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25
26 Summary 

27 1. The climate sensitivity of forest ecosystem woody productivity (ANPPstem) influences 

28 carbon cycle responses to climate change. For the first time, we combine long-term 

29 annual growth and forest census data of a diverse temperate broadleaf deciduous forest, 

30 seeking to resolve whether ANPPstem is primarily moisture- or energy-limited and 

31 whether climate sensitivity has changed in recent decades characterized by more mesic 

32 conditions and elevated CO2.

33 2. We analyzed tree-ring chronologies across 109 years of monthly climatic variation 

34 (1901-2009) for 14 species representing 97% of ANPPstem in a 25.6-ha plot in northern 

35 Virginia, USA. 

36 3. Radial growth of most species and ecosystem-level ANPPstem responded positively to 

37 cool, moist growing season conditions, but the same conditions in the previous May-July 

38 were associated with reduced growth. In recent decades (1980-2009), responses were 

39 more variable and on average, weaker. 

40 4. Our results indicate that woody productivity is primarily limited by current growing 

41 season moisture, as opposed to temperature or sunlight, but additional complexity in 

42 climate sensitivity may reflect the use of stored carbohydrate reserves. Overall, while 

43 such forests currently display limited moisture sensitivity, their woody productivity is 

44 likely to decline under projected hotter and potentially drier growing season conditions.

45

46

47 Key words: ANPP; climate sensitivity; dendrochronology; ForestGEO; temperate deciduous 

48 forest; tree rings, woody productivity, non-structural carbohydrates

49

50
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51 Introduction

52 Forests globally sequester ~1/3 of anthropogenic CO2 emissions from fossil fuel 

53 combustion (Le Quéré et al., 2017), thereby slowing atmospheric CO2 accumulation and 

54 consequent climate change. Yet, the persistence of this global forest carbon (C) sink is threatened 

55 by climate change, including the increasing risk of severe drought (Trenberth et al., 2014; Clark 

56 et al., 2016), and its future course remains one of the largest uncertainties in global climate 

57 models (Friedlingstein et al., 2006). To predict the future C balance of forests, it is necessary to 

58 understand the climate sensitivity of aboveground woody net primary productivity—i.e., the 

59 portion of C fixed through photosynthesis that is preserved long-term in woody stems 

60 (ANPPstem). The challenge to doing so is that this requires multi-decadal records of annual 

61 growth for all tree species that contribute substantively to ANPPstem. Tree rings are invaluable for 

62 disentangling the multiple interacting factors that influence growth, including climatic variation.  

63 However, traditional dendrochronological methods, where only targeted canopy trees are 

64 sampled, are not optimal for characterization of the climate sensitivity for entire forest stands 

65 (Babst et al., 2018). Moreover, and may overestimate climate sensitivity (Klesse et al., 2018b). 

66 There has been limited use of tree rings to estimate ANPPstem (Graumlich et al., 1989; Davis et 

67 al., 2009; Babst et al., 2014; Dye et al., 2016; Klesse et al., 2016; Teets et al., 2018a) and its 

68 climate sensitivity (Woolley et al., 2015; Klesse et al., 2018a; Teets et al., 2018b). 

69 Temperate forests are an important C sink (~0.8 Pg C yr-1; Pan et al., 2011), with ~0.2 Pg 

70 C sequestered annually by the broadleaf deciduous forests of eastern North America (Albani et 

71 al., 2006). Despite being among the best-studied ecosystem types on Earth (Martin et al., 2012), 

72 there remains large uncertainty as to the climate sensitivity of temperate broadleaf forests and 

73 how they will respond to future climate change. Notably, of the >4000 collections in the 

74 International Tree-Ring Databank, only 19% are of broadleaf species and of that small 

75 proportion, 67% are of Quercus species (Zhao et al., 2019). 

76 The broadleaf deciduous forests of eastern North America are generally mesic and 

77 conventionally considered to be more strongly limited by energy (temperature or solar radiation) 

78 than by water (Running et al., 2004). Over relatively short time scales, gross primary production 

79 (GPP) and transpiration are reduced under cloudy, cool conditions (Barford, 2001; Anderson-

80 Teixeira et al., 2015b). Growing season length (shaped by spring and fall temperatures) appears 

81 to be a primary driver of interannual variability in net ecosystem exchange of CO2 (NEE; 
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82 (Baldocchi et al., 2018). Meanwhile, tree-ring based records of radial growth covering most of 

83 the 20th century indicate that most of the dominant canopy species in the region respond 

84 positively to water availability and negatively to high temperatures (Elliott et al., 2015; Martin-

85 Benito & Pederson, 2015; Charney et al., 2016; Levesque et al., 2017; D’Orangeville et al., 

86 2018). However, it is unknown whether the whole forest ecosystem follows the trends observed 

87 in tree-rings from canopy trees or whether co- and sub-dominant individuals or smaller-statured 

88 species alter the response of ANPPstem to climatic variation (i.e., a niche complementarity effect; 

89 Isbell et al., 2015). Thus, it remains unclear how whole-ecosystem ANPPstem responds to 

90 interannual variability in growing season climate. 

91 Beyond the influence of current growing season conditions, ANPPstem is almost inevitably 

92 influenced by conditions in the prior year. This is because early-season stem growth is partially 

93 fueled by non-structural carbohydrate (NSC) reserves, particularly in ring porous species 

94 (Trumbore et al., 2002; Kagawa et al., 2006; Zweifel et al., 2006; Michelot et al., 2012; 

95 Richardson et al., 2013). While NSC reserves can be decades old, the active (“fast”) pool that 

96 fuels new growth is typically composed of C that was fixed within the past 1-2 years (Carbone et 

97 al., 2013; Richardson et al., 2013, 2015), suggesting a lagged relationship between current year 

98 growth and previous years’ climate conditions. These lags are common in temperate deciduous 

99 species, although their direction and strength is somewhat variable (e.g., Charney et al., 2016; 

100 D’Orangeville et al., 2018; Hacket‐Pain et al., 2018; Pederson et al., 2012). Despite the high 

101 probability that ANPPstem is sensitive to climate conditions prior to the current growing season, 

102 this sensitivity has not been characterized in most ecological studies. Characterizing the long-

103 term sensitivity of ANPPstem to current and previous years’ climatic conditions requires scaling 

104 tree-ring records from a diversity of tree sizes and species to the ecosystem level, and will be 

105 critical to predicting temperate forest responses to climate change.

