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Our understanding of avian growth rates can benefit from the use of two statistical approaches that explicitly model the 
sources of intraspecific variation. First, random effects can evaluate whether there are consistent differences between indi-
viduals and groups of siblings within a population, and also account for any lack of statistical independence among data 
points. Second, nonlinear fixed-effect functions can be extended to test specific biological hypotheses of interest, such as for 
differences between groups or populations. We illustrate the advantages of these methods by using nonlinear mixed models 
to study variation in the growth trajectories of nestling orange-crowned warblers Oreothylpis celata. Specifically, we quantify 
the sources of variation within populations, analyze the effects of asynchronous hatching, and test for a difference in the 
growth rates of populations in Alaska and California, which are at the northern and southern limits of the species’ breeding 
distribution. We found that growth rates did not consistently vary between nests and individuals within populations and 
were not affected by asynchronous hatching, but were higher in Alaska than in California. Our extensions of traditional 
methods allowed us to accurately quantify this difference between populations, which is consistent with life history theory 
but has rarely been demonstrated in previous comparisons of intraspecific passerine populations. The methods we present 
can be applied to any taxonomic group and adjusted to fit any nonlinear function, and we provide code and implementa-
tion advice to facilitate the use of this analytical framework in future studies.

An organism’s growth rate is a fundamental life history 
trait that is often closely correlated with fitness and a suite 
of other traits (Haywood and Perrins 1992, Roff 1992, 
Stearns 1992). Variation in vertebrate growth rates is 
thought to reflect adaptive evolution to different ecological 
conditions (reviewed by Case 1978, Arendt 1997, Starck 
and Ricklefs 1998), and studies of birds have highlighted 
how ecological conditions such as food availability, sib-
ling competition, and nest predation risk underlie varia-
tion in growth rates within and between species (Ricklefs 
1968, 1976, Nilsson and Svensson 1996, Royle et  al. 
1999, Remes and Martin 2002). Within a species, growth 
trajectories can be sensitive to a variety of genetic and 
environmental factors, potentially leading to variation at 
multiple hierarchical levels: between individuals, between 
family groups, and between populations (Ricklefs and 
Peters 1981, Badyaev and Martin 2000, McCarty 2001). 
Accurately quantifying variation at each of these levels is 
therefore critical for understanding the ecological and evo-
lutionary processes that shape growth and development.

Studies of growth face several fundamental methodologi-
cal challenges. First, field studies generally track the growth 
of related individuals through time, leading to a lack of inde-
pendence between data points. This occurs at two levels: at 

the nest level, because siblings share genetic backgrounds and 
environmental conditions, and at the nestling level, because 
of repeated measurements of individuals. Second, the non-
linear nature of growth curves limits the types of statistical 
analyses that can be easily applied, so studies interested in 
identifying the sources of variation in growth have often 
used a multistep process to analyze their data. For example, 
passerine growth trajectories are usually analyzed by fitting 
a logistic function, which has three fixed parameters: the 
asymptotic mass, the inflection point, and the growth rate 
constant (Ricklefs 1967). To understand the factors affecting 
variation in the growth rate constant within a species, stu
dies have divided their data and fit separate curves to differ-
ent populations, sexes, nests, or treatment groups (Bancroft  
1984, Gard and Bird 1992, Barrett 1996, Kaiser and  
Lindell 2007), or to each individual nestling (Best 1977, 
Ricklefs and Peters 1981, Blancher and McNicol 1988, 
Emms and Verbeek 1991, Badyaev et al. 2001, Searcy et al. 
2004, Tilgar and Mand 2006, Tjorve and Underhill 2009). 
This provides a separate estimate of the growth rate constant 
for each group or individual, and these estimates are then 
used as the dependent variable in subsequent analyses that 
aim to identify how growth rates respond to variation in eco-
logical conditions, parental behavior, or genetics.
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The standard method of studying intraspecific variation 
by dividing datasets, fitting separate curves, and using param-
eter estimates in subsequent analyses has several drawbacks. 
First, it requires either the exclusion of groups or individuals 
with insufficient data to adequately estimate a curve, or the 
use of inaccurate estimates based on little data. Second, it 
places equal weight on each parameter estimate, although 
these are often generated from different amounts of data. 
For example, even if one individual was weighed a dozen 
times and another only six times, the estimated growth rate 
constant of each bird would be treated equally in any sub-
sequent analyses, ignoring the larger standard error of the 
estimate based on fewer data. Third, it does not provide an 
explicit estimate of group or individual-level variation in 
the parameter estimates. Finally, this method does not allow 
for accurate tests of differences in the growth rate constant 
between treatment groups or populations. Instead, studies 
that compare estimated growth rate constants from separate 
curves can overstate the difference between groups, because 
ignoring sibling relationships or repeated measures can lead 
to underestimated standard errors (Brisbin et al. 1987).

