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Abstract

Aim: To quantify the effect of Pleistocene climate fluctuations on habitat connectiv-
ity across paramos in the Northern Andes.

Location: Northern Andes.

Methods: The unique paramos habitat underwent dynamic shifts in elevation in re-
sponse to changing climate conditions during the Pleistocene. The lower boundary of
the paramos is defined by the upper forest line, which is known to be highly respon-
sive to temperature. Here, we reconstruct the extent and connectivity of paramos
over the last 1 million years (Myr) by reconstructing the upper forest line from the
long fossil pollen record of Funza09, Colombia, and applying it to spatial mapping on
modern topographies across the Northern Andes for 752 time slices. Data provide an
estimate of how often and for how long different elevations were occupied by para-
mos and estimate their connectivity to provide insights into the role of topography in
biogeographical patterns of paramos.

Results: Our findings show that connectivity amongst paramos of the Northern
Andes was highly dynamic, both within and across mountain ranges. Connectivity
amongst paramos peaked during extreme glacial periods but intermediate cool stadi-
als and mild interstadials dominated the climate system. These variable degrees of
connectivity through time result in what we term the ‘flickering connectivity sys-
tem’. We provide a visualization (video) to showcase this phenomenon. Patterns of
connectivity in the Northern Andes contradict patterns observed in other mountain
ranges of differing topographies.

Main conclusions: Pleistocene climate change was the driver of significant eleva-
tional and spatial shifts in paramos causing dynamic changes in habitat connectiv-
ity across and within all mountain ranges. Some generalities emerge, including the
fact that connectivity was greatest during the most ephemeral of times. However,
the timing, duration and degree of connectivity varied substantially among mountain

ranges depending on their topographical configuration. The flickering connectivity
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1 | INTRODUCTION

Mountains are regarded as powerhouses of biodiversity in the world
(Antonelli et al., 2018; Barthlott, Rafigpoor, Kier, & Kreft, 2005; Kreft
& Jetz, 2007) and harbour numerous examples of very rapid and re-
cent species diversifications (‘radiations’; Hughes & Atchison, 2015).
It is thought that a large part of this diversity arose geologically re-
cently, during the Plio-Pleistocene (last 5.3 million years [Myr]), but
there is no consensus on the drivers of these radiations. One favoured
hypothesis is that the combination of high topographical relief and
Plio-Pleistocene climatic oscillations led to rapidly changing distribu-
tions of montane species, which generated new lineages (e.g. Graham
et al., 2014; Mutke, Jacobs, Meyers, Henning, & Weigend, 2014; Qian
& Ricklefs, 2000). However, the relative contributions of isolation (e.g.
Schonswetter, Stehlik, Holderegger, & Tribsch, 2005; Wallis, Waters,
Upton, & Craw, 2016; Weir, Haddrath, Robertson, Colbourne, &
Baker, 2016) versus gene flow and dispersal (e.g. Cadena, Pedraza,
& Brumfield, 2016; Knowles & Massatti, 2017; Kolaf, Duskova,
& Sklenar, 2016; Smith et al., 2014) in driving fast diversification
rates (i.e. the ‘species-pump’ effect, Rull, 2005; Rull & Nogué, 2007,
Winkworth, Wagstaff, Glenny, & Lockhart, 2005; Ramirez-Barahona
& Eguiarte, 2013; Steinbauer et al., 2016; Flantua & Hooghiemstra,
2018) are still debated. It is likely that these radiations have been the
results of the interchange between phases of isolation, causing allo-
patric, in situ speciation, and connectivity, triggering diversification
through dispersal and settlement in new areas and hybridization of
differentiated taxa from previously isolated populations (Flantua &
Hooghiemstra, 2018). The fastest and most spectacular radiations
may therefore occur in mountain regions with variable degrees of
past connectivity and isolation during climate fluctuations, which,
complex in space and time, are inherently related to the mountain
topography (Flantua & Hooghiemstra, 2018). It is therefore critical to
quantify connectivity of montane habitats using our understanding
of topography and past climate fluctuations (Figure 1).

