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Abstract

Many bat species live in groups, some of them in highly complex social systems, but the reasons for sociality in bats remain
largely unresolved. Increased foraging efficiency through passive information transfer in species foraging for ephemeral
insects has been postulated as a reason for group formation of male bats in the temperate zones. We hypothesized that
benefits from group hunting might also entice tropical bats of both sexes to live in groups. Here we investigate whether
Molossus molossus, a small insectivorous bat in Panama, hunts in groups. We use a phased antenna array setup to reduce
error in telemetry bearings. Our results confirmed that simultaneously radiotracked individuals from the same colony
foraged together significantly more than expected by chance. Our data are consistent with the hypothesis that many bats
are social because of information transfer between foraging group members. We suggest this reason for sociality to be
more widespread than currently assumed. Furthermore, benefits from group hunting may also have contributed to the
evolution of group living in other animals specialized on ephemeral food sources.

Citation: Dechmann DKN, Kranstauber B, Gibbs D, Wikelski M (2010) Group Hunting—A Reason for Sociality in Molossid Bats? PLoS ONE 5(2): e9012. doi:10.1371/
journal.pone.0009012

Editor: Adrian L.R. Thomas, University of Oxford, United Kingdom

Received December 8, 2009; Accepted December 22, 2009; Published February 3, 2010

Copyright: � 2010 Dechmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was conducted during a student course with students from Princeton University and the University of Konstanz (see acknowledgments) and
carried out with very little funding. Funding was received from Princeton University and the Max Planck Institute of Ornithology in Radolfzell, Germany. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ddechmann@orn.mpg.de

Introduction

Animals had solitary lifestyles to begin with. Sociality presum-

ably evolved whenever group living was advantageous for the

individuals in question. Many extant animals live in social groups,

suggesting that benefits of group living are wide-spread. The large

mammalian order of bats is one taxon representing the full range

of social systems from solitary lifestyle to highly complex social

systems [1]. Thus, bats offer a great opportunity to study the

advantages and disadvantages of being social. Most of our

knowledge about bat social systems is based on temperate zone

species, where most social groups are seasonal. Seasonality in

social lifestyle presumably shows that benefits of sociality outweigh

the costs when a) females are reproductive and profit from

communal breeding (female colonies), b) males of species that are

specialized on ephemeral diet profit from improved foraging

efficiency through information transfer during times of high food

availability (male colonies), or c) when individuals benefit from

mating aggregations (multimale-multifemale colonies: summarized

in [2]. Finally, bats may aggregate without forming any social

bonds, due to limited roost availability, especially in hibernacula

[3]. In contrast to temperate seasonal bats, most tropical bat

species are social year-round [1]. Presumably, all costs of sociality,

postulated based on studies in the temperate zones, apply in

tropical bats, e.g. enhanced competition for food or roosts in

groups, increased parasite transmission rates or the inability to

regulate body temperature individually [3,4,5]. The main benefit

of female groups, thermoregulation during pregnancy and

lactation, is presumably less expressed in tropical bats, due to

high and relatively stable ambient temperatures. However, other

forms of beneficial cooperation between colony members, such as

allogrooming or -feeding may occur in the roost (e.g. [6,7], in both

tropical and temperate zone bats.

Social foraging, one cooperative behaviour that may occur

outside the roost is displayed by a few tropical bat species,

especially the spear-nosed bat, Phyllostomus hastatus, a frugivore,

where female roost members actively recruit each other to fruiting

trees with the help of individually recognizable screech calls [8].