Traditional statistical approaches can be extended in two 
ways to address the methodological problem of related data 
points and to more directly test biological hypotheses of 
interest. First, the lack of independence between siblings and 
between repeated measurements of the same individual can be 
accounted for through the inclusion of random effects, which 
estimate the amount of variation between groups and/or indi-
viduals (Laird and Ware 1982, Pinheiro and Bates 2000). 
Mixed models are therefore particularly useful for studies inter-
ested in understanding the sources of variation within popula-
tions (Bolker et al. 2009). Rather than fitting a separate curve 
to each individual or group, they base fixed-effect parameter 
estimates on all the data, accounting for the structure dictated 
by the random effects. Extensive research during the past two 
decades has led to the development of theory, approximation 
methods, and software for nonlinear mixed models, and these 
models have become widely used (Lindstrom and Bates 1990, 
reviewed by Davidian and Giltinan 2003). For example, non-
linear mixed models of growth are used for fisheries research, 
where understanding individual variation in growth trajecto-
ries provides more accurate estimates of future harvest yields 
(Pilling et  al. 2002, Alos et  al. 2010, Shelton and Mangel 
2012). A second type of model extension involves altering the 
fixed-effect structure to directly test hypotheses of interest. As 
in any statistical model, nonlinear fixed-effect functions can be 
extended to explicitly test for differences between populations, 
experimental treatments, or other groups, or to determine 
how growth rates are affected by variation in continuous vari-
ables such as provisioning rates, climate, or parasite loads (Ritz 
and Streibig 2008). Here, we illustrate how the application of 
these methods can improve biological inference, and include 
implementation advice and R code (Supplementary material 
Appendix 1) to make these methods more accessible.

Variation in orange-crowned warbler growth 
trajectories

We applied nonlinear mixed models to orange-crowned 
warbler Oreothlypis celata growth trajectories to understand 
patterns of variation between groups of nestmates and  

individual nestlings, to quantify the effects of asynchronous 
hatching on growth trajectories, and to test for differences 
in the growth curves of populations breeding in Alaska and 
California. We used random effects to address our first goal 
and to produce more accurate standard errors in all our 
analyses. Our second and third goals were accomplished 
by extending the logistic equation to include fixed effects 
that tested for differences between asynchronously hatched 
young and between populations.

We assessed the amount of variation between birds in dif-
ferent nests and between individuals by including nest and 
nestling-level random effects in our models. These random 
effects estimated the amount of variation in each parameter 
at the nest and nestling levels, and because we expected vari-
ation to increase with the strength of competition (Ricklefs 
1968, Rodenhouse et al. 1997), we used the random effect 
estimates to evaluate whether competition between siblings 
or between nesting pairs was stronger in Alaska or California. 
Birds in Alaska raise larger broods (Sofaer 2012), so if sibling 
competition increases with brood size, we should see more 
nestling-level variation in Alaska. At the nest level, greater 
variation in territory quality and food delivery rates could 
increase variation between nests. Birds in California breed 
at a high density on an island, respond strongly to simu-
lated territorial intrusions, and maintain higher testosterone  
levels during the nestling period than birds in Alaska (Horton 
et al. 2010, Yoon et al. 2012), suggesting stronger competi-
tion for high quality territories in that population. Therefore, 
we predicted the amount of variation between nests would 
be higher in California. In addition to these comparisons, in 
each population we evaluated whether faster growing birds, 
or birds that reached their inflection points earlier, achieved 
a higher asymptotic mass.

