Parelaphostrongylus tenuis in captive reindeer and sable antelope—

The National Zoological Park (NZP) maintains a facility known as the Conservation and Research Center (CRC) for research and captive propagation of exotic animal species. The CRC is located on 3,150 acres of land in the Shenandoah Valley near Front Royal, Va. The facility was opened in 1974, at which time the first exotic hoofstock were moved from NZP to CRC.

In 1982, cerebrospinal parelaphostrongylosis was diagnosed in 3 male and 3 female reindeer (Rangifer tarandus tarandus; reindeer No. 1 through 6) from the herd kept at CRC. Apparent lameness in one or more limbs and progressive hindlimb ataxia and weakness developed in the 6 affected reindeer. Head tilt and/or paraplegia also was seen in one or more of these 6 reindeer. Repeated hemograms and results of serum biochemical analyses of each animal and evaluation of a CSF sample collected from the first affected reindeer were normal for reindeer at the NZP clinical pathology laboratory. Dexamethasone and fluids were administered parenterally to all 6 reindeer. Reindeer 4, 5, and 6 also were given sc injections of levamisole (5.5 to 11.0 mg/kg of body weight). Five of the 6 reindeer died or were euthanatized as a result of the disease; the 6th reindeer, with neurologic signs, died due to other causes.

Complete necropsies were performed on the affected reindeer. Brains and spinal cords were removed, examined, and placed in 10% neutral-buffered formalin. Spinal cords were sectioned transversely along the entire length at 2- to 4-cm intervals. Selected sections from the visceral organs, brain, and each segment of the spinal cord were processed routinely and examined microscopically.

Foci of hemorrhage were visible on the surface of the leptomeninges and/or within the spinal cords of 5 of the 6 reindeer; the spinal cord of reindeer 5 was palpably softer in these areas. In reindeer 3, 2 nematodes, 5- to 6-mm long, were seen and were removed from the subdural space of the thoracic spinal cord. On the basis of external morphologic features, these parasites were identified as atath larveae of Parelaphostrongylus tenuis. Microscopic lesions in the CNS of the 6 reindeer were consistent with those described in reindeer and caribou (Rangifer tarandus terraenovae) with P tenuis infections. Sections of P tenuis larvae were seen in the white matter of the lumbar spinal cord from reindeer 4.

The remainder of the reindeer herd at CRC was moved to pastures that were considered less likely to contain infective forms of P tenuis. Further disease problems due to this parasite were not seen in the remaining reindeer.

In November 1984, a 4.5-year-old female sable antelope (Hippotragus niger; antelope 1) at CRC was seen stumbling and standing away from the rest of the herd. The next day, she was recumbent and unable to stand. Supportive treatment with dexamethasone, vitamins, and oxytetracycline was ineffective. Hemograms and results of CSF analysis were normal for sable antelope at the NZP laboratory. The antelope was euthanatized 4 days after the onset of illness.

The following month (December 1984), a 5-year-old female sable antelope (antelope 2) from the same herd developed mild hindlimb ataxia. This animal was treated with invermectin (0.6 mg/kg of body weight, IM) and dexamethasone (1 mg/kg, IV). Supportive therapy similar to that given to antelope 1 was administered during the next 3 weeks; 21 days after the onset of ataxia, this animal's clinical condition acutely worsened and the animal could not stand. A CSF sample was collected and the antelope was euthanatized. Evaluation of the CSF indicated only iatrogenic blood contamination. Hematologic and serum biochemical findings during the course of the illness were normal for sable antelopes at the NZP clinical pathology laboratory.

