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INTRODUCTION
The Isthmus of Panama fully separated the 

Caribbean Sea and Pacifi c Ocean by 3–3.5 Ma 
(Keigwin, 1978; O’Dea et al., 2007) and is 
inferred to result from collision between South 
America and the Panama block (Trenkamp et 
al., 2002; Coates et al., 2004) (Fig. 1). However, 
this closure date is based on evolutionary diver-
gence of marine organisms and therefore must 
be a minimum age. Other evidence on when 
Isthmus formation began comes from shallow-
ing sequences in Panamanian and Colombian 
bathyal sedimentary basins at 14.8–12.8 Ma 
(Duque-Caro, 1990; Coates et al., 2004) and 
folded and thrusted Upper Miocene strata in 
eastern Panama (Mann and Kolarsky, 1995). 
These observations document that signifi cant 
contraction in eastern Panama occurred since 
the Middle Miocene, but do not put a fi rm limit 
on when or how the collision between South 
America and the Panama block initiated. We 
suggest that collision initiated at 23–25 Ma 
when South America fi rst impinged upon Pan-
ama arc crust as observed by distinct Panama 
arc chemical changes, broad exhumation of 
the northern Andes and Panama, and extensive 
foreland deposition in the distal Llanos Basin of 
Colombia (Fig. 1).

PANAMA ARC EVOLUTION WITHIN 
THE CANAL ZONE

The Panama arc formed on the trailing edge 
of the Caribbean plate at ca. 75–65 Ma (Buchs 
et al., 2010).  Wörner et al. (2009) and Wegner 
et al. (2011) divide arc activity into a depleted 
Late Cretaceous–Eocene initial episode and 
an enriched Miocene arc. Modern magmatism 
exists only west of the Canal Zone and consists 
of a <2–3 Ma adakitic suite attributed variously 
to slab melting (Defant et al., 1992), a slab 
window (Abratis and Wörner, 2001; Wegner 
et al., 2011), or subduction erosion (Goss and 
Kay, 2006).

We report that depleted-type volcanic and 
plutonic rocks persist until 25 Ma within the 
central Panama Canal Zone. Older arc rocks 
are heterogeneous and consist of plutonic and 
extrusive rocks that range from calc-alkaline to 
tholeiitic and basaltic to andesitic in composi-
tion. These rocks are dominantly hornblende-
bearing (Rooney et al., 2010), have a large Ta 
anomaly, exhibit relative enrichment in fl uid-
mobile large ion lithophile elements (LILEs) 
(e.g., Cs, Rb, Ba), and have moderate heavy rare 
earth element (HREE) concentrations (Fig. 2A; 
Table DR1 in the GSA Data Repository1). Such 
characteristics are indicative of hydrous man-

tle-wedge−derived subduction zone magmas 
(Pearce and Peate, 1995).

Within the Canal Zone, volcanic rocks 
younger than 24 Ma range from basalt to 
dacite in composition, but are signifi cantly less 
hydrous and exclusively tholeiitic. Rock types 
within the younger group are bimodal with 
individual units dominated by either silicic 
tuffs and welded units (Las Cascadas Forma-
tion) or basalt to basaltic-andesite lava fl ows 
and intrusive sills (Pedro Miguel Formation). 
Hornblende and other hydrous minerals are 
absent. In comparison with earlier arc rocks 
(Bas Obispo Formation and older), Miocene 
Canal Zone volcanism exhibits low LILEs, 
higher HREEs and Ti, and a signifi cantly 
decreased Ta anomaly (Fig. 2A).

Trace element ratios are tracers of volcanic-
rock tectonic and mantle environments, and Yb 
normalization allows one to see through frac-
tionation processes (Pearce and Peate, 1995; 
Wegner et al., 2011). Welch two-sample t-tests 
indicate that arc groups identifi ed in Figure 2 
have unique element ratio sets, suggesting that 
the mantle environment changed over time 
(Table DR2). In the Panama arc, ratios such 
as La/Yb, Th/Yb, Hf/Yb, and Ta/Yb exhibit an 
increase and change in slope at 24 Ma (Fig. 2B), 
with Ta/Yb being the single best discriminator 
of this change. In rocks younger than 24 Ma, 
the Ta/Yb ratio is >0.1. Ba/Yb is also effective 
at discriminating between rocks younger than 
24 Ma in the Canal Zone, with younger rocks 
showing a distinct depletion (Fig. 2C). Con-
versely, Miocene arc rocks elsewhere in Panama 
show a progressive increase in Ba/Yb and fl uid-
mobile elements in general.
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ABSTRACT
Tectonic collision between South America and Panama began at 23–25 Ma. The collision is 

