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Highlights 19 

 Atelopus species have experienced severe chytridiomycosis-related declines.  20 

 This case study documents the wild and captive status of Atelopus in Panama.  21 

 Habitat models improve historical distribution maps and guide future efforts. 22 

 Captive breeding efforts prevent extinctions and are a valuable research resource. 23 

 24 

ABSTRACT 25 

Captive breeding programs are a valuable conservation resource especially when integrated with 26 

research goals. Panamanian Harlequin frogs (genus Atelopus) serve as a case study for 27 

integrating captive breeding and research goals because they have experienced drastic 28 

chytridiomycosis-related declines and have large captive populations. We reevaluated all 29 

Panamanian Atelopus species through the IUCN Redlist and compiled occurrence records for 30 

Panamanian Atelopus species to create improved historical distribution maps. We model 31 

Atelopus habitat suitability to improve our knowledge of their likely range and to guide for future 32 

conservation and reintroduction efforts. Captive breeding efforts in Panama and the United 33 

States established secure ex-situ populations of Atelopus certus, A. glyphus, A. limosus, A. varius, 34 

and A. zeteki. Atelopus chiriquiensis is presumed to be extinct with no captive populations. The 35 

status of one undescribed species, Atelopus aff. limosus, has not been evaluated and no secure 36 

captive population has yet been established. Captive breeding efforts that produce a surplus of 37 

Atelopus are an important resource for disease mitigation research and have enabled release trials 38 

to begin adaptive management approaches to understand the factors limiting Atelopus 39 

reintroduction efforts. The recent proliferation of molecular tools, climate models, bio-banking, 40 

and reproductive technologies position us to address multiple applied and basic evolutionary 41 

questions such as: What factors cause differential disease outcomes? Do persisting populations 42 

have heritable traits associated with improved survivorship? Are there climatic refugia from 43 

disease?  Ultimately, the answers to these questions will help us develop applied solutions and 44 

facilitate reestablishment of self-sustaining wild populations.  45 

 46 
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 48 

Introduction 49 

Amphibian populations are declining globally with more than one third of evaluated species 50 

being listed as globally threatened (Stuart et al. 2004). The disease chytridiomycosis, caused by 51 

the chytrid fungus Batrachochytrium dendrobatidis (Bd) is one major threat that is decimating 52 

amphibian populations worldwide (Berger et al. 2016). With no current tools to mitigate this 53 

threat, ex situ conservation programs have been set up to prevent imminent extinctions with the 54 

hope that species will eventually be reintroduced to the wild (Zippel et al. 2011). 55 

 56 

Harlequin frogs in the genus Atelopus are among the most threatened amphibians in the world 57 

(Lötters 2007). Threats to Atelopus include habitat modification and collection for the pet trade, 58 

but Bd is the most pressing threat, responsible for catastrophic declines and disappearances 59 

throughout their range (La Marca et al. 2005; Berger et al. 2016).  Panama has six described 60 

species of Atelopus: A. certus, A. chiriquiensis, A. glyphus, A. limosus, A. varius, A. zeteki, and at 61 

least one undescribed species: Atelopus aff. limosus (Flechas et al. 2017). All of the described 62 

species are listed as Critically Endangered or Extinct by the IUCN (IUCN SSC Amphibian 63 

Specialist Group In press). There is currently no solution for Bd likely to prevent the continued 64 

decline and extinction of Atelopus species in Panama, making ex situ captive assurance colonies 65 

one of the only options for their conservation (Gratwicke et al. 2016). 66 

 67 

Captive breeding is expensive and requires a huge amount of effort, often with no clear end date, 68 

making fundraising a demanding task subject to donor fatigue. As a result, breeding programs 69 

are subject to the common criticism that funds should be prioritized elsewhere. However, the 70 

benefits of captive breeding go beyond simply preventing a species’ extinction. Robust captive 71 

populations allow for research to improve collections management and sustainability, to 72 

understand and mitigate disease, and to increase the chances for successful reintroduction.   73 

 74 

This paper uses Panamanian Atelopus as a case study for captive breeding as a conservation 75 

action. We summarize the conservation status of Atelopus species both in the wild and in 76 

captivity. As part of the wild assessment we update known historical distribution maps and 77 

model habitat suitability for Atelopus in Panama to inform future conservation and reintroduction 78 

efforts. We discuss recent scientific advances using captive populations that move us towards 79 

science-based conservation solutions.   80 

 81 

The Role of Captive Breeding Programs 82 

Captive breeding and reintroduction are two priorities of the Global Amphibian Conservation 83 

Action Plan (Gascon et al. 2007). Of the more than 7,900 described amphibian species, 77 now 84 

have active captive breeding and reintroduction programs (Harding et al. 2016). These programs 85 

are often used to develop genetically viable, sustainable captive populations, as well as to grow 86 

and maintain suitable infrastructure and capacity to support those activities (Griffiths and 87 

Pavajeau 2008; Harding et al. 2016). Captive populations of animals also serve as living 88 

ambassador animals with an incredible power to engage audiences, and education programs are a 89 

critical element to captive breeding programs that help to build public support for the 90 

conservation of these species (Zippel et al. 2011).  91 
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In Panama, the first efforts to establish assurance populations of amphibians in response to the 92 

