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Island biogeography theory (IBT) provides a basic conceptual model for understanding hab- 

itat fragmentation. Empirical studies of fragmented landscapes often reveal strong effects 

of fragment area and isolation on species richness, although other predictions of the the- 

ory, such as accelerated species turnover in fragments, have been tested less frequently. As 

predicted by IBT, biota in fragments typically 'relax' over time towards lower species rich- 

ness. Beyond these broad generalizations, however, the relevance of IBT for understanding 

fragmented ecosystems is limited. First, IBT provides few predictions about how commu- 

nity composition in fragments should change over time, and which species should be most 

vulnerable. Second, edge effects can be an important driver of local species extinctions and 

ecosystem change, but are not considered by IBT. Third, the matrix of modified vegetation 

surrounding fragments—also ignored by IBT—can strongly influence fragment connectiv- 

ity, which in turn affects the demography, genetics, and survival of local populations. 

Fourth, most fragmented landscapes are also altered by other anthropogenic changes, such 

as hunting, logging, fires, and pollution, which can interact synergistically with habitat 

fragmentation. Finally, fragmentation often has diverse impacts on ecosystem properties 

such as canopy-gap dynamics, carbon storage, and the trophic structure of communities 

that are not considered by IBT. I highlight these phenomena with findings from fragmented 

ecosystems around the world. 

Published by Elsevier Ltd. 
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1.        Introduction 

Island biogeography theory (MacArthur and Wilson, 1963, 
1967) has profoundly influenced the study of biogeography, 
ecology, and even evolution (Janzen, 1968; Losos, 1996; Hea- 
ney, 2000). It has also had an enormous impact on conserva- 
tion biology. The theory (hereafter 'IBT") has inspired much 
thinking about the importance of reserve size and connectiv- 
ity in the maintenance of species diversity, and stimulated an 
avalanche of research on fragmented ecosystems. Like all 
general models, however, IBT is a caricature of reality, captur- 
ing just a few important elements of a system while ignoring 
many others. Does it provide a useful model for understand- 
ing contemporary habitat fragmentation? 

Here I critically evaluate the conceptual utility and limita- 
tions of IBT to the study of fragmented ecosystems. I briefly 
encapsulate the historical background, considering how IBT 
has helped to shape our thinking about habitat fragmentation 
over the past four decades. I then describe how fragmentation 
research has transcended the theory, using findings from a 
wide variety of terrestrial ecosystems. 

2.        The Impact of IBT 

Prior to MacArthur and Wilson's (1967) seminal book, habitat 
fragmentation was not high on the radar screen of most ecol- 
ogists, land managers, and politicians. That all changed with 
IBT (Powledge, 2003). The theory has helped to revolutionize 
the thinking of mainstream ecologists about habitat fragmen- 
tation and stimulated literally thousands of studies of frag- 
mented and insular ecosystems (Fig. 1). Here I summarize 
some key conceptual advances linked to IBT, including those 
from the many investigations it helped to spawn, as well as 
from the original theory itself. 

Perhaps more than anything, IBT opened people's eyes to 
the importance of vastness for nature conservation (see also 
Preston, i960). Big reserves contain more species, lose species 
more slowly (MacArthur and Wilson, 1967; Burkey, 1995; Sod- 
hi et al., 2005a), and suffer fewer of the deleterious effects of 
habitat isolation, than do smaller reserves (Terborgh, 1974; 
Diamond, 1975a; May, 1975; Diamond and May, 1976). The 
main advantage of vastness, according to IBT, is that individ- 
ual species can maintain larger populations than in small 

Fig. 1 - An experimentally isolated forest fragment in central Amazonia, part of the Biological Dynamics of Forest Fragments 
Project (photo by R.O. Bierregaard). This long-term experiment was inspired by a heated debate over the relevance of Island 
Biogeography Theory to nature conservation. 