106 Finally, it remains unclear if and how climate sensitivity has changed in recent decades, 

107 during which tree growth in US eastern deciduous forests has been altered by more mesic 

108 conditions, increasing atmospheric CO2, and declines in atmospheric pollutants (SOx, NOx). 

109 Several studies have found that these changes drove increased tree growth within the biome, but 

110 attribute the increased growth to different sets of environmental changes (McMahon et al., 2010; 

111 Levesque et al., 2017; Mathias & Thomas, 2018). It remains unknown how such changes have 

112 affected climate sensitivity in eastern US forests. In other forest biomes around the world, there 
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113 have been observations of reduced climate sensitivity in recent decades (Briffa et al., 1998a,b; 

114 Knapp et al., 2001; Soulé & Knapp, 2006; Leal et al., 2008; Wyckoff & Bowers, 2010; Maxwell 

115 et al., 2016), although the pattern is not universal (Biondi, 2000; Carrer & Urbinati, 2006). The 

116 reductions in climate sensitivity found in some species may be attributable to increased water use 

117 efficiency driven by elevated CO2 (Briffa et al., 1998a; Knapp et al., 2001; Soulé & Knapp, 

118 2006; Leal et al., 2008; Wyckoff & Bowers, 2010), although other factors are also at play; for 

119 example, in the Midwest USA, there has been a reduction in the strength of droughts in recent 

120 decades (Maxwell et al., 2016).

121 Here, we analyze 109 years of annual woody growth for 14 species within a temperate 

122 deciduous forest in Virginia, USA to understand how multiple climate drivers influence 

123 individual species growth and ANPPstem. We test the hypothesis that woody growth of most 

124 species and ANPPstem are primarily water-limited, as opposed to energy-limited; i.e., growth 

125 responds positively to growing season moisture and negatively to increased temperatures or 

126 potential evapotranspiration (PET). We evaluate this hypothesis across more than a century of 

127 historical climate variation (1901-2009) and for three consecutive 30-year periods therein (1920-

128 1949, 1950-1979, 1980-2009).

129

130 Materials and Methods

131 Study Site

132 Our study site was the 25.6-ha large forest dynamics plot at the Smithsonian 

133 Conservation Biology Institute (SCBI) in the Blue Ridge Mountains of northern Virginia, USA 

134 (Supporting Information Fig. S1; 38°53’36.6″ N, 78°08’43.4″ W; elevation 273-338 m.; Bourg, 

135 McShea, Thompson, McGarvey, & Shen, 2013), which is part of the Forest Global Earth 

136 Observatory (ForestGEO) network (Anderson-Teixeira et al., 2015a). The climate is humid 

137 temperate. From 1901 to 2009, January and July temperatures averaged 1°C and 24°C, 

138 respectively, with mean annual precipitation of 998 mm distributed fairly evenly throughout the 

139 year (Table 1; Supporting Information Fig. S2). Bud break typically occurs in April, and leaf 

140 senescence begins in September and extends into November. Stem expansion is typically most 

141 rapid between May and July. The plot is a mature secondary mixed deciduous forest that 

142 developed after agricultural abandonment in the mid-19th century. Canopy trees are primarily 65 

143 - 145 years old with some individuals >240 years old (Supporting Information Fig. S3a).
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144

145 Plot census and ANPPstem calculations

146 The plot was censused in 2008 and 2013 using standard ForestGEO protocols, where all 

147 woody stems ≥ 1 cm in diameter at breast height (DBH) were identified, mapped, tagged, and 

148 measured in DBH (Condit, 1998; Bourg et al., 2013). Census data, which were last updated in 

149 2014, were obtained through the ForestGEO data portal (forestgeo.si.edu). 

150 Census data were used to calculate mean annual ANPPstem from 2008-2013. Specifically, 

151 we first identified individuals that were alive in both 2008 and 2013 and estimated their 

152 aboveground biomass for both years using the allometries identified in Gonzalez-Akre et al. 

153 (2016) and recorded in our database of allometric equations, allodb 

154 (https://github.com/forestgeo/allodb; Gonzalez-Akre, personal communication). The growth rate 

155 of each individual was calculated as the difference between these values divided by the time 

156 interval, using exact census dates for each tree. To identify and deal with outliers, trees were 

157 grouped into DBH bins (1-5, 5-10, 10-50, >50cm) and the annual biomass increment of trees 

158 deviating from the size bin mean by more than ±4 standard deviations (SD) were replaced with 

159 that mean. Individual biomass growth rates were then summed across species, using minimum 

160 DBH thresholds of both 1 and 10 cm. 

161 Comprehensive estimation of ANPPstem requires accounting for the growth of trees that 

162 recruit into the census or die between censuses (Clark et al., 2001). For trees that grew into the 

163 ≥1 or ≥10cm DBH size class between 2008 and 2013, growth was calculated as the difference 

164 between 2013 biomass and the biomass of an individual of the minimum size threshold. We 

165 assumed minimal ANPPstem contributions of stems that died between 2008 and 2013 because 

166 trees at this site and elsewhere typically have greatly reduced growth rates for several years 

167 before dying (Gonzalez-Akre et al., 2016; Cailleret et al., 2017). We considered the ANPPstem 

168 estimates including recruitment as the authoritative values for this site and used them to calculate 

169 total ANPPstem and contributions of each species (Table 2). However, to compare census- and 

170 tree-ring- based estimates of ANPPstem, we excluded recruitment, as it was not included in tree-

171 ring based estimates (Supporting Information Table S3). 

