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Abstract 1 
Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an 2 
important part of greenhouse gas (GHG) inventorying. In the contiguous United States 3 
(CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland 4 
type and change with soil, biomass, and CH4 flux data from a literature review. We assess 5 
uncertainty in this developing carbon monitoring system to quantify confidence in the inventory 6 
process itself and to prioritize future research. We provide a value-added analysis by defining 7 
types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland 8 
maps, simulating 10,000 iterations of a simplified version of the inventory, and performing a 9 
sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) 10 
emissions from 2006 to 2011. Although stable estuarine wetlands were likely a CO2e sink, this 11 
effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from 12 
tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most 13 
sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate 14 
the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands 15 
and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth 16 
of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the 17 
fraction of carbon lost to the atmosphere following an erosion event. The inventory was 18 
relatively insensitive to mapping uncertainties. Future versions could be improved by collecting 19 
additional data, especially the depth affected by loss events, and by better mapping salinity and 20 
inundation gradients relevant to key GHG fluxes. 21 
 22 
 23 
Social Media Abstract: U.S. coastal wetlands were a recent and uncertain source of 24 
greenhouse gasses because of CH4 and erosion 25 
 26 
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1. Introduction 1 
Managing land to optimize carbon storage and mitigate degradation is one among many 2 
strategies under consideration to curb anthropogenic greenhouse gas emissions (Griscom et al 3 
2017). Coastal wetlands -- defined here as salt marshes, mangroves, tidal freshwater wetlands, 4 
and tidal freshwater forests --  have received some of this attention because they can act as a 5 
net-greenhouse gas sink (Howard et al 2017), and because restoration (Kroeger et al 2017) and 6 
conservation (DeLaune and White 2012) may reduce or mitigate emissions. Regulation and 7 
market mechanisms can incentivize wetland restoration to promote emission reduction 8 
(Pendleton et al 2012, Wylie et al 2016) and myriad co-benefits (Barbier et al 2011, Doughty et 9 
al 2017, Griscom et al 2017). 10 

Coastal wetlands can bury carbon (Chmura et al 2003, Ouyang and Lee 2013, Howard 11 
et al 2017) and form new soil (Morris et al 2002) by adding organic carbon to the soil column 12 
through sub-surface root addition (Nyman et al 2006). Carbon burial is a dynamic response to 13 
sea-level rise (Kirwan and Megonigal 2013, Kirwan et al 2016). Carbon removed from the 14 
atmosphere and incorporated into soils and plant matter is referred to throughout this paper as a 15 
‘removal’. However, wetlands can also be the sources of emissions when they are eroded 16 
(DeLaune and White 2012), developed (Stein et al 2014), or drained for agriculture (Drexler et al 17 
2009). Freshwater and brackish tidal wetlands emit methane (CH4) (Bridgham et al 2006, 18 
Poffenbarger et al 2011), a more potent greenhouse gas than carbon dioxide (CO2) over the 19 
course of its atmospheric lifetime (Frolking and Roulet 2006, Neubauer and Megonigal 2015). At 20 
a national scale, in order to estimate total greenhouse gas emissions or removals, researchers 21 
need to know the areal coverage of different wetland types, the areal coverage of wetland 22 
change events, and to assign annualized CO2 equivalent (CO2e) stock changes to those 23 
wetland classes and change events. 24 

Spatial data, literature review, and expert assumptions are all used to inventory 25 
greenhouse gas fluxes at national scales. These inputs introduce uncertainty (IPCC 2014), 26 
which needs to be quantified to establish both levels of confidence and priorities for future 27 
research. The Intergovernmental Panel on Climate Change (IPCC) quantifies emissions and 28 
removals with ‘emissions factors’ and ‘activities data’. For agricultural, forested and other lands, 29 
emissions factors are values assigning greenhouse gas fluxes to land cover types and change 30 
events (Eq. 1). Activities data are typically interpreted as the areal coverage of land cover type 31 
and/or land cover change events. The IPCC published guidance for national-scale greenhouse 32 
gas inventories for coastal wetlands (IPCC 2014), and the United States incorporated these for 33 
the first time in its 2017 national greenhouse gas inventory (NGGI) conducted by the 34 
Environmental Protection Agency (EPA) (EPA 2017). Our analysis is not an official part of that 35 
NGGI. Instead, we used the accounting concepts outlined therein, as well as updated literature 36 
review and spatial data, in order to improve uncertainty estimates at the national scale and 37 
highlight areas of research that could further reduce that uncertainty. 38 

  39 
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑜𝑟	𝑅𝑒𝑚𝑜𝑣𝑎𝑙𝑠	(𝑓𝑙𝑢𝑥) 	= 	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠	(𝑎𝑟𝑒𝑎)	×𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠. 𝐹𝑎𝑐𝑡𝑜𝑟	(𝑓𝑙𝑢𝑥	/	𝑎𝑟𝑒𝑎)  40 

1. 41 
 42 
In the NGGI, uncertainties in emissions and removals were estimated using a basic 43 

algebraic approach (IPCC 2014, EPA 2017). We address five assumptions and approaches 44 
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from the previous NGGI to improve uncertainty estimates in coastal wetlands: 1. The probability 1 
distributions of the activities and emissions data were not explicitly defined; 2. Key variables 2 
such as the uncertainty inherent in tidal-elevation maps were not included; 3. Uncertainties in 3 
many activities data and emissions factors are best described by non-normal distributions, 4 
which could not be accommodated using the basic algebraic approach; 4. Key assumptions, 5 
such as the depth affected by degradation events, were based on expert assessment and 6 
therefore treated as fixed values, not as probability distributions; and 5. Some inventory 7 
decisions, such as how to calculate the global warming potential (GWP) of CH4 emissions and 8 
how much area to include in the inventory, have more than one recognized technique, and 9 
uncertainty from choosing among techniques was not quantified. 10 

