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itive SST anomalies over the tropical South 
Atlantic and Indian Oceans, as well as to El 
Nino-Southern Oscillation events (28). The 
heavy rains of 1961-1962 provide a modern 
analog    for    the    abrupt,    high-amplitude 
8'*Q, minima. In November 1961, for 
example, the precipitation on the footslopes 
of Mt. Kenya exceeded 275% of normal (28) 
as a result of onshore flow from a large area 
of anomalously warm SSTs in the western 
Indian Ocean. Evaporation was also greatly 
reduced by dense cloud (29). A 145-year 
tree-ring study from Narok Mau, Kenya, con- 
firms a 30 per mil decrease in mean 8D, 
which is highly correlated with 8lsO (24) 
from 1953-1958 to 1959-1963 (30). 

The importance of moisture balance in caus- 
ing the 818Odi!ltom minima is supported by the 
pollen evidence for wetter and/or warmer con- 
ditions (Fig. 3). Notwithstanding a modest in- 
crease in plant cover, unusually heavy precipi- 
tation may have led to severe erosion of ex- 
posed volcanic soils on Mt. Kenya (31), result- 
ing in the magnetic-susceptibility peaks. Our 
data suggest that anomalously heavy snowfall 
on the peaks of Mt. Kenya may contribute to 
the neoglacial ice advances dated >5.7 ka, 3.2 
to 2.3 ka, and 1.3 to 1.2 ka (6). Lake-level 
curves from the East African-South Asian 
monsoon region (32, 33) support our climatic 
interpretation of the §18Odiatom data (Fig. 3), as 
does pollen evidence for generally wetter and 
warmer conditions in Kenya at ~6.8 ka (34). 
Environmental changes on Mt. Kenya are 
therefore symptomatic of the same climatic- 
forcing mechanisms that affected low-altitude 
tropical areas. 

We conclude that centennial- to millen- 
nial-scale fluctuations in the lsO content of 
diatom silica from alpine lakes on Mt. Kenya 
primarily reflect variations in moisture bal- 
ance and cloud height, driven by SST anom- 
alies. Hence, they provide a valuable new 
data source to supplement the sparse and 
rapidly deteriorating (7) isotopic archives in 
tropical glaciers. 
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Paleobotanical Evidence for 
Near Present-Day Levels of 

Atmospheric C02 During Part of 
the Tertiary 

Dana L. Royer,1*! Scott L. Wing,2 David J. Beerling,3 

David W. Jolley,4 Paul L Koch,5 Leo J. Mickey/ Robert A. Berner1 

Understanding the link between the greenhouse gas carbon dioxide (C02) and 
Earth's temperature underpins much of paleoclimatology and our predictions 
of future global warming. Here, we use the inverse relationship between leaf 
stomatal indices and the partial pressure of COz in modern Cinkgo biloba and 
Metasequoia glyptostroboides to develop a C02 reconstruction based on fossil 
Cinkgo and Metasequoia cuticles for the middle Paleocene to early Eocene and 
middle Miocene. Our reconstruction indicates that C02 remained between 300 
and 450 parts per million by volume for these intervals with the exception of 
a single high estimate near the Paleocene/Eocene boundary. These results 
suggest that factors in addition to C02 are required to explain these past 
intervals of global warmth. 

Atmospheric COz concentration and tern-      cycle models (4—6) also suggest that COz 

perature have been tightly correlated for the 
past four Pleistocene glacial-interglacial 
cycles (1). Various paleo-COz proxy data 
(2, 3) and long-term geochemical carbon 

temperature coupling has, in general, been 
maintained for the entire Phanerozoic (7). 
Recent C02 proxy data, however, indicate 
low C02 values during the mid-Miocene 
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thermal maximum (8, 9), and results for the 
middle Paleocene to early Eocene, another 
interval of known global warmth relative to 
today, are not consistent, ranging from 
~300 to 3000 parts per million by volume 
(ppmv) (2, 9). Here, we address this prob- 
lem by developing and applying an alterna- 
tive C02 proxy based on the inverse corre- 
lation between the partial pressure of atmo- 
spheric C02 and leaf stomatal index (SI), 
with the aim of reconstructing C02 for both 
intervals to determine its role in regulating 
global climate. 