172

173

174
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175 Tree core collection and chronology building

176 We collected increment cores from a subset of trees distributed throughout the plot in 

177 either 2010-11 or 2016-17 (Table 2, Supporting Information Fig. S1, Table S1). All cores were 

178 taken at breast height (137 cm). In 2010-11, cores were taken from randomly selected live 

179 individuals from each species with at least 30 trees ≥10 cm DBH. The majority of these were 

180 subsequently measured (Bourg et al., 2013). In 2016 and 2017, we collected cores from all trees 

181 found dead in our annual mortality census (Gonzalez-Akre et al., 2016). Cores were dried, 

182 mounted, and sanded with a belt sander or by hand when necessary to see the cell structure 

183 during periods of strong growth suppression (Speer, 2010). Rings were measured using a TA 

184 Unislide Velmex (0.002 mm precision; Velmex Inc., Bloomfield, NY) for cores collected in 

185 2011 and 2016. For cores collected in 2017, we used WinDENDRO (Windendro, Regent 

186 Instruments Inc., Québec, Canada), having verified that these methods gave extremely similar 

187 results. Ring width measurements were crossdated and verified using the program COFECHA 

188 (Holmes, 1983).

189 We built crossdated chronologies for all species contributing more than 1% of ANPPstem 

190 (n=12) and two additional species, Pinus strobus and Fraxinus nigra (Table 2), which ranked 

191 18th and 20th in terms of productivity contributions. Species in the top 20 contributors to 

192 ANPPstem for which we were unable to develop accurate chronologies included Acer rubrum, 

193 Platanus occidentalis, Tilia americana, Nyssa sylvatica, Cercis canadensis, and Ulmus rubra, 

194 which each contributed <0.5% of ANPPstem and ranked 13th-17th and 19th in productivity, 

195 respectively. Because we were interested in ecosystem-level climate sensitivity, all trees were 

196 included in our final chronology; that is, we included trees whose correlations to the master 

197 chronology for its species were lower than series typically used for other dendro-ecological 

198 applications, such as climate reconstructions. We did not include cores from our chronologies if 

199 they were degraded by decay or damaged such that deciphering ring boundaries increased 

200 uncertainty in crossdating accuracy. Chronologies of trees cored live and dead were pooled 

201 following analyses showing similar climate sensitivity at least up to 2009 (i.e., excluding 7-8 

202 years prior to death) for all four species with ≥10 cores in each category (LITU, QURU, QUVE, 

203 FRAM; comparison plots available at https://github.com/SCBI-

204 ForestGEO/climate_sensitivity_cores/tree/master/results/live_vs_dead). 

Page 7 of 40 New Phytologist



8

205 To remove or reduce nonclimatic factors related to growth (e.g., geometric constraints on 

206 ring width) or the influences of stand dynamics (e.g., individual tree growth release and 

207 suppression), all ring-width series for each species were standardized via ARSTAN using a 2/3 n 

208 spline, where n is the number of years in each series (Cook, 1985; Cook & Kairiukstis, 1990). 

209 We also tested a 50-year fixed width spline, which gave extremely similar results, indicating that 

210 our findings are not sensitive to variable- versus fixed-width detrending. The influence of 

211 outliers in all series were reduced using the adaptive power transformation, which also stabilizes 

212 the variance over time (Cook & Peters, 1997). Next, each series was stabilized using either the 

213 average correlation between raw ring-width series (rbar) method or a 1/3rds spline method to 

214 adjust changes in variance as series replication decreased towards the earlier portion of each 

215 chronology (Jones et al., 1997). The 1/3rds spline method was chosen when replication in the 

216 inner portion of each chronology (ca. the inner 30-50 years of each record depending on full 

217 chronology length) dropped below three trees. Once that step was complete, a robust biweight 

218 mean chronology for each species was calculated from the ring‐width indices (Cook, 1985). We 

219 chose to use residual chronologies because the autoregressive standardization process in creating 

220 them removes much of the tree-level autocorrelation in growth and these chronologies most 

221 likely contains the most conservative information on drivers of interannual growth (Cook, 1985). 

222 We defined the chronology start date as the year the subsample signal strength (SSS) exceeded 

223 0.75 (Table 2; Supporting Information Fig. S3b), and the end date as 2009 (thereby buffering 

224 mortality events by 7-8 years). We used SSS instead of the expressed population signal (EPS) 

225 because EPS can be saturated with high series replication (Buras, 2017) and we were interested 

226 in climatic sensitivity, not ‘quality of the tree-ring chronology’ per the traditional paleoclimatic 

227 approach. 

228

229 Analyses

230 We characterized the sensitivity of growth to monthly variation in ten climate variables 

231 (Table 1) from 1901 (or chronology start date, as late as 1938; Supporting Information Table S1) 

232 to 2009 and over three 30-year periods covering the last 90 years of this time period (1920-49, 

233 1950-79, 1980-2009). The years 1901-1919 were excluded from the analysis of shorter time 

234 periods because the chronologies of several species, including the dominant Liriodendron 

235 tulipifera, did not reach SSS ≥0.75 until 1910-20.  

Page 8 of 40New Phytologist



9

236 Climate data were obtained from the ForestGEO Climate Data Portal 

237 (https://github.com/forestgeo/Climate) in August 2018, including Climatic Research Unit 

238 monthly data for eight variables from 1901 to 2016 (CRU TS v. 4.01; Harris, Jones, Osborn, & 

239 Lister, 2014) and NOAA Divisional Data’s Palmer Drought Severity Index (PDSI) from 1895 to 

240 2017. Atmospheric CO2 data, used as context for comparing the two time periods, was obtained 

241 from a publicly available NASA data set that includes historical ice core data and NOAA ESLR 

242 atmospheric data (Etheridge et al., 1996; Keeling & Whorf, 2012; National Aeronautics and 

243 Space Administration, 2017; NOAA/ESRL/Global Monitoring Division, 2018). Analyses of 

244 climate–growth relationships were conducted using ‘dplR’ (Bunn, 2008) and ‘bootRes’ (Zang & 

245 Biondi, 2013) in R v. 3.5.1 (R Core Team, 2017), which correlation functions and bootstrapped 

246 confidence intervals for the relationships between annual growth and monthly climate variables 

247 following Biondi & Waikul (2004). 

