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Abstract
1.	 Many ecological applications, like the study of mortality rates, require the esti-
mation of proportions and confidence intervals for them. The traditional way of 
doing this applies the binomial distribution, which describes the outcome of a se-
ries of Bernoulli trials. This distribution assumes that observations are independ-
ent and the probability of success is the same for all the individual observations. 
Both assumptions are obviously false in many cases.

2.	 I show how to apply bootstrap and the Poisson binomial distribution (a generaliza-
tion of the binomial distribution) to the estimation of proportions. Any informa-
tion at the individual level would result in better (narrower) confidence intervals 
around the estimation of proportions. As a case study, I applied this method to 
the calculation of mortality rates in a forest plot of tropical trees in Lambir Hills 
National Park, Malaysia.

3.	 I calculated central estimates and 95% confidence intervals for species‐level mor-
tality rates for 1,007 tree species. I used a very simple model of spatial depend-
ence in survival to estimate individual‐level risk of mortality. The results obtained 
by accounting for heterogeneity in individual‐level risk of mortality were com-
parable to those obtained with the binomial distribution in terms of central esti-
mates, but the precision increased in virtually all cases, with an average reduction 
in the width of the confidence interval of ~20%.

4.	 Spatial information allows the estimation of individual‐level probabilities of sur-
vival, and this increases the precision in the estimates of mortality rates. The 
general method described here, with modifications, could be applied to reduce 
uncertainty in the estimation of proportions related to any spatially structured 
phenomenon with two possible outcomes. More sophisticated approaches can 
yield better estimates of individual‐level mortality and thus narrower confidence 
intervals.
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1  | INTRODUC TION

One of the most fundamental problems in statistics is the estimation 
of proportions and the uncertainty around those estimates (Brown, 
Cai, & Dasgupta, 2001). Existing approaches are almost exclusively 
based on the binomial distribution. This distribution describes the 
probability of observing a given number of successes, k, in a series 
of n independent Bernoulli trials (any experiment with only two 
possible outcomes: failure = 0, success = 1), when the probability 
of success, p, is constant. The binomial distribution and the differ-
ent methods of estimating confidence intervals around the estimate 
of p have been applied in every area requiring statistics. In many 
cases, the independence of trials or events has been assumed when 
it is obviously not true, resulting in overly conservative estimates of 
proportions. Here, I describe a method to take advantage of internal 
heterogeneity and/or lack of independence between observations 
to increase precision in the estimation of proportions. I apply the 
method to the calculation of mortality rates using repeated censuses 
(Condit, Hubbell, & Foster, 1995; Kohyama, Kohyama, & Sheil, 2018; 
Lewis et al., 2004; Sheil, Burslem, & Alder, 1995). In the particular 
case of trees (long‐lived organisms), the scarcity of death observa-
tions has resulted in great uncertainty in the estimation of mortality 
rates. Being this a crucial aspect of forest functioning, improvements 
in the estimation of mortality rates, including narrower confidence 
intervals, should have important implications in our understanding 
and prediction of forest systems (McDowell et al., 2018; McMahon, 
Arellano, & Davies, 2019).

Let us start with a coin tossing experiment involving many 
coins. Intuitively, the heterogeneity in pi (the coin‐level probabil-
ity of heads) should reduce the uncertainty about the outcome of 
n coin tosses. For example, if we knew that all coins were either 
two‐headed or two‐tailed, there would be little uncertainty about 
the outcome. In contrast, if all coins were fair (50% chance of head 
and 50% chance of tail) the uncertainty will be greater. This is what 
one can observe when tossing mixes of coins with different levels 
of bias: the greater the heterogeneity in coin‐level pi, the lower the 
variability in the outcome (Figure 1). Of course, this is of no practical 
application if we do not know anything about the individual‐level 
probability of success, p1, p2, …, pn. How to estimate such vector 
of probabilities is a domain‐specific problem to a large degree. 
However, the dependence between observations is in and of itself 
a general (not domain‐specific) source of very valuable information 
about p1, p2, …, pn.

