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A benthic microfaunal record from the equatorial Atlantic Ocean
over the past four glacial-interglacial cycles was investigated to
understand temporal dynamics of deep-sea latitudinal species
diversity gradients (LSDGs). The results demonstrate unexpected
instability and high amplitude fluctuations of species diversity in
the tropical deep ocean that are correlated with orbital-scale
oscillations in global climate: Species diversity is low during glacial
and high during interglacial periods. This implies that climate
severely influences deep-sea diversity, even at tropical latitudes,
and that deep-sea LSDGs, while generally present for the last 36
million years, were weakened or absent during glacial periods.
Temporally dynamic LSDGs and unstable tropical diversity require
reconsideration of current ecological hypotheses about the gen-
eration and maintenance of biodiversity as they apply to the deep
sea, and underscore the potential vulnerability and conservation
importance of tropical deep-sea ecosystems.

deep-sea Ostracoda | global climate change | latitudinal species diversity
gradients | macroecology | Quaternary paleoceanography

Latitudinal species diversity gradients (LSDGs), the patterns in
which tropical regions contain more species than high latitudes,
are one of the most basic ecological patterns on the earth (1). In the
modern ocean, deep-sea bivalves, gastropods, isopods, cumaceans,
and foraminifera all show strong LSDGs (2-6), and studies of
benthic foraminifera assemblages indicate that the deep-sea gra-
dients were established ~36 million years ago (7). The environ-
mental stability hypothesis holds that stability in tropical (1, 8), and
deep-sea (9, 10) environments might enhance species diversity, but
there is now evidence for highly fluctuating high-latitude deep-sea
diversity during Quaternary climatic cycles (11-16). Surprisingly
little attention has been given to understanding low-latitude deep-
sea diversity and the temporal dynamics of the LSDGs. Although
pollen records suggest a persistent latitudinal diversity gradient
existed in terrestrial ecosystems over the last 13,000 years (17, 18),
we know of no studies of species-level temporal dynamics of LSDGs
based on fossil assemblages from marine environments, despite the
sensitivity of marine ecosystems to climatic change (12, 13, 19-24).
The Ostracoda (Crustacea) are an important component of
the deep-sea benthos (25-27), and the only commonly fossilized
metazoan group in deep-sea sediments (12, 13, 28). Their various
habitats and ecological preferences represent a wide range of
deep-sea benthic niches, and their fossil record is considered
representative of the benthic community (12, 13, 28). Further-
more, large (=130 m) glacial-interglacial sea-level changes (29),
which drastically altered shallow-marine environments, had neg-
ligible effects on deep-sea habitats (e.g., >1,000 m water depth).
Here, we examine low-latitude Quaternary records of deep-sea
ostracods and temporal changes in LSDGs in the North Atlantic
Ocean during the last four glacial-interglacial climatic cycles.
Ocean Drilling Program (ODP) Site 925 was cored at the
Ceara Rise in the western equatorial Atlantic (4° 12.2" N, 43°
29.3" W; 3040 m water depth; Fig. 1) (30, 31). The Ceara Rise
is an intensively researched tropical region for Cenozoic pale-
oceanography (32-34). Continuous sedimentation, excellent
chronology, and availability of climatic proxy records make Site
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925 an ideal sediment core for Quaternary biodiversity research
in the low latitude ocean. Although postmortem dissolution can
affect fossil ostracod preservation below lysocline and carbonate
compensation depth (35), Site 925 is located well above these
depths (31, 36) and so this record is not seriously influenced by
carbonate dissolution. This high-quality record of the tropical
deep ocean shows that ostracod species diversity exhibits large
amplitude fluctuations during the last 500 ka (thousands of years
ago), and that the LSDGs in the deep ocean seem to have
weakened or even collapsed during glacial periods.