Bd threat began in 2001 when Panamanian golden frogs (A. varius and A. zeteki) were exported 93 

to U.S. zoos to be managed as part of a species survival program (Zippel 2002). Later efforts 94 

built the physical infrastructure and staffing capacity needed to house additional at-risk species 95 

in Panama itself (Gratwicke and Murphy 2016). A prioritization exercise examining 214 species 96 

of Panamanian amphibians found that Atelopus species were among the species at highest risk 97 

for Bd-related extinctions, and they were expected to have the best chances of avoiding 98 

extinctions through captive breeding efforts (Gratwicke et al. 2016).  99 

 100 

The Panama Amphibian Rescue and Conservation Project (PARC) is based at the Smithsonian 101 

Tropical Research Institute (STRI) in Panama and holds captive assurance populations of 12 102 

amphibian species, including five Atelopus species (Box 1). The rapidly growing captive 103 

Atelopus populations in Panama have exceeded most of the captive management goals (Fig. 1, 104 

PARC 2017). Management options now include selective rearing of limited numbers of 105 

offspring, euthanizing surplus-bred juveniles, or allocating surplus frogs for research. STRI hosts 106 

1,400 visiting scientists, students and interns per year at 6 research stations around the country. 107 

This infrastructure and the ability to host visiting researchers uniquely positions the PARC 108 

project to integrate captive breeding and research goals as access to Bd-susceptible animals is a 109 

critical resource for testing conservation-relevant hypotheses. 110 

 111 

Research to improve collections management and sustainability 112 

Many research priorities associated with captive collections are designed to help solve problems 113 

that affect the sustainability or improve cost-effectiveness of captive rearing. For example, 114 

research on stress hormones helped to establish cost-effective group housing recommendations 115 

for Atelopus (Cikanek et al. 2014), while research on the causes of spindly leg syndrome 116 

generated new solutions for treatment of this lethal condition associated with captive populations 117 

(Camperio et al. 2018). Collection and treatment of large numbers of Bd-positive Atelopus from 118 

the wild as they were brought into captivity offered veterinarians a valuable chance to optimize 119 

disease screening and treatment protocols using a case-study approach (Baitchman and Pessier 120 

2013).  121 

Hormone dosing methods can now be used to help improve representation of difficult-to-breed 122 

founding animals and collect gametes to build cryopreserved genome resource that can safeguard 123 

against unintended genetic bottlenecks in captivity (Kouba and Vance 2009). Cryopreservation 124 

methods for amphibians have not been perfected, but live amphibian offspring have been created 125 

from cryopreserved spermatozoa (Clulow and Clulow 2016), and comprehensive biobanking 126 

protocols have been developed for Panamanian species. Even though we have not yet produced 127 

live offspring from frozen Atelopus sperm, work has begun on cryopreserving tissue and sperm 128 

for all Panamanian Atelopus (Della Togna et al. 2017). In the future, assisted reproduction 129 

technology could be applied to collect sperm from relict populations that may have survived the 130 

Bd-outbreak and introduce genotypes that are resistant or tolerant to Bd into the captive 131 

populations. Regardless, genome resource banks and tissue collections of rare species are an 132 

invaluable  resource for basic research as high-quality tissues are needed for genomic research 133 

that are not normally available for species on the brink of extinction (Comizzoli and Wildt 2017).        134 

Research to understand and mitigate disease  135 
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Most instances of natural Bd infections in wild Atelopus populations have been associated with 136 

serious declines that ended in species non-detection (Table 1). As long as we have captive 137 

populations of susceptible Atelopus species, the incentive remains to continue working on 138 

finding a solution to the chytridiomycosis problem. We do not yet have a realistic solution to 139 

manage Bd in nature (reviewed by Garner et al. 2016), but a significant body of knowledge on 140 

the threat of Bd to Atelopus has been derived using surplus-bred captive animals. Captive 141 

Atelopus populations helped us understand disease dynamics under different climatic scenarios 142 

(Bustamante et al. 2010) and observe disease dynamics within multispecies community 143 

assemblages (Di Renzo et al. 2018). They have also allowed research that characterized genomic 144 

responses to infection (Ellison et al. 2014; Ellison et al. 2015), evaluated putative changes in Bd 145 

virulence (Langhammer et al. 2013; Voyles et al. 2018), and assessed the effectiveness of 146 

behavioral (Sauer et al. 2018) and innate defenses (Voyles et al. 2018) against Bd. 147 

 148 

One initial Bd mitigation approach that has been investigated for Atelopus is augmentation of the 149 

antifungal skin bacteria community to help prevent disease (also see Vredenburg et. al. this 150 

volume). Despite concerted research into Atelopus skin microbiomes (Flechas et al. 2012; Becker 151 

et al. 2014; Becker et al. 2015b; Rebollar et al. 2016), development of a probiotic disease 152 

mitigation protocol has been thwarted by difficulties in achieving lasting manipulations of 153 

Atelopus skin microbiomes (Becker et al. 2011; Becker et al. 2015a). While the findings of 154 

Atelopus microbiome studies have led to intriguing patterns of associations between disease and 155 

microbes (e.g. Becker et al. 2015b), difficulty controlling symbiotic microbial community 156 

composition is a common situation hindering probiotic applications in all systems (Yong 2016). 157 

It appears that we need more basic research to understand what influences microbial community 158 

structure and function before we can jump to applied solutions.  159 

The recent discovery that recovering populations of Panamanian amphibians may have evolved 160 

more effective antifungal skin secretions (Voyles et al. 2018) offers the potential to translocate 161 

resistant genotypes to sites where they do not currently exist, but where suitable habitat exists 162 