Please cite this article in press as: Laurance, W.F., Theory meets reality: How habitat fragmentation research ..., Biol. Conserv. 
(2008), doi:10.1016/j.biocon.2008.05.011 



ARTICLE  IN   PRESS 

BIOLOGICAL CONSERVATION XXX  (2008)  XXX-XXX 

areas, and that large populations go locally extinct less often 
than do small populations (Shaffer, 1981). Big reserves should 
also be better at preserving the full range of successional 
communities and patch dynamics within ecosystems (Pickett 
and Thompson, 1978). The presumed importance of area- 
dependent extinctions has given rise to evocative terms such 
as 'supersaturation', 'species relaxation', 'faunal collapse' and 
'ecosystem decay' that have collectively helped to cement the 
importance of vastness in the scientific and popular imagina- 
tions (e.g. Diamond, 1972; Lovejoy et al., 1984; Quammen, 
1997). Indeed, the pendulum of thought has swung so far in 
favor of vastness that some authors have found it necessary 
to remind us that small reserves can be important too (Shafer, 
1995; Turner and Corlett, 1996). 

Of course, IBT helped to refine people's thinking about 
habitat isolation as well. Isolation is bad, connectivity is good. 
If a little isolation is a bad thing, then a lot of isolation is even 
worse. Hence, reserves that are isolated from other areas of 
habitat by large expanses of degraded, hostile landscape will 
sustain fewer species of conservation concern than those 
nearer to intact habitat (Lomolino, 1986; Koh and Sodhi, 
2004; Watling and Donnelly, 2006). This occurs for two rea- 
sons: weakly isolated reserves are easily colonized by new 
species, and they receive immigrants whose genetic and 
demographic contributions can reduce local extinction rates 
within the reserve (Brown and Kodric-Brown, 1977). 

IBT has also spawned a highly dynamic view of frag- 
mented ecosystems. A key prediction of IBT is that insular 
biota should be inherently dynamic, with species disappear- 
ing (from local extinction) and appearing (from colonization) 

relatively often. If extinction and colonization are largely gov- 
erned by fragment size and isolation, respectively, then big, 
isolated fragments should have slower species turnover than 
do small, weakly isolated fragments. Demonstrating such 
relationships is a litmus test for IBT (Gilbert, 1980; Abbott, 
1983) because other biogeographic phenomena, such as the 
species-area relationship, can arise for reasons aside from 
those hypothesized by IBT (for example, higher habitat diver- 
sity, rather than lower extinction rates, can cause species 
richness to increase on larger islands; Boecklen and Gotelli, 
1984; Ricklefs and Lovette, 1999). Given its central importance 
to the theory, it is perhaps surprising that relatively few IBT 
studies have demonstrated elevated turnover (e.g. Diamond, 
1969; Wright, 1985; Honer and Greuter, 1988; Schmigelow 
et al., 1997; Sodhi et al., 2005a)—and even these have often 
been controversial (Simberloff, 1976; Diamond and May, 
1977; Morrison, 2003). As discussed below, population and 
community dynamics are often greatly amplified in habitat 
fragments relative to natural conditions (Laurance, 2002), 
but a variety of factors aside from those hypothesized by 
IBT can be responsible. 

Habitat fragmentation affects different species in different 
ways. Some species decline sharply or disappear in fragments 
(Fig. 2), others remain roughly stable, and yet others increase, 
sometimes dramatically. Although IBT sensu stricto provides 
little understanding of the biological reasons for such differ- 
ences (aside from small population size; Ale and Howe, in 
press), some insights have come from interpreting the slope 
(z) of species-area relationships in insular communities (Con- 
nor and McCoy, 1979; Ricklefs and Lovette, 1999). For instance, 

Fig. 2 - Ecological specialists such as the scaled-backed antbird (Hylophylax poecilonota), Boyd's forest dragon (Hypsilurus 
boydii), and lemuroid ringtail possum (Hemibelideus lemuroides) decline precipitously in fragmented forests (photos by A.M. 
Dennis, S. Williams, and W.F. Laurance, respectively). 
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species at higher trophic levels (Holt et al., 1999), with lower 
mobility (Wright, 1981), with greater ecological specialization 
(Krauss et al., 2003), and with greater taxonomic age (Ricklefs 
and Cox, 1972; Ricklefs and Bermingham, 2001) generally have 
steeper slopes, and thus respond more negatively to insular- 
ization, than do those with opposite characteristics. Charac- 
teristics of fragmented landscapes can also affect species- 
area slopes (Wright, 1981). For example, slopes are on average 
steeper for fauna on true islands than terrestrial fragments, 
presumably because agricultural or urban lands are less hos- 
tile to faunal movements than are oceans and lakes (Watling 
and Donnelly, 2006). 