Frugivorous bats may also use their roosts as information centres

and learn about food preferences of group members from their

smell [9]. This kind of flexible learning might enable individual

bats to follow each other to food sources, such as fruiting trees. In

contrast, highly ephemeral food sources such as insect swarms

cannot be shared over repeated foraging sessions as they move

unpredictably in space and time and can be dispersed by wind or

rain. Information about them can only usefully be exchanged

directly during an ongoing foraging flight. Eavesdropping, i. e.

learning about the foraging success of group members by listening

to the change in their echolocation call structure upon finding

food, has been observed in several bat species [10,11,12,13]. In

addition, one study showed experimentally that eavesdropping

might in some cases be non-opportunistic [14]. In the lesser

bulldog bat, Noctilio albiventris, information is passively transferred

via inadvertently produced cues, forcing roost members to emerge

together and coordinate their spatial movements to remain within

hearing distance of each other. Bats can hear and recognize each

others’ echolocation calls and consequently also a change in call

structure, from a much larger distance than they can actively

detect and localize prey [14,15]. Call recognition is particularly

important for species foraging in open space. Narrow-winged bat

species that fly in open space have relatively low maximum

amplitudes of echolocation frequencies, narrow frequency bands,
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and loud echolocation calls [16], all of which make their calls

audible over large distances.

We hypothesize that an important reason for male and female

tropical bats to form long term aggregations is to profit from more

efficient foraging via information transfer, postulated previously as

a reason for sociality in males of narrow-winged temperate-zone

species [2]. Large swarms of insects in the temperate zones occur

mainly during the summer, explaining why males profiting from

information transfer to find this patchy but abundant resource

more efficiently only from short-lived colonies. However, season-

ality in the tropics is much less pronounced and insect swarms,

though still ephemeral in their distribution, may occur all year. In

other words, group hunting via passive information transfer might

be an important strategy for tropical bats year-round and thus

tightly linked to permanent sociality in bats. We predict that social

foraging occurs in both sexes of narrow-winged open aerial

foraging bats that live in social groups year-round and feed on an

ephemeral diet and/or have a sufficiently short foraging period to

make an increase in foraging efficiency through information

transfer useful. In order to test this prediction, we radio-tracked

groups of the extremely narrow winged aerial insectivore Molossus

molossus during their entire nocturnal foraging periods and assessed

the percentage of time spent foraging in groups. Knowing that the

error in bearings gained from regular hand-telemetry can be quite

large, we used a phased array antenna setup in additional to

conventional Yagi-antennas to reduce directional noise in the

bearing data from telemetry signals.

Methods

Study Site and Capture
Our study site was the village Gamboa (N 09,07; W 079,41) in

Panama, and surrounding areas, especially the Chagres River just

before it enters the Panama Canal (Figure 1). The study area is

covered by semi-deciduous tropical lowland rainforest with a

distinct wet and dry season [17,18]. We caught bats with mistnets

when they emerged from five different daytime roosts (roosts A-E;

Figure 1) in houses in Gamboa around sunset on the evenings of

the 23, 26, and 30 March 2009, as well as 1 and 2 April 2009. We

placed all bats in soft cloth bags upon capture and processed them

as soon as evening emergence was over and no more bats were

leaving the roost. We then measured and weighed bats,

determined their sex and reproductive status, marked them with

a subcutaneous transponder (Euro I.D., Weilerswist, Germany)

and finally glued a LB-2N 0.35 g radio transmitter (Holohil,

Canada) to either all (roosts A, B) or a subset of the bats from a

Figure 1. Map of the study area showing the Chagres river entering the Panama Canal and the village of Gamboa, the location of
roosts where radio-tracked bats were caught as well as our main tracking points.
doi:10.1371/journal.pone.0009012.g001
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roost (roosts C, D. E; if too many bats had been caught for

simultaneous radiotracking). The average mass of individuals was

10 g, thus the transmitters remained well under the recommended

5% upper weight limit [19]. After processing we released all bats at

the site of capture. Radiotracking did not start until the following

evening to minimize the influence of the capture event and

application of the radio transmitter on the behaviour of the bats.