signifi cant because it ultimately led to development of the Panamanian Isthmus, which in turn 
had wide-ranging oceanic, climatic, biologic, and tectonic implications. Within the Panama 
Canal Zone, volcanic activity transitioned from hydrous mantle-wedge−derived arc magma-
tism to localized extensional arc magmatism at 24 Ma, and overall marks a permanent change 
in arc evolution. We interpret the arc geochemical change to result from fracturing of the 
Panama block during initial collision with South America. Fracturing of the Panama block 
led to localized crustal extension, normal faulting, sedimentary basin formation, and exten-
sional magmatism in the Canal Basin and Bocas del Toro. Synchronous with this change, both 
Panama and inboard South America experienced a broad episode of exhumation indicated by 
(U-Th)/He and fi ssion-track thermochronology coupled with changing geographic patterns of 
sedimentary deposition in the Colombian Eastern Cordillera and Llanos Basin. Such observa-
tions allow for construction of a new tectonic model of the South America–Panama collision, 
northern Andes uplift and Panama orocline formation. Finally, synchroneity of Panama arc 
chemical changes and linked uplift indicates that onset of collision and Isthmus formation 
began earlier than commonly assumed.
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Canal Zone rocks also show the 24 Ma tran-
sition on the V versus Ti tectonic discrimina-
tion diagram of Shervais (1982) (Fig. 2D). Bas 
Obispo Formation rocks plot within the arc 
tholeiite fi eld, whereas younger Pedro Miguel 
Formation rocks fall within the backarc basin 
fi eld. Las Cascadas Formation rocks are too 
silicic, and thus are not plotted. The V versus 
Ti diagram is sensitive to changes in source 
oxygen fugacity, and coupled with the decrease 
in Ba/Yb and loss of hydrous minerals suggests 

a signifi cant drying out of the mantle source 
after 25 Ma.

Canal Zone volcanic units are interbedded 
within well-dated Canal Basin sedimentary 
rocks. Sr isotope dating places the depositional 
contact of the terrestrial volcanic Las Cascadas 
Formation and the overlying marine sedimen-
tary Culebra Formation at 23 Ma (Kirby et al., 
2008). Rooney et al. (2010) reported an Ar/Ar 
age of Bas Obispo Formation equivalents (Cerro 
Patacon) to be 25.37 ± 0.13 Ma. Geochemical 
data (Ta/Yb ratios >0.1) indicate that the Las 
Cascadas Formation is the fi rst younger arc unit 
within the Canal Zone and so the transition is 
constrained to 25–23 Ma.

Canal Zone arc chemistry change also coin-
cides with formation of the Canal Basin. The 
basin is shallow and oriented perpendicular to 
the axis of the Isthmus. It is important because 
it preserves unique Miocene terrestrial and 

marine fossil assemblages (Kirby et al., 2008). 
Both sedimentary and volcanic units within 
the basin are cut by a pervasive orthorhombic 
fault set. In general, earlier faults have normal 
movement and are cut by later strike-slip faults 
related or synthetic to the active right-lateral 
Pedro Miguel fault (Rockwell et al., 2010). The 
largest normal faults are parallel to the Canal 
Basin axis and have drill core−constrained 
vertical offsets of >100 m on individual faults 
(Lutton and Banks, 1970).

Another volcanic sequence of note is from 
Bocas del Toro (Fig. 1A). This group shares 
geochemical characteristics of Canal Zone 
rocks with moderate enrichment in compatible 
elements such as HREEs and Ti; however, they 
are distinct with strongly enriched LILEs and 
shoshonitic, with >4 wt% K2O at 52 wt% SiO2. 
In terms of rock type, they consist of glassy 
basaltic to andesitic blocky lava fl ows interbed-
ded with marine sandstones cut by normal faults 
and range in age from 12 to 8 Ma (Coates et 
al., 2003). This group also plots within an exten-
sional tectonic environment (Fig. 2D).

EXHUMATION AND CHANGING 
DEPOSITIONAL PATTERNS

Exhumation and changing depositional pat-
terns in the northern Andes and Panama are 
synchronous with geochemical changes in the 
Panama arc. Apatite-zircon (U-Th)/He and 
fi ssion-track thermochronology collected from 
the Colombian northern Andes and Panama 
indicate a broad exhumation pulse at 22–28 Ma, 
with most data near 25 Ma (Fig. 3). Onset and 
intensity of this event was derived from verti-
cal sample profi les collected through igneous 
suites in Panama (Mamoni and Petaquilla), 
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Figure 1. A: Modern tectonic map with lo-
cation of geochemical samples and low-
temperature thermochronology profi le sites. 
S.M.—Santa Marta. B: Tectonic reconstruc-
tion at 10 Ma. This is an intermediate step 
in the collision between South America and 
Panama. The Panama block has fractured, 
resulting in two zones of extension (Canal 
Zone and Bocas del Toro) and one zone of 
contraction in eastern Panama. Also, the 
North Panama deformed belt has partially 
formed and a seaway >200 km wide sepa-
rates Panama and South America. C: Tec-
tonic reconstruction at 25 Ma. This imme-
diately precedes collision between Panama 
arc crust and South America. Previously, un-
modifi ed Caribbean crust was underthrust 
beneath South America.

