenberg et al. 2014; Damgaard & Wei-
ner 2017a). In the absence of such data, proxies can be used,
but these are generally error-prone, requiring special statistical
attention.

Error-prone proxies (EPPs)

In ecological studies, errors in the measured variables (e.g.
miscounting, species misidentification and errors in digitalisa-
tion) are ubiquitous and often unavoidable (Chen et al. 2013;
Morrison 2016; Groom & Whild 2017). Measurement error
in the predictors is what caused the false CNDD in stock-
recruitment relationships. However, in ecological field studies,
it is more common to use a measured error-prone proxy in the
place of the quantity that we are actually interested in. For
example, because dispersal is highly stochastic in both time and
space, the number of seeds observed at two different locations,
no matter how close, will always differ. Similarly, seed traps
elevated from the ground cannot account for secondary disper-
sal by scatter-hoarding vertebrates (Jansen et al. 2012), which
can contribute to the mismatch between observed and true
numbers of seeds. This type of error is common to all situa-
tions where the independent and response variables cannot be
measured in the exact same location or time.
Smart experimental designs and robust statistical methods

can minimise the bias caused by such errors. In practice, this
requires repeated measurements which enable inclusion of error
uncertainty when fitting models (Carroll et al. 2006; Muff et al.
2015). For example, Bagchi et al. (2014) used a multi-trap
design to quantify CNDD affecting the seed-to-seedling transi-
tion. The results in Bagchi et al. (2014) dramatically differ from
the results in H2000 and subsequent analyses (Wright et al.
2005; Fricke & Wright 2017), as the former detected CNDD in
few species only, whereas the latter reported CNDD in all the
species. This can be explained by the multi-trap design’s ability
to correct for bias, which is consistent with our re-analysis of
the data set used by H2000 informed by a newly available mul-
ti-trap estimate of collocation error (Fig. 2a) and by numerical
simulations (Appendix A in supplementary material). However,
our simulations demonstrated also that the bias is not elimi-
nated completely with multi-trap designs. In the study of Bagchi
et al. (2014), strong CNDD was observed for Terminalia amazo-
nia, a species with a high density of small wind-dispersed seeds,
attributes that our simulations indicate cause overestimation of
CNDD (Fig. 7c, Appendix A in supplementary material). Bag-
chi et al. (2014) also showed that applying pesticides increased
germination probability and reduced CNDD. According to our
simulations, increasing germination probability should increase
the bias (Fig. 7f), thus the result in Bagchi might indicate a real
biological effect. Unfortunately the decrease in CNDD with
pesticides for T. amazonia was not confirmed by a simultaneous
manipulation experiment conducted in the same forest with the
same treatment (Gripenberg et al. 2014).
Often, we lack understanding of the negative interactions

among plants that we need to design an EPP with as little
error as possible. Although we know a significant amount

about shading, we know little for most plant species about
root deployment and thus about neighborhood competition
for water and nutrients (which is also affected by symbionts).
The problem is perhaps most acute for negative effects of nat-
ural enemies. For example, it is common to use the number
of individuals, or basal area of conspecific neighboring plants
as a proxy for pathogen load and transmission risk (Liang
et al., 2016; Forrister et al. 2019). However, many of the natu-
ral enemies of plants are unknown, as are the distances over
which many pathogens are transmitted, and we should expect
that transmission risk will generally vary among plant and
enemy species and with plant size (Uriarte et al. 2010).
EPPs have particularly severe effects in studies that attempt

to detect CNDD from the spatial relationship between con-
specific juvenile and adult trees (Johnson et al. 2012;
LaManna et al. 2016, 2017b; Bennett et al. 2017) because
both the metric for the competitive interaction and the num-
ber of parents are EPPs. Assuming that in the absence of
CNDD the recruitment of juveniles in a quadrat is linearly
proportional to the number of large trees is unjustified. First,
seed dispersal displaces offspring from parents, and hence the
number of juveniles in a quadrat is not expected to be propor-
tional to the number of adults. Second, juveniles can be found
in areas where conspecific adults are completely absent, as
they require gaps or other environmental conditions to estab-
lish, or simply, because parents are dead at the time of the
inventory. For example, Tachigali versicolor, a common
monocarpic tree in the lowland tropical forests of Central
America, reproduces only once in its lifetime and dies within
a year of flowering (Foster 1977). So, the saplings are never
found in proximity of their parents, and even when dispersed
close to other conspecific adults, their numbers are unlikely to
be proportional to the number of adults. Third, because the
reproductive status and age of the individuals is usually not
recorded, dividing individuals based on a fixed size threshold
introduces errors, such that individuals can be classified as
adults even though they are not reproductive and, vice versa.
Individuals close to but on opposite sides of the threshold size
are characterised as being very different rather than very simi-
lar (Altman & Royston 2006). Here, we expect that the num-
ber of adults to be a highly EPP which strongly biases the
estimation of CNDD (Appendix B in supplementary mate-
rial). So, as in the case of H2000, CNDDs reported in L2017
are certainly overestimated because the problem of errors in
the predictors has not been controlled for appropriately.
Therefore, the patterns generated by such analyses should be
taken with extreme caution.