Results and Discussion

The ODP 925 record for the past four glacial-interglacial cycles
shows diversities measured as the expected number of species in
a sample of 50 individuals, E(50), that are high (up to =~25)
during interglacial and low (=5 at minimum) during glacial
periods (Fig. 24). Diversity increases during glacial to intergla-
cial transitions (Terminations 1-4) range from 2-fold to nearly
4-fold (Fig. 2A4). These substantial oscillations span the present-
day pole-to-equator diversity gradient in deep-sea ostracods
(Figs. 24 and 3A4). Data from ODP 925 produce a near-recent
equatorial diversity estimate of E(50) approximately 25, whereas
diversity in the Arctic Ocean is E(50) approximately 5, and
values for midlatitude sites are intermediate (Fig. 34 and Table
S1). During glacial intervals, tropical diversity is greatly de-
pressed, but diversities at middle and high latitudes are much less
affected (Fig. 34). Consequently, the deep-sea LSDGs are
weakened during glacial times, so much so that they appear to be
completely absent, at least during the Last Glacial Maximum
(=20 ka).

Spectral analysis shows that ODP 925 ostracod diversity
fluctuated with periodicities that match those of 100 ka (eccen-
tricity) and 41 ka (obliquity) Milankovitch climatic forcing (Fig.
2B). There is also a correlation between ODP 925 diversity and
the deep-sea benthic foraminiferal oxygen isotope record (37),
a proxy for global changes in temperature and ice volume (Figs.
2 and 4A4). Diversity peaks correspond with the negative oxygen
isotope excursions during interglacial and interstadial maxima
(Fig. 2A). This pattern shows that global climate changes have
strongly influenced tropical deep-sea diversity, similar to previ-
ously reported effects at mid to high latitudes (11, 13, 28). This
result, coupled with the extremely dynamic diversity trajectory of
the tropical ODP 925, suggests that the LSDGs in the deep ocean
are not driven by a gradient of increasing environmental stability
from poles to tropics.

Both temperature and productivity have been considered im-
portant factors controlling deep-sea species diversity but their
relative importance is uncertain (4, 13, 28, 38—41). Species diversity
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Fig. 1. Location of OSP site 925. This map was created using the Online Map

Creation web site (www.aquarius.ifm-geomar.de).

at ODP 925 is positively correlated with both bottom water tem-
perature (P = 0.0003) and surface productivity oscillations (P =
0.003) (Fig. 4 B and C). However, temperature and surface pro-
ductivity are themselves correlated at this site. When we perform

A Age (ka)
-~ 0 100 200 300 400 500
2 3 )
O warmer
® 35
L
2 4
L
945
g colder
s 5 25
X55
= 420 8
fing
15 2
o
410 2
(a]
d ¥ 1 5 A 1 9 LA 5
Eccentricity  Obliquity
10(? ka 41 Ika =
FTRC o I e e e o e e o e e e B e B i e )
B o <k T T T T 600 s
g 5008
§§g B ~400Z
315 ODP925 Diversity E(50) 3002
= ©
\ 1200
§,10 1 v—Oxygen Q
. — (o]
=5 !\ isotope, - 100g
O o TR B S Lo AR b 08
0 0.01 0.02 0.03 0.04 0.05 0.06
Frequency (cycles/ka)
Fig.2. Late Quaternary tropical deep-sea diversity changes. (A) Comparison

between deep-sea oxygen isotope curve [LR04 global stack (37)] and ODP 925
ostracod species diversity E (50). The oxygen isotope curve represents global
climate changes, and the lower isotope values indicate warmer (interglacial
and interstadial) intervals. Major interglacial and interstadial peaks are high-
lighted by gray bars. Peak interglacial marine isotope stages are labeled. (B)
Result of spectral analysis.
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Fig. 3. Modern and Last Glacial Maximum (=20 ka) deep-sea diversity
patterns. (A) Latitudinal patterns of modern coretop (black circles) and Last
Glacial Maximum (gray circles) ostracod diversity. Regression line and r and P
values for modern E(50). (B) Comparison between modern E(50) and water
depth.

a multiple regression to tease apart these relationships, we find that
diversity is significantly and positively associated with temperature
(P = 0.02) but not with productivity (P = 0.24). A positive
correlation between temperature and species diversity has been
reported before for deep-sea ostracods and foraminifera using late
Quaternary and mid-Pliocene core records (11, 28, 38), and may
reflect available energy (42) or perhaps physiological limits in which
few taxa can tolerate very cold temperatures.