We then tested whether birds that hatched after their nest-
mates (i.e. asynchronously) differed in their growth rate con-
stant or their asymptotic mass. Birds often hatch on different 
days when parents initiate incubation before all eggs are laid 
(Clark and Wilson 1981, Ricklefs 1993), and younger nest-
lings often show slower growth (reviewed by Krebs 1999) 
and may reach a smaller size (Bryant and Tatner 1990) than 
their siblings. Lower nestling mass and condition can nega-
tively affect fitness (Magrath 1991, Linden et al. 1992), but 
to attain the same size, younger nestlings either have to grow 
for a longer time period (Krebs 1999, Johnson et al. 2003)  
or grow at a faster rate, which is rarely observed in birds 
(Starck and Ricklefs 1998) and which can have negative 
effects on fitness (Metcalfe and Monaghan 2001, Mauck 
et al. 2005). We were interested in testing whether younger 
nestlings reached the same asymptotic mass as their older sib-
lings and whether they differed in their growth rate constant. 
This test was only carried out in the population in Alaska, as 
asynchronous hatching was less common in California.

Finally, we tested for differences between the growth 
curves of warblers breeding in California versus Alaska. 
Life history theory shows that rapid growth is associated 
with faster life history strategies, and our study popula-
tion in Alaska has larger clutch sizes and lower adult sur-
vival than the population in California (Horton et  al. 
2010, Sofaer 2012). Although several studies have found  
that the growth rates of passerine birds do not differ 
between intraspecific populations (Hussell 1972, King and 



471

Hubbard 1981, McCarty 2001), passerine populations 
with different life history strategies can have heritable  
differences in their growth rates (Starck et  al. 1995). In 
addition, comparisons between species have shown that 
birds at higher latitudes often have faster growth rates 
(Ricklefs 1976, McCarty 2001, Remes and Martin 2002, 
Schekkerman et al. 2003), further supporting the predic-
tion that nestlings in Alaska should grow more quickly 
than those in California.

Methods

Data collection

We collected data on the growth of orange-crowned warblers 
in Fairbanks, Alaska (O. c. celata) from 2007 to 2008, and on 
Santa Catalina Island, California (O. c. sordida) from 2008 
to 2009 (Supplementary material Appendix 2). We weighed 
210 nestlings or fledglings (dependent juveniles that had left 
the nest) from 49 nests in Alaska, and 64 individuals from 
24 nests in California; the median number of days on which  
we weighed each individual was 3 in both Alaska (range: 1–6 d)  
and California (range: 1–8 d). Birds were individually mar
ked with non-toxic permanent marker on their toenails, and 
were generally weighed daily or every other day, starting on 
hatch day or when the nest was located. Weights were taken 
to the nearest 0.01 g using a My Weigh MX-50 digital scale. 
Some growth trajectories were incomplete due to nest failure 
(AK: n  8 nests; CA: n  13 nests). We weighed nestlings 
until flight feathers emerged from feather sheaths, which 
occurred on nestling day 6 in Alaska and day 7 in California 
(hatch day  day 0); we also banded birds on this day to 
identify individual fledglings.

We captured fledglings to accurately estimate asymptotic 
mass. When data collection ends before the asymptotic mass 
is attained, the estimated asymptotic mass may be biased 
low, leading to an inflated estimate of the growth rate con-
stant (Austin et al. 2011). In Alaska we caught 26 birds on 
the day they left their nests, either day 9 or 10 post-hatch. 
This included two fledglings that fledged from nests that 
were not monitored. The feather development, behavior, and 
mobility of these birds indicated they had fledged within the  
past day, and they were included in the dataset as 10 d old. 
California birds had longer nestling periods, so we measured 
10 nestlings on day 10, and 7 birds on their natural fledge  
day, day 13–14. We found no evidence of bias in our  
estimates of asymptotic mass, which were within a single 
standard deviation of the mean mass ( 1 SD) of adults 
in each population (Alaska: 9.32  0.44 g, n  209 adults; 
California: 9.49  0.66 g, n  802 adults).

Analysis of variation in growth trajectories within 
populations

We modeled the growth curves of each study population 
with a logistic function, as is typical for passerine studies 
(Starck and Ricklefs 1998):
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where wt  mass at time t (g), A  asymptotic mass (g), 
K  growth rate constant, I  the inflection point of the 
growth curve (days), and t  nestling age (days).