The Northern Andes is an ideal model system to quantify con-
nectivity, due to the large variation in topography and the advanced
palaeoecological knowledge on Plio-Pleistocene climate fluctuations
derived during the last five decades (Hooghiemstra & Flantua, 2019).
The Northern Andes is topographically rich with high elevations, steep
ridges and valleys (see illustrations by Von Humboldt during his trips
in Latin America, 1773-1858), composed of several mountain ranges,
some of which are parallel running from North to South. The area
hosts the treeless tundra-like alpine biome, the paramos, regarded as

connectivity, species pump

system of the paramos uncovers the dynamic settings in which evolutionary radia-

tions shaped the most diverse alpine biome on Earth.

alpine biome, evolutionary arenas, evolutionary radiations, flickering connectivity system,

fossil pollen, mountain fingerprint, neotropical biodiversity, Paramos, past habitat

the richest alpine flora in the world in terms of endemism and species
richness (Sklenar, Hedberg, & Cleef, 2014) and is known for its bursts
of Plio-Pleistocene species diversification amongst plants (Hughes &
Atchison, 2015; Madrifidn, Cortés, & Richardson, 2013). In terms of
quantifying Plio-Pleistocene temperature fluctuations, the palaeoeco-
logical history of the paramos has been studied extensively (e.g. Cleef,
1979; Hooghiemstra, 1984; Hooghiemstra & Van der Hammen, 2004;
Van der Hammen, 1974; Van der Hammen & Cleef, 1986) because of
the unique high elevation fossil pollen records that cover most of the
Pleistocene (Bogota-A, Hooghiemstra, & Berrio, 2016; Bogota-Angel
etal., 2011; Groot, Hooghiemstra, Berrio, & Giraldo, 2013; Groot et al.,
2011; Torres, Hooghiemstra, Lourens, & Tzedakis, 2013). Under cur-
rent conditions, the paramos form isolated archipelagos of ‘alpine (sky)
islands’ (McCormack, Huang, & Knowles, 2009; Sklenar et al., 2014)
but the rich collection of fossil pollen sequences throughout this region
(Flantua et al., 2015) show that the paramos underwent substantial el-
evational shifts during the Pleistocene, resulting in extensive changes
in surface area and connectivity (Flantua et al., 2014; Hooghiemstra &
Van der Hammen, 2004; Sklenéf et al., 2014; Van der Hammen, 1974).
Thus, the topographical diversity and the robust catalogue of palaeo-
ecological reconstructions make the Northern Andes a highly suitable
model region to explore patterns of connectivity in mountain biomes
in response to Pleistocene climate fluctuations.

In this study, we aim to quantify the biogeographic changes of the
paramos in terms of spatial scale and connectivity based on modern to-
pography and pollen-based records of past climate change. Specifically,
we developed a novel tool to explore the complex temporal and spa-
tial patterns of paramo connectivity. We constrain our model by using
the last 1 Myr of the high-resolution fossil pollen record of Funza09, a
composite 586 m deep core taken from the Bogota basin of Colombia
(Torres et al., 2013). Available surface area (Elsen & Tingley, 2015) and
connectivity (Bertuzzo et al.,, 2016; Flantua & Hooghiemstra, 2017;
Flantua et al., 2014) is variable along elevational gradients of mountains.
We therefore hypothesize that the different mountain ranges that com-
pose the Northern Andes display variable patterns of past paramo con-
nectivity dependent upon their topography (Figure 1). We discuss the
implications of our outcomes for evolutionary processes and how defin-
ing and quantifying past connectivity in mountain systems is essential
to help reveal mechanisms of ecological, biogeographical and evolu-
tionary change. Ultimately, our quantification of paramo connectivity
through space and time provides a unique opportunity to disentangle
some of the mechanistic drivers (‘modulators’) of radiations in this biome
(Bouchenak-Khelladi, Onstein, Xing, Schwery, & Linder, 2015).
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FIGURE 1 Connectivity and
fragmentation in a mountain landscape.
Connectivity (blue) and fragmentation
(orange) events occurred in a spatially
and temporally variable manner. This
complex pattern in space (latitude,
longitude, elevation) and time resemble a
multi-dimensional ‘mountain fingerprint’
which is unique for each mountain range
(Flantua & Hooghiemstra, 2018). Three
hypothetical mountain profiles are shown
where elevational shifts in vegetation
distribution driven by climate change
(pollen-based record at the left indicating
temperature) cause events of increased
fragmentation (F) and connectivity (C)

of mountain ecosystems. We recognize
mountains where (a) only few events

of connectivity occurred during the
Pleistocene compared to fragmentation
events (‘fragmentation-prone mountain
fingerprint’), (b) connectivity events
interchanged with isolation events in

an evenly manner (‘mixed connectivity-
fragmentation mountain fingerprint’),

(c) connectivity is facilitated and
occurred more often than fragmentation
events (‘connectivity-prone mountain
fingerprint’). The right panel is only based
on frequency, not the duration of each
event

2 |

2.1 | Geographical features

The Northern Andes (ca. 448,000 km?) covers parts of Venezuela,
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principal mountain ranges or ‘cordilleras’ (Figure 2c), namely the
Sierra Nevada de Santa Marta (SNSM), Cordillera de Mérida, Eastern,
Central and Western Cordillera and the Ecuadorian Cordilleras.