Our analysis expands upon the scope of the NGGI uncertainty analysis and explicitly 11 
identifies and quantifies uncertainty for key activities data and emissions factors. We update key 12 
datasets with new synthesis efforts (Windham-Myers and Cai in Revision) (Supplemental 13 
Information) and the results of NASA Carbon Monitoring Systems projects (Olofsson et al 2014, 14 
Byrd et al 2018, Holmquist et al 2018). Our research questions are: 1. How much certainty is 15 
there that CONUS coastal wetlands were a net-source or sink of GHGs from 2006 to 2011? 2. 16 
Which datasets, assumptions, or mapping categories introduce the most uncertainty into the 17 
coastal wetland category of the US national GHG inventory? 18 
 19 
2. Methods 20 
We addressed our research questions by integrating multiple spatial and non-spatial datasets, 21 
explicitly defining uncertainty in each step, estimating total propagated uncertainty using a 22 
Monte Carlo analysis (Ogle et al 2003, Paustian et al 2006), and by quantifying the sensitivity of 23 
total emissions and removals to each input. 24 
 25 
2.1. Time Period and 2006 to 2011 Land Cover Classes Analysed 26 
As in the NGGI (EPA 2017) we quantified area using the Coastal Change Analysis Program (C-27 
CAP; Fig. 1; Supplemental Tab. 1). C-CAP is a Landsat-based land cover mapping product with 28 
23 land cover classes, including six types of intertidal wetlands defined by two types of salinity 29 
(palustrine and estuarine) and three types of vegetation (emergent, scrub/shrub, and forested) 30 
(NOAA 2014). We did not include seagrasses in this analysis because C-CAP’s ‘estuarine 31 
aquatic bed’ category typically represents nearshore vegetated environments, such as kelp 32 
beds, which are not a net-carbon storing system (Howard et al 2017). The coastal wetland 33 
section of the NGGI inventory also did not include palustrine forested wetlands, since they fall 34 
under the purview of forested lands. We include them because information on their contribution 35 
to uncertainty is informative regardless of their reporting subcategory. 36 

The NGGI inventory is required to report from 1990 to 2015, so they linearly interpolate 37 
C-CAP changes back to 1990 and forward to 2015 (EPA 2017). Although C-CAP produces land 38 
cover change maps for five-year intervals for all U.S. coastal states from 1996 to 2011, for our 39 
analysis we focus on the C-CAP 2006 to 2011 time step because it is currently the only version 40 
with accuracy assessment data. From 2006 to 2011 we mapped 240 different land cover types 41 
including, six classes of wetlands that had the same classification in 2006 and 2011, and 234 42 
types of change to, from, and between wetland classes. 43 
 44 
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2.2. Overview of Inventory Calculations 1 
We quantified total U.S. GHG emissions and removals from coastal wetlands by mapping the 2 
area of different classes of stable wetlands and different types of change events, then 3 
multiplying that area by the summed soil, biomass and methane flux from 2006 to 2011 (Eq. 2). 4 
 5 
𝑡𝑜𝑡𝑎𝑙. 𝑓𝑙𝑢𝑥	 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. 𝑎𝑟𝑒𝑎<	(𝑠𝑜𝑖𝑙. 𝑓𝑙𝑢𝑥< 	+ 	𝑏𝑖𝑜𝑚𝑎𝑠𝑠. 𝑓𝑙𝑢𝑥< 	+ 	𝑚𝑒𝑡ℎ𝑎𝑛𝑒. 𝑓𝑙𝑢𝑥<)@

<AB  2. 6 
In which: 7 

i is a 2006 to 2011 land cover class in n land cover classes 8 
estimated areai is the total area of land cover class i 9 
Each flux is the mass CO2e emitted or stored per unit area for land cover class i 10 

 11 
As in the U.S. coastal NGGI, we defined the area of interest as the CONUS and included all C-12 
CAP estuarine wetlands (Fig. 2) and palustrine wetlands occuring at an elevation below the 13 
highest tides. This is referred to throughout as the coastal lands definition. Since estuarine 14 
wetlands as C-CAP defines them are driven by oceanic tidal influence, we used mapped area 15 
as represented in C-CAP as fixed values (Fig. 2). Since palustrine wetlands can either be tidal 16 
or non-tidal, we used a probabilistic map of areas falling below Mean Higher High Water Spring 17 
(MHHWS) tides to map palustrine wetland area falling within the coastal zone. Palustrine 18 
wetland mapped areas were not treated as fixed values; we estimated them as a probability 19 
distribution using a mean (μpal,i) and standard deviation (σpal,i) for each class (i), derived from the 20 
probabilistic MHHWS map (Eq .3). 21 
 22 

𝑚𝑎𝑝𝑝𝑒𝑑. 𝑎𝑟𝑒𝑎DEF,< ∼ 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇DEF,< , 𝜎DEF,<)	 3. 23 
 24 
Our analysis made a distinction between mapped area and estimated area. Estimated area can 25 
be greater than or less than mapped area because unequal omission errors (errors of exclusion) 26 
and commission error (errors of inclusion) can cause a land cover class to be over- or under-27 
mapped. We scaled mapped area by taking into account potential errors in 2011 classification 28 
(Olofsson et al 2014) as well as 2006 to 2011 change detection (Fig. 2.). In a simplified version 29 
of this concept, accuracy assessment matrices containing counts of true classifications and 30 
misclassifications, can be simplified down to a single estimated-to-mapped area ratio (r) for a 31 
classification (i) (Eq. 4). This value will be less than 1 if a land cover class is over-mapped, and 32 
greater than 1 if a land cover class is under-mapped. 33 
 34 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑. 𝑎𝑟𝑒𝑎< 	= 𝑟<	×	𝑚𝑎𝑝𝑝𝑒𝑑. 𝑎𝑟𝑒𝑎< 4. 35 
 36 
We estimated total emissions or removals by multiplying estimated area by the summed per 37 
area flux of soil and biomass CO2 and CH4 CO2e (Fig. 2). For emissions factors we treated flux 38 
data as it was reported (either positive or negative), but transformed them when necessary, so 39 
that any emissions were always represented as a negative value and removals were always 40 
represented as a positive value. For soils, if the land cover type did not change or changed but 41 
did not result in soil loss (Supplemental Information 2.3.1), then soil carbon flux was estimated 42 
as the annual soil carbon burial rate multiplied by the number of years that wetlands were 43 
present (Eq. 5). If the 2006 to 2011 class changed and represented a soil loss event, such as 44 
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conversion to developed, agricultural land, or open water, then emissions were estimated to be 1 
the product of mean soil carbon density, depth lost, and fraction of that returns to the 2 
atmosphere (Eq. 6). We quantified biomass using three vegetation classes: forested, 3 
scrub/shrub, and emergent vegetation. We estimated biomass flux if there was a transition 4 
between vegetation types or from vegetated to unvegetated surfaces between 2006 and 2011 5 
(Eq. 7). We quantified CH4 fluxes using two salinity classes, since freshwater wetlands 6 
(palustrine) emit more methane than brackish to saline wetlands (estuarine) (Poffenbarger et al 7 
2011). We calculated methane flux for a class by determining CH4 emissions associated with 8 
the salinity type in 2006 and 2011, summing them, and multiplying by 2.5 to normalize the flux 9 
over 5 years (Eq. 8). 10 