Although total productivity has been invoked as a determinant
of deep-sea diversity (28, 40, 43), these analyses suggest a minor
role, at least in this region and in this time scale. This result may
partly reflect the lack of strong oscillations in productivity in this
region during the late Quaternary [~25-60 gC m~2 yr—! (44),
much smaller than the current range across the modern North
Atlantic, ~50-450 gC m~2 yr~! (45)]. Nevertheless, although
productivity was apparently not strongly seasonal at the Ceara
Rise (36), no quantitative proxy for seasonality is currently
available for ODP 925. Given that such seasonality has been
shown to be an important determinant of modern deep-sea
benthic foraminifera diversity (46), it is possible that this factor
also plays a role here (3, 4, 28).

The multiple regression results indicate that downcore varia-
tions in species diversity at ODP 925 are predicted by temper-
ature but not total productivity. While this temperature-diversity
relationship may be causal, it is also possible that diversity is
instead driven by some other environmental driver that, like
temperature, tracks glacial-interglacial cycles. Such factors might
be mediated by latitudinal shifts in the Intertropical Conver-
gence Zone (ITCZ) and changes in North Brazil Current (33,
47), or changes in deep water characteristics reflecting the
relative influence of North Atlantic Deep Water (NADW)
versus Antarctic Bottom Water (AABW) (48, 49). NADW and
AABW differ in temperature, nutrients contents, and salinity,
although at present there is not much evidence that nutrients and
salinity have much influence on deep-sea diversity.

Whatever the driver, these diversity fluctuations are not
determined by species’ originations or extinctions because the
period covered in this study is much shorter than the durations
of ostracod species, and few, if any, species originate or go extinct
during this late Quaternary period. Instead, glacial-interglacial
scale diversity changes must result from the shifting of species’
distributions, either bathymetrically or laterally. Previous re-
searches have hypothesized that the deep-sea diversity fluctua-
tions involve the depth migrations of fauna during glacial-
interglacial cycles (11, 28, 50). At ODP 925, the greater
abundance of slope species during warmer periods when higher
diversity prevailed (Fig. 4D) suggests the downward migration of
slope species during these intervals. The rarity of slope taxa
during glacial and stadial periods is consistent with shallowing of
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Fig. 4. Tropical deep-sea benthic species diversity and climatic and paleo-
ecological factors. Relationships between ODP 925 diversity [E(50)] and (A)
deep-sea oxygen isotope (37), (B) bottom-water temperature (BWT) (60), and
(C) surface productivity (44). (D) Comparison between relative abundance of
slope species and deep-sea oxygen isotope (37).

their ranges during these colder intervals. These range shifts
might track temperature tolerances, or possibly some other
aspect of the environment changing on Milankovitch time scales.
Because slope species are much more diverse in tropical deep sea
than in higher latitude oceans (Table S1), bathymetric shifts have
greater diversity consequences at low latitudes, and thus mod-
ulate the deep-sea LSDGs. This idea is consistent with the
deep-sea source-sink hypothesis suggesting that abyssal diversity
of taxa having good dispersal ability is maintained by immigra-
tion from bathyal sources (51), a mechanism that may be
applicable to organisms such as ostracods that lack swimming or
dispersal larval stages (25).

Our results underscore the vulnerability and conservation
importance of tropical deep-sea ecosystems, which may be an
engine of global deep-sea biodiversity (52) and ecosystem func-
tioning (53). Dramatic changes in the deep-sea LSDGs demon-
strated here require reconsideration of view of persistent LSDGs
in the deep sea, at least in the glacial-interglacial or shorter time
scales. This dynamic nature seems to be consistent with recent
discoveries of high ecosystem sensitivity to short time-scale
climate changes (12, 20-22, 24).

Materials and Methods

The composite section of ODP Site 925 (30, 31) was sampled at approximately 20-
cm intervals on average, yielding a sampling resolution of approximately 5 ka.
The >150-um-size fraction was examined for ostracod diversity. This size fraction
is a standard for recent deep-sea ostracod research (54) and allows us to obtain all
adults and juveniles of late molt stages from most deep-sea species. Although
finer size fractions (63, 100, or 125 um) are occasionally used in ostracod research,
small ostracod species (e.g., Eucytherura spp., Pedicythere spp., Aratrocypris spp.,
Chejudocythere spp., Ruggieriella spp., and Swainocythere spp.) show low diver-
sity and abundances, even when finer size fractions are used (55-57). Further-

1. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity:
Pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273-309.