Our model estimated the amount of variation between 
sibling groups and individuals by including two levels of ran-
dom effects, nest and nestling. The nest effects accounted for 
the lack of independence between nestmates due to a shared 
genetic background (full or half siblings), maternal effects, 
and a common level of parental care. The nestling effects 
modeled repeated measurements on individuals. We included 
random effects for one or more of the three parameters in the 
model, A, K, and I, allowing the parameter estimates to vary 
between each nest or nestling. For the kth measurement on 
the jth nestling in the ith nest the mass was:
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In all models, the random nest effects, (Ai, Ki, Ii ), the ran-
dom nestling effects, (Aij, Kij, Iij), and the random errors, 
eijk, were assumed to be normally distributed with a mean 
of zero and a variance to be estimated from the data. Within 
each set of three random effects for each nest or nestling, the 
effects were not assumed to be independent of each other. 
This potential dependence allowed, for example, for an ear-
lier inflection point to be correlated with a higher asymptotic 
mass. Between nests and nestlings, effects were assumed to 
be independent of each other, as were the random errors. 
We report the estimated standard deviation of each ran-
dom effect, which quantifies variation between groups of 
nestmates around the overall fixed-effect estimate or indi-
viduals’ deviation from their nestmates. The fixed-effect esti-
mates from our mixed models are applicable to a typical (i.e. 
median) nestling in a typical nest. These estimates are called 
‘subject-specific’, and due to the nonlinearity of the logis-
tic function they are not exactly estimates of the population 
average (Hu et al. 1998). For fixed effects we report point 
estimates and standard errors.

We built models that included a single random-effect 
level (nest or nestling) on one or more parameters as well as 
models that included both nest and nestling-level random 
effects. We first applied the same random-effect structure at 
the nest and nestling levels, but when an estimated correla-
tion between parameters in a top model was near zero, we 
also fit a reduced model without a correlation. If a model 
failed to converge, if the estimated random effect standard 
deviation was zero, or if the absolute value of the correlation 
between two random effects was 0.9 or higher (often 1 or 
0.99), we concluded that the model was overparameterized 
(Pinheiro and Bates 2000) and discarded the model from 
further consideration.

We used an information-theoretic approach based on 
Akaike’s information criterion (AIC) to select a random-
effect structure (Burnham and Anderson 2002). AIC values 
can be used for mixed models, but may be biased to favor 
simpler random-effect structures (Molenberghs and Verbeke 
2005, Bolker et al. 2009, Greven and Kneib 2010). There-
fore, when AIC values are very close, support for the more 
complex random-effect structure is stronger than indicated. 
We fit all models using maximum likelihood in the nlme 
package of R (Pinheiro et  al. 2011, R Development Core 
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asymptotic mass between younger and older nestlings in 
Alaska, where 23 of 49 nests were known to have hatched 
asynchronously. We defined younger individuals (hereafter 
referred to as runts) as those that had not yet hatched on 
the first nest visit when other nestmates had hatched. The 
difference in the inflection point, Ir, quantified how far to 
the right the entire growth curve was shifted for runts, com-
pared to their older siblings. We therefore did not have to 
assume that all nestlings in a nest were the same age or that 
runts were a full day younger; in short, the shift in inflection 
point captured runts’ later hatching, and did not necessarily 
imply delayed growth after hatching. Additional parameters 
estimated how runts differed in their growth rate constant, 
Kr, and asymptotic mass, Ar; xr was an indicator variable with 
a value of 1 for younger nestlings:
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While this model (Eq. 3) shows only fixed effects, random 
effects of nest, (Ai, Ki, Ii ), and nestling, (Aij, Kij, Iij), were also 
included, as in model (Eq. 2). Following Zuur et al. (2009), 
we used model selection to select the random-effects struc-
ture with the most support, and then used hypothesis testing 
to evaluate the fixed effects based on our top model.

Comparison of growth trajectories between two 
populations

We tested for differences in the growth curves of Alaskan 
and Californian birds by adding a fixed site effect to each of 
the three parameters in the logistic function. The full fixed-
effects model also included a shift in the inflection point for 
younger nestlings:
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where S was an indicator variable for the Alaskan population, 
and Apop, Kpop, and Ipop were the differences between sites. 
As before, while the model (Eq. 4) shows only fixed effects, 

Team). Throughout our work, we compared mixed models to 
models that lack random effects to show how mixed models 
provided a better fit to our data and to highlight differences 
in the biological inferences based on each approach. Models 
without random effects were fit using nlme’s gnls function, 
while mixed models were fit using the nlme function. We 
did not use the lme4 package (Bates et al. 2012) because it 
does not allow mixed models and models with only fixed 
effects to be directly compared, but we include example syn-
tax for implementation in lme4 in our code (Supplementary 
material Appendix 1).