(Mendelson et. al. this volume). Captive populations will be an invaluable asset to this type of 163 

activity as breeding resistant or tolerant genotypes within an existing captive population 164 

infrastructure can produce large numbers of frogs with minimal impacts to small source 165 

populations that could be severely impacted by removal of a small number of individuals. It is 166 

possible to collect and evaluate the effectiveness of anti-Bd skin secretions using a non-lethal 167 

standardized assay (Woodhams et al. 2006). Using skin secretions as an indicator of 168 

susceptibility could allow us to screen captive frogs and breed for resilience traits without 169 

exposing the animals to a pathogen, solving at least some of the ethical issues that might arise 170 

from large-scale assisted evolution trials involving disease exposure. Similar assisted evolution 171 

approaches are being actively explored to breed strains of coral that are resilient to climate 172 

change (Van Oppen et al 2017). 173 

Another genomic approach is to identify genes associated with disease resistance or tolerance 174 

(eg. Savage and Zamudio 2011) and to use marker-assisted breeding. Often, desirable traits are 175 

associated with large numbers of genes that each have small effects on the phenotype, which is 176 

why marker-assisted animal breeding has not been widely adopted. Technological advances now 177 

allow us to associate thousands of single nucleotide polymorphisms with desirable traits for 178 

genome selection, improving the prospects for wider adoption of this method (Meuwissen et al. 179 
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2016). However, recent transcriptome studies found that desirable disease outcomes in one 180 

Lithobates species were associated with under (rather than over) expression of innate and 181 

acquired immune genes (Savage et al. in revision), suggesting that marker-assisted breeding for 182 

chytridiomycosis resistance may prove difficult.  183 

Other potential approaches include hybridization with closely related resistant species as a form 184 

of genetic rescue or through more direct genetic engineering, which are solutions that have both 185 

been successfully applied to American chestnuts that were wiped out by the chestnut blight 186 

(Steiner et al. 2017). CRISPR/Cas 9 methods for genome editing have been successfully applied 187 

primarily to Xenopus laevis and X. tropicalis whose full genomes have been sequenced and are 188 

publicly available (Shigeta et al. 2016). Targeted gene disruption experiments are rapidly 189 

illuminating gene function in this model (Shigeta et al. 2016). As of 2018, the genomes of five 190 

anuran species have been sequenced and published (Edwards et al. 2018). Improvements in 191 

genome sequencing technology and assembly pipelines mean that many more large amphibian 192 

genomes are likely to become available in the near future. With this progress it is conceivable 193 

that our understanding of the genetic basis for Bd resistance will improve to the extent that we 194 

might eventually be able to genetically engineer susceptible frogs to resist infection. While these 195 

cutting-edge solutions are exciting, the advances they offer are built on a foundation of basic 196 

research that involves established assisted breeding methods, reference genomes, differential 197 

gene expression studies and research into skin peptides. All of these basic research efforts will be 198 

greatly enhanced by integration with captive breeding efforts and access to genome resource 199 

banks that are only just being established as part of the Global Amphibian Conservation Action 200 

Plan (Gascon et al. 2007).   201 

Research into Historic Distribution and Reintroduction 202 

A goal of the Panama Amphibian Rescue and Conservation Project is reintroduction and 203 

reestablishment of wild Atelopus populations in Panama. One required step for reintroduction 204 

plans is understanding species’ historic distributions and their habitat needs (IUCN 2013).  We 205 

used historic occurrence data and known habitat requirements to improve distribution maps for 206 

all Panamanian Atelopus species (Fig 2A). We also used Maxent 3.4.1 to model habitat 207 

suitability for Atelopus in Panama and Costa Rica. Maxent is a maximum entropy method for 208 

modeling species' geographic distributions based on environmental factors that has been shown 209 

to work well when only presence data is available (Phillips et al. 2006; Elith et al. 2006; Phillips 210 

et al. 2017). See online appendix for details on the data and methods used for the Maxent model.  211 

 212 

Our final Maxent model had good performance and predicted areas of habitat suitability were 213 

reasonable based on our understanding of the ecology of Panamanian Atelopus. The mean Area 214 

Under the Curve (AUC) was 0.685 (Fig. A1). AUC is often incorrectly used as an indicator of 215 

model accuracy or quality when it should be used only to evaluate the performance of different 216 

models based on the same data (Lobo et al. 2008; Yackulic et al. 2013; Fourcade et al. 2014). 217 

Using a buffer to limit the locations that the model can use to randomly choose background 218 

points, as we did here (see information on background points in Table A1), results in a lower 219 

AUC value (VanDerWal et al. 2009, Yackulic et al. 2013). Overall response curves to individual 220 

environmental predictors reflected known Atelopus habitat preferences (Fig. A3). The mean 221 

omission rate of our model was very close to predicted omission (Phillips 2017), showing good 222 

discrimination between suitable and unsuitable sites (Fig. A2). The variables that contributed 223 
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most to the model were annual mean air temperature (permutation importance = 66.3%) and 224 

mean diurnal temperature range (11.7%) (Table A2). The map produced by the model largely 225 

aligns with expectations based on our experience surveying for Atelopus in Panama (Fig. 2B). 226 