Most of the Northern Andes is considered a highly to extremely

Colombia and Ecuador (Figure 2a), and can be partitioned into six

high rugged landscape (Figure 2b; See mountain illustrations by Von
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FIGURE 2 Hypsographical curves of the Northern Andes. (a) Elevation (m a.s.L.). (b) Terrain ruggedness index calculates the sum change
in elevation between a grid cell and its eight neighbour grid cells (Riley, DeGloria, & Elliot, 1999) using a ca. 30 m DEM (NASA STRM Global
1larc second V0O3). (c) Delimitation of mountain ranges. (d) Elevational availability of surface area for the Northern Andes and each mountain
range separately shown for 100 m bins. Hypsographical curves based on the Shuttle Radar Topography Mission 1-arc second Digital

Terrain Elevation Data (~30 m resolution; USGS), taking an elevational threshold of 500 m a.s.l. as the horizontal reference plane. Maximum
elevation per cordillera is indicated. VEN: Venezuela; COL: Colombia; ECU: Ecuador

Humboldt, 1845) where the high peaks and deep inter-Andean val-
leys cause strong contrasts in climate throughout the region (Flantua
et al., 2016). Surface area in mountains does not decrease mono-
tonically with elevation as has been shown previously in southern
Colombia by Flantua et al. (2014) and on a global scale by Elsen and
Tingley (2015). The Northern Andes shows a decrease of surface
area going upslope where there is a slight peak around 900-1,200 m
above sea level (a.s.l.) but then continues to decrease up to 6,260 m
a.s.l. (Figure 2d), following a typical ‘pyramid shape’. However, the
different cordilleras show different patterns of elevational surface
area (Figure 2d) where the Eastern Cordillera shows a sharp peak
around 2,600 m a.s.l. and the Ecuadorian Cordillera shows high val-
ues of surface area at much higher elevations than the other cor-
dilleras (for more details see Table S1.1, Appendix S1 in Supporting
Information). The paramos today are spread out over the Northern
Andes as a ‘mountain archipelago’ of small and highly fragmented
paramo complexes (See Figs S2.1, S2.2 for more details and photos
of different pdramo complexes) but their full range also cover iso-
lated paramo islands in Costa Rica and northern Peru (Luteyn, 1999).
Of all tropical alpine floras, such as in East Africa and New Guinea,
the paramos are home to the highest species richness and endemism
(Luteyn, 1999; Sklenar et al., 2014), with low between-mountain sim-
ilarity in species (Sklenar et al., 2014). They also provide numerous
ecosystem services on a local and regional scale (Herzog, Martinez,

Jorgensen, Tiesse, 2011) and references therein), and especially in

terms of hydrological services, they are vital for the provision of
fresh water to several large cities in South America, such as Bogot3,
Medellin, Quito, Cuenca, Piura and Cajamarca.

2.2 | Quantifying temperature and upper forest line
based on fossil pollen data

To quantify temperature fluctuations during the Pleistocene (and
consequently estimate paramo connectivity), we used fossil pol-
len data from the Northern Andes. The composite pollen record
Funza09 (4.83°N, 75.2°W; 2,550 m a.s.l,, Fig. S2.1. Red star) re-
veals vegetation and climate dynamics over the past 2.25 Myr
(Torres et al., 2013). We reconstructed the paramos’ elevational
fluctuations, and consequently paramo connectivity, by estimat-
ing the upper forest line (UFL; the transition from the upper mon-
tane forest to the paramos) from the FunzaO9 record. Though this
record covers the last 2.25 Myr, we only used the last 1 Myr as this
interval reflects continuous lake conditions in comparison with
variable hydrological conditions between 2.2 and 1 million years
ago (Ma) which makes a quantification of changes to the UFL less
precise. We follow the methodology described and implemented
by Hooghiemstra (1984), Groot et al. (2011) and Hooghiemstra
et al. (2012) to derive the Andean UFL and palaeotemperature
curve (for detailed methodology on the UFL reconstruction see
Appendix S3).
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2.3 | Calculations of connectivity per paramo
‘island’