248 To scale from the species-level chronologies to the whole stand, we first developed 

249 species-specific allometries between the average tree-ring based radial growth increment from 

250 2007 to 2009 and DBH measured in the 2008 census (Supporting Information Table S2). We 

251 then applied these allometries to predict radial increment for every stem ≥10 cm DBH (focal 

252 species), filling in 2008-13 census growth measurements for species for which we did not have 

253 chronologies (3% of ANPPstem). Next, we combined our radial growth estimates with species-

254 specific allometries to estimate tree biomass growth and ANPPstem. Estimates of ANPPstem for the 

255 entire stand and for each species were compared to estimates derived from 2008-2013 census 

256 data, indicating close correlation (R2>0.99; Supporting Information Table S3). Finally, we 

257 estimated the change in ANPPstem that would be expected under a +1 SD increase (calculated for 

258 1901-2009) in the monthly values for each climate variable (∆ANPPstem). Pearson correlations 

259 between climate and each tree-ring chronology were converted to linear slopes as in (Charney et 

260 al., 2016) and then used to predict the change in radial increment for a 1 SD increase in each 

261 monthly climate variable. This coefficient was expressed relative to mean radial increment for 

262 the species (Table S1) to calculate percent change under +1 SD of the climate variable. Radial 

263 increment under a +1 SD increase in the climate variable was then predicted by applying this % 

264 change to the radial increment predicted from allometry. For species without chronologies, we 

265 assumed no climate response. Although unrealistic, this assumption is likely to have minimal 

266 impact on our estimates of ANPPstem given the small contribution of these species to plot-level 
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267 ANPPstem (2.6%; Table 2). We computed ∆ANPPstem as the difference between ANPPstem under 

268 altered climate and that derived for baseline climate conditions, in both cases calculating 

269 ANPPstem as described above. 

270 All data, R code, and results are available through the SCBI-ForestGEO organization on 

271 GitHub (https://github.com/SCBI-ForestGEO: SCBI-ForestGEO-Data and 

272 climate_sensitivity_cores repositories), with static versions corresponding to data and analyses 

273 presented here archived in Zenodo (DOIs: 10.5281/zenodo.2649302 and 

274 10.5281/zenodo.2656633, respectively).   

275

276 Results

277 In total, our chronologies consisted of 728 trees from 14 species and 7 genera with 16 – 

278 109 cores per species (Table 2). From 2008 to 2013, these species represented 97.4% of 

279 ANPPstem (with recruitment) for stems ≥10 cm DBH (2.83 Mg C ha-1 yr-1; Table 2), or 96.9% of 

280 ANPPstem for all stems ≥1cm DBH (2.87 Mg C ha-1 yr-1). 

281 The 14 species had fairly consistent inter-annual signals and differed modestly in their 

282 variability (Fig. 1). Correlations between species-level residual chronologies averaged 0.41 and 

283 ranged from 0.86 between Quercus alba and Q. montana to -0.032 between Fraxinus americana 

284 and Pinus strobus (Supporting Information Fig. S4). Correlations between the dominant species, 

285 Liriodendron tulipifera, and other species averaged 0.44 and ranged from 0.19 (Fraxinus nigra) 

286 to 0.63 (Carya covalis). Standard deviations of the ring width index averaged 0.136 and ranged 

287 from 0.10 (Quercus rubra, Fraxinus americana) to 0.18 (Juglans nigra, Carya tomentosa; Table 

288 S1).

289 Over the centennial time scale, species’ climate responses were broadly indicative of 

290 water-, as opposed to energy-, limitation (Figs. 1-2, Supporting Information Figs. S5-S14, Tables 

291 S4-13). Species generally responded positively to current peak growing season (May-August) 

292 moisture (rain day frequency, precipitation, PDSI) and cloudiness, while responding negatively 

293 to temperature (max, mean, min), daily temperature range, PET, and PET-PRE. This held true 

294 for 92.7% of all climate variable-month combinations, with 36% of the relationships significant 

295 at p<0.05. Species also responded positively to April temperatures (max, mean, min) and PET 

296 (82.1% of species-variable combinations, 11% significant). Responses to previous May-July 

297 conditions tended to be opposite those of the current growing season (75.7% of species-variable-
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298 month combinations, 19% significant), tending to be most pronounced in Quercus spp. (Figs. 2, 

299 S5-S14). However, responses to conditions in August and September of the previous growing 

300 season were more similar to those of the current growing season; growth was generally higher 

301 under cloudy, wet conditions with favorable water balance (CLD, PRE, WET, PDSI; 74.1% of 

302 species-variable-month combinations), but responses of energy variables (temperature, DTR, 

303 PET, PET-PRE) were not consistent (56.5% of species-variable-month combinations). The 

304 species deviating most commonly from the above-described patterns were the two contributing 

305 <1% of ANPPstem: Fraxinus nigra, most individuals of which grow along streams or in other 

306 persistently wet microsites, and Pinus strobus, a conifer and also the species with the shortest 

307 chronology (Fig. 1). 

308 The climate sensitivity of each species’ growth and ANPPstem—i.e., % change in 

309 individual growth or ANPPstem for +1SD change in climate—mirrored the observed Pearson 

310 correlations while also scaling with the SD of chronologies (Fig. 2). In other words, for the same 

311 strength of correlation with a climate variable under current climate, the growth and ANPPstem of 

312 species with higher growth variability (e.g., Juglans nigra, Carya tomatosa) was more sensitive 

313 to increases in the climate variable than those with low growth variability (e.g., Quercus rubra, 

314 Fraxinus americana). Growth sensitivities ranged up to ~ ±5% for each species- climate 

315 variable- month combination, but on average were much less, including for the dominant species, 

316 Liriodendron tulipifera (Fig. 2). While <5% is a modest response, we note that it applies to only 

317 a +1 SD change in one climate variable for one month, whereas a notably hot or dry growing 

318 season may involve changes >2 SDs over several months, resulting in a larger growth response. 