Although we do not discuss model diagnostics in detail, 
our code includes syntax to produce plots for visually checking 
model assumptions (Supplementary material Appendix 1). As 
is typical for mass data, we saw some evidence for increasing 
variance with increasing mass. Specifically, the ratio of the 
standard deviations of the residuals for birds weighing 7–9 g 
versus 1–3 g was 1.3 in our final model of the Alaskan popula-
tion, 1.9 in the final model of the California population, and 
1.4 in the final model with both populations (see below for 
model description). This was judged to not be severe enough 
to merit the use of weighted regression.

To visualize the amount of variation within a population, 
we calculated intervals encompassing 95% of variation at the 
nest and nestling levels (Fig. 1). At the nest level, this inter-
val was calculated as  1.96 times the nest-level standard 
deviation, while the 95% interval encompassing variation 
between both nests and nestlings was calculated as  1.96 
times the square root of the sum of the nest- and nestling-
level variances. Although the magnitude of nestling-level 
variation around the asymptotic mass was nearly equivalent 
to nest-level variation (Results), the joint 95% interval is 
only slightly bigger than the nest-only interval because of 
the rarity with which an extreme nestling would be found 
within an extreme nest.

Incorporating asynchronous hatching into the 
analysis of growth trajectories

We extended our nonlinear fixed-effect function to test for 
differences in the inflection point, growth rate constant, and 
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Figure 1. Variation within the Alaskan orange-crowned warbler population: (a) variation between nests and individuals in the asymptotic 
mass while holding the inflection point constant, and (b) variation in the inflection point given a constant asymptotic mass. This model 
included uncorrelated nest- and nestling-level random effects on the asymptotic mass and the inflection point. The fixed-effect structure 
was a three-parameter logistic function, and the solid lines show the growth trajectory of a typical nestling. Intervals encompass 95% of 
variation at the nest and both the nest and nestling levels (see Methods for calculation details).
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correlation between these two random effects at the nest level 
was zero (r  0.05; 95% CI: 0.66, 0.71), and the confi-
dence interval on the nestling-level correlation also included 
zero (r  0.28; 95% CI: 0.64, 0.18). We therefore based 
our inference on the model with no correlations between 
random effect parameters, as this model had stronger  
or equivalent statistical support than the models with one 
or both correlations (Table 1). Neither the fixed-effect esti-
mates nor the random effect standard deviations qualitatively  
differed between these top models.

Nests and individuals varied in their asymptotic masses 
and inflection points (Fig. 1). The estimated random effect 
standard deviations on the asymptotic mass at the nest and 
nestling levels were 0.55 g (95% CI: 0.39, 0.78) and 0.51 g 
(95% CI: 0.40, 0.64), while the estimated standard devia-
tions on the inflection point were 0.33 d (95% CI: 0.23, 
0.46) and 0.40 d (95% CI: 0.33, 0.48), respectively. Fixed-
effect estimates were similar in the top mixed model and 
the model without random effects, but the standard error 
of the growth rate constant was smaller in the mixed model 
(0.565  0.008) than in the model with only fixed effects 
(0.569  0.016), likely because the mixed model accounted 
for variation at the nest and nestling levels. Fixed effect esti-
mates from the top mixed model for the asymptotic mass 
and inflection point were 9.63  0.13 g and 3.49  0.07 d, 
respectively.

Results from the population in California also showed 
consistent intraspecific variation in the inflection point and 
the asymptotic mass (i.e. support for random effects on 
these parameters), but random effects on the growth rate 
constant were not supported. For models with the same 
random-effect structure at the nest and nestling levels, three 
had equivalent support (ΔAIC values  1; Supplementary  
material Appendix 1, Table A1), likely because nest-level 
effects on the asymptotic mass and the inflection point 
were highly correlated, although this estimate was impre-
cise (r  0.80; 95% CI: 0.02, 0.97). We therefore built 
two models with nest-level random effects on only the 
asymptotic mass and nestling-level random effects on both 
the asymptotic mass and the inflection point; one model 
estimated the correlation between the nestling-level ran-
dom effects and the other constrained the correlation to 
be zero. These models avoided overfitting by eliminating 
highly correlated parameters. Support was strongest for the 
model in which nestling-level random effects were uncor-
related (Supplementary material Appendix 1, Table A1). 
The asymptotic mass consistently varied between nests and 
individuals; random effect standard deviations were 0.55 g  
(95% CI: 0.27, 1.13) and 0.52 g (95% CI: 0.32, 0.85), 
respectively. Fixed effect estimates of the growth rate con-
stant (0.514  0.014), asymptotic mass (9.52  0.22 g), 
and inflection point (3.90  0.10 d) were not qualitatively 
affected by the inclusion of random effects.