To calculate the degree of connectivity between paramos, we used
a graph-based habitat availability index called probability of con-
nectivity (PC) metric. This metric takes into account the area of
the paramo ‘island’ itself and the distances to other islands where
a user-defined distance threshold defines the ‘reachability’ of other
islands (Saura, Estreguil, Mouton, & Rodriguez-Freire, 2011; Saura &
Pascual-Hortal, 2007), even if they are not physically connected (i.e.
‘structural connectivity’, Tischendorf & Fahrig, 2000). The metric as-
signs a value to each paramo island representing its contribution in
maintaining the overall connectivity of the paramo biome (Saura &
Pascual-Hortal, 2007; Saura et al., 2011). The total PC is built up in
three ‘fractions’, namely the ‘intrapatch’, the ‘flux’ and the ‘connec-
tor’ fractions (Saura & Rubio, 2010). The first fraction focuses on the
available surface area and habitat quality (if applicable) within the in-
dividual island. The second fraction assesses how well the individual
island is connected to other islands given additional importance to
the other islands’ attributes (surface and quality) and its strategic
position to other paramo islands. The third fraction quantifies the
contribution of the island to maintain connectivity between the rest
of the islands, in other words its role as an intermediate stepping
stone between non-adjacent islands. Additionally, we calculated the
equivalent connected area (ECA), which is derived directly from the
PC, as a measure of the overall connectivity of a region (Saura et al.,
2011). Here, CoNerFor SensINoDE (V2.2; Saura & Pascual-Hortal, 2007;
Saura & Torné, 2009) and ESRI ArcGIS 10.3 (ESRI, 2014) were used
to calculate the straight-line distances between islands, the PC and
ECA. We calculated connectivity for the entire Northern Andes and
for each mountain range separately.

2.4 | Calculations of corridors between
paramo islands

We identified corridors between paramo islands within and between
cordilleras under different climatic conditions. We used the GNARLY
Lanpscape UTiuimies (V0.1.3; McRae, Shirk, & Platt, 2013) with ESRI
ARrcGIS 10.3 to create a raster grid of ‘landscape resistance’ based
on ruggedness (Figure 2b) and habitat suitability. We assumed an
increased landscape resistance with increased ruggedness, assign-
ing values between 0 (no resistance) to 100 (maximum resistance)
using an equal interval classification. For the habitat suitability map,
we started by assigning a ‘perfectly suitable’ score of 100 to each
paramo island, while outside the island the score of O reflects maxi-
mum unsuitability. To soften this boundary, an exponential decay
function was then used by increasing resistance in five elevational
steps of 100 m where we assigned a suitability score of 40 to the
boundary of the paramo. As a result of the decay function the high-
est suitability of paramo - its core area - was restrained 200 m
above the UFL and 200 m below the snowline.

We used LINKAGE MAPPER to calculate the least-cost pathways, or

corridors, based on the produced raster grid of landscape resistance
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(McRae & Kavanagh, 2011). These corridors are expressed as ‘con-
ductance maps’ that represent gradients of cumulative corridors.
Where the densities of corridors is highest, it is assumed that there
is a high probability of dispersal and migration possible between is-
lands (McRae, Dickson, Keitt, & Shah, 2008). The full landscape of the
Northern Andes is considered an area where corridors could exist,
with exception of the region between SNSM and the Sierra de Perija
(Fig. S2.1).

We resampled the 30 m Digital Elevation Model (DEM, Figure 2)
to a 1 km resolution to reduce computing time for each LINKAGE MAP-
PER down to on average 2 hr. We allowed LINKAGE MAPPER to create cor-
ridors through (instead of only between) core areas to represent the
full arsenal of connectivity through the landscape. Only corridors
between paramo islands larger than 1 km? were considered at any
given moment in time. From the final output maps, only values lower
than 200k conductance (default threshold) are selected to highlight
the strongest corridors. The outputs were weighted according to the
percentage of time they occurred during the last 1 Myr.

3 | RESULTS

3.1 | Amillion years of temperature fluctuations

Temperatures at Funza (2,550 m a.s.l.) are estimated to have fluc-
tuated between ca. 15 and 6°C causing an estimated maximum
1,600 m elevational shift of the UFL between ca. 3,500 and ca.
1,900 m as.l. (Figure 3). The Pleistocene glacial-interglacial dy-
namics were not replicated cycles of temperature change showing
repeated patterns of high and lows, but display a high temporal vari-
ability between each glacial-interglacial cycle. Conditions similar to
the current warm, interglacial conditions occurred several times dur-
ing the last 1 Myr and accounted for around a quarter of the time.
Extreme cool glacial conditions, ~6-8°C cooler than today, were
relatively rare, occurring less than 10 percent of the time. On the
whole, intermediate cool stadials and mild interstadials dominated
the last 1 Myr, occurring over two-thirds of the time.