319 Scaled to the ecosystem level, ANPPstem reflected the dominant climate responses 

320 described above (Fig. 2-3)—particularly those of Liriodendron tulipifera, which contributed by 

321 far the most to stand-level ANPPstem (Fig. 2i). ANPPstem was generally most sensitive to 

322 conditions in the current peak growing season and to moisture of the previous May. The most 

323 influential variables (by month) included current May PET-PRE, PET, and wet day frequency, 

324 ±1 SD variation in which affected ANPPstem by >0.05 Mg ha-1 yr-1 (>1.8% of total; Fig. 3). 

325 Responses were somewhat buffered relative to those of Liriodendron tulipifera, for which the 

326 strongest responses were slightly greater than ±2.5%. 

327 The three 30-year time periods selected for comparison differed somewhat in climatic 

328 and atmospheric conditions. Climatically, 1950-1979 was most similar to the average conditions 
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329 over 1901-2009, with more drought in the early 20th century (1920-49) and more mesic 

330 conditions in recent decades (Fig. 1; Supporting Information Fig. S2). Specifically, 1980-2009 

331 was characterized by slightly higher than average cloud cover and PDSI and a narrower range of 

332 daily temperatures, whereas the reverse was true of 1920-49 (Supporting Information Fig. S2). 

333 Of the ten years with the largest difference between PET and precipitation during May-July, two 

334 occurred in 1980-2009 (ranked 8th and 10th in magnitude), with 3 each in the other time periods 

335 (ranked 1st – 6th in magnitude with the two largest in 1920-49; Fig. 1). Atmospherically, recent 

336 decades were characterized by higher atmospheric CO2 (average of 361 ppm) compared to 

337 previous periods (308 ppm for 1920-49, 322 ppm for 1950-79) and the full time period (325 

338 ppm).

339 Over recent decades (1980-2009), species’ climate responses were more variable and less 

340 pronounced compared to both the full time period (1901-2009) and the two earlier 30-year time 

341 periods (1920-49, 1950-79; Fig. 4; Supporting Information Figs. S5-S14, Tables S4-13). Most 

342 notably, from 1980-2009 there were fewer positive species’ responses to moisture (CLD, WET, 

343 PRE, PDSI) and fewer negative responses to temperatures, DTR, PET, and PET-PRE (70% of 

344 species-variable-month combinations, 5% significant; compared with 83-93% in the other 3 time 

345 periods; Fig. 4a). The average strength of these correlations was also notably reduced in recent 

346 decades relative to earlier decades and the full 110-year time frame (Fig. 4; Supporting 

347 Information Figs. S5-S14, Tables S4-13). Consistency of responses to April temperatures and 

348 PET and previous May-July conditions were likewise reduced (59% and 41% with same sign of 

349 correlation coefficients as the trends described above, respectively; Fig. 4a). Also, over the last 

350 three decades, responses to conditions in August and September of the previous growing season 

351 switched from moisture-dominated to temperature-dominated (Fig. 4a); growth was not 

352 consistently higher under cloudy, wet conditions (54% of species-variable-month combinations), 

353 whereas temperature and PET responses were predominantly negative (72% of species-variable-

354 month combinations). 

355 Similarly, ANPPstem was generally less responsive to climate over recent decades (1980-

356 2009) than during 1920-49, 1950-79, or the entire 109 analysis time frame (Figs. 3,5). This 

357 largely reflected the responses of Liriodendron tulipifera (LITU; 48% of ANPPstem; Fig. 2i), 

358 which tended to have relatively weak responses to growing season climate from 1980-2009 
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359 compared to some other species (Supporting Information Figs. S5-S14), but was also consistent 

360 with the overall weakening of climate sensitivity across species (Fig. 4). 

361

362

363 Discussion

364 In the first study to scale from species-level to the climate sensitivity of ANPPstem 

365 (ecosystem-level) in a diverse broadleaf-dominated temperate deciduous forest, we show that 

366 radial growth of 14 tree species and ecosystem-level ANPPstem respond positively to cool, moist 

367 growing season conditions for >92% of month-variable combinations over 109 years of variable 

368 climatic conditions (Figs. 1-3). These responses generally remained the same in structure across 

369 three 30-year periods, but were more variable and less pronounced during recent decades (1980–

370 2009) at both individual and ecosystem scales (ANPPstem; Figs. 4-5). There was also a tendency, 

371 again less consistent over recent decades, for the lagged relationship between the current year’s 

372 growth and climate during the previous May-July to be opposite that of the current growing 

373 season (Figs. 2-3, 5). That is, growth was reduced by cool, moist conditions during the previous 

374 May-July. This, together with commonly negative responses to high temperatures from late 

375 summer of the preceding year through current early spring (Figs. 2-3, 5; Supporting Information 

376 Figs. S5-S7), could indicate a key role of NSC reserves. Thus, building off of species-level 

377 research, we show that ANPPstem of a humid temperate forest is also primarily limited by 

378 moisture, as opposed to temperature or sunlight, but that carbohydrate reserves from the previous 

379 year contribute to a more complex climate sensitivity.

380 Responses to the ten climate variables analyzed were largely consistent across species 

381 (Figs. 1-2), and therefore the climate sensitivity of ANPPstem (Fig. 3) reflected that of most 

382 individual species. There was a modest niche complementarity effect (Figs. 2-3), implying that, 

383 in this forest, species diversity slightly increases the stability of ANPPstem under fluctuating 

384 climate conditions, as has been observed in other plant communities worldwide (Isbell et al., 

385 2015; Anderegg et al., 2018). However, the similar responses across species imply that 

386 biophysical constraints have bound species’ climate sensitivities within a relatively narrow range 

387 and limited the potential for biodiversity to buffer substantially against climate extremes. An 

388 additional implication is that in forests such as this with relatively low topographic complexity 

389 and the majority of ANPPstem concentrated within several dominant species (here, 5 species 
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390 account for 80% of ANPPstem; Table 1), the climate sensitivity of ANPPstem can be satisfactorily 

391 characterized based on tree-ring chronologies of those dominant species. 