 11 
𝑠𝑜𝑖𝑙. 𝑓𝑙𝑢𝑥@K.FKLL 	= 𝑠𝑜𝑖𝑙. 𝑏𝑢𝑟𝑖𝑎𝑙	×𝑛. 𝑦𝑒𝑎𝑟𝑠 5. 12 

 13 
𝑠𝑜𝑖𝑙. 𝑓𝑙𝑢𝑥FKLL 	= 	−(𝑠𝑜𝑖𝑙. 𝑐𝑎𝑟𝑏𝑜𝑛	×𝑑𝑒𝑝𝑡ℎ. 𝑙𝑜𝑠𝑡	×𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑) 6. 14 

 15 
𝑏𝑖𝑜𝑚𝑎𝑠𝑠. 𝑓𝑙𝑢𝑥	 = 𝑏𝑖𝑜𝑚𝑎𝑠𝑠OPBB − 𝑏𝑖𝑜𝑚𝑎𝑠𝑠OPPQ	 7. 16 

 17 
𝑚𝑒𝑡ℎ𝑎𝑛𝑒. 𝑓𝑙𝑢𝑥	 = 	−2.5	(𝑚𝑒𝑡ℎ𝑎𝑛𝑒OPBB + 𝑚𝑒𝑡ℎ𝑎𝑛𝑒OPPQ) 8. 18 

 19 
2.2. Estimating Area of Wetland Class and Change Events 20 
2.2.3. Using Tide and Elevation Data to Map Coastal Palustrine Wetlands 21 
As in the previous NGGI, we mapped a subset of palustrine wetlands categorized as coastal 22 
lands because their tidal elevation was lower than MHHWS. However, uncertainties in digital 23 
elevation model (DEM) elevations and in mapping tidal height were not previously included in 24 
the NGGI uncertainty analysis (EPA 2017). We enhanced the inventory by creating a 25 
probabilistic coastal lands map (Supplemental Information: Section 2.1.).  26 

For wetland surface elevation data we used DEMs that were created using Light 27 
Detection and Ranging (LiDAR) and were aggregated by the National Oceanic and Atmospheric 28 
Association (NOAA) for their Sea-Level Rise Viewer (NOAA 2016) (Supplemental Tab. 1). 29 
DEMs were created to Federal Emergency Management Administration accuracy standards 30 
(Flood 2004, Coveney 2013). DEMs have a nominal Root Mean Square Error (RMSE) of 0.185 31 
m for low-relief areas and assume no bias (NOAA 2017). However, wetland vegetation and soil 32 
introduce system-specific bias and random error (Chassereau et al 2011) not captured by the 33 
nominal accuracy reporting. We corrected for a mean error of 0.173 m and estimate a RMSE of 34 
0.205 m for wetland surfaces based on a weighted average of results from multiple U.S.-based 35 
studies (Supplemental Tab. 2). We created a map of MHHWS heights using empirical Bayesian 36 
kriging to interpolate between NOAA tide gauges. We also created a corresponding uncertainty 37 
map incorporating random error in LiDAR mapping, datum transformations (Schmid et al 2013, 38 
Leon et al 2014), and distance between tide gauges. We combined the DEMs, the MHHWS 39 
map, and the associated uncertainty surfaces into a single spatial layer representing the 40 
probability of elevation being below MHHWS (Fig. 1-2). 41 

For palustrine wetlands, we treated mapped area as a random variable. For each of 111 42 
palustrine wetland categories we extracted pixel counts by probability class for the coastal lands 43 
map intersecting the C-CAP class and represented mapped area as a normal distribution 44 
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approximated from the multiple binomial distributions (Supplemental Information: Section 2.1). 1 
The means and standard deviations for all 111 palustrine wetland stable classes and palustrine 2 
wetland change events are reported in Supplemental Table 2. 3 
 4 
2.2.4. Representing Uncertainty in Land Cover Classification and Change Detection 5 
We calculated an estimated area from mapped area (Olofsson et al 2014, Byrd et al 2018) by 6 
combining accuracy assessment matrices (McCombs et al 2016) with area data from C-CAP 7 
(NOAA 2014) (Supplemental Table 4-5). C-CAP did not assess classification accuracy for all 8 
individual land cover change events between 2006 and 2011. Instead there is an overall 9 
accuracy assessment for 2011 classification and one for the 2006 to 2011 generalized ‘change’ 10 
or ‘no change’ categories. 11 

The accuracy assessment matrix records counts for all instances of mapped classes -- 12 
what a datapoint was mapped as -- and reference classes -- what it actually was (Supplemental 13 
Tab. 4-5). We converted the accuracy assessment matrix from counts to proportional areas 14 
(Olofsson et al 2014, Byrd et al 2018), and calculated the estimated proportional area for each 15 
class as the reference class’ column sum in the proportional area matrix. We used estimated 16 
and mapped area at the full map scale to calculate an estimated to mapped area ratio (r). For 17 
each 2006 to 2011 C-CAP class, we used the appropriate r to scale mapped area by the 2011 18 
class. We then used a second r value from the ‘change’ and ‘no change’ matrix to scale again 19 
based on change detection. Additional detail on how we calculated proportional area accuracy 20 
assessment matrices and class-specific scaling factors are available in the supplemental 21 
information (Section 2.2). 22 