3.2 | Calculations of paramo connectivity

Our estimations on the spatial and elevational extent of ancient
paramos and their connectedness at different times in the past
reveals that paramos underwent frequent spatial alterations be-
tween fragmented and connected spatial configurations, but the
exact patterns were highly dependent on mountain chain topogra-
phy (Figure 4a,b. See Appendices S4 and S5). The paramos in the
Ecuadorian Cordillera generally maintained a high degree of con-
nectivity over the last 1 Myr, rarely enduring severe fragmentation.
Fragmentation did however occur when the snowline plunged signif-
icantly during colder and wetter glacial periods, causing a break up of
paramo areas on lateral flanks of the mountains. Likewise, the level
of connectivity between paramos on the Central Cordillera frag-
mented substantially through a descending snowline, breaking the
upper elevation limit of paramo connectivity. In contrast, the Eastern
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FIGURE 3 Upper forest line (UFL) curve of Funza09 (Torres et al., 2013) and reconstructed temperature record covering the last 1 Myr

(last ca. 30 kyr BP not included)

Cordillera shifted substantially between periods of connectivity
and fragmentation, always, however, maintaining two large paramo
islands surrounded by smaller ‘satellite islands’. Paramos in the
Cordillera de Mérida seem to have been restricted during interglaci-
als to one core area only, while during colder periods a relatively high
fragmentation is observed possibly due to glaciers pushing paramos
to lateral distributions. Here, connectivity increased mainly towards
the southwest and during colder periods (UFL < 2,300 m a.s.l.). The
paramos of the SNSM and the Western Cordillera endured the high-
est degree of rates of change in fragmentation of all ranges. In the
latter, paramo habitats are estimated to have often completely dis-
appeared. In contrast, paramos of the Central Cordillera maintained
a long latitudinal distribution, forming a chain of isolated populations
in small patches that on the whole remained connected. Even in very
cold conditions, no continuous connectivity of core areas seems to
have been possible between the Eastern Cordillera and Cordillera de
Mérida, or the region of Sierra de Perija. Towards the south of the
Eastern Cordillera a low-elevation barrier was possibly crossed at
1,900 m a.s.l. forming a brief bridge suitable for paramo habitat into
the Macizo Colombiano of the Central Cordillera.

The reconstruction of putative corridors shows a complex spa-
tial pattern through the mountainous landscapes of the Northern
Andes (Figure 5a,b). The long ridge of the Central Cordillera forms
the starting point of numerous corridors to the paramos in the
Western Cordillera. The Eastern Cordillera shows a complex inter-
nal pattern of corridors, where there are neither strong corridors
towards Sierra de Perija in the North, nor towards the Cordillera de
Mérida, while a high concentration of corridors is found between
the large paramos complexes in the Eastern Cordillera (Paramos of
Boyaca and Cundinamarca, Fig. S2.1). In the Ecuadorian Cordillera
a more lateral pattern of high/low potential corridors is observed
following the intra-Andean valleys and peaks within this mountain
range. Corridors to the southernmost paramos of Ecuador as also
the northernmost paramos of the Western Cordillera are weak
and occurred infrequent during the last million years, shown by
the thin lines.

3.3 | Flickering connectivity systems

Paramo connectivity through time shows a highly variable pattern
(Figure 6a) introduced by Flantua and Hooghiemstra (2018) as a

flickering connectivity system (see visualization video in Appendix
S6). We find support for the hypothesis that this system with fluctu-
ating, highly variable connectivity in spatial and temporal dimension
is unique for each mountain range of the Northern Andes (Figure 1).
For example, changes in connectivity within the Ecuadorian Cordillera
are substantial but the system ‘flickers’ around a high average when
compared to other mountain ranges. The flickering connectivity sys-
tems within the Eastern and Central Cordillera are surprisingly similar,
though the peaks of connectivity during glacial periods and the dips
of connectivity during interglacials are more extreme in the former
(Figure 6a). The Western Cordillera is a larger mountain range than the
Cordillera of Mérida and the SNSM (Table S1.1), and its variation of
connectivity has been correspondingly larger (Figure 6b) but with the
lowest occurrence of connectivity compared to the other mountain
ranges (Figure 6a). Considering only the frequency in the distribution
of data (Figure 6b), the Ecuadorian Cordillera and the SNSM stand out
for their relatively small within-mountain range variation in connectiv-
ity, compared to the Eastern and Central Cordillera (similar patterns)
and the Western Cordillera.