392 Forest woody productivity (ANPPstem) was strongly influenced by current growing season 

393 conditions, being highest under relatively cool, low-PET, cloudy conditions with frequent 

394 precipitation (Figs. 2-3). This agrees with other tree-ring studies across eastern US deciduous 

395 forests showing positive moisture responses of tree growth (Belmecheri et al., 2014; Elliott et al., 

396 2015; Martin-Benito & Pederson, 2015; Charney et al., 2016; Levesque et al., 2017). 

397 Physiologically, the observed positive response of radial growth to wet conditions is consistent 

398 with the fact that the proximate driver of stem growth is hydraulically-driven cell expansion 

399 (Zweifel et al., 2006), with most rapid stem diameter increases on rainy days (Herrmann et al., 

400 2016). Subsequent C sequestration associated with cell wall thickening can lag by more than a 

401 month (Cuny et al., 2015), implying that the climate sensitivities of stem growth and 

402 photosynthesis are at least partially decoupled in time within the current growing season. Thus, 

403 observations of negative responses of temperate moist deciduous forest GPP (Barford et al., 

404 2001) and sap flow (Anderson-Teixeira et al., 2015b) to cool, wet conditions over time scales of 

405 days to months are not inconsistent with the observed positive response of annual stem growth to 

406 inter-annual variation in moisture. 

407 In contrast to the negative impact of temperature during the growing season, tree growth 

408 and ANPPstem responded positively to high April temperatures, indicative of thermal limitations 

409 to the start of the growing season and consistent with other tree-ring observations in the central 

410 Appalachians (Mathias & Thomas, 2018) and with findings that GPP and NEE (White et al., 

411 1999; Baldocchi et al., 2018) are sensitive to growing season length. However, the influence of 

412 April temperatures on ANPPstem was quite modest relative to conditions in May-August and even 

413 the previous early growing season (Fig. 3). 

414 The relationship between current year’s growth and climate prior to the current growing 

415 season is likely due to spring and early summer stem growth being partially fueled, at least in 

416 part, by NSC reserves—particularly in ring-porous species (~48% of ANPPstem in our plot; Table 

417 2; Zweifel et al., 2006; Michelot et al., 2012). We suggest three possible mechanisms behind the 

418 observed inverse responses to past May-July conditions (Figs. 2-3, Supporting Information Figs. 

419 S5-S14). First, at this site, tree transpiration, and by extension photosynthesis, are reduced on 

420 humid, cloudy days (Anderson-Teixeira et al., 2015b), whereas stem expansion is essentially 
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421 twice as rapid on rainy days than rainless days (Herrmann et al., 2016). Thus, on the time scale 

422 of one to a few days, GPP and ANPPstem respond differentially to climatic conditions, but it 

423 remains unknown how these climate sensitivities scale to monthly or annual time scales. Second, 

424 wet conditions early in the growing season may drive greater stem expansion and, subsequently, 

425 higher C demand for cell wall thickening, potentially resulting in less surplus C for NSC storage 

426 and lower growth the following year. Finally, NSCs may be preferentially allocated to other 

427 functions (e.g., reproduction)—and away from stem growth—based on previous year growing 

428 conditions (Hacket‐Pain et al., 2018). Research will be needed to test the hypotheses that NSC 

429 reserves at the beginning of the growing season may influence ANPPstem and its climate 

430 sensitivity. Regardless, the dependency of stem growth on prior climate implies that, while tree-

431 ring analysis is invaluable for inferring the climate sensitivity of ANPPstem, these relationships 

432 must be combined with physiological data and models to characterize climatic drivers of total 

433 forest C sequestration.  

434 In recent decades, we observed two notable shifts in the climate sensitivities of woody 

435 growth and ANPPstem. First, the consistency of the relationship between tree growth and moisture 

436 became muted compared to that found over the full 109-year record (Figs. 4-5). This weakening 

437 of the climate–growth relationship was at least partially driven by slightly more mesic conditions 

438 with fewer strong droughts (Fig. 1, Supplementary Information Fig. S2), with a similar trend 

439 noted across several sites in the Midwest US (Maxwell et al., 2016) and evidence that more 

440 mesic conditions have been associated with increased growth in the Northeast US (Levesque et 

441 al., 2017). It is also possible that elevated CO2 has an interactive effect on climate sensitivity, 

442 buffering growth responses in drought years by increasing water use efficiency (Levesque et al., 

443 2017; Mathias & Thomas, 2018), while having less or no impact on growth during wet years 

444 (Knapp et al., 2001; Soulé & Knapp, 2006; Wyckoff & Bowers, 2010; Levesque et al., 2017). 

445 Further research will be required to fully understand the mechanisms driving the observed 

446 declines in the strength of climate–growth relationships. However, whatever the mechanism, this 

447 observation is significant for our understanding of the ecophysiology of North American 

448 temperate deciduous forests in that they appear to be less moisture-limited at present than they 

449 have been in the past or are likely to be in the future (Clark et al., 2016). Current 

450 ecophysiological research on these forests (e.g., eddy-covariance studies, extensive forest 

451 monitoring, model parameterization and evaluation) is therefore capturing a period of low 
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452 drought stress and likely under-estimating the importance of moisture for forest ecosystem 

453 productivity. 

454 Second, at least on the ecosystem level (ANPPstem), the relative importance of climatic 

455 conditions prior to the start of the growing season appears to have increased, in part because of 

456 decreasing influence of current growing season conditions (Fig. 4-5). This also points to 

457 increasing decoupling between the climate sensitivities of ANPPstem and GPP, implying that 

458 responses of woody growth to current growing season climatic conditions are not currently a 

459 reliable indicator of the climate sensitivity of ecosystem C sequestration. 