We represented uncertainty in estimated to mapped area ratio by representing each 23 
mapped class in the accuracy assessment count matrix as a multiple multinomial distributions, a 24 
distribution that describes counts falling into two or more categories as a random variable 25 
(Supplemental Information: Section 2.2). 26 
 27 
2.3. Carbon Storage and Emissions Data 28 
As in the NGGI we calculated emissions factors for soils, and CH4 based on literature review 29 
and synthesis. Unlike the NGGI we include carbon fluxes related to biomass because data is 30 
now available as part of a remote sensing calibration and validation effort (Byrd et al 2018), and 31 
a literature review that is part of continued inventory development (Supplemental Information: 32 
Section 2.3). We did not include N2O emissions. 33 
 34 
2.3.1. Soil Flux Data 35 
We estimated soil carbon stock change in wetlands remaining wetlands and lands converted to 36 
wetlands as annual carbon burial rate from a literature review of lead-210 (210Pb) dated cores 37 
(Supplemental Information; Section 2.3.1). 210Pb-based measurements typically integrate 38 
carbon burial over a century, compared to cesium-137 (137Cs)- and artificial plot-based 39 
measurements, which integrate carbon burial over multi-decadal to annual time scales; 40 
therefore we assumed 210Pb-based rates are more representative of long-term storage rates. 41 
We described soil carbon burial using a lognormal distribution because observed removals can 42 
not be negative when strictly relying on dated sediment profiles, observed values were always 43 
greater than zero, and the data show a positively skewed distribution (Fig. 3; Tab. 1). 44 
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For soil carbon stock change associated with wetland loss, we used average soil carbon 1 
density values reported by Holmquist et al. (2018) to characterize the CO2 emission rate (Tab. 2 
1). Holmquist et al. (2018) determined that soil carbon density did not vary significantly by 3 
depth, and that the probability distribution of soil carbon density was described well by a normal 4 
distribution, truncated so that values could not be less than zero. They also determined utilizing 5 
a single average value for all wetlands was more parsimonious and precise than stock 6 
estimates based on available maps of soil carbon. 7 

The previous NGGI (EPA 2017) made two assumptions about carbon changes during 8 
wetland conversion events that were not considered in the error propagation. First, the depth of 9 
soil lost to conversion was based on a range of values reported for aquaculture and salt 10 
production pond construction (0.5-2.5m; IPCC 2014) but was fixed to 1 m. In the NGGI, this 11 
value was applied to wetland areas that converted to open water as indicated by C-CAP. 12 
Because wetland to open water conversion events were dominant in our accounting and the 13 
IPCC depth intervals for degradation were largely not applicable, we represented uncertainty 14 
regarding this assumption by using a uniform distribution ranging from 0.5 to 1.5 m (Tab. 1) to 15 
represent a wide distribution centered on 1 m. This uncertainty reflected a consensus from our 16 
coauthor group and reflected an expert assumption rather than data, as we could not readily 17 
locate or ingest any relevant data. The NGGI also assumed that 100% of the carbon released 18 
by conversion from coastal wetlands to open water is lost to the atmosphere. However 19 
(Lovelock et al 2017) reviewed available studies and estimated 25-50% of terrestrial carbon 20 
delivered to the marine environment was buried in ocean sediments (Baldock et al 2004, Cai 21 
2011, Blair and Aller 2012). Therefore we represented the fraction lost back to the atmosphere 22 
as a uniform distribution ranging from 50 to 75% (Tab. 1). 23 
 24 
2.3.2. Biomass Flux Data 25 
We utilized biomass data from (Byrd et al 2018) to generate emissions factors for emergent 26 
wetlands. We accounted for forested wetland biomass using a synthesis of tree diameter at 27 
breast height (DBH) for mangrove and tidal freshwater forested plots, then converting DBH to 28 
above ground biomass using allometric equations cited within the data source, or originating 29 
from a similar representative study (Supplemental Information: Section 2.3.2). We represented 30 
scrub/shrub data using a subset of the Byrd et al. (2018) biomass data, plots that were 31 
dominated by the shrub Iva frutescens, and a subset of the forested biomass dataset, plots in 32 
which average tree heights were lower than 5 m. We converted biomass to organic carbon 33 
using a conversion factor of 0.441 (Byrd et al 2018). We represented above-ground biomass 34 
with lognormal distributions because the data exhibited skewed positive distributions (Tab. 1; 35 
Supplemental Fig. 2). 36 
 37 
2.3.3. Methane Flux Data 38 
For CH4 fluxes, we utilized a synthesis of annual CH4 fluxes compiled by (Poffenbarger et al 39 
2011) and further developed as part of the 2nd State of the Carbon Cycle Report (Windham-40 
Myers and Cai in Revision) (Supplemental Information: Section 2.3.3). Although IPCC guidance 41 
recommends separating CH4 emissions by salinity class using an 18 ppt threshold (IPCC 2014), 42 
C-CAP’s two salinity categories are not optimized for this purpose. We instead had to represent 43 
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CH4 emissions with separate estuarine and palustrine emissions factors based on a 5 ppt 1 
salinity threshold (NOAA 2014) (Fig. 4). 2 

We represented CH4 fluxes using a normal distribution for estuarine wetlands because 3 
while the vast majority of sites indicated a net emissions scenario, one oligohaline site in New 4 
Jersey displayed net-uptake of CH4 for much of the two years reported (Weston et al 2014) (Fig. 5 
3). We represented palustrine CH4 emissions using a lognormal distribution because flux values 6 
had a skewed positive distribution and there were no instances of net-uptake of CH4 (Fig. 3; 7 
Tab. 1). We estimated the global warming potential of CH4 as 25 CO2e CH4

-1 for consistency 8 
with the NGGI (IPCC 1997, EPA 2017) even though IPCC 5th Assessment Report recommends 9 
updated conversions (28 CO2e CH4

-1 or 34 CO2e CH4
-1 with feedbacks; Tab. 1) (Pachauri et al 10 

2014). 11 
 12 
2.4. Uncertainty and Sensitivity Analysis 13 
2.4.1. Monte Carlo Analysis 14 
We propagated uncertainty using a Monte Carlo analysis (Ogle et al 2003, Paustian et al 2006, 15 
Metsaranta et al 2017). We calculated the inventory (Eq. 2.) 10,000 times, simulating the 16 
underlying data using random draws from the probability distributions for 145 random variables 17 
(Supplemental Information: Section 2.3.4): including normal distributions for the mapped area 18 
for each of 111 possible palustrine stable and change classes (Supplemental Tab. 2) and 19 
multinomial distributions used to randomly draw accuracy assessment matrices for twenty-three 20 
2011 C-CAP land cover classifications (Supplemental Tab. 4), and 2006 to 2011 change and no 21 
change categories (Supplemental Tab. 5).  22 