However, two areas of predicted suitable habitat that have been well-surveyed but found not to 227 

be occupied by Atelopus include Cerro Hoya on the Azuero peninsula and Serranía de Majé 228 

which are disjunct from the central cordillera with unsuitable connecting habitat that may have 229 

been a biogeographic barrier to colonization (Fig. 2B).  230 

 231 

Taken together, the habitat suitability and distribution maps in Figure 2 will help us identify 232 

areas of predicted suitability that have been poorly sampled due to inaccessibility. This 233 

information will allow us to prioritize potential survey and monitoring sites. 234 

 235 

The mapping exercise also revealed some taxonomic issues requiring attention. Firstly, the as yet 236 

unnamed Atelopus aff. limosus should be investigated further and either described as a distinct 237 

species or recognized as a range extension for A. limosus, which would then occupy the entire 238 

Chagres Highlands-San Blas-Darien mountain range. Secondly, the uncommon sympatry 239 

between A. chiriquiensis and A. varius was based on morphological differences (Savage 1972) 240 

but would benefit from data showing genetic distinctness as well, especially given that other 241 

morphologically distinct Atelopus species will readily hybridize in captivity (RI unpublished 242 

data). The Maxent model suggests that A. varius could have contiguous distribution throughout 243 

the central cordilliera from San Jose in Costa Rica to El Cope in Panama (Fig 1 B), but observed 244 

genetic differences between Costa Rican and Panamanian Atelopus varius (Richards and 245 

Knowles 2007), may indicate that the unusually wide ranging Atelopus varius is actually 246 

comprised of several species with more restricted distributions.  247 

 248 

Our habitat suitability map could be used to identify areas where Atelopus may be persisting in 249 

climate refugia (Sheele et al. this volume). Climate refugia exist in areas where a host species 250 

can persist with the pathogen or where hosts persist outside of the potential distribution of the 251 

pathogen (Woodhams et al. 2011). Studies suggest that amphibians can use climate refugia to 252 

survive in areas with Bd. In Australia, Litoria lorica had disappeared from its known range, but a 253 

population was later found persisting with Bd infection in another drier area (Puschendorf et al. 254 

2011). Craugastor taurus was rediscovered in Costa Rica in an area that was drier and warmer 255 

than the species’ historical habitat, and these animals were persisting despite a high Bd 256 

prevalence (Chaves et al. 2014). Rebollar et al. (2014) found that the disease burden of 257 

amphibians was lower in the lowlands of Panama. They hypothesized that this was because Bd 258 

did not grow or reproduce well in lowland climates, which allowed amphibian defenses to be 259 

relatively more effective (Rebollar et al. 2014).  260 

 261 

For Atelopus, chytridiomycosis-related declines in warmer, drier lowland areas tend to be slower 262 

(McCaffery et al. 2015). In some places, Bd-related mortality may be offset by recruitment 263 

(Lampo et al. 2017). Furthermore, Atelopus once thought to be extinct have been rediscovered in 264 

places that are marginally suitable for the Bd (García-Rodríguez et al. 2012; Perez et al. 2014; 265 

Voyles et al. 2018). Future work will use the habitat suitability model we have presented for 266 

Atelopus and overlay it with a similar Bd model in Panama to identify potential climate refugia 267 

that could be used as reintroduction sites. Captive breeding populations will be critical to testing 268 
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the climate refugia hypothesis as it will require the release of animals in multiple sites with 269 

different microclimates.  270 

 271 

An alternative reintroduction strategy could be the intentional reintroduction of large numbers of 272 

animals to areas where Bd is present, allowing allow natural selection to act upon large numbers 273 

of animals in the hopes that eventually there might be survivors. Given the large numbers 274 

required, releases at the tadpole stage followed by intensive post-release monitoring would likely 275 

be the most cost-effective approach. However, much more information on limiting factors in the 276 

system would be needed, including potentially affecting the pathogen load in existing amphibian 277 

communities by releasing highly susceptible species into them (DiRenzo et. al 2018). Other 278 

uncertainties with reintroduction are not necessarily related to Bd, and optimal reintroduction 279 

strategies depend on many variables and can vary with objectives (Canessa et al. 2014). 280 

Amphibians are generally thought to be better adapted for reintroduction efforts than other 281 

animals because of small body size, high fecundity, and hard-wired physiology and behavior 282 

(Griffiths and Pavajeau 2008), though this does not necessarily apply to all species as life history 283 

traits are variable (Tapley et al. 2015). It is not known how well captive Atelopus would 284 

transition back into the wild, so trial releases of surplus-bred frogs could provide valuable 285 

information, such whether individuals recover their wild-type microbiome or toxicity, what other 286 

sources of mortality are, which life stage has the highest probability of survival in relation to 287 

rearing costs. Trial releases can also provide information on the best release method (soft vs. 288 

hard release) to maximize persistence and help us to improve post-release monitoring methods 289 

that have notoriously low reencounter rates (Brannelly et al. 2016).  290 

 291 

PARC has begun limited release trials with captive bred animals to begin researching these 292 

issues. Five hundred surplus A. varius and A. limosus were released in 2017 and 2018. The first 293 

trial evaluated holding frogs for 30 days in mesocosms (soft release) vs hard releases (direct 294 

introduction to the wild) but did not detect major differences in post-release survivorship (B. 295 