Many fear statistical dependence. In fact, it is seen by most 
practitioners as something negative, absolutely bad, something 
that decreases the effective sample size, and systematically leads 
us to wrong or uncertain conclusions. This is, in the best case, a bi-
ased perception. It is true that models that assume independence 
between observations will fail when this assumption is not met. 
However, if we think strictly about data (not models) it is clear that 
statistical dependence reduces uncertainty about the outcome, as 
long as we can measure or estimate it. For example, light levels at the 

one‐minute scale are so strongly autocorrelated during the day that 
there is almost no uncertainty whatsoever about what to expect. 
That is why solar eclipses are such powerful subjective experiences 
for visual organisms, including Homo sapiens (personal observation). 
The same reasoning applies to other types of dependence, like spa-
tial dependence. If we are tossing many coins arranged in a table 
and we see spatial aggregation in the resulting heads/tails, we can 
(should) suspect that other processes than the inherent coin biases 
are at play. Perhaps the coins were organized prior to the experiment 
by someone else according to some criterion, or there is a hidden 
magnetic device under the table influencing the results, etc. It does 
not matter what is the nature of the process: the spatial aggregation 
in the results is enough to infer about heterogeneity in the coin‐level 
probability of heads, and the expected variability in (uncertainty 
about) the possible outcome (Figure 2).

Dependence between observations, including spatial depen-
dence, is a frequent feature of ecological data, and the reasoning 
presented above applies to plant demography. We can imagine a 
plant survey containing two species equally abundant: one of them 
being a very long‐lived plant (e.g., zero deaths after one year, out of 
1,000 individuals) and the other being annual (1,000 deaths after 
one year, out of 1,000 individuals). Although the community‐level 
mortality rate is 50%/year, and it is true that a randomly chosen 
individual has a 50% chance of dying during a given year, the indi-
vidual‐level probability of dying or surviving is actually either ~0 or 
~1, and thus the possible variability in outcome is, in reality, much 
lower. We would not be throwing 2,000 approximately fair coins, 
but 2,000 strongly biased coins. Furthermore, we could generally 
expect this imaginary plant community to show some kind of spatial 
structure, perhaps by being a mosaic of monospecific patches. Even 

F I G U R E  1  Experiment involving three mixes of 300 coins each, 
with varying heterogeneity in coin biases. In all cases, the expected 
number of heads is the same (k = 135). However, the variability in 
the outcome of the experiment is lower when the heterogeneity 
present in the mix of coins is greater
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if we cannot distinguish both species (i.e., even in the absence of tax-
onomic information), as long as there is some kind of spatial pattern, 
we can estimate whether a given individual or position is more/less 

likely to survive than k/n. In fact, if we can draw a reasonable proba-
bility map, any spatial pattern in the sample will increase precision in 
mortality rates estimates for the entire system.

F I G U R E  2  Experiment involving tossing 300 coins in a table. The table is 20 × 15 in size and coins are arranged in a 1 × 1 grid (arbitrary 
units). First column: the outcome of the experiment, each coin tossed results in either head (black) or tail (white). We know nothing but the 
outcome of each toss and its location. It is clear that there are spatial processes at play: either the coins were arranged according to their 
inherent biases, or some hidden process is biasing the result of each coin toss (e.g., a magnetic device under the table). Second column: the 
estimated map of the “probability of head” using Gaussian kernel estimation (σ = 1.25 in all cases). This estimation is completely agnostic 
regarding the underlying mechanism. Third column: the 300 coins ranked by the estimated coin‐level probability of heads. That is, a 
nonspatial representation of the estimated vector of probabilities of resulting in head (p̂1, p̂2, … , p̂300). Fourth column: comparison between 
the expectations by the binomial distribution (gray bars) and the Poisson binomial distribution (black bars). Bars represent the probability of 
observing a given number of heads, P(k), according to both distributions. Both differ when there is strong spatial pattern and tend to match 
when there is no spatial pattern (i.e., random distribution of heads/tails, or homogeneous underlying probability of heads)
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2  | METHODS