Incorporating asynchronous hatching into the 
analysis of growth trajectories

We found that runts did not differ in their growth rate 
constant (Kr  0.013  0.022; t459  0.62; p  0.54) or 
their asymptotic mass (Ar  0.42  0.28 g; t459  1.49; 

we included nest- and nestling-level random effects. We 
included a runt effect on the inflection point, and assumed 
that this effect did not differ between sites, as the estimated 
shift in the inflection point of Alaskan runts was within one 
standard error of the estimate when the model was fit to 
Californian birds. To evaluate how the use of mixed mod-
els affected our inferences, we compared the parameter esti-
mates and statistical significance of the differences between 
sites from models with and without random effects.

We calculated confidence intervals for the estimated 
growth trajectories in each population (Fig. 2) via the delta 
method, using the emdbook package in R (Bolker 2012). 
The intervals shown in Fig. 2 are much smaller than in Fig. 
1 because these represent 95% confidence intervals on the 
estimated growth trajectory in each population, whereas 
those in Fig. 1 show 95% of the variation between nests and 
nestlings within the Alaskan population.

Results

Analysis of variation in growth trajectories within 
populations

We found unequivocal support for the inclusion of random 
effects in models of Alaskan birds, indicating that nests and 
nestlings consistently varied in the parameters that estimated 
their growth trajectories. The top models included random 
effects of nest and nestling on the asymptotic mass and the 
inflection point, while other models fit comparatively poorly, 
with ΔAIC values over 50 (Table 1). We found no support 
for random effects on the growth rate constant, indicating 
that there was little variation in the growth rate constant 
within this population.

Next, we determined that birds that reached the inflec-
tion point of their growth curve earlier did not show con-
sistent differences in their asymptotic mass. The estimated 
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Figure 2. Comparison of estimated growth trajectories in the Alas-
kan and Californian populations. Alaskan birds reached their 
inflection point earlier and had a higher growth rate constant. The 
populations did not differ significantly in their asymptotic mass. 
Solid lines show growth trajectories based on our parameter esti-
mates; dashed lines show the 95% confidence interval for these tra-
jectories (see Methods for calculation details).
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Comparison of growth trajectories between two 
populations

Orange-crowned warbler nestlings in Alaska had an earlier 
inflection point and a higher growth rate constant than 
nestlings in California, but these populations did not differ 
in their asymptotic mass (Table 2; Fig 2). Random effects 
substantially improved the fit of a model testing for popula-
tion differences in the growth trajectories (ΔAIC  561.4 for 
the model with only fixed effects; Supplementary material  
Appendix 1, Table A3). Our top model included random 
effects of nest and nestling on the inflection point and  
the asymptotic mass (Supplementary material Appendix 1, 
Table A3). By accounting for additional sources of variation, 
random effects made the difference in the growth rate con-
stant highly significant (t627  3.26, p  0.001) rather than 
marginally significant in the model with only fixed effects  
(t900  1.81, p  0.071; Table 2). The difference in the inflec-
tion point was significant in the mixed model (t627  3.47, 
p  0.0006) and in the model without random effects 
(t900  3.91, p  0.0001), while neither model supported  
a difference in asymptotic mass between populations (t627   
0.52, p  0.603 and t900   0.43, p  0.663, respectively).