Early proponents of IBTwere keen to apply its principles to 
the design of protected areas, and used the theory to (among 
other things) advance the notion that a single large reserve 
was better for ensuring long-term species persistence than 
were several small reserves of comparable area (Terborgh, 
1974; Diamond, 1975a; May, 1975; Wilson and Willis, 1975). 
This idea, encapsulated in the famous acronym 'SLOSS' (sin- 
gle large or several small reserves), became a remarkably 
heated controversy, following a pointed attack by Simberloff 
and Abele (1976a). Although of theoretical interest, the ensu- 
ing debate (e.g. Diamond, 1976; Simberloff and Abele, 1976b; 
Terborgh, 1976; Whitcomb et al., 1976; Abele and Connor, 
1979; Higgs and Usher, 1980) had only limited practical rele- 
vance for reserve managers (Soule and Simberloff, 1986; Zim- 
merman and Bierregaard, 1986; Saunders et al., 1991). Perhaps 
the most important conclusion was that SLOSS depended on 
the degree of nestedness exhibited by an ecosystem (the ex- 
tent to which the biota of small reserves was a proper subset 
of those in larger reserves; Patterson and Atmar, 1986; Patter- 
son, 1987). The most extinction-prone species are often found 
only in large reserves, favoring the single large reserve strat- 
egy, although small reserves scattered across a region can 
sustain certain locally endemic species that would otherwise 
remain unprotected (see Ovaskainen, 2002 and references 
therein). 

Beyond the SLOSS debate, IBT has promoted the wide use 
of species-area curves for conservation applications (see 
Rosenzweig, 1995; Lomolino, 2000; Haila, 2002). These include 
predicting species endangerment (Pimm et al., 1995; Brooks 
and Balmford, 1996) and local extinctions (Tilman et al., 
1994; Newmark, 1996; Magura et al., 2001) in fragmented land- 
scapes, devising general reserve-design principles (Diamond, 
1975a; Wilson and Willis, 1975; Faaborg, 1979), and identifying 
conservation targets for specific habitat types (Desmet and 
Cowling, 2004). Among the most controversial uses involve 
projecting global species extinctions, such as from tropical 
deforestation. Results have varied dramatically, ranging from 
alarming (Ehrlich and Wilson, 1991; Reid, 1992; Dirzo and Ra- 
ven, 2003) to far more modest (Wright and Muller-Landau, 
2006) projections of future species losses. Such differences 
arise from the high sensitivity of predictions to uncertainty 
or errors in species-area slopes (Rosenzweig, 1995; Pereira 
and Daily, 2006; Ale and Howe, in press), from differing 
assumptions about species persistence in degraded habitats 
(Pereira and Daily, 2006; Wright and Muller-Landau, 2006; Lau- 
rance, 2007), and from large uncertainties about the geo- 
graphic distribution of biodiversity. Clearly, the species-area 
curve is a blunt tool in many contexts. 

3.        Habitat fragmentation in the real world 

By stimulating a broad array of research on insular ecosys- 
tems, IBT has helped to teach us much about habitat frag- 
mentation. In a strict sense, however, IBT itself has only 
narrow relevance to fragmentation because it fails to consider 
some of the most important phenomena in fragmented land- 
scapes. Here I summarize some key limitations. 

3.1. Nonrandom habitat conversion 

Habitat conversion is a highly nonrandom process. Farmers 
preferentially clear land in flatter lowland areas (Winter 
et al., 1987; Dirzo and Garcia, 1992) and in areas with produc- 
tive, well-drained soils (Chatelain et al., 1996; Smith, 1997). 
Habitat loss also tends to spread contagiously, such that areas 
near highways, roads, and towns are cleared sooner than 
those located further from human settlements. In the Brazil- 
ian Amazon, for example, over 90% of all deforestation occurs 
within 50 km of roads or highways (Laurance et al., 2001; 
Brandao et al., 2007). 

Because of nonrandom clearing, habitat remnants are of- 
ten a highly biased subset of the original landscape. Rem- 
nants frequently persist in steep and dissected areas, on 
poorer soils, at higher elevations, and on partially inundated 
lands. In addition, habitat fragments near roads and town- 
ships are often older, more isolated, and smaller than those 
located further afield, where habitat destruction is more re- 
cent (Laurance, 1997; Fahrig, 2003). The influence of non- 
random habitat loss on fragmented communities has been 
little studied, although Seabloom et al. (2002) concluded that 
species-area curves underestimate the magnitude of species 
extinctions when habitat destruction is contagious, as is typ- 
ically the case. Regardless, it is important to recognize that 
the biota of habitat fragments are likely to have been influ- 
enced by nonrandom habitat loss long before the effects of 
fragmentation per se are manifested. 