2. Rex MA, et al. (1993) Global-scale latitudinal patterns of species diversity in the
deep-sea benthos. Nature 365:636-639.
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more, even these small species mostly have >150-um minor axis (i.e., height) of
adult valve, and therefore will be recovered on a 150-um sieve. Thus, our results
are unlikely to be influenced by sieve mesh size. Body size does evolve, and
ostracods tend to be larger during colder intervals (58). However, these evolu-
tionary changes are much smaller than the differences between taxa, especially
on these relatively short, glacial-interglacial time scales. Moreover, larger sizes
during glacial periods would tend to increase observed diversity if the few
smallest species became more likely to be retained on a sieve, and this effect
therefore cannot explain low glacial diversity. The number of specimens refers to
valves. More than 79 species were identified in total. The species identifications
were initially conducted by M.Y. and H.O., but all were then confirmed by M.Y.
This procedure assured consistent species concepts were applied to all samples.
Ostracod carapaces have many morphological characters useful for species iden-
tification (59). Although juvenile valves in genera with smooth carapaces such as
Krithe can be difficult, they still have characteristic morphological features (e.g.,
size and outline) specific to each species. We used E(Sp), the expected number of
species in n individuals, for species diversity because it is widely used in deep-sea
ecology. Other representative diversity measures show similar trends (Fig. S1).
The ostracod species diversity calculation is based on three-point moving sums of
the census dataset because of relatively small sample size (=50 specimens per
sample on average), but the trend is unchanged if the raw census dataset is used.
Age control was established with correlation of the ODP 925 benthic foraminif-
eral 8'80 record (31) to the LR04 global stack (37).

Published bottom-water temperature curve based on well-established Mg/Ca
paleothermometry was available from tropical Atlantic deep-sea core M16772
(60), which was cored at similar latitude and water depth to Site 925 and so is ideal
for comparison with the ODP 925 ostracod data. Published surface productivity
curve estimated by the well established carbonate accumulation based method
was available from the core GeoB 1523-1 (44), which was cored at almost the
same location as ODP 925. It is known that carbonate accumulation can be
affected by other factors than productivity (e.g., carbonate dissolution) as well as
other productivity proxies (36). However, GeoB 1523-1 is located well above the
lysocline and carbonate accumulation in this core is not seriously influenced by
dissolution (36, 44). Furthermore, in oligotrophic regions dominated by calcite-
secreting organisms (e.g., Ceara Rise), carbonate accumulation is known to be
more reliable measure of productivity than organic carbon accumulation (36, 44).
Oxygen isotope chronologies for these curves were updated using new global
stack of the LRO4 (37). The productivity values were recalculated based on this
updated chronology because sedimentation rate enters into the productivity
calculation. We smoothed temperature, LR04, and productivity curves using a
cubic spline and used them to estimate the value for each of these variables for
each faunal sample (Fig. 4) as described in Hunt et al. (38).

A maximum entropy spectral analysis was performed by using the software
AnalySeries version 2.0.4.2 (61). ODP 925 diversity data were resampled every
1 ka before the analysis, which is equivalent to LR04 time resolution.

Modern coretop and Last Glacial Maximum ostracod diversities [E(50)] were
calculated based on the census data of North Atlantic and Arctic deep-sea
cores (11, 12, 62, 63) as shown in Table S1. All included data have robust
chronology and similar taxonomy (i.e., most abundant genus Krithe and most
of other major ostracod genera are identified to species level). A few samples
were lumped for E(50) calculation if single samples included <50 specimens.
Modern E(50) has no clear relationship with water depth for this selection of
data (Fig. 3B).

In computing the relative abundance of slope species from Site 925, the
following genera were considered typical slope inhabitants (56, 64): Bytho-
cypris, Aratrocypris, Cytherella, Cytheropteron, Polycope, Pseudocythere,
Eucytherura, Paracytherois, Paradoxostoma, Argilloecia, Zabythocypris, Rug-
gieriella, and Pedicythere.

Analyses other than spectral analysis were performed by using the statis-
tical programming environment R (65). Ostracod data are available at the
National Oceanic and Atmospheric Administration World Data Center for
Paleoclimatology, www.ngdc.noaa.gov/paleo/paleo.html.
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