p  0.14). However, altering the inflection point (Ir   
0.63  0.12 d; t459  5.18; p  0.0001) to shift the growth 
curve to the right for younger nestlings greatly improved 
the fit of our model (ΔAIC  96.6 for the top model 
without effects of asynchronous hatching). Including the 
difference in the inflection point for runts incorporated 
variation in hatching time into the fixed effect structure, 
whereas in our first model this variation was incorporated 
into the nestling-level random effect on the inflection 
point. Therefore, the estimated random effect standard 
deviation for the inflection point was lower in the model 
with the runt effects (0.14 d; 95% CI: 0.08, 0.26) than 
in the model without them (0.40 d; 95% CI: 0.33, 0.48). 
Model selection again supported nest and nestling-level 
random effects on the inflection point and asymptotic mass 
(Supplementary material Appendix 1, Table A2). The top 
model constrained both random effects correlations to be 
zero, indicating birds that reached their inflection point 
earlier were not expected to attain a higher asymptotic 
mass. Based on the top model, fixed effect estimates for 
the growth rate constant, asymptotic mass, and inflection 
point for older nestlings were 0.568  0.008, 9.55  0.12 g,  
and 3.30  0.07 d, respectively.

Table 1. Model selection results showing models with different random-effect structures for the Alaskan population. The fixed-effect structure 
was a three parameter logistic model. In the top models, the correlation between random effects within the nest and/or nestling level was 
constrained to be zero; this constraint is indicated with an asterisk.

Random effect structure

Δ AIC AIC log(L)
Total number  
of parameters

Number of  
random-effect  

parametersNest level Nestling level

A and I* A and I* 0.00 825.53 404.76 8 4
A and I* A and I 0.26 825.79 403.90 9 5
A and I A and I 2.33 827.86 403.93 10 6
– A and I 55.72 881.25 433.62 7 3
I I 96.8 922.33 455.17 6 2
– I 138.87 964.40 477.20 5 1
A A 152.33 977.86 482.93 6 2
– A 202.74 1028.27 509.13 5 1
A, I, and K – 362.32 1187.85 583.93 10 6
A and I – 365.62 1191.15 588.57 7 3
I – 374.59 1200.12 595.06 5 1
A – 404.42 1229.95 609.97 5 1
K – 651.08 1476.61 733.30 5 1
K K 653.07 1478.60 733.30 6 2
– – 657.59 1483.12 737.56 4 0
– K 659.59 1485.12 737.56 5 1

Table 2. Fixed-effect parameter estimates ( 1 SE) from models testing for differences between populations in growth trajectories. We com-
pare the model without random effects to the best-supported mixed-model, which contained random effects of nest and nestling on the 
inflection point and asymptotic mass. Parameters with the pop subscript estimate the difference in the Alaskan population compared with 
the Californian population; Ir estimates the shift in the inflection point for younger nestlings. The mixed model provided stronger statistical 
support for a difference in the growth rate constant between populations.

Model K Kpop A Apop I Ipop Ir
No random effects 0.534  0.019 0.041  0.023^ 9.35  0.16 0.09  0.20NS 3.67  0.09 0.44  0.11*** 0.93  0.05***
Mixed model 0.525  0.012 0.048  0.015** 9.31  0.23 0.14  0.26NS 3.67  0.10 0.42  0.12*** 0.77  0.05***

NS indicates a p-value greater than 0.10, ^ indicates a p-value between 0.10 and 0.05, **indicates significance at the 0.01 level, and  
***indicates significance at the 0.001 level. The significance of K, A, and I is not noted, as it is unreasonable to expect these parameter 
estimates to be zero.
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Interpretation of fixed effects

Instead of fitting separate growth curves to different groups 
or individuals, we extended the logistic model to explicitly 
test for effects of asynchronous hatching on growth trajec-
tories, and also to test for differences between populations. 
We found no differences in the growth rate constant or the 
asymptotic mass between younger and older nestlings, indi-
cating that asynchronous hatching did not substantially affect 
growth trajectories. Our results contrast with those from 
previous studies, which have often found slower growth rates 
in younger nestlings (reviewed by Krebs 1999). Although 
asynchronous hatching can lead to brood reduction (Lack 
1968, Magrath 1990), in our study populations starvation 
rarely occurred for any nestlings, and runts hatched less 
than a day after their older siblings; these observations may 
explain why we observed minimal effects of hatching time 
on the asymptotic mass or growth rate constant. Alterna-
tively, because we estimated multiple runt effects (i.e. one 
for each fixed-effect parameter) with a relatively small sample 
of younger birds, we may have had limited statistical power. 
Nevertheless, our results show that incorporating fixed dif-
ferences in the inflection point substantially improved the fit 
of our models because an important source of variation was 
captured within the fixed-effect structure, rather than in the 
nestling-level random effects.