Most modern vascular C3 plants show 
an inverse relationship between the partial 
pressure of atmospheric C02 and SI (10- 
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Fig. 1. Training sets for (A) Ginkgo biloba (n = 
40) and (B) Metasequoia glyptostroboides (n = 
18). Thick black lines represent regressions 
{Ginkgo: r2 = 0.91, F(1,38) = 185, P < 0.001, 
51 = [C02 - 194.4]/[(0.16784) X C02 - 41.6]; 
Metasequoia: r2 = 0.85, F(1,16) = 41, P < 
0.001, SI = [C02 - 274.5]/[(0.12373) X COz - 
35.3]}. Cray lines represent ±95% prediction 
intervals. Inset graphs show the linear portions 
of both response curves in greater detail. Sto- 
matal index determined from herbarium sheets 
(•), fresh samples from living trees (O), and 6- 
(A) and 1-year-old (A) saplings growing in 
COz-controlled greenhouses. Error bars repre- 
sent standard errors. 

12), a likely response for maximizing wa- 
ter-use efficiency (10). SI is calculated as: 
SI(%) = [SD/(SD + ED)] X 100, where a 
stoma is defined as the stomatal pore and 
two flanking guard cells, SD = stomatal 
density, and ED = non-stomatal epidermal 
cell density. Since SI normalizes for leaf 
expansion, it is largely independent of plant 
water stress, and is primarily a function of 
COz (10, 12). This plant-atmosphere re- 
sponse therefore provides a reliable paleo- 
botanical approach for estimating paleo- 
C02 levels from SI measurements on Qua- 
ternary (13) and pre-Quaternary fossil 
leaves (14). Because stomatal responses to 
C02 are generally species-specific (12), 
one is limited in paleo-reconstructions to 
species that are present both in the fossil 
record and living today. Fossils morpholog- 
ically similar to living Ginkgo biloba and 
Metasequoia glyptostroboides extend back 
to the Early and Late Cretaceous, respec- 
tively, and many workers consider the liv- 
ing and fossil forms conspecific (15, 16). 
In this study, we use G. adiantoides and M. 
occidentals, the forms most closely resem- 
bling G. biloba and M. glyptostroboides, 
and also G. gardneri, which has more 
prominent papillae and less sinuous upper 
epidermal cells than G. biloba (16). 

Measurements of SI made on fossil 
Ginkgo and Metasequoia were calibrated 
with historical collections of G. biloba and 
M. glyptostroboides leaves from sites that 
developed during the anthropogenically 
driven C02 increase of the past 145 years 
and with saplings of G. biloba and M. 
glyptostroboides grown in C02-controlled 
greenhouses (17). These data show a strong 
linear reduction in SI for both species 
between 288 and 369 ppmv COz and a 
nonlinear response at C02 concentrations 
above 370 ppmv (Fig. 1). Because SI re- 
sponds to partial pressure, not concentra- 
tion (IT), the effects of elevation must be 
considered. All of the leaves measured 
for the training set grew at elevations <250 
m where concentration = partial pressure, 

x 
0 

•a 
c 

m 
« 
E 
o 

o 

.c 
<5 

6.55 -I 800 • 1' A 
I 

700 • 1 
1 

7.00 • 

7.50 • 

E 
Q. a. 

O 
O 

600 • 

500 • 

1 
1 
1 
1 

'+    1 
8.00 • 400 • 

9.00 • 

3.98 • 300 • 

Paleocene I Eoc. 

?nn •  1 1—1—I—1 

so a correction is not needed. Both nonlin- 
ear regressions are highly significant (Fig. 
1); however, a discontinuity exists for 
Ginkgo between the experimental results 
above 350 ppmv and the rest of the cali- 
bration set. Many species require more than 
one growing season for SI to adapt to high 
C02 (12), and so these experimental results 
likely represent maxima for a given C02 

level. Nevertheless, due to this discontinu- 
ity as well as the small sample size and 
decreased sensitivity at high C02 for both 
Ginkgo and Metasequoia, paleo-C02 esti- 
mates >400 ppmv should be considered 
semi-quantitative. 

To reconstruct atmospheric C02 chang- 
es, we measured the SI of fossil Ginkgo and 
Metasequoia cuticles from 24 localities in 
western North America and one from the 
Isle of Mull (Scotland), and then calibrated 
these data against the modern training set 
(Fig. 1) using inverse regression (18). Al- 
though not tightly constrained, the paleoel- 
evations for all of the sites were probably 
<1000 m. This elevation difference could 
increase our estimates of C02 concentra- 
tion by at most 10%, and so our conversion 
from partial pressure to concentration ex- 
cludes any correction. Except for a single 
high C02 value near the Paleocene/Eocene 
boundary, all of our reconstructed COz 

concentrations lie between 300 and 450 
ppmv (Fig. 2 and Table 1). These contrast 
with two other Ginkgo-based C02 esti- 
mates for the late Paleocene and middle 
Miocene (19, 20) that are very high (4500 
and 2100 ppmv, respectively). 