2.1 | The bootstrap paradigm of inference and the 
Poisson binomial distribution

Bootstrap is a general paradigm for inference based on repeated 
sampling. It facilitates creating confidence intervals on any statistic 
without requiring many assumptions (in particular, without requiring 
the assumption of independence of observations). Suppose we have 
a sample x = (x1, x2, …, xn) from an unknown probability distribution F, 
and that we want to estimate some property of the system θ = t(F). The 
standard approach is to use the sample x and then calculate some sta-
tistic s(x) on it, so our estimate of θ is 𝜃̂= s(x). In contrast, the bootstrap 
approach requires creating an “alternative world” (̂F) and then taking 
samples from it, x∗, so 𝜃̂= t( ̂F)= s(x∗). Confidence intervals for 𝜃̂ can 
be obtained as quantiles in its distribution after sampling many times 
from ̂F (i.e., after obtaining x∗

1
,x∗

2
,x∗

3
, etc.).

Bootstrap is a very well‐known technique, and a discussion of its 
implications and applications goes beyond the scope of this study. 
However, I want to emphasize that ̂F does not need to be the em-
pirical distribution of x. Although this is certainly the most frequent 
approach, one can (must) build the bootstrap world ̂F so that it is sim-
ilar to F in the ways that matter most. In our case, we are interested in 
creating ̂F=

(
p̂1, p̂2, … , p̂n

)
∈
[
0,1

]
 (an estimation of the coin biases, the 

individual‐level risk of mortality) more than getting a series of binary 
data (head/tail, dead/alive) directly by sampling the observations with 
replacement. The latter would result in the bootstrapped confidence 
interval for the binomial distribution and still reflects the (conserva-
tive) assumption of constant probability of success. That is, it is equiv-
alent to using ̂F=

(
p̂1= p̂2=…= p̂n

)
, which does not capture the key 

aspect of ̂F in which we are interested: heterogeneity.
The bootstrap approach is useful in general both to obtain cen-

tral estimates and confidence intervals. There is also an analytical 
shortcut for the probability of k successes in a series of n Bernoulli 
trials with varying probability of success, which is described by the 
Poisson binomial distribution. The exact expression is numerically 
intractable in most cases, but there are some useful approximations, 
like this (Fernández & Williams, 2010; Hong, 2013):

where C=e2�
√
−1∕(n+1). The k for which P(k|n, p1, p2, …, pn) is maximized 

is the most likely number of successes during the series of trials, k̂. Note 
that the binomial distribution is just a special case of the Poisson bino-
mial distribution when p1 = p2 = ⋯ = pn = k/n.

2.2 | Individual‐level probability of survival in 
tropical trees

If we are able to get a meaningful vector of probabilities of indi-
vidual survival (p̂1, p̂2, … , p̂n), we can calculate by bootstrapping 

narrower confidence intervals than those obtained using the bi-
nomial distribution. The challenge is to obtain this vector of prob-
abilities. This is, in general, a domain‐specific problem. In the case of 
trees, there are many ways to estimate individual‐level risk of mor-
tality if one has individual‐level covariates like tree size, crowding, 
previous growth, crown damage, functional traits (e.g., Arellano, 
Medina, Tan, Mohamad, & Davies, 2019; Camac et al., 2018; Iida 
et al., 2014; Kohyama et al., 2018; Rüger, Huth, Hubbell, & Condit, 
2011). These methods require in most cases detailed data, above‐
average modeling skills, and, very often, substantial computational 
resources. Here, I use a very simple model to draw a spatial map 
of probabilities and apply the Poisson binomial distribution to es-
timate species‐level mortality rates using empirical data on tropi-
cal forest trees. The approach is simple and can be applied even 
when we know nothing except the location of the observations. It 
is certainly not the perfect approach, and possibly not the most de-
sirable in case one has access to relevant covariates and modeling 
resources/skills.