Klocke, A. Estrada and D. Medina, unpublished data). Released animals fitted with 296 

radiotransmitters quickly dispersed out of the post-release monitoring area, resulting in low 297 

recapture rates of non-radiotracked animals (B. Klocke, unpublished data), making the 298 

deployment of mesocosms more attractive to guarantee re-encounters with frogs over the 299 

medium term. While post-release monitoring is a difficult and resource-intensive exercise, it is 300 

essential to understand the fate of reintroduced animals for use in adaptive management 301 

frameworks (Canessa, This Volume; Converse, This Volume; Grant et al. 2017).  302 

3 Conclusions 303 

Bd is an ongoing threat to amphibian populations in Panama, and without a way to mitigate the 304 

associated disease-related declines, reintroductions of amphibians are generally not 305 

recommended as they are likely to end in failure (Muths and MacCallum 2016). However, robust 306 

captive populations of Atelopus species in Panama offer a variety of opportunities to conduct 307 

research that improve our knowledge of the species' ecology. Observation is the first step in the 308 

scientific method and a hands-on approach may ultimately offer insights into reintroduction and 309 

other management solutions (Grant et al. 2017). Captive collections serve two importance 310 

conservation purposes – one immediate and one long-term.  Immediately following the Bd 311 

epidemic, captive collections has prevented the extinction of some highly susceptible species. In 312 
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the long-term, success in captive rearing has produced surplus individuals that can be used for 313 

research to improve conservation strategies and provide individuals for reintroduction. These 314 

living collections of animals are more than a simple insurance policy for threatened species, they 315 

are an important resource for research that will ultimately lead to the reestablishment of 316 

sustainable wild populations of these species.  317 

 318 
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Box 1. Conservation status of Atelopus in Panama 

Also see Fig. 2A for historical ranges of all species and Table 1 for information on Bd 

declines. The Amphibian Ark recommends collecting at least 20 pairs of each species as 

founders with the goal of 10 breeding pairs and growing the population to 300-500 individuals 

(Schad 2008). 

 

Atelopus certus - Status in the wild: Critically Endangered (IUCN, In press). This species 

is endemic to the Darien region of Panama. Bd has not yet been detected in this species’ range, 

but future population declines are projected based on declines observed for other species in 

this genus (La Marca et al. 2005). The last monitoring surveys in January 2016 recorded fewer 

frogs than expected, however, because no individuals were recorded as Bd positive at the time, 

it is uncertain whether this is due to infection with Bd or the drought-related to El Niño in 

2016 (RI unpublished data). Status in captivity: Secure. The total living captive population is 

represented by 22 founders out of 28 individuals that were bred, and the captive population is 

about 350 adult animals.  

 

Atelopus chiriquiensis - Status in the wild and captivity: Extinct (IUCN, In press). This 

species was once considered locally abundant along streams near the border of Panama and 

Costa Rica but declined due to chytridiomycosis (Berger et al. 1998; Lips 1999). There have 

been no known sightings of this species since 1996 (La Marca et al. 2005), and experts believe 

the species is Extinct (Gratwicke et al. 2016). No captive populations exist. 

 

Atelopus glyphus - Status in the wild: Critically Endangered (IUCN, In press). This 

species was once locally abundant in the Pirre range in Panama, but the first field observations 

of dead, Bd-positive frogs were reported in 2015 (M. Ponce pers. comm. October 2015). These 

appear to have been linked to marked population declines as the last survey in January 2018 

recorded only a single Bd -positive individual over three days of searching (O. A. Garcés pers. 

comm. May 2018). Status in captivity: Almost secure. Of the 20 founders bred, only 18 have 

surviving captive offspring, requiring at least two more unrepresented founders to be bred to 

meet our minimum Amphibian Ark population goals. The total adult captive population is 

about 350 animals. 

 

Atelopus limosus -Status in the wild: Critically Endangered (IUCN, In press). This central 

Panamanian species has disappeared from many known localities since Bd was first detected 

in Chagres National Park in 2009 (RI unpublished data). Declines at higher elevation sites 

were very rapid while the declines at a lowland site, took place over five years and a few 

individuals were observed in 2015 (RI unpublished data). These sites have not been surveyed 

since 2016, so it is not known if remnant populations exist. In 2018, wild populations persisted 

at several sites within the Mamoni Valley but some individuals had heavy Bd infections (B. 

Klocke, pers. comm. May 2018). Status in captivity: Secure. Twenty-six individuals have 

been bred in captivity. Offspring from just 20 of those pairs survived to adulthood and make 

up the current captive population. The species shows geographic variants: some populations 

have a muddy brown coloration similar to the type-specimens of this species (Ibáñez et al. 

1995), and others have a black and green coloration with a chevron-shaped black pattern on 

the dorsum. The captive founding population includes only this chevron variant.  
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 354 

  355 

Atelopus varius - Status in the wild: Critically Endangered (IUCN, In press). This species’ 

historical range stretches along the central cordillera of Costa Rica and Western Panama 

(Savage 1972; Zippel et al. 2006). Most of the declines noted for this species occurred 

between 1987-2007. Since then, remnant populations have been rediscovered in Costa Rica 

(Ryan et al. 2005; Escobedo-Galván et al. 2013) and in Panama (Hertz et al. 2012; Perez et al. 