3.2. Distinguishing habitat loss and fragmentation effects 

Habitat fragmentation involves two distinct but interrelated 
processes. First, the total amount of original habitat in the 
landscape is reduced. Second, the remaining habitat is 
chopped up into fragments of various sizes and degrees of 
isolation. Distinguishing the impacts of these two processes 
on biodiversity is challenging because they generally co-vary. 
For example, in forested landscapes in which most of the ori- 
ginal habitat has been destroyed, the surviving fragments are 
often small and isolated from other forest areas, whereas the 
opposite is true in landscapes with little forest loss. Hence, 
strong declines of biodiversity reported for many fragmented 
landscapes might actually be largely a consequence of habitat 
loss, rather than habitat fragmentation per se (Fahrig, 2003). 

IBT emphasizes analyses at the individual-fragment scale, 
but the best way to quantify the relative importance of habi- 
tat loss versus fragmentation is to conduct comparative anal- 
yses at the landscape scale. In a meta-analysis, Fahrig (2003) 
concluded that habitat loss typically had much stronger 
effects on biodiversity than did fragmentation per se, 
although she emphasized that much is uncertain, especially 
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for tropical forests. Others have tried to distinguish effects of 
habitat loss and fragmentation, either by experimentally con- 
trolling for habitat amount while varying fragmentation (Col- 
lins and Barrett, 1997; Caley et al., 2001) or by comparing 
many different landscapes and extracting indices of fragmen- 
tation that are not correlated with the amount of habitat in 
each landscape (McGarigal and McComb, 1995; Villard et al., 
1999). Results have varied, and disentangling the often-con- 
founded effects of habitat loss and fragmentation remains a 
challenge for those attempting to understand the mecha- 
nisms of biodiversity loss in fragmented landscapes. 

3.3.       Edge effects 

Edge effects are diverse physical and biological phenomena 
associated with the abrupt, artificial boundaries of habitat 
fragments (Fig. 3). They include the proliferation of shade- 
intolerant vegetation along fragment margins (Ranney et al., 
1981; Lovejoy et al., 1986) as well as changes in microclimate 
and light regimes that affect seedling germination and sur- 
vival (Ng, 1983; Bruna, 1999). Forest interiors often are bom- 
barded by a 'seed rain' of weedy propagules (Janzen, 1983; 
Nascimento et al., 2006) and by animals originating from out- 
side habitats (Buechner, 1987). Increased windshear forces 
near edges can cause elevated rates of tree mortality that al- 
ter forest structure and composition (Chen et al., 1992; Lau- 
rance et al.,  1997, 2000). Abundant generalist predators, 

competitors, or brood parasites in the vicinity of edges often 
impact forest birds (Gates and Gysel, 1978; Wilcove, 1985) 
and mammals (Sievert and Keith, 1985). 

Edge effects alter many aspects of the structure, microcli- 
mate, dynamics, and species composition of fragmented eco- 
systems (Lovejoy et al., 1986; Laurance et al., 2002; Lehtinen 
et al., 2003; Ries et al., 2004; Wirth et al., 2007). Crucially, they 
are not addressed by IBT, which assumes that biota in frag- 
ments are influenced solely by the opposing forces of coloni- 
zation and extinction. Edge effects may be especially 
important in fragments of dense forest, where the dark, hu- 
mid microclimate contrasts starkly with the dry, harsh, windy 
conditions of surrounding open habitats (Harper et al., 2005). 

It can be challenging to discriminate edge and area effects 
in fragmentation studies. Edge phenomena tend to increase 
in intensity as fragment size diminishes, creating a confound- 
ing intercorrelation between edge and area effects in frag- 
mented landscapes (Laurance and Yensen, 1991). In fact, 
many putatively 'area-related' species losses in habitat frag- 
ments probably have been caused by edge effects (Schone- 
wald-Cox and Bayless, 1986; Temple, 1986; Woodroffe and 
Ginsberg, 1998) or by a synergism between edge and area 
effects (Ewers et al., 2007). 