Telemetry
Three teams of two radiotrackers each with synchronized

watches were stationed at elevated points around the River

Chagres (Figure 1), and one additional person observed the exit

hole of the bats’ day roost to communicate to the rest of the team

via cell phones and radios whenever one of the bats carrying radio

transmitters left or returned to the roost. Due to the low signal

strength and thus short reception range of the small transmitters,

radio signals could not be received permanently from all tracking

points along the Chagres River. Nevertheless, we continuously

tracked from all vantage points as we could not predict where the

bats would be foraging. To track groups of bats we used AR8200

telemetry receivers (AOR U.S.A., INC., Torrance, CA 90501) and

3-element Yagi antennae (ATS, Isanti, MN 55040). At two of the

three locations we used the simple Yagi antennae to determine

directions to a signal reaching a directional accuracy of ,15u,
which is well in the range of the expected error using a

conventional setup [20,21]. At one central station, on a canopy

tower, we fixed two Yagi antennas in parallel on a wooden pole,

two wavelengths apart, to form a single, phased array. The pole

was then placed on a tripod to allow for simple field operations

and quick directional scanning. We determined directions to a

signal by lining up the antenna beam with a precise directional

compass (Suunto, Finland). This simple antenna array enabled us

to reliably reach directional accuracies of ,3u, determined by

tracking a person carrying a radio transmitter at the distance bats

were foraging, in a blind experimental setup. We only included

data gathered with the central phased antenna array setup in the

statistical analysis.

Bearings from the same bat had to be at least two minutes apart

to be included in the dataset to avoid pseudoreplication. Two

minutes exceed the time bats needed to cross the entire study site.

The teams of observers noted the compass bearing of the signal of

each audible radio transmitter every two minutes, scanning

through the frequencies of all bats as quickly as possible in a

predetermined sequence. We tracked up to eight bats simulta-

neously, but received a signal from a maximum of four during the

same 30-second interval (see below). Scanning of signals was

continued until the last bat had returned to the roost or its radio

signal had not been detected for 30 minutes past the time the last

bat had entered the roost on the previous day. Molosssus molossus

forages for a short period just after sunset and sometimes again for

a similar time span in the morning (seeresults). As this species very

efficiently removes the glued-on transmitters by scratching them

off, the numbers of tracked bats in each colony decreased every

night and tracking was limited to two to four evening foraging

sessions and up to three morning foraging sessions per roost.

Analysis
We compared the time spent outside the roost within and

between colonies, to confirm the short activity period of this

species. We give all times as means in minutes 6 standard error

unless otherwise indicated. The statistical tests we used are

mentioned in the text, but all data analyses were done in R version

2.10 [22].

Quantification of group foraging - To quantify group foraging

we took each bearing of each bat and determined which other

bats’ transmitter signal had been recorded within the same 30

second forward time window. We then calculated how many

observations had been made within 63u of another. To determine

if bats were within 63u of each other by chance or on purpose, we

calculated a null model of co-location probability in the following

way: we randomly drew the same number of bearings from all

bearings per tracking session (evening or morning) and calculated

how many were within a 3u angle in either direction of a random

bearing. This randomization procedure was repeated 100 times.

Using this bootstrapping approach we were able to compare the

amount of actual group foraging with a random sample to assess if

bats were found together in space and time more often than

expected by chance.

Previous studies investigating group foraging had focused on

either male [2] or female [14] groups. In our study, both males

and females from the same groups were tracked and, in addition to

quantifying group foraging over all individuals, we also compared

the amount of group foraging in each sex. For this, we calculated

group foraging of males and females as a fraction of all

observations of each individual, provided we had more than five

observations. We used a Mann-Whitney U-test to determine

whether there was a difference between males and females in the

tendency to forage in groups. To visualize the degree to which

each colony member was involved in group foraging we drew a

network graph with Netdraw 2.084 (Analytic Technologies,

Lexington, KY).