2014; Voyles et al. 2018). The largest known population in Panama persists in the lowland 

Caribbean forests in the Donoso area but frogs there have a high Bd prevalence and are highly 

susceptible to chytridiomycosis (RI, unpublished data). Status in captivity: Secure. A total of 

24 founders are represented in captivity in Panama including 8 highland and 16 lowland-

collected founders that are separately managed. Acquisition of founders from lowland areas in 

the Donoso area as recently as 2016 boosted the total founder populations for this species, but 

many of these animals still need to be bred. In addition to the Panamanian captive population, 

about 160 frogs descended from six highland founders exist in U.S. zoos (K. Barrett pers. 

comm 2018).  

 

Atelopus zeteki - Status in the wild: Critically Endangered, Possibly extinct in the wild 

(IUCN, In press). This species was found around the area of El Valle de Anton and Cerro 

Campana (Richards and Knowles 2007). These populations have been in decline for decades 

due to habitat modification/loss and over-collecting for the pet trade. The first Bd-related 

declines were observed in 2005 near El Valle de Anton. The last wild animal was seen in 2009 

(E. Griffith pers. comm. 2015). Surveys conducted once or twice each year between 2012 and 

2017 at 4 – 6 historical sites in the El Valle area have not yet detected any persisting 

populations (CZ & JV unpublished data). Status in captivity: Secure. A total of 4 large-

bodied upland founders are represented in the captive collection in Panama. The captive 

population in Panama is not regarded as secure from a genetic standpoint but it could be 

recovered through reimportation of U.S. blood-lines.  More than 1,300 adult frogs descended 

from 32 individuals are managed by the Golden Frog Species Survival Program in the U.S. 

(Estrada et al. 2013; K. Barrett pers. comm. 2018). The sources of these captive populations 

include small-bodied lowland animals (12 founders) and larger bodied upland animals (20 

founders) that are managed separately (Zippel et al 2006; Estrada et al. 2013).  

 

Atelopus aff. limosus - Status in the wild: Not Evaluated.  This population of Atelopus 

occurs in inaccessible areas of the Darien National Park (Cerro Tarcacuna) or indigenous 

Comarca areas where scientific sampling permits are challenging to obtain. Further 

exploration is urgently needed for this population which, if it is a new species, will likely be 

evaluated as Critically Endangered. The frogs differ in coloration from described Atelopus 

species, but somewhat resemble the chevron color variant of Atelopus limosus. Genetic and 

taxonomic work is needed to place this population in a phylogenetic context, and disease 

monitoring is needed to understand if Bd is impacting the population. Status in captivity: Not 

secure. This species is also known from the Colombian side of the border and two males exist 

in captivity at the Cali Zoo, but sustainable captive populations need to be established 

(Flechas, et. al. 2017, S. Flechas, pers. comm. 2018).  
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Table 1. 2018 IUCN assessment of the conservation status of wild Atelopus in Panama.  356 

 357 
Species IUCN Red 

List status 

(In Press) 

Bd /declines detected Justification 

A. certus CR A3ce Not yet detected, last survey 2016 

(R.  Ibáñez pers comm). 

> 80% future declines predicted 

within 21 years (the next three 

generation lengths). Inferred from Bd-

related declines observed in other high 

altitude Atelopus species in the same 

region.  

A. chiriquiensis EX 1993 Las Tablas, CR (Lips et al. 

2003)  

1994 Cerro Pando, PA (Berger et al. 

1998) 

This species has not been seen since 

1996, despite 2 decades of intensive 

searches. 

A. glyphus CR A4ce 2015 (M. Ponce pers. comm. 

October 2015) 

> 80% decline inferred in 10 years 

since first Bd-related declines 2015 

that are projected to continue over 21 

years (three generation lengths). 

A. limosus CR A4ce 2009 Chagres NP, PA (R.  Ibáñez 

pers. comm.). 

> 80% decline inferred in 10 years 

since first Bd-related declines 2009 

that are projected to continue over 21 

years (three generation lengths). 

A. varius CR A4ce 1986 San Ramón, CR (Puschendorf 

2003) 

1987 Monte Verde, CR (Pounds and 

Crump 1994) 

1992 Rivas, CR (Puschendorf 2003) 

1997 Fortuna, PA (Berger et al. 

1998)  

2003 Santa Fe, PA (Brem and Lips 

2008) 

2004 El Cope, PA (Lips et al. 2006; 

McCaffery et al. 2015) 

>80% decline of the known 

population estimated using a 21-year 

(3 generations) decline period window 

starting from 2002. Population size is 

unknown, but it is probably in the 

range of 250-2,500 mature individuals 

remaining in the wild. 

A. zeteki CR A2ace 2005 El Valle de Anton, PA 

(Richards-Zawacki 2010; McCaffery 

et al. 2015) 

> 80% decline inferred in last 10 years 

(starting from 2008). Possibly Extinct 

in the wild. If any individuals remain 

in the wild it is unlikely that there are 

more than 50. 

A. aff. limosus NE Not detected by Flechas et al. 

(2012), but no recent Bd surveys 

have been conducted (R. Ibáñez 

pers. comm.). 

Not Evaluated, but when it becomes 

taxonomically recognized would 

likely be listed as CR A3ce using a 

similar justification to A. certus.  