Understanding the role of edge effects is important be- 
cause edge models yield different predictions than does IBT 
about the effects of fragmentation on ecosystems and biota. 
For example, unlike IBT, edge-effect models predict major 
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Fig. 3 - Edge effects documented in Amazonian forest fragments, showing the great diversity of edge phenomena and the 
varying distances they penetrate into forest interiors (after Laurance et al., 2002). 
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ecological changes (1) in irregularly shaped as well as in small 
fragments, (2) along the margins of even very large fragments, 
and (3) especially in areas affected by two or more nearby 
edges (Laurance and Yensen, 1991; Malcolm, 1994; Laurance 
et al., 2006a). Edge models also provide useful predictions 
about species responses to fragmentation. For instance, the 
abundances of forest-interior species should be positively cor- 
related with the unaltered core-areas of fragments (Temple, 
1986; Ewers and Didham, 2007), edge specialists should be 
correlated with the total length of fragment edges, and 
edge-insensitive species that depend on primary habitat 
should be correlated with the total areas of fragments (Lau- 
rance and Yensen, 1991). IBT yields none of these insights. 

3.4.       Matrix effects 

For all its conceptual utility, IBT has had a striking downside 
for understanding forest fragmentation: it ignores the matrix 
of modified lands surrounding fragments. Whether sur- 
rounded by soy fields, suburbia, water, or secondary forest, 
all fragments (including isolated nature reserves) are treated 
equally by IBT. Such fragments are not equivalent, of 
course—the matrix matters. 

The matrix has a major influence on fragment connectiv- 
ity (Ricketts, 2001). Matrices that differ dramatically in struc- 
ture and microclimate from the primary habitat tend to be 
most hostile to native species (Laurance and Bierregaard, 
1997; Sodhi et al., 2005b). In the Amazon, forest fragments 
surrounded by cattle pastures suffer considerably greater spe- 
cies losses than do those surrounded by regrowth forest, and 
a variety of species—including certain primates, antbirds, 
obligate flocking birds, and euglossine bees—have been 
shown to recolonize fragments as young secondary forest 
regenerates around them (Becker et al., 1991; Stouffer and 
Bierregaard, 1995; Gilbert and Setz, 2001). Where hunting is 
pervasive, the matrix can become a population sink for 
exploited or persecuted species (Newmark, 1996; Woodroffe 
and Ginsberg, 1998; Brashares et al., 2001). By acting as a 
selective filter for animal and propagule movements, the ma- 
trix has pervasive effects on species composition in 
fragments. 

The matrix can also influence the nature and magnitude of 
edge effects in fragments. In the Amazon, forest fragments 
surrounded by young regrowth forest experience less-inten- 
sive changes in microclimate (Didham and Lawton, 1999) 
and have lower edge-related tree mortality (Mesquita et al., 
1999) than do similar fragments adjoined by cattle pastures. 
Edge avoidance by forest-interior birds is also reduced when 
fragments are adjoined by regrowth forest (Stouffer and Bier- 
regaard, 1995; S.G. Laurance, 2004). Because fragments can re- 
ceive a heavy seed rain from the nearby matrix, patterns of 
plant regeneration in forest fragments can be strongly influ- 
enced by the species composition of the matrix (Janzen, 
1983; Grau, 2004; Nascimento et al., 2006). 

most indefinitely. Why? Many researchers have attempted 
to predict why certain species are especially extinction prone 
in insular habitats (e.g. Terborgh, 1974; Pimm et al., 1989; Lau- 
rance, 1991; Henle et al., 2004; Koh et al., 2004). 

Importantly, the traits associated with vulnerability may 
well differ between islands and habitat fragments. Studies 
of fauna on islands have often emphasized the importance 
of local rarity or its correlates, such as body size and trophic 
status, in determining species vulnerability (e.g. Terborgh, 
1974; Willis, 1974; Wilcox, 1980; Diamond, 1984). Unlike is- 
lands, however, habitat fragments are surrounded by a matrix 
of modified habitats that permit dispersal or survival for spe- 
cies that can use the matrix, and matrix tolerance and its cor- 
relates (such as high dietary specialization) are often 
identified as key predictors of vulnerability (Fig. 4) (Laurance, 
1990, 1991; Gascon et al., 1999; Nupp and Swihart, 2000; Fires 
et al., 2002; Sekercioglu et al., 2002; Brashares, 2003; Koh et al., 
2004; Antongiovanni and Metzger, 2005). On islands, or on 
other isolates surrounded by completely inhospitable habitat, 
matrix tolerance is necessarily a nonexistent predictor of 
extinction proneness, and effects of other predictors, such 
as rarity and its correlates, are likely to become more 
apparent. 