Coordinated movement of bats - The comparison of single

bearings does not distinguish between opportunistic group

foraging (i.e. each bat flies alone, but approaches successfully

foraging conspecifics when it hears them) and the coordinated

movement of colony members foraging together by staying within

hearing distance. To test whether group members stay within

hearing distance, we compared instances when the same pair of

bats had been localized within 15 seconds of each other twice at an

interval of 90 to 180 seconds. Finally, to show that bats did not

simply remain in the same spot and thus only appeared to forage

together, we also quantified which proportion of foraging pairs of

bats changed bearings in synchrony between time intervals. In

addition to showing coordinated movement, this analysis is a

validation of our use of single bearings instead of the convention-

ally used cross-bearings. Theoretically, in a single bearing two

apparently co-localized bats could have been on the same axis

from the tracker, but not close to each other (see Figure 2 for

illustration). On the other hand, to be co-localized sequentially but

to have different bearings towards the same receiver would imply a

complex movement that is extremely unlikely. As we frequently

lost contact with transmitters we were unable to follow pairs of bats

over longer time periods (which does not mean they stopped

foraging together). Consequently, in our analysis we only looked at

two consecutive events of group foraging.

Results

We caught 51 individuals of Molossus molossus from the five roosts

and randomly selected eight males and 23 females to track. Bats

from the investigated colonies left their roosts for an average of

37.5562.06 min in the evenings. The longest time a bat spent

outside the roost in the evening was 83.6 min (female nr. 15 on the

evening of 31. March from roost C). Only bats from the first three

colonies left the roost again in the morning for a second foraging

bout lasting 35.764.32 min, with a maximum of 92 minutes by

male nr. 3 from roost A on the morning of 25. March. There was
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no significant difference between colonies in the amount of time

spent foraging in the evening, regardless of whether they went out

again in the morning. Males and females spent similar time outside

the roost (5 males, 18 foraging sessions, 32.1564.42 min; 24

females, 292 foraging sessions, 38.0962.05 min, t-test, t = 1.21,

p = 0.23). Males and females did not differ in the number of

occasions where two bats were close to each other in time and

space (Mann-Witney U-test, p = 0.1261).

Quantification of group foraging - Our dataset from the canopy

tower consisted of a total of 579 independent observations of bats

(i.e., radio bearings that were 2 minutes apart). We found 269

occasions where two observations had been made during the same

time window. In 152 of those occasions the two observations had

been close in space, i.e., 57% of observations that were made in

the same time window were 6u or less apart. The null model of

bearing randomization predicted an expected mean number of

42.77 (31–59) instances of bats foraging together in space and

time. Bootstrapping confirmed that bats were found foraging

together significantly more often than expected by chance

(p,0.01; Fig. 3).

Coordinated movement of bats - During 116 occasions, two bats

were located within the same 15 second forward time window and

again within a subsequent interval of 90 to 180 seconds. In 27 of

those 116 occasions, the bats were only once also within 6u of each

other. However, in 74 occasions two bats were co-located within

6u of each other during both time intervals. We hypothesize that

under the latter circumstances the two bats had flown together in a

coordinated movement. The median difference between two

subsequent bearings (90 to 180 seconds apart) was 21u, indicating

that bats moved in their foraging habitat between the 2-minute

scanning periods. Bootstrapping the actual bearings of the same

tracking session from the same bats showed that in a total of 28.99

occasions (15–41), pairs of bats were expected to be spatially and

temporally close during one of the observations. The probability of

being co-located during both observations was very low; only

during 2.53 occasions (0–6) bat pairs were expected to still be

together by chance. We conclude that coordinated movement of

two bats, indicating non-opportunistic group foraging, occurred

significantly more often than expected by chance (bootstrapping as

above; p,0.01; Figure 4). All bats of both sexes, except individuals

20 and 21 from roost D, and individual 28 from roost E

participated in group foraging (Figure 5).