We also propagated uncertainty for nine emissions factors or emission factor 23 
components (Tab. 2). For normally distributed variables we randomly drew the same number of 24 
datapoints from literature review from the probability distribution then represented the emissions 25 
factor or component as the mean of the randomly drawn data. For uniform distributions, we 26 
randomly drew a single value. For emissions factors that were lognormally distributed we 27 
randomly redrew the underlying data as in normal distributions but represented the central 28 
tendency of using the exponentiated logmean. This choice is consistent with IPCC Wetlands 29 
Supplement guidance, however arithmetic means are often used for lognormally distributed 30 
emissions factors (Levy et al 2017). Because the goal of this paper is to quantify the effect of 31 
assumptions on the inventory, we repeated the uncertainty analysis using the arithmetic mean 32 
of lognormally distributed values (Supplemental information: Section 3.2; Supplemental Fig. 4). 33 
 34 
2.4.2. Sensitivity Analysis 35 
We performed a one-at-a-time sensitivity analysis (Metsaranta et al 2017), meaning we 36 
categorized sensitivity of the U.S. scale emissions and removals to assumptions, datasets, and 37 
mapping accuracies by manipulating one input at a time and recording the effect. For each 38 
random variable we re-calculated the coastal wetland total GHG emissions and removals using 39 
the 0.025 quantile and 0.975 quantile values from Monte Carlo analysis, while fixing all others at 40 
their median value. We reported sensitivity of the inventory to each input as the difference in the 41 
total flux between using the input’s minimal and maximal settings. 42 

The sensitivity analysis also helped test the effect of some of the fundamental 43 
assumptions. For example, CH4 fluxes need to be converted to CO2e, and there is controversy 44 
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about whether to use the GWP (25 CO2e CH4
-1) (IPCC 2014) or the Sustained Global Warming 1 

Potential (SGWP; 45 CO2e CH4
-1) and Sustained Global Cooling Potentials (SGCP; 203 CO2e 2 

gCH4
-1) which more effectively represent the system (Neubauer and Megonigal 2015). We 3 

quantified the effect of that choice by calculating the inventory using a GWP and median values 4 
for all other inputs and then recalculated changing only the GWP to SGW/CP (Neubauer and 5 
Megonigal 2015). Also, we tested the assumption of relying on the coastal lands definition for 6 
determining how much palustrine wetland area to include in the inventory compared to a tidal 7 
wetlands definition from the National Wetlands Inventory (NWI) (Hinson et al 2017, Najjar et al 8 
2018, Holmquist et al 2018). For this alternative analysis, we included all C-CAP palustrine 9 
wetlands intersecting an NWI-based tidal wetlands map (Holmquist et al 2018) and treated all 10 
palustrine mapped areas as fixed. In the sensitivity analysis we calculated the difference in total 11 
inventory between the default settings and the NWI based mapping strategy. We also we 12 
repeated the sensitivity analysis using the arithmetic mean of lognormally distributed values, 13 
and discuss the results further in the supplemental information (Section 3.2; Supplemental Fig. 14 
5). 15 
 16 
3. Results and Discussion 17 
3.1. Initial Assessment of Estimated Area 18 
The Monte Carlo analysis combining C-CAP and LiDAR DEMs define a total area of interest 19 
with a median of 3.56 million hectares (M ha; Fig. 5). Stable wetlands were the largest category 20 
(Fig. 5) with estuarine emergent wetlands dominating (1.82 M ha), followed by palustrine 21 
forested wetlands (0.68 M ha), palustrine emergent wetlands (0.54 M ha), and estuarine 22 
forested wetlands (0.19 M ha). Of the wetlands that changed to or from other categories, loss of 23 
emergent wetlands to open water was the most dominant classification. Conversion from open 24 
water to emergent wetlands was the next most important conversion but only made up for one 25 
third of the area converted from emergent wetlands to open water. The NWI-based strategy 26 
mapped fewer palustrine wetlands, especially palustrine forested wetlands, defining a total area 27 
of interest of 2.86 M ha. 28 
 29 
3.2. Uncertainty in the CONUS 2006 to 2011 Coastal Wetland Inventory 30 
Coastal wetlands were likely to have acted as a net-source of GHG from 2006 to 2011 (Fig. 6; 31 
Tab. 1; Supplemental Tab. 7). Across the 10,000 Monte Carlo iterations median total net-32 
emission was -10.3 million tonnes (M tonnes) of CO2e per year (yr-1) over five years with a 33 
confidence interval ranging from -1.6 to -21.3 M tonnes CO2e yr-1. Although the confidence 34 
intervals were wide they were strictly negative, which support the conclusion of net-emissions 35 
from 2006 to 2011. 36 

Separating estuarine wetlands, which have lower CH4 emissions, and palustrine 37 
wetlands, which have higher CH4 emissions, indicates that both classes are more likely to have 38 
acted as net-emitters (Tab. 2). However, estuarine wetlands emissions were more likely 39 
occurring due to wetland conversion events (Fig. 6). While overall stable and gaining estuarine 40 
wetlands acted as a net-sink and stable and gaining palustrine wetlands a net-source according 41 
to their median values, both categories had uncertainties spanning both net-emissions and net-42 
storage scenarios. 43 
 44 
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3.3. The Dominant Contributions to National-Scale Uncertainty 1 
CONUS-scale total flux was most sensitive to inputs in four major classes: uncertainty in 2 
emissions and burial data, assumptions about how to calculate the inventory, C-CAP 2006 to 3 
2011 change detection accuracy, and C-CAP 2011 classification accuracy (Fig. 7; Supplemental 4 
Tab. 7). Overall the inventory was most sensitive to uncertainty in the underlying emissions and 5 
storage data, and to assumptions made. Uncertainty arising from the probabilistic coastal lands 6 
mapping was not a dominant contributor to total uncertainty in this framework. 7 