Hence, as a model for predicting faunal extinctions in hab- 
itat fragments, studies of oceanic or land-bridge islands may 
(1) underestimate the importance of overland vagility and tol- 
erance of modified habitats, and (2) overestimate the signifi- 
cance of factors such as rarity, body size, and trophic status. 
Insofar as IBT emphasizes true islands, its lessons for under- 
standing species vulnerability in habitat fragments might be 
weak and even misleading. 

3.6.       Community-level changes 

IBT treats species as non-interacting entities, assuming that 
their responses to fragmentation are governed solely by their 
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3.5.       Correlates of extinction proneness Rank matrix-abundance 

Whether on islands or habitat fragments, species can differ 
enormously in their vulnerability to local extinction: some 
vanish rapidly, others more slowly, and yet others persist al- 

Fig. 4 - Relationship between matrix tolerance and local 
extinction proneness in 16 mammal species in Australian 
rainforest fragments (after Laurance, 1991). 
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population size (Harrison and Bruna, 1999; Ale and Howe, in 
press). In reality, species interact with one another in myriad 
ways via competition, predation, parasitism, disease, and 
mutualisms, and distortions in such interactions can mark- 
edly affect species survival and community composition in 
fragments. 

For instance, large predators often disappear from habitat 
fragments and in their absence generalist omnivores, such as 
raccoons, coatis, opossums, and baboons (Fig. 5), can explode 
in abundance, a phenomenon termed 'mesopredator release' 
(Soule et al, 1988; Terborgh, 1992). Omnivores also invade 
fragments from surrounding agricultural lands (Gates and Gy- 
sel, 1978; Andren and Angelstam, 1988; Paton, 1994; Galetti 
and Sazima, 2006). When hyperabundant, such omnivores 
can have important impacts on nesting birds (Crooks and 
Soule, 1999; Schmidt, 2003), large-seeded plants (Wright and 
Duber, 2001), and other species (Dirzo and Miranda, 1991; Lau- 
rance, 1997). A related phenomenon is the proliferation in 
fragments of certain herbivorous insects, such as leaf-cutter 
ants, in the absence of their predators (Rao, 2000; Terborgh 
et al., 2001). 

Fragmentation can also distort competitive interactions. In 
the restricted universe of a habitat fragment, interspecific 
competition may well be intensified because resources such 
as space, food, and shelter are more limited. 'Checkerboard' 
distribution patterns, in which closely related, ecologically 
similar species have nearly mutually exclusive distributions 
on islands or fragments, are thought to result from such 

intensified competition (Diamond, 1975b; Fox and Fox, 2000; 
Laurance, 1997). Ecological changes in fragments such as edge 
(Fagan et al., 1999) and matrix (Cantrell et al., 1999) effects can 
favor certain competitors over others and thereby change 
competitive interactions and species survival. 

Species with strong ecological linkages may be especially 
vulnerable in fragments. For example, the decline of key seed 
dispersers or pollinators in fragments can reduce reproduc- 
tion, dispersal, and establishment of dependent plant species 
(e.g. Aizen and Feinsinger, 1994; Chapman et al., 2003; Corde- 
iro and Howe, 2003; Wright et al., 2007). In the Amazon, obli- 
gate ant-following birds, which accompany marauding 
swarms of army ants to capture fleeing insects, disappear 
from forest fragments too small to sustain army-ant colonies 
(Lovejoy et al., 1986; Stouffer and Bierregaard, 1995). In addi- 
tion, the decline of peccaries in Amazon fragments has re- 
duced the abundance of frogs that require peccary wallows 
for breeding (Zimmerman and Bierregaard, 1986). 

In these and other ways, habitat fragmentation alters spe- 
cies interactions, with far-reaching impacts on community 
composition and functioning. Such changes fall entirely out- 
side the scope of IBT. 

3.7.      Altered ecosystem processes 

As a prism for understanding habitat fragmentation, IBT is 
woefully limited: it focuses only on species diversity. But hab- 
itat fragmentation has far broader effects on ecosystems, 

Fig. 5 - Opportunistic omnivores, such as coatis (Nasua nasua), chacma baboons (Papio cynocephalus), bearded pigs (Sus 
barbatus), and giant white-tailed rats (Uromys caudimaculatus), can explode in abundance following the loss of large, 
regulating predators in fragmented habitats (photos by W.F. Laurance). 
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altering such diverse processes as forest dynamics, nutrient 
cycling, carbon storage, and forest-climate interactions. 