Our comparison between populations showed that Alas-
kan nestlings grew more quickly than Californian birds and 
reached the inflection point of their growth curve approxi-
mately half a day earlier; the two populations did not differ 
in their asymptotic mass (Fig. 2). Mixed models provided 
qualitatively stronger support for a difference in the growth 
rate constant compared with a model with only fixed effects 
(Table 2), likely because the random effects explained addi-
tional variation within populations and thereby highlighted 
differences between populations that previously had been 
masked by within-group variation. Few previous studies 
have found strong evidence for intraspecific variation in the 
growth rate of a passerine bird (Starck et al. 1995), and these 
demonstrations are particularly important in light of past 
work suggesting that passerine growth rates may be maxi-
mized and should therefore not vary between populations 
(Ricklefs 1969, Werschkul and Jackson 1979, King and 
Hubbard 1981). We found that although growth rate con-
stants varied little within populations, they were not physi-
ologically constrained to be equivalent between populations. 
These results highlight the need for studies that test whether 
the ecological factors that are thought to underlie variation 
in growth between species can also lead to adaptive variation 
between intraspecific populations.

Comparative studies of avian growth have focused on 
the growth rate constant, which can be compared between  
species that differ in their asymptotic mass (Starck and  
Ricklefs 1998), whereas few studies have considered varia-
tion in the inflection point. We show inflection points can 
differ between populations, and suggest that future work 
could evaluate whether the inflection point is under selec-
tion and shaped by ecological factors such as breeding season 
length and nest predation risk. Alaskan birds reached their 
inflection point nearly half a day earlier, and additional data 
from our study populations show that they also had shorter 

Discussion

Identifying the ecological and evolutionary factors that 
underlie variation in growth rates has been a central goal of 
many avian studies. By including random effects and extend-
ing the logistic function to test specific hypotheses, we were 
able to understand the sources of variation in growth (Fig. 
1) and directly compare the growth trajectories of younger 
and older nestlings and of birds in two populations (Fig. 
2). In each of our analyses, mixed models provided a sub-
stantially better fit to our data than models without random 
effects (Table 1; Supplementary material Appendix 1, Table 
A1–A3), and also accounted for the lack of independence 
between data points. Our extension of the fixed-effect func-
tion allowed us to directly test for differences between groups, 
whereas previous studies have used a multistep process that 
involved fitting separate growth curves and then using the 
estimated parameters in subsequent analyses. Below, we 
summarize our results and highlight how extensions of stan-
dard methods improved our biological understanding of our 
study system.

Interpretation of random effects

Within each population, we found consistent variation 
between individuals and nests in the asymptotic mass and 
the inflection point (Fig. 1), but not in the growth rate con-
stant. We based these inferences on the amount of support 
for models with random effects on each parameter (Table 
1; Supplementary material Appendix 1, Table A1). The 
lack of support for nest- or nestling-level random effects 
on the growth rate constant corroborates the longstanding 
hypothesis that the growth rate constant varies little within 
populations (Ricklefs 1968). We also compared the amount 
of variation at the nest and nestlings levels, and predicted 
that there could be more variation between individual nest-
lings in Alaska and between nests in California. Instead, we 
found that these two populations had a similar amount of 
variation in the asymptotic mass at each level; each random 
effect standard deviation was approximately 0.5 g in both 
populations. Because nestling mass can affect future fitness 
(Magrath 1991), and because these warblers weigh 10 g, 
the magnitude of this variation may be biologically mean-
ingful. The similarity of these estimates also implies that the 
strength of competition between siblings may be similar in 
these populations, and surprisingly, suggests that competi-
tion between pairs may either not act via nestling provision-
ing rates or may also have a similar strength in these two 
populations.

We were also interested in assessing whether nestlings 
that reached their inflection point earlier attained a higher 
asymptotic mass, and to do so we used the estimated cor-
relation between random effect parameters, which measures 
whether deviations around one fixed effect are related to devi-
ations around other fixed effects. We found that variation in 
the inflection point was not correlated with variation in the 
asymptotic mass, as models in which this correlation was con-
strained to be zero received more support both in California 
and in Alaska. We saw the same pattern between populations, 
as birds in Alaska reached their inflection point earlier, but 
the two populations did not differ in asymptotic mass.
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(Supplementary material Appendix 1 and 2) to encourage 
the wider use of these methods.
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