  358 
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 359 
Fig. 1. Progress towards Amphibian Ark Captive Population Management Goals for each 360 

Atelopus species held in captivity in Panama between 2014-2017. The two species that are not 361 

represented in captivity are A. chiriquiensis and A. aff. limosus.  362 

  363 
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 364 

 365 
*Color should be used in print*  366 

Fig 2. A. Distribution map of Panamanian Atelopus species. Distributions were delineated using 367 

occurrence records combined with visual appraisal of habitat suitability. B. Maxent raw habitat 368 

suitability map for Panamanian Atelopus. Each cell's suitability value is proportional to the 369 

expected number of presences per unit area, with all values summing to 1. The values can be 370 

interpreted as the relative likelihood of occurrence. Photos courtesy S.V. Flechas, M. Guerra, B. 371 

Gratwicke.  372 

 373 

374 
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Online Appendix to accompany “Conserving Panamanian Harlequin Frogs by Integrating 625 

Captive-breeding and Research Programs.” 626 

 627 

Data Sources and Modeling Methods 628 

We defined our study region as 7 - 11.5 °N and 77 - 86°W, an area that encompasses all of 629 

Panama and Costa Rica. We selected this region because two Panamanian species (A. 630 

chiriquiensis and A. varius) have historic ranges extending into Costa Rica.  631 

 632 

Species distribution models should be informed by the biotic and abiotic needs of the species. 633 

Species in the Atelopus genus are very similar to one another in their general ecology 634 

(McCaffery et al. 2015). They tend to have limited distributions and are often only known from a 635 

few collection sites (Lötters 2007). They are diurnal and usually live at mid to high elevations 636 

(La Marca et al. 2005). Atelopus are often found on stream banks or on rocks in streams in areas 637 

of higher slope because they use fast-moving streams for breeding (Lötters 2007). They mostly 638 

live in primary or secondary growth forests, but occasionally can be found in disturbed forest 639 

bordered by cattle pasture (Lindquist and Hetherington 1998). 640 

 641 

We gathered occurrence data for the seven species of Atelopus from Panama from GBIF 642 

(gbif.org), VertNet (vertnet.org), the Smithsonian Tropical Research Institute 643 

(stricollections.org), expedition data from the Panama Amphibian Rescue and Conservation 644 

Project (RI, unpublished data), and other field efforts (CLR-Z, unpublished data). We reviewed 645 

occurrence data by plotting each georeferenced locality using the ArcGIS world topo map and 646 

adjusting coordinates to more accurately reflect the location description and drainage if 647 

necessary. We discarded specimens with poor locality descriptions and no coordinates. The 648 

distributions of most Atelopus species do not overlap spatially. We modified the species 649 

identifications of specimens with good locality data that occurred within the known range of 650 

other similar-looking species without further examination of the specimen (e.g. if a specimen 651 

identified as Atelopus varius was documented outside the range of A. varius but inside the range 652 

of A. limosus, we changed the ID to A. limosus). These occurrence data were used to generate a 653 

species distribution map by drawing polygons around historical distribution records (Fig. 2A).   654 

 655 

The only Panamanian Atelopus species that occur sympatrically are A. chiriquiensis and A. 656 

varius (Savage 1972) in one region close to the Costa Rica-Panama border, and A. zeteki and A. 657 

varius at a single site (Richards and Knowles 2007). In these locations, we retained the original 658 

species identifications. After review, we retained 214 Atelopus occurrences (Fig. 2A) (Atelopus 659 

varius = 111 occurrences; A. chiriquiensis = 27; A. zeteki = 21; A. limosus = 16; A. glyphus = 14; 660 

A. certus = 11; Atelopus aff, limosus = 14). We are interested in habitat suitability for the genus 661 

Atelopus, so the locations for all seven species were combined into one Atelopus occurrence 662 

dataset for modeling. We made this decision because all seven species of Atelopus in Panama 663 

occupy similar habitats. In addition, we had different numbers of occurrence records for each 664 

species. The discrepancy in the number of records among species would have required different 665 

modeling methods for species with few records, and this could have resulted in less robust 666 

models.   667 

 668 
We selected environmental data based on relevance to the biological requirements of Atelopus, 669 

including climate variables, slope, and land cover. We processed all data using ArcMap 10.6 and 670 
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SDMToolBox 2.2 (Brown 2014) and we reprojeccted and resized final layers to match each 671 

other and the study extent. Climate variables came from the WoldClim version 2 BioClim 672 

dataset, which contains spatially interpolated monthly climate data at 1km resolution aggregated 673 

from 1970-2000 (Fick and Hijmans 2017). The slope layer was created in ArcMap from the 674 

Shuttle Radar Topography Mission (STRM) 1 arc-second digital elevation model (data available 675 

from the U.S. Geological Survey). We obtained land cover data at 1km resolution from the 676 

Global Land Cover Project North America 2000 (Latifovic et al. 2003). Atelopus occurrences in 677 

this land cover layer matched the general description of Atelopus habitat from Lindquist and 678 

Hetherington (1998).  They were found in four land cover types, with the majority in closed 679 

canopy tropical broad-leaved evergreen forest (148 occurrences). To simplify land cover into 680 

biologically relevant categories for Atelopus, we regrouped land cover types in ArcMap to form 681 

three habitat classes that correspond to Atelopus occurrence: classification 1 is commonly 682 

occupied land cover, classification 2 combines other occupied land covers (categories 7, 18, and 683 

29) and is less commonly occupied by Atelopus, and classification 3 combines all other 684 

categories unoccupied by Atelopus.  685 

 686 

We ran a pairwise Pearson's R analysis to evaluate correlation in the environmental data and 687 

selected variables that were not highly correlated (r < 7). These variables included slope, land 688 

cover, annual mean air temperature (Bio1), mean diurnal temperature range (Bio2), isothermality 689 