2.2.1 | Forest data

I calculated species‐level mortality rates for all the species with at 
least 20 stems in the 52‐ha permanent plot at Lambir Hills National 
Park, Malaysian Borneo (4°12′N, 114°01′E) (Lee, Ashton, et al., 
2002; Lee, Davies, et al., 2002). The forest is a lowland evergreen 
rainforest dominated by Dipterocarpaceae, receiving >3,000 mm of 
rainfall per year (Davies, Tan, LaFrankie, & Potts, 2005). The plot is 
on dissected terrain, ranging from 109 to 240 m above sea level. 
The plot includes a gradient in soil moisture and fertility. Ridges are 
drier and have a low‐fertility sandy loam soil, while the lower slopes 
and valleys are wetter and have more fertile clay soils (Tan et al., 
2009). The plot was established in 1991–1992 and recensused in 
1997, 2003, and 2008 following the standard protocol of the Center 
for Tropical Forest Science—ForestGEO network (Condit, 1998; 
Manokaran et al., 1990). Here, I focus on the time interval between 
2003 and 2008.

2.2.2 | Creation of the probability map

Consider a binary variable x taking value dead = 0 or alive = 1, ex-
pressed in n points. Assume that the status of point i is not inde-
pendent of the status of all the other points and that the distance 
between points plays a role. The set of observations with x = 1 is 
denoted as U and the set of observations with x  =  0 is denoted 
as Z. Our goal is to map P(x = 1) in the space to assign a spatially 
explicit probability of success to each point in the space, which 
translates into a sequence of probabilities of survival for each tree: 
p̂1, p̂2, … , p̂n. The spatial dependence will be included as long as 
the estimated p̂i of each tree is influenced, to some degree, by the 
neighboring trees.

There are many options to estimate a probability map. I used a 
simple model, with one parameter, that estimates the probability 
density function of P(xi = 1) based on points in U and the probability 

(1)P
(
k|;n,p1,p2, … ,pn

)
≈

1

n+1

n∑

i=0

C−ik

n∏

j=1

(
1+

(
Ci−1

)
pj
)
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density function of P(xi = 0) based on points in Z. These densities, D, 
can be estimated using standard Gaussian kernels:

where dij is the distance between points i and j, and g is the Gaussian 
kernel centered at zero distance and standard deviation σ. These 
two densities can be thought of as relative probabilities of xi  =  1 
and xi  =  0. We can estimate the probability of tree‐level survival 
as p̂i=P

(
xi=1

)
=D

(
xi=1

)
∕
(
D
(
xi=1

)
+D

(
xi=0

))
. This sequence 

(p̂1, p̂2, … , p̂n) was rescaled to ensure that the most likely number of 
survivors matched the observed number of survivors and that no 
tree had p̂i=0 or p̂i=1 exactly, by substituting these numbers by 
0.01% and 99.99%, respectively.

The selection of σ must be relevant considering the spatial scale 
of the studied phenomenon. In the case of trees, it should be similar 
in magnitude to the distances at which trees influence (or inform 
about) each other in the aspects relevant for short‐term survival 
(e.g., gap dynamics, Janzen‐Connell processes, aggregated mortality 
in certain locations because of flooding, or other localized stresses). 
In general, it is impossible to know about the nature of all these inter-
acting processes when we just have the coordinates. Here, I applied 
an omnibus solution based on the spatial pattern alone, as measured 
by L(r), the Besag's transformation of Ripley's K‐function. This func-
tion reflects the amount of observations within distance r around 
any given observation. I compared the observed L(r) for dead or sur-
viving individuals (Ldead(r) or Lsurv(r)) with the observed L(r) for all the 
individuals together, Lall(r), which functions as a general expectation. 

In particular, I calculated the relative aggregation of dead and sur-
viving individuals at any given scale as Adead(r) = (Ldead(r) − Lall(r))/Lal

l(r) and Asurv(r) = (Lsurv(r) − Lall(r))/Lall(r). The distance that maximizes 
Adead(r) informs about the distance at which different processes have 
been killing trees during the observed period. The distance that min-
imizes Asurv(r) informs about the distances at which different pro-
cesses have been killing trees longer‐term, during all the years that 
resulted in the current configuration of the spatial distribution of a 
that particular species in the forest. I calculated both distances and 
chose the shortest as the species‐level σ. These σ values varied con-
siderably between species but were typically <20 m (~12 m in aver-
age, Figure 3). All these calculations were based on the Lest function 
in the spatstat R package v. 1.54.0 (Baddeley, Rubak, & Turner, 2015), 
with the isometric correction and default parameters.