Figure 2. Instrumental neutron activation 
analysis (INAA) trace element geochemis-
try from the Panama arc (see Table DR1). 
A: Averaged trace element geochemistry 
from different temporal and spatial groups 
of Panama arc rocks. Shaded red/blue fi elds 
indicate the full data range for early arc and 
Canal Zone, respectively. N-MORB—normal 
mid-oceanic-ridge basalt. B: La/Yb versus 
Ta/Yb with individual samples plotted. Re-
gressions through the early and youngest 
arc groups intersect at Ta/Yb = 0.1. In Ca-
nal Zone rocks, this boundary is crossed at 
23–25 Ma and corresponds to a permanent 
change in arc chemistry. C: Ba/Yb versus 
Ta/Yb with individual samples. Canal Zone 
volcanic rocks have sharply lower Ba/Yb ra-
tios indicative of general large ion lithophile 
element (LILE) depletion. D: Shervais (1982) 
tectonic discrimination diagram. Canal Zone 
volcanic formations (Fm.) transition from 
arc tholeiites to extensional products af-
ter 25 Ma. Rocks from Bocas del Toro also 
plot in the extensional fi eld. MORB—mid-
oceanic-ridge basalt; BAB—backarc basin; 
CFB—continental fl ood basalt.
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the Colombian Central Cordillera (Restrepo-
Moreno et al., 2009), and the Sierra Nevada de 
Santa Marta (Cardona et al., 2011), and from 
sedimentary sequences in Colombia’s Eastern 
Cordillera (Mora et al., 2010). Igneous suite 
crystallization ages vary, but all are Eocene and 
older except for Petaquilla in Panama (Early Oli-
gocene; Kesler et al., 1977). Different locations 
experienced varying subsequent levels of exhu-
mation, and so the 25 Ma event is manifested 
by different thermochronometers at different 
locations. Cooling during this episode translates 
to exhumation rates of 0.6–0.8 km/m.y. (Fig. 3). 
This exhumation pulse correlates with the arc 
geochemical change in Panama and the onset of 
localized extensional magmatism.

Also indicative of Andean orogenesis at 
this time are changing patterns of erosion and 
deposition inboard of the Panama block. In the 
Eastern Cordillera, Middle Eocene continental 
deposition covered broad areas. By Late Oligo-
cene, the Eastern Cordillera underwent exhu-
mation and erosion (Mora et al., 2010) coupled 
with synorogenic deposition on its eastern and 

western fl anks (Gomez et al., 2005; Parra et al., 
2009). Also at this time, the Llanos Basin propa-
gated over 200 km to the east, refl ecting onset of 
Eastern Cordillera deformation (Bayona et al., 
2008; Parra et al., 2009) (Fig. 4).

DISCUSSION
Overall, our goal is to link geochemical 

changes in the Panama arc with synchronous 
exhumation in Panama and the northern Andes 
using a tectonic model that explains both. Unit-
based observations indicate that at 23–25 Ma 
the Panama arc experienced permanent geo-
chemical change. Two related events occur at 
this time: (1) progressive mantle enrichment 
(e.g., La/Yb, Ta/Yb) that affects all younger arc 
rocks, and (2) localized extensional arc magma-
tism. A linear regression fi t (R2 = 0.92) through 
the younger arc rocks suggests an enriched 
mantle source mixed into the subarc environ-
ment beginning at 25 Ma.

The enrichment event is compatible with the 
Wegner et al. (2011) division of arc activity into 
a depleted Late Cretaceous through Eocene 
initial arc, an Oligocene lull, and an enriched 
Miocene arc. However, Canal Zone observa-
tions sharply delineate the boundary between 
the initial and Miocene arc episodes and show 
that magmatism continues throughout the Oli-
gocene, although at a lower volumetric level. 
Throughout the lull, arc magmatism retains a 
strong subduction signal and geochemical char-
acteristics similar to the earlier magmatic peak.