In many forested landscapes, for example, habitat frag- 
mentation leads to sharply elevated tree mortality, because 
trees near forest edges are particularly vulnerable to wind 
turbulence and increased desiccation (Chen et al., 1992; 
Laurance et al., 1997, 1998a; Harper et al., 2005). This funda- 
mentally alters canopy-gap dynamics, forest structure, micro- 
climate (Kapos, 1989; Malcolm, 1998), and the relative 
abundance of different plant functional groups (Tabarelli 
et al., 1999; Metzger, 2000; Laurance et al., 2006a, 2006b; Nasci- 
mento et al., 2006). Forest carbon storage is also reduced 
(Fig. 6) because large canopy and emergent trees, which con- 
tain a high proportion of forest biomass, are particularly vul- 
nerable to fragmentation (Laurance et al., 2000). As the 
biomass from the dead trees decomposes, it is converted into 
greenhouse gases such as carbon dioxide and methane. In 
fragmented forests worldwide, many millions of tons of 
atmospheric carbon emissions are released each year by this 
process (Laurance et al., 1998b). 

Fragmentation alters many aspects of the physical envi- 
ronment. Large-scale clearing of native vegetation can cause 
major changes in water and nutrient cycles, radiation bal- 
ance, and wind regimes, which in turn affect communities 
in habitat remnants (Saunders et al., 1991; Laurance, 2004). 
In western Australia, the removal of most native vegetation 
for wheat production has reduced evapotranspiration and al- 
tered soil water flows. This has increased local flooding, 
brought the water table with its dissolved salts closer to the 
soil surface, and caused chronic waterlogging and saliniza- 
tion of the remaining vegetation (Hobbs, 1993). Wind- or 
waterborne fluxes of agricultural chemicals (fertilizers, herbi- 
cides, pesticides) and other pollutants into habitat remnants 
(Cadenasso et al., 2000; Weathers et al., 2001) can also have 
long-term effects on ecosystems. 

Fragmentation often drastically alters natural fire regimes. 
In some cases, burning declines sharply because fires are sup- 
pressed in the surrounding matrix, leading to long-term 
changes in the composition and structure of remnant vegeta- 
tion (Baker, 1994). In other cases, fragmentation promotes 
burning in ecosystems that are highly vulnerable to fire, such 
as tropical rainforests (Cochrane et al., 1999; Gascon et al., 
2000). In the Amazon, for example, fire frequency rises drasti- 
cally in fragmented landscapes (Fig. 7) because forest rem- 
nants are juxtaposed with frequently burned pastures. 
These recurring burns have severe effects because the rain- 
forest vegetation is poorly adapted for fire, and forest frag- 
ments can literally implode over time from recurring fires 
(Cochrane and Laurance, 2002, in press). 

3.8.       Environmental synergisms 

In the real world, habitat fragments are not merely reduced 
and isolated; they are also frequently affected by other per- 
turbations that may interact additively or synergistically 
with fragmentation (Laurance and Cochrane, 2001). Forest 
fragments in the tropics are often selectively logged, de- 
graded by ground fires, and overhunted—changes that can 
dramatically alter fragment ecology (Cullen et al., 2000; 
Peres, 2001; Cochrane and Laurance, 2002; Galetti et al., 
2006; Peres and Michalski, 2006). In agricultural and urban 
areas, acid rain, pesticides and herbicides, hydrological 
changes, livestock grazing, and pressure from invading spe- 
cies can severely degrade fragments (Myers, 1988; Hobbs and 
Huenneke, 1992; Abensperg-Traun et al., 1996; Suarez et al., 
1998; Cumming, 2002). In coming decades, anthropogenic 
climate change may emerge as an increasingly important 
threat to fragmented ecosystems (Travis, 2003; Opdam and 
Wascher, 2004; Laurance and Curran, 2008), especially if 
droughts, storms, and other rare weather events increase 
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Fig. 6 - Collapse of aboveground biomass in Amazonian 
forest fragments. Shown is the net change in aboveground 
tree biomass in 1-ha plots as a function of distance from 
forest edge, during the first 1-2 decades after forest 
fragmentation (after Nascimento and Laurance, 2004). 
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Fig. 7 - Fires can increase dramatically in fragmented 
forests. Shown is the mean fire frequency (number per 
century) as a function of distance to forest edge for several 
hundred forest fragments in eastern Amazonia. Analyses 
were based on 14 years of satellite observations (adapted 
from Cochrane and Laurance, 2002). 
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in frequency or severity (Timmerman et al., 1999; Webster 
et al., 2005). 