When frequencies of connectivity are weighted by the amount of
time that connectivity lasted two main patterns emerge (Figure 6c). The
first is shared by the Western, Central and Eastern Cordilleras, which
all display an elongated pattern where the highest values are around
a centroid, resembling a ‘humming top’ or, as Elsen and Tingley (2015)
recognized in mountain hypsographies, a ‘diamond’ shape. Ecuadorian
Cordilleras, Cordillera de Mérida and SNSM instead reveal a different
pattern with a narrower centroid that widens towards the upper and
lower section, resembling an ‘hourglass’ shape. Here, the Ecuadorian
Cordillera and SNSM show a surprising similarity though at different
connectivity ranges. The Central and Eastern Cordilleras are strikingly

similar overall.

4 | DISCUSSION

4.1 | Variable degrees of past connectivity of
different mountain ranges

Although currently isolated, evolutionary radiations and the as-
sembly of the paramo ecosystem formed during times when the
paramos were flickering in and out of different degrees of connec-

tivity (Figure 6). The concept of ‘mountain fingerprints’ (Flantua &
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Areas with low least cost pathways (a) and high current flows (b and c) indicate frequent and highly possible corridors during the last 1 Myr
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FIGURE 6 The ‘Flickering Connectivity
System’ of the Northern Andes. (a)
Paramo connectivity (here expressed as
equivalent connected area, ECA) through
time (1,000-30 kyr BP) for each cordillera.
ECA has area units (m?) representing the
amount of ‘reachable or available habitat
area’ (Saura et al., 2011). (b) ‘Beanplots’
(Kampstra, 2008) or ‘violin plot’ showing
kernel densities summarizing the data
distribution of past connectivity of each
cordillera, only considering how often
certain degree of connectivity occurred,
not how long it lasted. (c) Beanplot
showing kernel densities summarizing

the data distribution of past connectivity
of each cordillera multiplied by how long
connectivity persisted to represent both
how often an event occurred and how
long it lasted
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(Continued)

TABLE 1

Level of analysis/
Mountain range

Reference

Result/finding

Dataset/markers Approach

Family

Taxon

Group

Vargas, Ortiz, and

Hybridization, recent radiation

Complete nuclear riboso- Phylogenomic

Diplostephium  Asteraceae

Plants

Northern Andes

Simpson (2017)

mal cistron, the complete
chloroplast genome, a

partial mitochondrial ge-

nome and nuclear-ddRAD

Vasquez, Balslev, Hansen,

High genetic diversity in the larger paramo

Phylogeographic

11 microsatellite markers

Leguminosae

Lupinus

Plants

Eastern Cordillera,
Cordilleras of
Colombia

Andes

Sklenaf, and Romoleroux

(2016)

complexes with multiple distinct clades
somewhat related to each other

alopecuroides

von Hagen and Kadereit

Phylogenetic Recent radiation
(2001, 2003)
Weir (2006)

ITS, matK, rpl16 intron

Gentianaceae

Gentianella,
Halenia

Plants

Recent radiation, increase in diversification

Phylogenetic

n.a.

n.a.

Many

Birds

Andes

FLANTUA ET AL.

in last 1 Myr

Zapata (2013)

Phylogenetic Recent radiation

trnH-psbA, MYC, NIA

Escalloniaceae

Escallonia

Plants

Northern Andes

Hooghiemstra, 2018) proposes that the region's complex topogra-
phy would have meant that paramos in different mountain regions
would have fragmented and connected at different periods of time,
at different elevations, and with different rates and frequencies (as
summarized in Figure 1). This means that in some mountain ranges
the paramos are a mix of somewhat even occurrence of connectivity
and fragmentation events through time (Figure 1b, exemplified by
the Eastern Cordillera), or could have been dominantly fragmented
(Figure 1a, e.g. Western Cordillera), or more connected (Figure 1c,
e.g. Ecuadorian Cordilleras). These regional differences in the tem-
poral and spatial variation in past paramo connectivity (Figures 4-6)
are likely to have resulted not only in regional differences in bio-
geographical patterns through time, but also varying ecological and
evolutionary processes. We therefore propose that our data and
models can be used to test hypotheses of the drivers of species rich-
ness, endemism and degrees of Pleistocene diversification in the
Northern Andes, and the approach applicable to other mountain
regions around the world.