460 Our results suggest that the woody productivity of forests such as ours is likely to decline 

461 under expected future climate conditions. Future projections for the region include increased 

462 temperatures (~1-5 °C by 2100, depending on emissions; IPCC, 2014), with associated increases 

463 in PET and evaporative demand likely to more than offset predicted slight (≤10%) increases in 

464 precipitation (IPCC, 2013, 2014; U.S. Global Change Research Program, 2014; Cook et al., 

465 2015). The negative effects of high temperatures and PET on growth (Fig. 2; Supporting 

466 Information Figs. S5-S9) and ANPPstem (Fig. 3) indicate that increasing temperatures will likely 

467 reduce forest productivity by increasing evaporative demand and water limitation, aligning with 

468 the conclusions of other temperate deciduous forest tree-ring studies (e.g., Charney et al., 2016; 

469 Klesse et al., 2018). Moreover, our finding that wet day frequency had an overall greater 

470 importance than total precipitation implies that any shift in precipitation distribution into fewer, 

471 larger storms is also likely to have a negative impact on tree growth (Elliott et al., 2015). These 

472 effects could be somewhat buffered by increased water use efficiency under elevated CO2, and 

473 understanding the extent to which this may be occurring remains an important open question. 

474 While the CO2 effect on growth overall may be weak in eastern US deciduous forests (Levesque 

475 et al., 2017) and globally (Peñuelas et al., 2011), this does not rule out a meaningful impact 

476 during drier years—as has been observed in other regions (Knapp et al., 2001; Soulé & Knapp, 

477 2006; Wyckoff & Bowers, 2010). However, even if the weakening of climate–growth 

478 relationships in recent decades observed here (Figs. 4-5) is attributable to increased water use 

479 efficiency under elevated CO2, the effect is unlikely to be sufficient to prevent productivity 

480 declines under projected future climate conditions (Charney et al., 2016). 

481 Our pairing of tree-ring analyses with plot data yields a long-term perspective on climate 

482 sensitivity of ANPPstem. Without such long-term data, it is impossible to disentangle the 
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483 sometimes-subtle influence of climate on tree growth. As we show, the longer time frame can 

484 reveal sensitivities that are not being detected by contemporary high-resolution forest 

485 measurements (e.g., eddy flux, dendrometer bands) that serve as the basis for most forest 

486 ecosystem-climate models. Importantly, the processes that appear to be governing growth in this 

487 study are not well represented in current models, most of which forecast an overall enhancement 

488 of forest productivity with projected climate change (Albani et al., 2006; Ollinger et al., 2008; 

489 Duveneck & Thompson, 2017). We have yet to characterize interactive effects among climate 

490 variables (Foster et al., 2016) or variables known to influence climate sensitivity, including tree 

491 size (Bennett et al., 2015), canopy position (Teets et al., 2018b), topographic position (Elliott et 

492 al., 2015), and competition (D’Amato et al., 2013). Incorporating these factors in future analyses 

493 will further strengthen predictions of ANPPstem and its responses to climate variability and 

494 change. 
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775 Table 1. Climate variables analyzed here, along with their January and July means. 

1901 - 2009 mean ± SD

Variable Code Units January July 

average daily maximum temperature TMX °C 7.0 ± 2.7 31.2 ± 1.2

average daily mean temperature TMP °C 1.1 ± 2.6 24.2 ± 1.0

average daily minimum temperature TMN °C -4.8 ± 2.5 17.3 ± 0.9

diurnal temperature range DTR °C 11.7 ± 0.9 13.9 ± 1.1

potential evapotranspiration PET mm day-1 1.3 ± 0.2 4.4 ± 0.4

potential evapotranspiration - 

precipitation

PET-

PRE mm mo-1 -31.2 ± 35.3 31.4 ± 44.5

Palmer Drought Severity Index* PDSI - -0.19 ± 2.01 0.08 ± 1.94

precipitation PRE mm mo-1 71 ± 33 104 ± 37

wet day frequency WET mo-1 12.8 ± 2.7 11.2 ± 1.9

cloud cover CLD % 69 ± 3 62 ± 6

776 *Higher values indicate wetter conditions. Values were pre-whitened for analysis. 

777
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778 Table 2. Species analyzed here, their contributions to aboveground woody net primary 

779 productivity (ANPPstem) within the Smithsonian Conservation Biology Institute (SCBI) 

780 ForestGEO plot (stems ≥10cm; 2008-2013), and key features of their chronologies.

ANPPstem Chronology

Species 

Species 

code

Ring 

porosity

Mg C * 

ha-1 yr-1 %

n 

cores

 𝐷𝐵𝐻2008 ∗∗

(min, max)

SD of 

RWI†

Liriodendron 

tulipifera
LITU diffuse 1.349 47.61 109 32.7 (10.0, 97.6) 0.14

Quercus alba QUAL ring 0.305 10.77 66 42.9 (11.3, 76.7) 0.12

Quercus rubra QURU ring 0.288 10.17 71 49.4 (10.1, 137) 0.10

Quercus velutina QUVE ring 0.217 7.66 83 50.6 (16.0, 109) 0.13

Quercus montana QUPR ring 0.136 4.80 67 38.1 (10.2, 84.6) 0.14

Fraxinus 

americana
FRAM ring 0.107 3.77 69 33.3 (5.8. 93.0) 0.10

Carya glabra CAGL ring 0.103 3.62 39 26.6 (10.2, 52.3) 0.10

Juglans nigra JUNI
semi-

ring
0.060 2.12 31 43.4 (20.4, 76.2) 0.18

Carya tomentosa CATO ring 0.055 1.95 17 24.0 (12.0, 44.4) 0.18

Carya 

cordiformis
CACO ring 0.055 1.93 18 23.9 (10.4, 60.5) 0.13

Fagus 

grandifolia
FAGR diffuse 0.040 1.43 81 19.9 (10.1, 103) 0.15

Carya ovalis CAOVL ring 0.031 1.10 24 32.9 (15.1, 60.3) 0.11

Pinus strobus PIST - 0.007 0.25 36 28.8 (15.0, 51.0) 0.16

Fraxinus nigra FRNI ring 0.005 0.18 16 19.4 (6.9, 38.4) 0.15

all other species - - 0.075 2.64 - - -

781 * Mg C ha-1 yr-1 refers to Megagrammes (or tonnes) of Carbon per Hectare per Year
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782 **  refers to the mean Diameter at Breast Height of tree species in 2008𝐷𝐵𝐻2008