Uncertainty in palustrine CH4 emissions, had the greatest effect on the inventory 8 
estimates for CONUS coastal wetlands, 11.6 M tonne CO2e yr-1 (Fig. 7; Supplemental Tab. 7). 9 
The average depth of soils lost to erosion, extraction, or drainage, was second most impactful 10 
and had a 9.4 M tonne CO2 yr-1. Estuarine CH4 emissions were also important and had a 8.5 M 11 
tonne CO2e yr-1 effect. Soil carbon burial rate had a 5.2 M tonne CO2e yr-1 effect and 12 
assumptions made about the fraction of soil carbon lost to the atmosphere had a 3.9 M tonne 13 
CO2e yr-1 effect. 14 

The decision to use GWP over SGWP/CP had a median effect of 8.8 M tonnes of CO2e 15 
yr-1. The alternate choice moved the estuarine stable and gains sector from net-storing (+2.2 M 16 
tonnes CO2e yr-1) using GWP to net-emitting (-2.0 M tonnes CO2e yr-1) using SGW/CP (Fig. 7; 17 
Supplemental Tab. 8). Emissions from stable palustrine wetlands overtook palustrine soil and 18 
biomass losses when using SGW/CP. The SGW/CP choice increased the estimate of total 19 
CO2e emissions 89% over the traditional GWP model. 20 

Uncertainty in mapping also contributed to uncertainty in the inventory. 2006 to 2011 21 
change detection was the most uncertain mapping category. Notably, we drew a different 22 
conclusion regarding the 2006 to 2011 change than the official C-CAP accuracy assessment 23 
(McCombs et al 2016). We concluded that change was under-mapped while McCombs et al. 24 
concluded change was over-mapped (Supplemental Information: Section 3.1; Supplemental Fig. 25 
3). This occurred because McCombs et al. raw counts for the accuracy assessment matrix and 26 
we used a proportional area matrix (Olofsson et al 2014). 27 

Sensitivity of the inventory to input uncertainty dropped precipitously for the remaining 28 
inputs. These include the decision between using a coastal lands definition to identify palustrine 29 
wetlands and the strictor NWI-based definition (2.0 M tonne CO2e yr-1 effect) (Fig. 7; 30 
Supplemental Tab. 7). The effect of uncertainty in fluxes associated with changes in forested 31 
and scrub/shrub biomass and carbon density for eroded soils range from 0.6 to 0.1 M tonnes 32 
CO2e yr-1. Classification accuracy introduced uncertainty for estuarine aquatic beds, open water, 33 
unconsolidated shore and palustrine aquatic beds. In our accounting, these all indicate soil loss 34 
events. 35 
 36 
3.4. Implications for Future Research 37 
Uncertainty estimates are important components of complete and transparent GHG inventories 38 
(EPA 2017). Uncertainty information is not intended to dispute the validity of the estimates, but 39 
rather to help prioritize efforts to improve accuracy and guide future decisions.  We recommend 40 
improving process models for CH4 emissions and soil carbon burial, increasing the number of 41 
observations for key inputs, and developing more detailed and accurate maps for categories 42 
relevant to coastal wetland carbon cycling and inventory estimates. 43 
 44 
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3.4.1.  Improving Process Models for CH4 Emissions and Soil Carbon Burial 1 
The uncertainty and sensitivity analysis presented herein suggest that uncertainty could be 2 
reduced at the scale of the contiguous U.S. primarily by improving data availability and process-3 
based models for CH4 emissions, CH4 radiative forcing, and carbon burial rates. Net-wetland 4 
CH4 emission combines CH4 production by methanogenic archaea under anaerobic conditions, 5 
CH4 oxidation and consumption by methanotrophic bacteria mainly under aerobic conditions, 6 
and CH4 transport to the atmosphere (Conrad 1989, Whalen 2005). Major controls of these 7 
processes include: water table position; soil temperature; sulfate supply and potential production 8 
of hydrogen sulfide, a methanogen toxin, for which salinity is a proxy for; vegetation, including 9 
both biomass and species composition, which may facilitate CH4 transport from soil production 10 
sites to the atmosphere; and primary production of vegetation, since new photosynthate may be 11 
a substrate for methanogenesis (Wang et al 1996, Walter and Heimann 2000). Large 12 
discrepancies have also been noted between chamber and eddy covariance measurements of 13 
CH4 fluxes (Hendriks et al 2010, Krauss et al 2016), suggesting the need for additional 14 
comparisons between these two methods. 15 

The use of GWPs serves an important policy need because GWPs are transparent and 16 
tractable. However, GWPs are an oversimplification because modeling CO2e in power units (W 17 
m-2) that relate directly to radiative forcing is several steps removed from actual climate impacts 18 
such as changes in temperature, precipitation, and sea level. The SGW/CP model is equally 19 
transparent and tractable, but more closely represents reality by acknowledging that changes in 20 
GHG emissions persist over several years (Neubauer and Megonigal 2015). Therefore we 21 
recommend that SCW/CP’s should be considered for adoption by the IPCC. When considering 22 
the consequences of GHG inventory data beyond the IPCC context, ecosystem scientists and 23 
policy analysts should discuss metrics that are independent of time frames, such as switchover 24 
time, as they are more informative of the long-term impacts (Frolking and Roulet 2006). Our 25 
uncertainty analysis is focused on variables that are inputs to GWP and SGW/CP models, but 26 
there is an ongoing need to address the uncertainty introduced by using these models to 27 
underpin climate policy. 28 

Currently, IPCC guidance recommends applying separate carbon burial rates to different 29 
wetland types and ecoregions to increase accuracy. However, multiple studies suggest other 30 
relevant geographic and methodological factors need to be considered in the US inventory. In 31 
some locations, accelerating sea-level rise is expanding the area conducive to carbon burial, 32 
potentially increasing carbon burial rates (Kirwan and Mudd 2012, Hill and Anisfeld 2015). A 33 
sensitivity analysis of the Marsh Equilibrium Model highlighted relative sea-level rise, plant 34 
productivity and relative tidal elevation as dominant drivers of carbon sequestration in stable 35 
wetlands (Morris and Callaway in Press). Elevation/inundation gradients were correlated with 36 
sediment accretion dynamics in San Francisco Bay (Callaway et al 2012). Finally, there are 37 
many ways to measure carbon burial that integrate different time scales: decades- 137Cs, 38 
centuries- 210Pb, or millennia- 14C (Turetsky et al 2004). We recommend that future studies 39 
rectify the complex interactions between regional variability in relative sea-level rise, plant 40 
productivity, local elevation/inundation dynamics, and the potential effects of measuring this 41 
carbon burial using differing methods. 42 
 43 
3.4.2. Increasing Data Availability for Key Inputs  44 
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Some inputs in the inventory could be improved by targeted studies and additional data 1 
collection, including soil depth affected by conversion to open water, and percent carbon 2 
returned to the atmosphere upon loss. 3 