Static spatial patterns

The analyses of static data contains another serious drawback.
Here, we showed that the ecological interpretation of strength
of apparent CNDD with abundance or among forests is ques-
tionable as the same relationships are obtained regardless of
dividing individuals according to juveniles-adults or ecologi-
cally meaningless criteria (parity of tree tag). In point pattern
analysis, this problem is explored by performing a random
labelling, a type of randomisation to evaluate interactions
between two spatial processes (Goreaud & P�elissier 2003;
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Wiegand & Moloney 2004). The random labelling does not
hold information about adults and juveniles, but only about
the spatial distribution of individuals, as it retains species
aggregation properties. Thus, the patterns reported by L2017
are interesting because they reveal biological trends in species
aggregation as done in previous studies (Condit et al. 2000;
Gilbert et al. 2010; Detto & Muller-Landau 2016; Uma~na
et al. 2017).
One interpretation for such trends, which is consistent with

the interpretation in L2017, is that aggregation is weaker in
species which suffer high CNDD. However, interspecific varia-
tion in aggregation is a result of multiple processes, including
seed dispersal (Seidler & Plotkin 2006; Clark et al. 2017) and
habitat heterogeneity. Dispersal strategies are quite variable
between species and among biomes (Clark et al. 1999; Muller-
Landau et al. 2008). Habitat filtering is also a strong driver of
species aggregation and varies systematically between temper-
ate and tropical forests (Myers et al. 2013). Therefore, any
static spatial analysis that does not control explicitly for spe-
cies-specific and forest-specific dispersal, and habitat hetero-
geneity (Zhu et al. 2010; Yao et al. 2016) can erroneously
interpret these important factors as CNDD.
These statistical issues are symptomatic of the challenges

inherent in inferring dynamic processes from static observa-
tional data. Although such inferences are possible, they are
usually weak and require an extra degree of caution relative
to inferences from dynamic experimental studies (Damgaard
& Weiner 2017a) and appropriate statistical techniques (e.g.
Bagchi et al. 2011; Yao et al. 2016). A major problem is that
different processes and different combinations of processes
can generate similar spatial patterns, which makes it difficult
to distinguish between them (Detto & Muller-Landau 2013;
Damgaard & Weiner 2017b; H€ulsmann & Harting 2018).

Characterisation of CNDD

Analyses conducted with longitudinal data, such as survival
and growth rates are, in this regard, more robust than analy-
ses of static data. However, they still rely on arbitrary density
metrics and proxies of competitive interactions. Although
these analyses do not generate false detection of CNDD, they
bias the quantification of both CNDD and HNDD by intro-
ducing systematic errors that produce spurious interspecific
patterns. For example, logistic regressions, a common tool for
survival analysis, are quite sensitive to measuring errors and
nonlinearity (Stefansky & Carroll 1985; Heid et al. 2002;
Bergtold et al. 2018). A logistic regression assumes that sur-
vival approaches zero for high values of local density. This
assumption is not biologically consistent with transmission of
infectious diseases where mortality reaches an asymptote
equal to the sum of base mortality and lethality when all the
individuals are infected (Anderson & May 1982). Thus, fitting
a logistic regression when survival flattens at high densities
produces a bias that causes CNDD to appear to weaken as
species become increasingly abundant.
Unfortunately, in complex fitting algorithms such as

GLMMs and hierarchical Bayesian models, the direction and
magnitude of bias caused by EPP’s are often not easy to pre-
dict, and different fitting algorithms can produce different

results. For example, Johnson et al. (2012) and Zhu et al.
(2015) produced opposite relationships between CNDD and
abundance from the same Forest Inventory and Analysis
dataset.
Furthermore, in natural settings, species appear to interact

weakly because they are often confined to their realised niches
by competition, which makes much of HNDD undetectable
(Tuck et al. 2018).

Recommendations and Conclusions

Although the results presented in this study seem discourag-
ing, they also offer clear directions for resolving some of the
issues in detecting CNDD. In the cases where the density
metric is known (e.g. number of seeds), but it is measured
with errors, a quantification and characterisation of the
errors, for example with repeated measurements, is often suf-
ficient to correct for the bias. A large literature on how to
account for independent-variable errors in statistical models
already exists and is available in commonly used computa-
tional platforms (e.g. Martins et al. 2013; B€urkner 2017;
Yenni et al. 2017).
However, there are many cases where CNDD is inferred

from simple proxies of density, because these are readily avail-
able from forest inventories, remote sensing products and
other counting measurements (Kellner & Hubbell 2018). In all
these cases, a mechanistic understanding of the interactions
may be required. Distinguishing effects of pathogens from
competition for resources (e.g. Forrister et al. 2019) is essen-
tial to choose the appropriate functional form and spatial
scale for the predictors and ultimately to evaluate their uncer-
tainties.
In contrast, analyses of spatial relationships between adults

and juveniles contain too many uncertainties and are based
on strong assumptions that are often difficult to verify. The
information necessary to reliably characterise CNDD includes
not only the metrics of density, but also the metrics of fecun-
dity which are specific to each species and to each individual
and need to be integrated across multiple cohorts. These stud-
ies need to be redesigned, for example using genetic analyses,
or abandoned.
Currently, CNDD trends reported in a large number of

studies of transitions among stages and static spatial data are
not robust because they arise naturally in null models and are
biased by errors in predictor variables. This does not imply
that CNDD is absent, unimportant, or invariant with abun-
dance or latitude; it simply shows that better experimental
design and more robust analyses are needed to properly quan-
tify CNDD. For instance, as we generally expect less error in
manipulation studies, errors in predictors could explain why
Adler et al. (2018) found a larger difference between CNDD
and HNDD in observational compared to manipulation stud-
ies.
We hope this contribution will help familiarise researchers

with measurement error problems and potential solutions, and
to stimulate a new generation of studies that ultimately
resolve these issues, by focusing on the mechanisms behind
negative interactions and with reduced reliance on phe-
nomenological models of density dependence.
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