Complete necropsies were performed on both sable antelope, as described for the reindeer. A moderate amount of clotted blood was found subdurally around the cerebellum and medulla of antelope 1, but the remainder of the CNS was normal grossly. In antelope 2, multifocal meningeal hemorrhages were seen along the cervical and thoracic segments of the spinal cord. The cord was sectioned in these areas and focal cavitations and hemorrhages were seen in the gray matter. Microscopically, immature forms of P tenuis were seen in sections of the medulla from antelope 1 (Fig 1). Other microscopic lesions in the CNS were similar in both antelope and consisted of lymphocytes, plasma cells, and occasionally eosinophils around blood vessels and in de-

Fig 1—Photomicrograph of the medulla of a sable antelope (antelope 1), indicating numerous sections of immature Parelaphostrongylus tenuis. H&E stain; X 14.
generated tracts in the spinal cords and brains. Tracts were sometimes hemorrhagic and contained swollen axons (Fig 2). Perivasculitis also was seen in the meninges.

*Parelaphostrongylus tenuis* is a protostrongylid nematode that normally parasitizes the CNS of white-tailed deer (*Odocoileus virginianus*). Terrestrial gastropods (snails and slugs) are obligate intermediate hosts for *P. tenuis*, and mammals are infected with this parasite by accidentally ingesting *P. tenuis*-infected gastropods on vegetation. In aberrant ruminant hosts, *P. tenuis* often causes severe CNS damage. Neurologic disease resulting from *P. tenuis* infections has been described in many species of domestic and nondomestic ruminants, including reindeer.1–9 A large percentage of white-tailed deer from areas of Virginia near Front Royal (location of the CRC) are infected with *P. tenuis*.10,13 When the NZP research and propagation program was initiated at the CRC in 1974, white-tailed deer often were seen in pastures mixing with exotic hoofstock. Although proper fencing eliminated this problem, white-tailed deer still browsed extensively along some of the fence lines. Gastropod intermediate hosts probably became infected with *P. tenuis* at these fence lines, crossed into the pastures, and were ingested by the exotic hoofstock, resulting in *P. tenuis* infections in the reindeer and sable antelope.

Clinical histories and pathologic findings in the animals of the present report closely resembled those described in other aberrant hosts.1–9 Because only a few larvae can inflict major damage in aberrant hosts,4 a definitive diagnosis of *P. tenuis* infection by identifying the parasite (grossly or microscopically) within the CNS can be difficult. In the reindeer herd at CRC, *P. tenuis* was identified in only 2 reindeer and diagnoses were based on clinicopathologic and microscopic findings. Likewise, *P. tenuis* was identified in sable antelope 1 and was strongly suspected in sable antelope 2 on the basis of microscopic findings.

A retrospective search of the pathologic records at NZP since 1975 indicated 2 other animals from CRC with clinical signs of illness and microscopic lesions (Fig 3) indicative of cerebrospinal nematodiasis, a 15-month-old bongo antelope (*Tragelaphus eurycerus*) in 1975 and a 19-month-old scimitar-horned oryx (*oryx dammah*) in 1980. Only a tentative diagnosis of *P. tenuis* infection could be made for the oryx and bongo antelope, because parasites were not identified in the CNS of either animal.

Clinical signs of illness in the reindeer, sable antelope, bongo antelope, and oryx began in November, December, June, or July. Infective larvae of *P. tenuis* can cross the winter in gastropods.7 Therefore, as long as weather conditions are favorable for gastropod activity, animals probably can become infected.

Treatment of reindeer 4, 5, and 6 with levamisole and treatment of sable antelope 2 with ivermectin were ineffective. The best method of controlling *P. tenuis* infections is to eliminate exposure of potentially susceptible animals to white-tailed deer and/or *P. tenuis*-infected gastropods.4

The susceptibility of different aberrant hosts to *P. tenuis* differs markedly with species, age, and the initial number of infecting parasites.10,12–16,22 Moose (*Alces alces*), reindeer, and caribou are exquisitely sensitive to this parasite.2,4,30 Because *parelaphostrongylus* is a density-dependent disease,33 and because the number of white-tailed deer probably will increase, the incidence of *P. tenuis* infections in domestic and nondomestic animals probably will increase as well. Zoos and wildlife parks especially should be cautious when introducing exotic hoofstock to areas with white-tailed deer.

---

10. Smith HJ, Archibald RMG. Moose sickness, a neurological disease of moose