2.2.3 | Mortality rates

The mortality rates for each species were calculated as (Sheil et al., 

1995) 𝜆̂=
(
log n− log k̂

)
∕Δt, where Δt was the average difference in 

census dates across the n individuals of that species, and k̂ was the 
most likely number of survivors, given species‐level n and p̂1, p̂2, … , p̂n. 
Δt was ~5.20 years in average, and the typical variation in census dates 
for any given species was ~5 weeks around Δt (Figure 4). k̂ was calcu-
lated according to the implementation of the Poisson binomial distribu-
tion in the poisbinom R package v. 1.0.1 (Olivella & Shiraito, 2017). The 
95% confidence intervals for 𝜆̂ were calculated by bootstrapping val-
ues for x based on p̂1, p̂2, … , p̂n, and then calculating λ* based on k* (the 
number of survivors in each bootstrap sample x*). I repeated this 
10,000 times and estimated confidence intervals for 𝜆̂ as the 2.5% and 
97.5% quantiles in the distribution of λ*. I proceeded the same for the 
Poisson binomial distribution and for the binomial distribution, which is 
just a special case with p1 = p2 = ⋯ = pn = k/n. Applied to the binomial 

(2)
D(xi=1)=

∑

j∈U
j≠i

g(dij,�)

(3)
D(xi=0)=

∑

j∈Z
j≠i

g(dij,�)

F I G U R E  3  Bandwidth (σ) of the Gaussian kernels underlying the survival probability maps of 1,007 canopy tree species present in 
the Lambir 52‐ha permanent plot during the 2003–2008 period. (a) Distribution of species‐level σ, which were chosen as the distance of 
maximum aggregation of dead individuals or maximum repulsion between surviving individuals. (b) Species‐level σ versus the species‐level 
mean distance between one individual and its closest conspecific neighbor. (c) Mean number of conspecifics within 3σ distance to any given 
individual, roughly the 95th percentile of the two‐dimensional Gaussian distribution. This panel gives an approximate idea of how many 
individuals were used for estimation of the local or individual‐level survival rates
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distribution, this method is equivalent to obtaining confidence inter-
vals by bootstrapping the original observations (e.g., van Breugel et al., 
2011; Thomas, Kellner, Clark, & Peart, 2013).

The R code required for all the calculations, included a general 
wrapper for convenience, is presented in Appendix S1.

3  | RESULTS

I calculated stem mortality rates with 95% confidence intervals for 
1,007 species of trees with at least 20 stems in the Lambir plot. 
For other eight species, k  = n or k  =  0 and I could not estimate 
a realistic probability map (i.e., a map with probabilities different 
than 0 or 1).

I rescaled the vector of individual‐level probability of survival, so the 
mortality rates calculated with the observed number of survivors and 
those based on the most likely number of survivors (according to the 
Poisson binomial distribution) yielded almost the same results (Pearson's 
r > .99; Figure 5a). The use of varying probabilities increased the preci-
sion in the estimates of mortality rates in virtually all cases (Figure 5b), 
reducing the width of the confidence interval (λupper − λlower) by on aver-
age ~20%. There was substantial variation in the magnitude of the im-
provement (Figure 5c) but it was unrelated to the species abundances 
(Figure 5d).

4  | DISCUSSION

4.1 | Take‐home message

Incorporating the estimated heterogeneity in individual‐level probabil-
ity of survival provides more precise estimates of mortality rates. Any 
relevant source of information should be useful to estimate the vector 
of varying probabilities of success required, p̂1, p̂2, … , p̂n. Here, I have 
examined the (almost) worst‐case scenario, where only the position 
of the observations is known. The spatial dependence in mortality, 
as inferred from the spatial pattern of dead and surviving individuals, 
is sufficient to increase noticeably the precision in the estimation of 
species‐level mortality rates of tree species in the tropical forests of 
Lambir.