4.2 | Evolutionary implications of the flickering
connectivity system

Several insightful schematic representations of Pleistocene diver-
sification models in the Neotropics have been developed in recent
years (Flantua & Hooghiemstra, 2018; Hazzi, Moreno, Ortiz-Movliav,
& Palacio, 2018; Ramirez-Barahona & Eguiarte, 2013; Rull, 2005).
Phylogeographical and phylogenetic synthesis work within and
among paramo taxa is currently still largely lacking (see for instance
Yu et al., 2019 for the Qinghai-Tibet Plateau), inhibiting the direct
testing of these models. However, here we highlight several recent
studies that are considered valuable in the light of the flickering
connectivity system reconstruction (see Table 1), emphasizing the
expectation that the rapidly growing body of phylogeographical/
phylogenetic literature in the region will support future comparative
analyses.

The dynamic history of the paramos elucidated by the flicker-
ing connectivity system can provide three important insights in
terms of evolutionary processes. First of all, the regional differences
in past paramo connectivity - the mountain fingerprint - support
temporally and spatially discordant phylogeographical patterns
(Massatti & Knowles, 2014; Papadopoulou & Knowles, 2015, 2016;
Pennington et al., 2010). This means that the timing of diversification
in the different mountain regions would not be expected to have
occurred synchronously, even if all phylogenetic studies on paramo
species could overcome current issues in model inference, taxon-
omy and distribution, spatial resolution and time-calibration points
(Rull, 2011). Secondly, diversification rates might differ along the
elevational gradient and this might be the rule rather than the ex-
ception. Elevational differences in surface availability and connec-
tivity (Bertuzzo et al., 2016; Flantua & Hooghiemstra, 2017; Flantua
et al., 2014) are likely to influence at what elevation the strongest
geographical processes will occur, and these processes are thus ex-
pected to differ between mountain systems resulting in elevational
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differences of diversification (see e.g. Hughes & Eastwood, 2006;
Kropf, Kadereit, & Comes, 2003; Lagomarsino, Condamine, Antonelli,
Mulch, & Davis, 2016; Quintero & Jetz, 2018). Furthermore, the cli-
mate fluctuations of the Pleistocene caused connectivity to occur at
different moments through time (Figure 1), a process facilitating the
step-wise but irregular migration of paramo plant species through-
out the landscape, such as Puya, Loricaria and Espeletiinae (Table 1).
Thirdly, the flickering connectivity system, which is expected to
cause phases of increased isolation followed by increased connec-
tivity of populations, is expected to result in pulses of diversification
(Knowles, 2000), possibly resulting in series of sub-radiations in the
paramos. Where isolation resulted in allopatric, in situ speciation,
connectivity triggered diversification through dispersal and settle-
ment in new areas ('dispersification’, Moore & Donoghue, 2007),
and hybridization of previously isolated populations (Grant, 2014;
Petit et al., 2003). Much evidence suggests that hybridization is not
the processes of species becoming ‘reabsorbed’ into their parental
forms but contributes by bringing evolutionary novelty and gene
flow operating at different introgression rates (Duskova et al., 2017;
Nevado, Contreras-Ortiz, Hughes, & Filatov, 2018; Pouchon et al.,
2018), and thus a likely trigger of speciation and morphological diver-
sity. Interestingly, population-level processes such as gene flow, dis-
persification and hybridization, alongside periods of isolation, have
been increasingly recognized to play out at the phylogenetic scale,
leading to (rapid) lineage diversification, for example in mountains
(e.g. Hazzi et al., 2018; Knowles & Massatti, 2017), tropical rain for-
ests (e.g. Onstein et al., 2017) and islands (e.g. Ali & Aitchison, 2014).
Interestingly, the Funza09 pollen record shows a clear increase in
the amplitude of climate change around the mid-Pleistocene tran-
sition (ca. 0.9 Ma) coinciding with accelerated diversification of high
elevation birds (Weir, 2006) and the Espeletiinae in the Cordillera de
Mérida (Pouchon et al., 2018; Table 1). Indeed, these studies signal
a potential link between the intensity of the flickering connectivity
system and biological radiations (Flantua & Hooghiemstra, 2018).
Thus, the flickering connectivity system is expected to have left an
imprint on geographical patterning of genetic divergence (between
populations) and within-populations genetic diversity with obvious
inter-cordillera differences. Furthermore, extinction events may
further complicate the observed patterns of divergence between

cordilleras.