(Bio3), annual precipitation (Bio12), precipitation of the wettest month (Bio13), precipitation of 690 

the driest month (Bio14), precipitation of warmest quarter (Bio18), and precipitation of the 691 

coldest quarter (Bio19). To minimize spatial bias in occurrence points, we used spatial filtering 692 

to eliminate any occurrence within 1km of another, keeping as many occurrences as possible 693 

(Kramer-Schadt et al. 2013; Boria et al. 2014). We chose one kilometer because Atelopus exhibit 694 

site fidelity, have small home ranges, and are rarely found far from their stream (Crump 1986; 695 

Lindquist and Hetherington 1998; Luger et al. 2009). After filtering, 166 Atelopus occurrence 696 

records were left. Atelopus distribution was modeled using Maxent 3.4.1 (Phillips et al. 2006; 697 

Phillips et al. 2017). To avoid overfitting, we ran tuning models based on recommendations from 698 

the literature to explore settings (Merow et al. 2013) (Table S1).   699 
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Table A1. Details of settings for tuning runs and final model. For more details regarding 700 

settings, see Phillips and Dudik (2008) and Merow et al. (2013). 701 

Setting Description 

Tuning 

Models 

Final 

Model Justification 

Environmental 

Variables 

Environmental 

variables used for the 

model. Should be 

relevant to the 

species.  

Bio1, Bio2, 

Bio3, Bio12, 

Bio13, Bio14, 

Bio18, Bio19, 

Slope, Land 

Cover 

Bio1, Bio2, 

Bio3, 

Bio12, 

Bio13, 

Bio14, 

Slope, Land 

Cover 

Bio18, Bio19 

permutation of 

importance < 1% in 

tuning. Variables not 

biologically significant 

in tropics as temp. 

stays relatively 

constant each season.  

Feature 

Classes 

Constraints on the 

model. 

Linear; Linear 

and 

Quadratic; 

Auto 

Linear and 

Quadratic 

Linear alone did not 

perform well, L/Q and 

auto performed the 

same.  

Regularization 

Parameter 

Can reduce 

overfitting. Higher 

number gives more 

spread-out 

distribution. 0.5; 1.0; 2.0 1.0 

Provided best habitat 

discrimination in 

output map 

Background 

Points 

Points the model 

compares to presence 

locations to 

differentiate more 

suitable 

environmental 

conditions. Should be 

limited to areas 

accessible to the 

species (Merow et al. 

2013; Fourcade et al. 

2014).  

Buffered local 

adaptive 

convex‐ hull 

with alpha = 3 

around 

occurrence 

points. 

Buffers = 

10km, 15km, 

and 20km.  20km 

Buffers biologically 

justified as they 

generally encompass 

environments that are 

similar to habitat 

occupied by Atelopus 

and that has been 

available for dispersal. 

20km provided best 

habitat discrimination 

in output map 

Number of 

Background 

Points 

Number of points 

chosen by the model 10,000 10,000 

More accurate results 

with higher numbers 

(Barbet-Massin et al. 

2012) 

Replicates 

Number of times the 

model is run 

1 time for 

each tuning 

run 20 times 

Should average several 

runs (Barbet-Massin et 

al. 2012)  

Training/Test 

partition 

If one run, number set 

aside for training and 

testing the model. If 

multiple runs, type of 

replicates 75%/25% 

Cross-

validation 

with 

jackknife 

Accounts for variation 

in background data 
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Maximum 

Iterations 

Iterations run until 

model convergence 5,000 5,000 Permits convergence 

Convergence 

Threshold 

Stop training when 

drop in log loss equals 

value 0.00001 0.00001 

Recommended by 

model 

Output 

Type of output from 

model. Commonly 

used are raw and 

logistical. Raw Raw 

Recommended. 

Logistical is based on 

assumptions about 

probability of 

occupancy that are 

difficult to biologically 

justify (Yackulic et al. 

2013). 

  702 
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Table A2. The permutation importance which shows the contribution of each variable to the 703 

final model.  704 

Variable 
Permutation 

Importance (%) 

Annual Mean Air Temperature (Bio1) 66.3 

Mean Diurnal Temperature Range (Bio2) 11.7 

Precipitation in Wettest Month (Bio13) 8.3 

Annual Precipitation (Bio12) 6.9 

Precipitation in Driest Month (Bio14) 4.5 

Isothermality (Bio3) 1.1 

Land Cover 0.6 

Slope 0.6 

 705 

  706 
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 707 
Fig. A1. Receiver operating characteristic (ROC) curve averaged over 20 runs. Average test 708 

AUC was 0.685, standard deviation 0.085.  709 

  710 
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 711 

 712 
Fig. A2. Test omission rate and predicted area as a function of the cumulative threshold, 713 

averaged over 20 runs. Omission rate was close to predicted omission. 714 
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 720 
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 726 

 727 

 728 

 729 
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 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

Fig. A3. Response curves showing how each environmental variable affects the model 742 

prediction. Mean response of 20 replicates in red (±1 SD in blue). The y-axis is the raw value 743 

output estimating likelihood of occurrence. Temperature values in °C, precipitation values in 744 

mm, slope value in degrees.  745 

 746 
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 748 
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