4.2 | We know that the probability of survival is not 
constant. Yet, we use the binomial distribution

Either explicitly or implicitly, the binomial distribution assumes equal 
mortality rates between individuals and/or completely random spa-
tial distribution of the different species or subgroups with different 
mortality rates. None of these two ecological assumptions is close to 
reality. In tropical forests, there are high levels of habitat preference 
among tree species (Baldeck et al., 2012; Davies et al., 2005; John 
et al., 2007; Lee, Davies, et al., 2002; Russo, Brown, Tan, & Davies, 
2008). Forest species, in general, vary more than 15‐fold in their mor-
tality rates (Condit et al., 1995; Gonzalez‐Akre et al., 2016; the present 
study). Besides, different species, in different habitats, show different 
mortality rates; typically, individuals in more fertile soils or wet areas 
show higher mortality rates, associated with less conservative ecologi-
cal strategies (Arellano et al., 2019; Dent & Burslem, 2016; Russo et 
al., 2008; Zuleta, Duque, Cardenas, Muller‐Landau, & Davies, 2017).

It is clear that even small‐scale geographical variation in mortality 
rates is real and detectable, both in the field and statistically from many 
points of view. However, it is most common for ecologists to report con-
fidence intervals for mortality rates as if they knew nothing but k and n, 
under the assumption of constant probability of survival either by using 
different analytical approximations to the binomial distribution (Condit 
et al., 2006, 1995; Condit, Hubbell, & Foster, 1993; Davies, 2001; 
Gilbert, Wright, Muller‐Landau, Kitajima, & Hernández, 2006; Itoh et 
al., 2012; King, Davies, & Noor, 2006; Lewis et al., 2004; Nepstad, 
Tohver, Ray, Moutinho, & Cardinot, 2007; Queenborough, Burslem, 
Garwood, & Valencia, 2007; Welden, Hewett, Hubbell, & Foster, 1991) 
or by bootstrapping the binary observations directly (van Breugel et al., 
2011; Thomas et al., 2013). To my knowledge, only Nascimento et al. 
(2005) tried to incorporate dependence in observations by obtaining 
confidence intervals for mortality rates by bootstrapping the samples, 
not the individuals, in a survey of different plots in tropical forests.

4.3 | Estimating the individual‐level 
probabilities of survival

The binomial distribution cannot capture any other knowledge be-
yond k and n, and it returns too wide confidence intervals. This is a 

F I G U R E  4   Interval length between two censuses happening in 2003 and 2008 in the 52‐ha permanent plot in Lambir (Malaysia). (a) 
Distribution of the mean interval length, which was incorporated into the calculation of species‐level mortality rates. (b) Distribution of the 
individual variability of interval length, within any given species. This information was disregarded and not included in the calculation of 
mortality rates, as is common practice in tropical forest ecology (Kubo, Kohyama, Potts, & Ashton, 2000)
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major limitation in our understanding of patterns and processes of 
tropical tree mortality (e.g., Condit et al., 1995). Less conservative 
approaches incorporating complementary knowledge to the raw ob-
servations on tree status (dead/alive) are justified and should be in-
corporated into studies on tropical forest demography and ecology. 
Unfortunately, estimating individual‐level probabilities of survival is 
a nontrivial problem. The most appropriate method will be context‐
dependent: it will depend on the available covariates, on the skills 
of the researchers, and often on the computational power available 
to fit models with many species and individuals. The simplest non-
spatial model is a logistic regression, where the observations are 
dead/alive status after a given period of time and the model predicts 
the probability of survival given the covariates. There are several 
Bayesian alternatives and rapid progresses on that front (Camac et 
al., 2018; Iida et al., 2014; Kohyama et al., 2018; Rüger et al., 2011). 
Other models incorporate the space implicitly by adding covariates 
that inform about the influence of the neighboring individuals (e.g., 
Hurst, Allen, Coomes, & Duncan, 2011; Paine et al., 2012; Uriarte, 
Canham, Thompson, & Zimmerman, 2004). The explicit incorpora-
tion of the space (or the spatial dependence) into these models is de-
sirable, even if only for statistical reasons. There are entire families 
of methods related to spatial distribution of risks and various forms 

of smoothing based on generalized linear mixed models, generalized 
additive models, autoregressive regression models (conditional or 
sequential), other Poisson point process models, and some other ter-
rifying‐sounding techniques like the integrated nested Laplace ap-
proximation with stochastic partial differential equation approach.