We have Metasequoia-derived C02 es- 
timates only from the warm interval of the 
middle Miocene, but these are similar to 
coeval estimates derived from Ginkgo cu- 
ticles. The convergence of these two inde- 
pendent estimates increases our confidence 
that both species are reliably recording pa- 
leoatmospheric C02 levels. In addition, the 
measured SI values from most sites fall 
well inside the region of high C02 sensi- 
tivity in the training sets (Fig. 1 and Table 

Fig. 2. Reconstruction of 
Cg paleo-COz for the (A) 

middle Paleocene to early 
Eocene and (B) middle 
Miocene based on SI mea- 
surements from Ginkgo 
(•) and Metasequoia (A) 
fossil cuticles. Errors rep- 
resent ±95% confidence 
intervals. 
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1), and the 95% confidence intervals (±50 chemical models (4—6) and other proxies 
ppmv or less) are over an order of magni- (2, 9). Furthermore, middle Paleocene to 
tude lower than the errors associated with early Eocene COz reconstructions based on 
early  Tertiary  C02  estimates  from  geo- pedogenic  carbonate  (2,  21)  and  marine 
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Fig. 3. Estimates of paleo-COz concentration derived from a variety of methods and their 
corresponding model-determined temperature departures (AT) of globai mean surface tempera- 
ture (CMST) from present day for the (A) middle Paleocene to early Eocene and (B) middle 
Miocene. Paleo-GMST calculated from paleo-COz estimates using the C02-temperature sensitivity 
study of Kothavala era/. (32). Present-day reference GMST calculated using the pre-industrial C02 

value of 280 ppmv (14.7°C). The error range of CMST predicted from the geochemical modeling- 
based C02 predictions of (4) corresponds to the model's sensitivity analysis. 

Table 1. Summary of fossil data, n = number of leaves measured for calculation of SI. A = south-central 
Alberta (Canada), BHB = Bighorn Basin (Wyoming and Montana, United States), M = Isle of Mull (United 
Kingdom), I = north-central Idaho (United States). Dashes indicate that no analyses were performed 
BOM = bulk organic matter, 813Com = 513C of organic matter. See (39) for S13C methodology. 

Site Location 
Age 
(Ma) 

n si(%) 
co2 

(ppmv) 
813Com 

(V-PDB) 

Ginkgo 

Burbank A 58.5 7 7.55 450 - 
Joffre Bridge A 58.5 5 7.96 391 - 
SLW 0025 BHB 57.3 7 9.01 340 - 
LJH 7132 BHB 56.4 5 8.75 348 -23.91 
SLW 991 BHB 55.9 5 10.97 314 - 
SLW 992 BHB 55.9 8 10.80 316 -25.66 
SLW 993 BHB 55.9 8 11.43 311 - 
LJH 72141-1 BHB 55.8 12 10.63 317 - 
SLW 9155 BHB 55.7 10 11.21 313 -29.80 
SLW 9411 BHB 55.6 8 11.50 311 -23.77 
SLW 9434 BHB 55.4 7 12.23 307 -22.53 
SLW 9715 BHB 55.3 12 8.23 371 -24.17 
SLW 9050 BHB 55.3 5 12.18 308 -26.99 
SLW 9936 BHB 55.3 15 11.77 310 - 
SLW 8612 BHB 55.3 7 12.41 307 - 
Ardtun Head M 55.2 13 6.54 798 -24.68 

AR-2 (BOM) -24.56 
AR-6 (BOM) -25.82 
AR-8 (BOM) -24.17 
AR-10 (BOM) -24.26 
AR-15 (BOM) -24.54 

SLW 9812 BHB 55.1 22 8.53 356 -24.49 
SLW 9915 BHB 54.8 8 8.83 345 - 
SLW LB BHB 53.9 5 9.29 334 - 
SLW H BHB 53.5 9 10.22 321 -26.93 
LJH 9915 BHB 53.4 15 9.38 332 -26.33 
Juliaetta (P6) I 16.5 14 8.14 377 - 

Metasequoia 

Clarkia (P33a) I 15.3 6 11.59 307 - 
Clarkia (P33b) I 15.3 10 10.94 316 - 
P37a I 15.2 10 10.95 316 - 

boron isotopes (9) show large changes in 
C02 (&2000 ppmv) over geologically brief 
periods of time [<1 million years] (Fig. 3) 
that cannot be readily explained. In con- 
trast, the highly constrained error ranges 
and consistency among near time-equiva- 
lent estimates suggest that our Si-derived 
C02 reconstruction is presently the most 
reliable, particularly for the middle Paleo- 
cene to early Eocene. 