Available data on elevation loss due to the diking of wetlands for agriculture (Drexler et 4 
al 2009), and the mass lost to 50 cm depth following vegetation die off (Lane et al 2016), are not 5 
suitable proxies for the vast majority of losses occurring from 2006 to 2011, estuarine emergent 6 
to open water conversions resulting from hurricane impacts and erosion in the Gulf of Mexico 7 
(NOAA 2014). Although average carbon mass at depth in wetland soils is well constrained for 8 
coastal wetlands (Sanderman et al 2018, Holmquist et al 2018), the sensitivity of this carbon 9 
stock to different disturbances across regions, relative elevations, and time is not well known. 10 

Uncertainty in assumptions about carbon loss is not unique to this study and was 11 
discussed explicitly in a recent global analysis of soil and biomass loss from mangrove 12 
conversions (Sanderman et al 2018), which report that the rate and forms of carbon loss may 13 
depend on soil type and depth (Donato et al 2011). Because assumptions about loss events 14 
vary from study to study, and because of the fact that these assumptions are dominant 15 
contributors to uncertainty (Fig. 7), future research should prioritize empirical and modeling 16 
studies that constrain depth and percent carbon loss due to wetland conversion events. 17 
 18 
3.4.3.  Improving Mapping Capacity of Tidal Carbon Relevant Gradients 19 
The Wetlands Supplement of the IPCC report provides two CH4 emissions factors for wetlands, 20 
one for fresh to brackish conditions and another for higher salinity (18 ppt threshold) 21 
(Poffenbarger et al 2011, Bridgham et al 2013). However, C-CAP salinity categories do not 22 
match these categories, instead mapping estuarine and palustrine (5 ppt threshold; Fig. 3). This 23 
inconsistency limits our ability to confidently assess the true GHG balance for saline wetlands at 24 
the national scale. We propose developing maps and data to support at least three categories of 25 
salinity — saline (>18 ppt), brackish (0.5-18 ppt), and fresh (< 0.5 ppt) — in order to reduce 26 
uncertainty in landscape scale CH4 emissions from coastal wetlands (Fig. 4). 27 

Existing remote sensing approaches for vegetation and inundation dynamics could 28 
improve mapping both CH4 emissions and carbon burial rates. Recent strides in mapping 29 
coastal wetland vegetation biomass (Byrd et al 2018), vegetation species classification 30 
(Immitzer et al 2016) and seasonal dynamics (Mo et al 2015) could provide more detailed 31 
vegetation descriptions that would be a proxy for salinity zones. For inundation/elevation 32 
regimes, extensive coastal DEMs are available, but lack the accuracy to adequately map tidal 33 
flooding depth and inundation time at relevant scales and could be improved by integrating 34 
additional remote sensing and modeling (Hladik et al 2013, Parrish et al 2014, Buffington et al 35 
2016). Future studies should quantify the precision needed for DEMs in the tidal zone. Currently 36 
soil emissions factors are calculated using tabular data, however improvements in mapping 37 
should be leveraged to support spatially-explicit approaches in future versions of the inventory 38 
incorporating trends in productivity and seasonality (Knox et al 2017), variation in carbon 39 
mineralization rates (Mueller et al 2018), edaphic factors and geomorphology (Rovai et al 2018). 40 
Many improvements may be forward-looking and hindcasting may not be appropriate (Byrd et al 41 
2018), and spatially-explicit approaches should only be utilized only if they actually do improve 42 
precision and accuracy of inventorying compared to simpler approaches (Holmquist et al 2018). 43 
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Biomass changes were not a top contributor to uncertainty, but changes in forested and 1 
scrub/shrub biomass were the ninth and fifteenth contributors to uncertainty respectively. This 2 
study quantified the effect of uncertainty by upscaling means and uncertainties from multiple 3 
field studies, however remote sensing approaches using LiDAR, RADAR, object based image 4 
detection, and optical remote sensing, can all be used to characterize biomass changes on local 5 
to regional scales (Byrd et al 2018). Future studies could expand the uncertainty and sensitivity 6 
analysis to capture the effect that uncertainties in genus-specific assessments of wood density 7 
(Jenkins et al 2003), biomass carbon content (Byrd et al 2018), and the contributions and decay 8 
rates of downed wood (Krauss et al 2018). 9 

C-CAP’s accuracy was not a dominant contributor to the overall uncertainty in the 10 
inventory, but we were only able to quantify this from 2006 to 2011. C-CAP is available for the 11 
entire CONUS coastal zone from 1996 to 2011, and trends were extrapolated out back to 1990 12 
and forward to 2015 for the NGGI inventory. Future studies are needed to assess accuracy for 13 
earlier time steps. 14 
 15 
4. Conclusions 16 
Uncertainty in CONUS coastal wetland greenhouse gas inventory estimates comes mostly from 17 
lack of knowledge on CH4 emission variability, the fate of soil carbon post-conversion, and an 18 
inability to extrapolate trends to available map products. Switching from GWP to SGW/CP 19 
increases the overall calculation of CO2e impacts from 2006 to 2011 by 89%. The underlying 20 
mapping products, C-CAP, and the probabilistic coastal lands layer for mapping tidal freshwater 21 
wetland extent, were not dominant contributors to uncertainty. However, the inventory 22 
development could benefit from improved change detection, accuracy assessments that go 23 
back further in time, and improved mapping of intermediate salinities and inundation gradients. 24 
Our analysis provides a framework to track improvements to the coastal wetland GHG inventory 25 
as more data and improved process knowledge become available. The data used here were not 26 
collected for the purpose of the inventory; future improvements will demand targeted investment 27 
in data collection, model improvements, spatial product development, and more extensive, 28 
independent accuracy assessments. 29 
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 1 
 2 
Figures and Tables: 3 
 4 