One signifi cant difference between the arc 
chemistry presented here and that of previ-
ous workers is the identifi cation of localized 
extensional magmatism in the Canal Zone and 
Bocas del Toro. Within the Canal Zone, this 
interpretation is supported by sharp decreases in 
fl uid-mobile elements, tectonic discrimination 
diagrams, and fl attened REE curves. Onset of 
extensional Canal Zone volcanism is also asso-
ciated with extensive normal faulting and basin 
formation. Our preferred model is extension-
induced decompression melting of the subarc 
asthenosphere, in which high degrees of shallow 
partial melting caused fl uid and LILE depletion 
in Canal Zone rocks. Strong LILE enrichments 
with similar Yb concentrations at Bocas del Toro 

are explainable by low degrees of decompres-
sion melting in compositionally similar astheno-
sphere (Fig. 2). Similar variations within exten-
sional arcs have been observed in the northern 
Marianas (Lin et al., 1989).

The standard interpretation of extensional arc 
magmatism is trench rollback−coupled backarc 
extension and trenchward arc migration (Ewart 
et al., 1998). However, in the Panama arc we 
propose an alternative interpretation. First, a 
transition to backarc magmatism would cre-
ate a continuous belt of extensional volcanism 
parallel to the arc. In contrast, extensional mag-
matism is observed only in the Canal Zone 
and Bocas del Toro. Second, dominant normal 
faults within the Canal Zone are perpendicular 
to the arc, whereas backarc faulting should be 
arc-parallel. Third, Canal Basin formation is 
synchronous with the onset of extensional arc 
magmatism at 24 Ma, and is also arc-perpendic-
ular. Thus, our interpretation is that the Panama 
block underwent localized arc-perpendicular 
extension. One mechanism is that during Pan-
ama orocline formation (Silver et al., 1990) the 
Isthmus fractured. Basic geometric reconstruc-
tions (Fig. 1B) of the Panama orocline can be 
accomplished with two localized zones of 
extension (Canal Zone and Bocas del Toro) and 
one zone of contraction (Darien Ranges). This 
method can accommodate crustal-scale bend-
ing by brittle processes and is potentially wide-
spread in the geologic record as the accretion of 
ribbon continents is an important mechanism of 
crustal growth (Johnston, 2001).

The opposed geometry of the two extensional 
zones can explain age/chemical variations in 
that Bocas del Toro is in an extensional zone 
“tip” whereas the Canal Zone is in a “mouth.” 
Volcanism at an extensional zone tip should be 
younger and result from less mantle melting, 
with which observations are consistent.

Exhumation in Panama and the northern 
Andes is synchronous with onset of Canal Zone 
extensional magmatism shortly after 25 Ma. Our 
preferred explanation is the onset of collision 
between South America and Panama arc crust. 
Collision with South America is the dominant 
explanation for the Panama orocline (Silver et al., 
1990) and can also explain the localized zones 
of extension within the Panama arc. Other infl u-
ences for exhumation and arc change include a 
25–30 Ma westward increase in South American 
plate motion (no-net-torque reference frame; 
Silver et al., 1998) and/or the 23 Ma fi ssion-
ing of the Farallon plate (Lonsdale, 2005). The 
motion of South America is almost certainly the 
driver of broad Andean tectonic trends, and the 
23 Ma exhumation event is observed throughout 
western South America (Mora, 2010). However, 
inboard of Panama, the Central/Western Cordil-
leras are defl ected northward, and the width of 
the Colombian orogenic belt is almost twice that 
farther south in Ecuador, suggesting a causative 
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Figure 4. Modern cross section through Panama and South America. Location is shown in 
Figure 1A. Gray bars indicate sedimentary depositional history. Panama and the northern 
Andes form a bivergent orogen, with the N. Panama deformed belt and Llanos Basin forming 
opposing thrust belts. Exhumation and eastward Llanos Basin propagation is synchronous 
with Panama arc geochemical change and is interpreted to result from accretion of Panama 
arc crust to South America at 23–25 Ma.
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relationship. Overall, our preferred interpretation 
is that South America surged westward at the 
end of the Oligocene and collided with Panama 
arc crust. Due to arc crust unsubductability, the 
Panama block detached from the Caribbean plate 
and was thrust over it, leading to the formation 
of the North Panama deformed belt. The North 
Panama deformed belt and Llanos Basin form 
opposite verging fold-and-thrust belts occurring 
~500 km on either side of the Panama–South 
America suture (the Atrato fault; Trenkamp et al., 
2002) (Fig. 4). Between the bivergent thrust belts, 
heterogeneous basement blocks exhibit near-
synchronous exhumation at 23–25 Ma, sugges-
tive of a regional detachment at depth. Bivergent 
orogenic fl oat (Oldow et al., 1990) could produce 
such widespread exhumation. Finally, we pro-
pose that the semirigid beam of Panama arc crust 
fractured and underwent rotation in response 
to collision with South America, leading to the 
observed zones of extensional magmatism.
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