783 † SD of RWI refers to the Standard Deviation of Ring‐Width Index

784

785

786 Figure Legends

787

788 Figure 1. Residual chronologies of 14 tree species, including the 12 largest contributors to 

789 Aboveground woody Net Primary Productivity (ANPPstem) in the Smithsonian Conservation 

790 Biology Institute (SCBI) ForestGEO plot, from 1901-2009. Also shown is mean May-July 

791 potential evapotranspiration (PET; mm mo-1) and precipitation (PRE; mm mo-1), with dashed 

792 vertical lines indicating the ten years in which the difference between the two was greatest 

793 (1911: 83mm, 1914: 82mm, 1930: 112mm, 1936: 85mm, 1944: 89mm; 1964: 84mm, 1966: 

794 83mm, 1977: 87mm, 1999: 80mm, 2007: 82mm). Species are shown in descending order of their 

795 contributions to ANPPstem. Chronologies are shown starting when Subsample Signal Strength 

796 (SSS) ≥0.75 (Table S1). Refer to Table 2 for species specific code information. 

797

798 Figure 2. Species’ responses to four of the most influential climate variables analyzed here—

799 potential evapotranspiration (a,b) wet day frequency (c,d), the difference between potential 

800 evapotranspiration and precipitation (e,f), and maximum temperature (g,h). Shown are Pearson 

801 correlations between ring width index and monthly climate variables (left panel) and percent 

802 response of growth and Aboveground woody Net Primary Productivity (ANPPstem) to +1 

803 Standard Deviation (SD) in the climate variable (right panel). Also shown is ANPPstem of each 

804 species (i). Refer to Table 2 for species specific code information.

805

806 Figure 3. Sensitivity of Aboveground woody Net Primary Productivity (ANPPstem) to 10 climate 

807 variables from 1901-2009. Shown is change in ANPPstem (Mg C ha-1 yr-1 and % of total) with +1 

808 Standard Deviation (SD) in climate variable, as predicted based on the responses of individual 

809 species and the 2008 census of the Smithsonian Conservation Biology Institute (SCBI) 

810 ForestGEO plot. 

811
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812 Figure 4. Comparison of the (a) consistency and (b) average strength of climate correlations 

813 across the time periods analyzed here. Panel (a) shows the percent of species-climate variable-

814 month combinations for which Pearson correlations are positive for moisture variables (PRE, 

815 WET, PDSI, CLD) and negative for energy variables (TMAX, TMP, TMIN, DTR, PET, PET-

816 PRE) in each of 3 time periods: previous year’s early growing season (mjj), previous year’s late 

817 growing season (as), and current peak growing season (MJJA). Panel (b) shows the mean 

818 absolute correlation of growth to several climate variables of all species over MJJA. Refer to 

819 Table 1 for explanations of moisture and energy variables. 

820

821 Figure 5. Predicted response of Aboveground woody Net Primary Productivity (ANPPstem) to +1 

822 Standard Deviation (SD) change in 10 climate variables, as predicted based on the responses of 

823 individual species over three 30-year time periods and the 2008 census of the Smithsonian 

824 Conservation Biology Institute (SCBI) ForestGEO plot.
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Figure 1. Residual chronologies of 14 tree species, including the 12 largest contributors to Aboveground 
woody Net Primary Productivity (ANPPstem) in the Smithsonian Conservation Biology Institute (SCBI) 

ForestGEO plot, from 1901-2009. Also shown is mean May-July potential evapotranspiration (PET; mm mo-
1) and precipitation (PRE; mm mo-1), with dashed vertical lines indicating the ten years in which the 

difference between the two was greatest (1911: 83mm, 1914: 82mm, 1930: 112mm, 1936: 85mm, 1944: 
89mm; 1964: 84mm, 1966: 83mm, 1977: 87mm, 1999: 80mm, 2007: 82mm). Species are shown in 

descending order of their contributions to ANPPstem. Chronologies are shown starting when Subsample 
Signal Strength (SSS) ≥0.75 (Table S1). Refer to Table 2 for species specific code information. 
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Figure 2. Species’ responses to four of the most influential climate variables analyzed here—potential 
evapotranspiration (a,b) wet day frequency (c,d), the difference between potential evapotranspiration and 
precipitation (e,f), and maximum temperature (g,h). Shown are Pearson correlations between ring width 
index and monthly climate variables (left panel) and percent response of growth and Aboveground woody 
Net Primary Productivity (ANPPstem) to +1 Standard Deviation (SD) in the climate variable (right panel). 

Also shown is ANPPstem of each species (i). Refer to Table 2 for species specific code information. 
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Figure 3. Sensitivity of Aboveground woody Net Primary Productivity (ANPPstem) to 10 climate variables 
from 1901-2009. Shown is change in ANPPstem (Mg C ha-1 yr-1 and % of total) with +1 Standard Deviation 
(SD) in climate variable, as predicted based on the responses of individual species and the 2008 census of 

the Smithsonian Conservation Biology Institute (SCBI) ForestGEO plot. 
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Figure 4. Comparison of the (a) consistency and (b) average strength of climate correlations across the time 
periods analyzed here. Panel (a) shows the percent of species-climate variable-month combinations for 
which Pearson correlations are positive for moisture variables (PRE, WET, PDSI, CLD) and negative for 

energy variables (TMAX, TMP, TMIN, DTR, PET, PET-PRE) in each of 3 time periods: previous year’s early 
growing season (mjj), previous year’s late growing season (as), and current peak growing season (MJJA). 
Panel (b) shows the mean absolute correlation of growth to several climate variables of all species over 

MJJA. Refer to Table 1 for explanations of moisture and energy variables. 
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Figure 5. Predicted response of Aboveground woody Net Primary Productivity (ANPPstem) to +1 Standard 
Deviation (SD) change in 10 climate variables, as predicted based on the responses of individual species 
over three 30-year time periods and the 2008 census of the Smithsonian Conservation Biology Institute 

(SCBI) ForestGEO plot. 

179x69mm (300 x 300 DPI) 

Page 40 of 40New Phytologist