All these approaches are designed to gain biological under-
standing: they require covariates (to infer about mechanisms), 
some prior knowledge on the system, and are far from being auto-
matic. In general, Bayesian modeling requires considerable crafts-
manship and even artistic talent. It is not for everyone. Regarding 
the spatial techniques in particular, none of them are commonly 
used in the field of plant demography and many of them are even 
unknown to the average ecologist. Certainly, they cannot be seen 
as a drop‐in alternative to simply using the binomial distribution. 
Furthermore, if the goal is to just provide mortality rates in a given 
publication (and the study is focused on something else), it would 
be disproportionate to fit any type of Bayesian model of tree mor-
tality. The methods used in this study are something in between 
the use of the binomial distribution (using nothing but k and n) and 
the sophisticated modeling techniques oriented to gain biological 
understanding. I provide a drop‐in alternative to existing imple-
mentations, so anyone can plug survival status and coordinates 

F I G U R E  5  Comparison between the species‐level mortality rates obtained with the binomial distribution and constant probability of 
survival p = k/n (x axes in a & b) and the mortality rates obtained assuming varying probability of survival (y axes in a & b). (a) Comparison 
of central estimates, based on the most likely k. (b) Comparison of the width of the 95% confidence interval. Diagonals in panels a & b 
represent 1:1 relationships. (c) Relative improvement of using the Poisson binomial distribution (or assuming heterogeneity in the probability 
of survival) versus using the binomial distribution (or assuming homogeneity in the probability of survival). “Improvement” is defined as 
(Wb − WPb)/Wb, where Wb and WPb is the width of the 95% confidence interval for the binomial and the Poisson binomial distribution, 
respectively. (d) There was no obvious relationship between the species abundances and the relative improvement obtained by the 
incorporation of individual‐level variability in the probability of survival
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into an R function and move on (“mortality_rates_using_space” 
function in Appendix S1). This should work in the almost worst‐
case scenario, when we know nothing but the survival status and 
the location of the individuals. Those interested in gaining greater 
biological understanding can get into deeper detail by adding co-
variates and fitting better models. Still, the silly, mechanism‐ag-
nostic, and purely spatial approach presented here could serve as 
a useful benchmark for those embarked into a modeling effort. In 
particular, it should be useful to determine whether certain indi-
viduals have greater/lower probability of dying relative to what 
can be inferred by the spatial pattern alone. Such an exercise can 
give rise to interesting reflections about the ecology of the studied 
organism and the modeling process itself.

4.4 | The probability map should be something 
between a null model and an overfitted model

The development of automated or semi‐automated methods to es-
timate the map of probabilities based exclusively on the location of 
the observations can be an important line of research linking spatial 
ecology and plant demography. Kernel density estimation is just one 
of the suitable methods, but all of them would result in some sort of 
probability map that smooths the binary observations. The shape of 
the estimated probability landscape is the key “alternative world” ̂F in 
the bootstrap sense; therefore, one must select meaningful smooth-
ing parameters for its creation. Over‐smoothing is conservative. The 
binomial distribution is what we get if we apply a radical smooth-
ing; in terms of Gaussian kernels, it is the same as linking completely 
flat kernels (σ ~ ∞) to all the observations. Under‐smoothing is less 
conservative, and therefore, over‐fitting is a risk to consider. When 
incorporating individual‐level probabilities of survival, the width 
of the confidence intervals will decline as the probability for each 
individual differs more and more from ½. In the case when all the 
individuals have p̂i∼0 or p̂i∼1, the confidence intervals will be in-
finitely narrow (no uncertainty in the outcome). This problem will 
happen if we overfit the probability map; for example, if we choose 
very narrow kernels (σ ~ 0) while considering all the n observations 
together. In such case, we would not be reflecting the reality as it is: 
we would be describing a specific dataset while not making useful 
inferences about the population. An overfitted map, with too nar-
row confidence intervals, would be even less useful than the case 
of σ ~ ∞ inherent to the methods based on the binomial distribution.