 5 
Figure 1: The three mapping layers used in our coastal wetland greenhouse gas inventory 6 
viewed for San Francisco Bay. A. 2011 Coastal Change Analysis Program (C-CAP) Land Cover 7 
Classifications. B. 2006 to 2011 C-CAP Change Map (Basemap © ESRI, permission pending). 8 
C. A probabilistic coastal lands map, showing the probability elevation is below twice highest 9 
monthly tide level, mean higher high water for spring tides (MHHWS). 10 
 11 
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 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
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 1 
Figure 2. Flow chart outlining how we integrated coastal wetland maps based on the Coastal 2 
Change Analysis Program (C-CAP) land cover and land cover change products with ground 3 
based data on soil, biomass, and methane flux. Each rounded box shows a stage at which we 4 
quantified and propagated uncertainty. 1. How we estimated area integrating C-CAP and a 5 
probabilistic map of area falling below mean higher high water spring tide (MHHWS) elevation. 6 
2. How we estimated soil carbon burial and losses. 3. How we estimated biomass gains and 7 
losses. 4. How we estimated methane emissions or removals. Colors match later categorization 8 
of different inputs in the later sensitivity analysis (Fig. 7). 9 
 10 
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 15 
 16 
 17 
 18 
 19 
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 1 
Figure 3: Histograms and probability distributions of methane emission  2 
factors (converted to CO2e using 25x global warming potentials) and soil carbon burial rates. 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
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 1 
Figure 4: The two available salinity classes defined by the 5 ppt threshold in C-CAP are not 2 
ideal for mapping differences in methane emissions, especially when compared to the 18 ppt 3 
threshold recommended by IPCC. Data (Windham-Myers and Cai in Revision) originate from 4 
both static chamber and eddy flux covariance measurements. 5 
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 1 

Figure 5: Medians and confidence intervals for areas of wetland change classes. There are two 2 
definitions of palustrine wetlands. the probabilistic coastal lands definition (yellow bars) and the 3 
tidal wetlands definition based on National Wetlands Inventory (purple bars). EEM = Estuarine 4 
Emergent Wetland, PFW = Palustrine Forested Wetland, PEM = Palustrine Emergent Wetland, 5 
EFW = Estuarine Forested Wetland, PSS = Palustrine Scrub/Shrub, ESS = Estuarine 6 
Scrub/Shrub, OW = Open Water. 7 
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 1 
Figure 6: CONUS inventory results of 10,000 Monte Carlo simulations, shaded to distinguish 2 
simulations resulting in a net-emission (orange) or a net-storage (blue) scenario. The thick grey 3 
vertical line at 0 separates these scenarios. Points indicate medians, and black horizontal lines 4 
the upper and lower 95% confidence intervals. Top panels separate fluxes from estuarine and 5 
palustrine wetlands, and from wetlands that were lost from those that were stable or gained 6 
area. The bottom panel shows net-annualized emissions from 2006 to 2011. 7 
 8 
 9 
 10 
 11 
 12 
 13 
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 1 

Figure 7: These fifteen inputs introduced the most uncertainty into the Coastal Wetland National 2 
Greenhouse Gas Inventory (NGGI) according to a one-at-a-time sensitivity analysis. GWP: 3 
Global Warming Potential, SGWP: Sustained GWP, SGCP: Sustained Global Cooling Potential, 4 
NWI: National Wetlands Inventory, EAB: Estuarine Aquatic Bed, OW: Open Water, UCS: 5 
Unconsolidated Shore, PAB: Palustrine Aquatic Bed. 6 
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Table 1: Summary of probability distributions and dataset sizes used to simulate emissions 1 
factors in the Monte Carlo analysis: μ = mean, σ = standard deviation, α = mean of the natural 2 
log-transformed data, β = standard deviation of the natural log-transformed data, and min and 3 
max are the minimum and maximum values of a uniform distribution. 4 
 5 
Emissions Factor or Emission 
Factor Component 

Probability 
Distribution 

n Moment 1 Moment 2 

Carbon Burial (gCO2 m-2 year-1) Lognormal 109 α = 5.98 β = 1.05 

Soil Carbon Density (gCO2 m-3) Truncated 
Normal 8280 μ = 99000 σ = 47667 

Depth of Soil Affected by Loss Events 
(m) Uniform 1 Min = 0.5 Max = 1.5 

Soil Carbon Fraction Returned to 
Atmosphere (fraction) Uniform 1 Min = 0.5 Max = 0.75 

Emergent Biomass Change (gCO2 m-2) Lognormal 2345 α = 6.36 β = 1.04 

Scrub/Shrub Biomass Change (gCO2 

m-2) 
Lognormal 33 α = 8.21 β = 1.97 

Forested Biomass Change (gCO2 m-2) Lognormal 79 α = 10.57 β = 0.75 

Estuarine CH4 Emissions  
(GWP; gCO2e m-2 year-1) Normal 31 μ = 292.10 σ = 558.21 

Palustrine CH4 Emissions (GWP; 
gCO2e m-2 year-1) Lognormal 24 α = 6.10 β = 1.80 

Estuarine CH4 Emissions 
(SGWP/SGCP;  gCO2e m-2 year-1) Normal 31 μ = 477.87 σ = 1061.80 

Palustrine CH4 Emissions 
(SGWP/SGCP;  gCO2e m-2 year-1) Lognormal 24 α = 6.69 β = 1.80 

 6 

 7 

 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
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 1 
Table 2: Medians and confidence intervals for CONUS coastal wetland emissions (-) and 2 
storage (+) from 2006 to 2011 in million tonnes (Teragrams) of CO2-equivalent (CO2e) per year. 3 
 4 

Land Cover Change Type 
Analysed 

lower confidence 
interval (0.025) 

median 
(0.5) 

upper confidence 
interval (0.975) 

Estuarine Losses -13.3 -8.1 -4.1 

Estuarine Stable and Gains -2.3 2.2 6.7 

Palustrine Losses -3.7 -2.4 -1.3 

Palustrine Stable and Gains -9.6 -1.5 2 

Total -21.3 -10.3 -1.3 
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