A period of rapid climatic warming 
(~2°C global mean rise within 104 years 
that lasted 105 years) near the Paleocene/ 
Eocene boundary has been extensively doc- 
umented (22—25). Although the leading hy- 
pothesis for the cause of most of this warm- 
ing is the rapid release of methane from 
marine gas hydrates and its subsequent ox- 
idation to C02 in the atmosphere and ocean 
(25, 26), all previous attempts to resolve 
this possible atmospheric COz spike have 
failed (23, 27, 28). Our single high C02 

estimate is based on G. gardneri cuticle 
from Ardtun Head, Isle of Mull. Anoma- 
lously low 813Com values (—30%o), an in- 
flux of the marine dinocyst Apectodinium, 
and a thermophyllic flora (including Cary- 
apollenties veripites and Alnipollenites 
verus) occur in stratigraphically equivalent 
sediments elsewhere on Mull. Together, 
these indicate a possible correlation with a 
section of a Paris Basin borehole that has 
been calibrated to this event (29). At Ard- 
tun Head, however, we failed to capture the 
negative carbon isotope excursion globally 
associated with this event, which ranges 
from 2.5%o in the deep ocean (22, 25) to as 
much as 6%o on land (23) (Table 1). Al- 
though the precise age of the Ardtun Head 
site remains uncertain, using a global car- 
bon isotope mass balance model calibrated 
to Paleocene/Eocene conditions (30), our 
reconstructed C02 increase (500 ppmv) is 
consistent with a release of 2522 Gt of 
methane-derived carbon, a value close to 
the estimate (2600 Gt C) calculated to ac- 
count for the marine carbon isotopic excur- 
sion using methane as the carbon source 

0%). 
Carbon dioxide is an important green- 

house gas, and its effect on global mean 
surface temperature (GMST) can be quan- 
tified with general circulation models 
(GCMs) [e.g., (32)]. Using the model out- 
put of Kothavala et al. (32) we predicted 
GMST from our C02 results. The GCM 
used by Kothavala et al. is calibrated to the 
present day, which allows us to test the 
effect of C02 on GMST independent of any 
paleogeographic or vegetational changes. 
With the exception of the single value near 
the Paleocene/Eocene boundary, all predic- 
tions lie within 1.5°C of the pre-industrial 
GMST (Fig. 3). These predictions contrast 
sharply with most paleoclimatic interpreta- 
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tions for these time intervals. For example, 
based on a synthesis of global late Paleo- 
cene and early Eocene 8lsO-derived sea 
surface temperature data, Huber and Sloan 
(24) estimated that GMST was 3° to 4°C 
higher than today at this time, and 8lsO- 
derived temperature estimates for the mid- 
Miocene thermal maximum [17 to 14.5 mil- 
lion years ago (Ma)] indicate that deep and 
high-latitude surface ocean temperatures 
were as much as 6°C warmer than today 

As a cross-check on our results, we 
compared our GMST predictions with those 
based on a geochemical carbon cycle model 
and other C02 proxies for these same time 
periods. With the exception of the one COz 

estimate by Retallack (19), there is very 
good agreement among the methods for the 
middle Miocene (Fig. 3), strongly suggest- 
ing that factors in addition to C02 are 
required to explain this brief warm period. 
In contrast, a large disagreement (10°C or 
greater) exists for the middle Paleocene to 
early Eocene (Fig. 3). This discrepancy is 
largely driven by the high C02 estimates 
derived from marine boron isotopes (9); 
however, this proxy is probably less accu- 
rate than the other methods (3, 34). Never- 
theless, even if the boron-based predictions 
are discounted, a large range still exists 
among the remaining three methods. This is 
striking considering that many of the pedo- 
genic carbonate-derived C02 estimates are 
based on the same sediments as our stoma- 
tal-based estimates (21); however, these es- 
timates show a large temporal variability 
(-60 to 2040 ppmv) and are associated with 
relatively large error ranges (±500 ppmv). 
If our low Si-based temperature predictions 
are correct, additional factors such as pa- 
leogeography, enhanced meridional heat 
transport, and high latitude vegetation feed- 
backs are required to explain this warm 
period, and new constraints for C02 levels 
are established for middle Paleocene/early 
Eocene and middle Miocene GCMs [e.g., 
(35)]. Understanding the mechanisms of 
climate change will become increasingly 
important in the near future as atmospheric 
C02 levels climb to levels perhaps unprec- 
edented for the last 60 My. 
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