Discussion

Many mammals including humans are social, highlighting the

fact that benefits of group living often outweigh its costs. In order

Figure 2. Visualisation of the complexity of a random
movement that would lead to a false conclusion of coordinat-
ed movement between two bats. X: point from which bearings are
taken by the observer; t1:position of the two bats along the same axis
from the observer at time interval 1; t2: position of the same two bats
along a different axis from the observer at time interval 2. The bats
appear together (i.e. the strongest signal from their transmitter comes
from the same direction) to the observer although they are not. It is
very unlikely that movements like this would lead to a high percentage
of co-locations in the dataset.
doi:10.1371/journal.pone.0009012.g002

Figure 3. Number of other bats (1, 2, 3. or 4) actually found
near a focal bat or expected by chance, summarized over all
roosts and tracking sessions. First cluster of bars on x-axis: Black
bar: number of occasions another bat was found in the same time
window (n = 141), dark grey bar: number of occasions where this other
bat also had the same compass bearing (63u; n = 80), light grey bar: the
random number of occasions another bat would be expected in the
same time window and with the same compass bearing (n = 37.01
range 21 to 52). Group foraging occurred significantly more often than
expected by chance. Additional clusters of bars: actual numbers of
occasions that 2, 3 or 4 other bats were near in time or in time and
space and the corresponding random expectations. Error bars indicate
the minimum and maximum found with randomization through
bootstrapping. See text for details.
doi:10.1371/journal.pone.0009012.g003
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to investigate what benefits may have contributed to the evolution

of sociality, we quantified the amount of group foraging in a social

bat species by radio tracking groups of Molossus molossus at the same

time. Our results, showing significantly more group foraging than

expected by chance, confirm that increased foraging efficiency

through information transfer might be an important factor

promoting sociality in bats feeding on ephemeral food sources.

Social foraging is a fairly widespread phenomenon and usually

involves active information transfer between individuals, examples

being the honeybee dance [23] or the screech calls used by

frugivorous bats to recruit group members to fruiting trees [8].

However, passive information transfer as a ‘‘byproduct’’ of cues

inadvertently produced by foraging individuals can also yield

valuable information to observing group members. Long established

in birds and other socially foraging animals, passive information

transfer is emerging as a potential reason for sociality in bats with an

ephemeral insect diet. While birds predominantly use visual cues

during passive information transfer [24,25,26,27,28], nocturnally

foraging bats eavesdrop on each others inadvertently produced

echolocation calls to increase the detection distance of insect prey

[2,14]. In cases of bats feeding on insect swarms, unpredictable in

time and space, as well as short lived, this food source cannot be

shared by recruitment of conspecifics over large distances or long

time.

Sound has to travel through the air to the object, in this case the

insect, and back to the sender to be perceptible as an echo, and is

thus strongly subjected to attenuation. In contrast, sound only has

to travel one way for bats to hear each other. Thus, bats can

indirectly ‘‘detect’’ food over much larger distances when listening

to the change in each others’ echolocation calls. In M. molossus

direct detection distance of a single 3.5–7 mm insect is estimated to

be 0.5–2 m (based on the calculations used in [29], a main call

frequency of 36 kHz and a source level of 113 [15]). In contrast,

the distance from which this species can hear conspecific

echolocation calls (i.e. the ‘‘feeding buzz’’ produced when a bat

finds prey and attempts to capture it) under the same conditions is

estimated to be 54 m. Thus, bats specialized on ephemeral insect

swarms should forage within hearing distance of each other, as has

been shown for female groups of Noctilio albiventris [14]. The overt

expression of group foraging should be detectable as coordinated

movement of individuals, as we were able to confirm for M.

molossus. In fact, among bats feeding on ephemeral insects, open

aerial foragers, such as M. molossus should profit from group

hunting particularly strongly as their constant-frequency echolo-

cation calls can travel over a long distance, increasing the area that

can be covered but are not well suited for accurate prey

localization. To optimize this further, bats should fly in a fanned

out formation allowing them to cover a maximum area via

eavesdropping and make use of the manifold increase of indirect

prey detection, however, this remains to be experimentally verified.

One must also keep in mind that M. molossus does not forage for

single prey items as assumed in the detection distance estimate, but

for swarms which should be detectable from a farther distance

even if this would still be much less than the hearing distance.