4.3 | Future research

Our spatio-temporal estimates of past connectivity lay a founda-
tion for further research on elucidating the causal mechanisms of
mountain diversifications (see also Appendix S7). Models of past
connectivity (Figures 4-6), when combined with phylogeographic
data, could help reveal the role of interspecific gene flow and
allopatric speciation in driving radiations in the high Andes and
contribute to a better understanding of the relative importance
of geography versus adaptive radiation that underpin Andean di-
versifications. In such a complex system it may also be useful to
pay attention to commonalities. For example, when considering
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both frequency and duration, our data show that two connectivity
patterns emerge (i.e. hourglass versus non-hourglass; Figure éc).
Research could explore if cordilleras with shared connectivity
patterns also share phylogenetic histories and contemporary (en-
demic) species’ biogeographies to test for universal mechanisms
that have shaped present day alpine biomes. This would be espe-
cially useful if used in conjunction with information on the repro-
ductive life histories, growth and dispersal capacities of specific
taxa.

Finally, past patterns of connectivity are critical to interpret bio-
geographical patterns of currently isolated or fragmented systems in a
wide variety of terrestrial ecosystems including mountains (Flantua &
Hooghiemstra, 2018), islands (e.g. Simpson, 1974; Weigelt, Steinbauer,
Cabral, & Kreft, 2016; Norder et al., 2018), fresh water systems (e.g.
Dias et al., 2014), rain forests (e.g. Graham, Moritz, & Williams, 2006),
grasslands (e.g. Lindborg & Eriksson, 2004; Miinzbergova et al., 2013)
and marine coastal ecosystems (Hoeksema, 2007) that similarly expe-
rienced major spatial changes during rapid sea-level fluctuations over
the Pleistocene. The approach developed here, to quantify historical
connectivity, can therefore provide a platform for interpreting con-
temporary biogeographies and past drivers of diversification in a wide
array of both marine and terrestrial ecosystems where available space
has been altered by climatic fluctuations. We postulate that quantify-
ing flickering connectivity systems will facilitate a much more detailed
and much needed quantitative basis to compare phylogeographic/
phylogenetic patterns, e.g. the Tibeto-Himalayan region (Muellner-
Riehl, 2019), and species (endemic) richness (e.g., Sklenar et al., 2014),
from different mountain regions of the world.

5 | CONCLUSIONS

We present a pollen record-based biogeographical model for the
paramo biome spanning the northern Andes (Venezuela, Colombia
and Ecuador) over the last 1 Myr. Our models suggest substantial
temperature oscillations where extreme temperature lows were ca.
8°C cooler than today, causing a total amplitude of the UFL of up
to 1,600 vertical meters. These extreme cold events were, how-
ever, rare (See frequency bars in Figure 4) and during glacial peri-
ods most of the time cool stadial and interstadial climate conditions
prevailed (Figure 3). Our analysis shows that paramos on all moun-
tain ranges underwent frequent alterations between fragmented
and connected configurations (Figures 4 and 5), but the estimated
degrees and amount of connectivity varied among mountain ranges
(Figure 6). Most paramos expanded during glacial periods even
though extensive glaciers were present. To a large extent the cur-
rent paramo distribution (located near their highest Pleistocene
elevational position) was replaced by the lowermost ice extensions
during the cool stadials, and during the coldest events replaced by
the thick ice masses of mountain glaciers, implicating a substantial
range size change of populations and a highly dynamic system dur-
ing Pleistocene times. Depending on the location of initial dispersal
- originating from ancestral areas - species would have experienced
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the flickering connectivity system differently and thus a mosaic of
contrasting patterns of genetic divergence and diversity is expected
among cordilleras mirroring the mountain fingerprint signatures.

In light of Von Humboldt's work of relevance of different topog-
raphies for mountain biota, we show that topography and climate
change together dictated paramo connectivity through time with
high spatial variability. The interplay of the topographical and pa-
laeoclimatic conditions created a unique pattern of connecting and
fragmenting paramo patches through time, here described as the
flickering connectivity system. Our spatially explicit model quantifies
the complexity of mountain biome dynamics during climate oscilla-
tions, in terms of the degree, frequency and duration of past con-
nectivity of high mountain biome (Figures 4-6) and can be applied to
other mountain regions. Our connectivity estimates can contribute
to answering long-standing questions on the drivers of evolutionary
diversification in phylogenetic and phylogeographical studies, and
enrich our understanding of the biogeographical history of mountain
ecosystems more generally.

There the different climates are ranged the one above
the other, stage by stage, like the vegetable zones,
whose succession they limit; and there the observer
may readily trace the laws that regulate the diminu-
tion of heat, as they stand indelibly inscribed on the
rocky walls and abrupt declivities of the Cordilleras.
(Von Humboldt, 1877 (1845), I, p 46)
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