One general recommendation to not to overfit the map is to esti-
mate pi for each individual i by excluding the observation xi, as done 
here. By doing so, the probability map would be always smoother 
than the observations themselves. That is, the predicted aggregation 
of dead and surviving individuals would be always somewhat lower 
than the observed, which clearly limits the possibility of over‐fitting 
the model. Furthermore, even in the case of σ → 0, each p̂i would 
tend asymptotically to k/n if the observation i is excluded. This is 
because both D(xi = 1) and D(xi = 0) would be the accumulation of 
very small and roughly equivalent tails of the Gaussian kernels, with 
~k tails coming from points in U and ~(n − k) tails coming from points 

in Z. The effect is the same in all cases when a point is far (at dis-
tance ≫ σ) from any other point. Rather paradoxically, if k = 1 the 
prediction for that single point in U would be E(xi)=0 with pi  =  0. 
The same applies if k = n−1: the prediction for the only failure in the 
dataset would be a success with pi = 1. The same happens internally 
within isolated clusters of points. The researcher should take into 
account the consequences of using exclusively non‐i observations to 
calculate pi and whether they distort substantially the inference on 
pi or the expected status of each individual.

Another general recommendation is to constraint the selection 
of parameters using expert domain knowledge to define the rel-
evant scales at which the spatial pattern of the observations may 
contain useful information. In the case presented here, I used spe-
cies‐level bandwidths (σ) based on the observed patterns of aggre-
gation of dead individuals or repulsion between surviving ones. 
In average, the species‐level σ chosen was ~65% shorter than the 
mean distance to the nearest conspecific neighbor, while there were 
in average eight conspecific neighbors within 3σ m of any given in-
dividual. Overall, these scales (σ around 10–20 m) seem biologically 
meaningful for the studied species and did not result in overfitted 
probability maps. Broader kernels (larger σ) could have been used 
to obtain more conservative estimates for the confidence intervals. 
However, it would have been meaningless when modeling a bio-
logical phenomenon to use parameters much larger than the scales 
at which positions and survival/death of the different stems relate 
to (or inform about) each other. In the case of tropical forest tree 
species, negative density‐dependent processes are assumed to 
be weak beyond 20 m from the focal individual (Bachelot & Kobe, 
2013; Chanthorn, Caughlin, Dechkla, & Brockelman, 2013; Kobe & 
Vriesendorp, 2011; Ledo & Schnitzer, 2014; Zhu, Comita, Hubbell, 
& Ma, 2015), and it is difficult to think of trees affecting each other 
at distances larger than the typical canopy tree height (40–50 m 
in Lambir). Equivalent domain‐specific considerations will apply in 
many other scenarios.

5  | CONCLUSION

The estimation of observation‐level probability of success, based 
on neighboring observations, results in a probability map. This map, 
combined with the Poisson binomial distribution and bootstrap-
ping, results in proportion estimates equivalent to those obtained 
from the methods based on the binomial distribution. The preci-
sion of such estimates, however, increases. This is, to some degree, 
inevitable, since the binomial distribution is implicitly a null model 
uninformed about the distribution of observation‐level probability 
of success other than the average value, k/n. A case study calcu-
lating mortality rates of tree  species in Lambir Hills National Park 
(Malaysia) yielded central estimates comparable to those obtained 
using the existing methods, with a significant reduction in the width 
of the 95% confidence intervals. The method described here, with 
modifications, should be useful to reduce uncertainty in the estima-
tion of proportions related to any spatially structured phenomenon 
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with two possible outcomes. In general, the Poisson binomial distri-
bution could easily substitute the binomial distribution as the stand-
ard approach in estimating proportions, at least when studying 
complex phenomena for which it is known that the probability of 
success is not constant.
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