We suggest that the main reason for an apparently low reported

incidence of group foraging in bats is a methodological inadequacy

of radio telemetry in small mobile animals: fast flight speeds of bats

and short reception ranges of radio transmitters make group

observations of bats exceedingly hard. Even in our study species,

chosen because of its small foraging range in open habitat as well

as its very short foraging time, we could not follow all individuals

continuously. Thus, we are likely to underestimate group foraging

by making a type-II error (not detecting an incidence despite its

regular occurrence). Nonetheless, we found as much as 57% of

group foraging, much more than expected by chance. Even the

value of 57% is a very conservative estimate considering that not

all bats in each group were tagged, some may have already lost

their transmitters and others may simply have been out of range,

but still group foraging. Further support for predominant group

foraging is provided by the fact that all tracked individuals group

foraged at least part of the time. An additional problem in

detecting group foraging is the time it takes to scan through a

multitude of radio frequencies in sequence. Once the radio

frequency of a third or fourth bat is scanned, it might already have

moved too far to be recognized as a foraging group member.

Figure 4. Pairs of bats that moved in a coordinated way.
Showing the number of occasions when pairs of bats were co-observed
in the same time window in two subsequent time intervals (time only,
n = 116), where they were also found together in space one of those
two occasion (time and space once, n = 27), and those where the pair of
bats was together in time and space twice and thus had moved in a
coordinated way (time and space twice, n = 74). Grey column: random
replicates obtained with bootstrapping, black columns observed values.
Error bars indicate minimum and maximum values. Coordinated
movement was found more often than expected by chance.
doi:10.1371/journal.pone.0009012.g004

Figure 5. Network graph showing the example of the first
Molossus molossus colony (roost A) we radiotracked. Thickness of
lines between individuals (diamonds) illustrates the number of times
these two bats were found together. Number of co-observations range
from 2 (between bats nr. 3 and 4) to 18 (between bats 1 and 5).
Individual nr. 2 was a male.
doi:10.1371/journal.pone.0009012.g005
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Our analysis of coordinated movement of bats showed that

Molossus bats did not merely aggregate at insect swarms, thus

leading us to conduct a type-I error (assuming active group

foraging even though groups only aggregate by chance). Most

insects have adaptations to bat predation, such as ears and

behavioural responses, and insect swarms often scatter after bats

start foraging in them [30]. Thus bats have to move on to the next

swarm, but are unlikely to move together by chance. Such non-

random, or coordinated movements are further supported by our

bootstrapping methods suggesting that bats had similar compass

bearings more often than by chance. Furthermore we suggest that

bats move together over large spatial scales, because the median

change in bearings between consecutive localizations of pairs was

21u (much more than the 6u of our error).

An important question we were unable to address here is

whether there is an optimal group size, and if so, what group

number is optimal under given conditions [31]. We could not

track all animals at all times, thus we were limited to

investigating whether group foraging is taking place at all.

Therefore we focussed on pairs of bats in our analysis and are

unable to quantify how large the actual foraging groups are.

However, there were many instances where we found up to four

bats spatially and temporally close to each other in up to 5

consecutive time intervals (Figure 3), indicating that larger

groups than pairs indeed forage together, also during long time

periods.

Eavesdropping in bats has been observed in a variety of species

and may be very widespread, but it is probably most frequently

opportunistic, meaning that bats on the wing hear echolocation

calls produced during prey capture and feeding (i.e. feeding

buzzes) of another con- or heterospecific bat and approach the

source of the sound to profit from the same food source.

However, the emerging picture from recent studies including the

one we present here, is different: particularly bats feeding on

ephemeral insect swarms may forage socially, and to do so

emerge from the roost together and keep flying together during

foraging trips. Of particular interest in M. molossus and other

molossid bats is that they produce ‘‘social calls’’ (i.e. calls at

frequencies below 18–20 kHz) in addition to the echolocation

calls while foraging (personal observation; [11,32]) the role of

which remains completely uninvestigated. Our studies are only

the first steps and quantification of costs and benefits in order to

establish group foraging as a more general pattern is necessary.

However, we hypothesize that at least in some tropical species

including Molossus molossus, benefits from group foraging may

have been an important driving force for the evolution of stable

social groups.
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