Thus, forest fragments and their biota are sometimes sub- 
jected to a withering array of environmental pressures that 
may be episodic or chronic in nature. A paradigm like IBT that 
considers only changes in fragment size and isolation while 
ignoring other anthropogenic effects (e.g. Curran et al., 1999; 
Laurance, 2000) is dangerously inadequate for conservation 
purposes. It is also inadequate from a scientific perspective. 
A more realistic view of fragmented landscapes is one that 
explicitly recognizes the potential for interacting environ- 
mental changes to amplify and alter the ecological impacts 
of habitat fragmentation. 

3.9.       Eleuated dynamics 

Finally, IBT postulates that fragmented ecosystems will be 
more dynamic than intact habitat, but only because of spe- 
cies relaxation and increased species turnover. In fact, a far 
wider range of phenomena promotes dynamism in 
fragmented landscapes, even to the extent that many 
fragments can be described as 'hyperdynamic' (Laurance, 
2002). 

Being a small resource base, a habitat fragment is inher- 
ently vulnerable to stochastic effects. Species abundances 
can fluctuate wildly in small communities, especially when 
immigration is low and disturbances are frequent (Hubbell, 
2001; Casagrande and Gatto, 2002). The dynamics of plant 
and animal populations can be dramatically altered in 
fragmented habitats in response to edge effects, reduced 
dispersal, altered disturbance regimes, and changing herbi- 
vore or predation pressure (Lidicker, 1973; Karieva, 1987; 
Quintana-Ascencio and Menges, 1996; Wirth et al., 2007). 
Fragmented animal communities often pass through unsta- 
ble transitional states that do not otherwise occur in nature 
(Terborgh et al., 2001). These can cause serious ecological 
distortions, such as a collapse of predator and parasite 
populations and a hyperabundance of herbivores and 
ecological generalists (Mikkelson, 1993; Didham et al., 
1998; Terborgh et al., 2001; Sekercioglu et al., 2002; Feeley 
and Terborgh, 2006), with cascading impacts on plant 
communities (Dirzo and Miranda, 1991; Terborgh, 
1992; Leigh et al., 1993; Rao et al., 2001; Asquith and Mei- 
ja-Chang, 2005; Feeley and Terborgh, 2005). These and other 
instabilities plague small, dwindling populations in 
fragments. 

As discussed above, habitat fragments are often strongly 
affected by external vicissitudes and disturbances in the 
human-dominated lands that surround it. For example, 
forest species that exploit edge or disturbed habitats often 
increase dramatically in fragmented landscapes (Margules 
and Milkovits, 1994; Laurance et al., 2002). As habitat loss 
proceeds, displaced animals from surrounding degraded 
lands can flood into remaining habitat fragments, leading 
to sudden increases in local population densities 
(Lovejoy et al., 1986; Hagan et al., 1996; Curran et al., 1999). 
Modified landscapes can be a major source of recurring 
disturbances, with hunters, livestock, fires, smoke, and 
large abiotic fluxes penetrating into and destabilizing 
fragments. 

4. Conclusions 

IBT is one of the most elegant and important theories in con- 
temporary ecology, towering above thousands of lesser ideas 
and concepts. The theory provides a conceptual framework 
for understanding habitat fragmentation that continues to in- 
form researchers today. The avalanche of research stimulated 
by IBT has dramatically advanced the study of fragmented 
and insular habitats. 

This having been said, the study of fragmented ecosys- 
tems has now greatly transcended IBT. With perfect hind- 
sight, the theory seems simplistic to the point of being 
cartoonish, and fails to address some of the most important 
phenomena affecting fragmented landscapes. Fragmentation 
research today has diversified enormously, touching on sub- 
disciplines ranging from landscape ecology to metapopula- 
tion dynamics, and from conservation genetics to 
population viability analysis. Although everyone working in 
these fields owes some allegiance to the initial insights of 
IBT, fragmentation research has advanced far beyond the ori- 
ginal scope of the theory. 
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