THE CRETACEOUS AND PALEOCENE PLEUROTOMARIID (GASTROPODA: VETIGASTROPODA) FAUNA OF SEYMOUR ISLAND, ANTARCTICA

M. G. HARASEWYCH,¹ ANTON OLENIK,² AND WILLIAM ZINSMEISTER³

¹Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, <HARASEWYCH@si.edu>; ²Department of Geosciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431-0991, <aolenik@fau.edu>; and ³Department of Earth and Atmospheric Sciences, Purdue University, 1397 Civil Engineering Building, West Lafayette, IN 47907-1397, <wjzins@purdue.edu>
THE CRETACEOUS AND PALEOCENE PLEUROTOMARIID (GASTROPODA: VETIGASTROPODA) FAUNA OF SEYMOUR ISLAND, ANTARCTICA

M. G. HARASEWYCH,1 ANTON OLEINIK,2 AND WILLIAM ZINSMEISTER3

1Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, <HARASEWYCH@si.edu>; 2Department of Geosciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431-0991, <aoleinik@fau.edu>; and 3Department of Earth and Atmospheric Sciences, Purdue University, 1397 Civil Engineering Building, West Lafayette, IN 47907-1397, <wjzins@purdue.edu>

ABSTRACT—Leptomaria antipodensis and Leptomaria hickmanae are described from the Upper Cretaceous [Maastrichtian] Lopez de Bertodano Formation, Seymour Island, and represent the first Mesozoic records of the family Pleurotomariidae from Antarctica. Leptomaria stillwelli, L. seymourensis, Conotomaria sobralensis and C. bayeri, from the Paleocene [Danian], Sobral Formation, Seymour Island, are described as new. Leptomaria larseniana (Willckens, 1911) new combination, also from the Sobral Formation, is redescribed based on better-preserved material. The limited diversity of the pleurotomariid fauna of Seymour Island is more similar to that of the Late Cretaceous faunas of Australia and New Zealand in terms of the number of genera and species, than to the older, more diverse faunas of South America, southern India, or northwestern Madagascar, supporting the status of the Weddelian Province as a distinct biogeographic unit. The increase in the species richness of this fauna during the Danian may be due to the final fragmentation of Gondwana during this period.

INTRODUCTION

The thick sequence of loosely consolidated fossiliferous rocks on Seymour Island represents the most nearly complete and well-exposed shallow-marine section of Upper Cretaceous to lower Tertiary rocks known in the Southern Hemisphere (Zinsmeister, 1982a). Cretaceous and Tertiary marine mollusks from Seymour Island were first described a century ago by Sharman and Newton (1894) and Wilckens (1910, 1911). However, extensive field work on Seymour Island from 1970 through the 1990s revealed much greater molluscan species diversity than had previously been encountered. This was particularly true for the Late Cretaceous and early Paleocene molluscan faunas, which are neither as common nor as well preserved as those of the Eocene (Stillwell et al., 2004). Only one species of the family Pleurotomariidae, Leptomaria larseniana (Wilckens, 1911), had previously been described from the Paleocene of the Seymour Island. The 1994 to 1995 field season on Seymour Island yielded six additional species of Pleurotomariidae belonging to two genera—Leptomaria E. Eudes-Deslongchamps, 1864, and Conotomaria Cox, 1959. These species from the Lopez de Bertodano and Sobral formations range in age from Late Maastrichtian to Early Danian. Three Early Paleocene species of Conotomaria were figured by Stillwell et al. (2004) but were not formally described. This review of the pleurotomariid assemblage constitutes the first detailed record of Late Cretaceous to Early Paleocene pleurotomariid gastropods from the continent of Antarctica. This newly described pleurotomariid fauna sheds light on the evolution and biogeographic history of the family Pleurotomariidae in the Southern Hemisphere.

GEOLOGIC SETTING

The upper Cretaceous and lower Paleocene sedimentary sequence of Seymour Island was described by Anderson (1906), Rinaldi et al. (1978), Zinsmeister (1982a), Macellari and Huber (1982), Macellari and Zinsmeister (1983), Huber (1984), Macellari (1984, 1986, 1988), Sadler (1988), and Stillwell and Zinsmeister (1992) and consists of approximately 1600 m of gently eastward-dipping fossiliferous marine clastics. Two major stratigraphic units are recognized for the upper Cretaceous and lower Paleocene part of the sequence, the Lopez de Bertodano and Sobral formations. These units comprise the upper part of the Marambio Group (Rinaldi, 1982; Macellari, 1984).

The Lopez de Bertodano Formation (Figs. 1, 2) consists of approximately 1,200 m of tan to medium-gray, concretion-bearing sandstone with occasional horizons of silty sandstone and siltstone (Fig. 2). Some horizons are enriched with limonite, which gives them a reddish-brown color. Hard carbonate concretions are scattered throughout the section. Concretions are spherical to irregularly rounded, range in size from 2 cm up to 1 m in diameter, and commonly contain mollusks preserved in the center. Near the top of the Lopez de Bertodano Formation, concretions seem to become less abundant, and the sandstone grades into light tan siltstone. Finer-grained, medium-gray, sandy siltstones without concretions occur at several horizons throughout the formations. Beds with a large number of concretions tend to form higher and steeper hills as compared with layers free of concretions (Zinsmeister, 1982a). The Lopez de Bertodano Formation is characterized by a large number of well-preserved ammonites, most of which occur in concretions (Zinsmeister, 1982a; Macellari, 1986). Bored and abraded wood debris ranging in size up to 1 m in diameter, bivalves, and gastropods are commonly encountered throughout the sequence. The highly bioturbated nature of the sediments and the absence of primary sedimentary structures indicate that deposition was, in all likelihood, mid-shelf below effective wave-base (Macellari and Zinsmeister, 1983; Macellari, 1988). The age of the Lopez de Bertodano Formation ranges from Maastrichtian through Early Paleocene. An Early Paleocene (Danian stage) age determination of the uppermost unit of the Lopez de Bertodano Formation was based on dinoflagellates (Palmarcuk et al., 1984) and siliceous microfossils (Harwood, 1988), as well as planktic and benthic foraminifers (Huber, 1988). The Lopez de Bertodano Formation is overlain by the slightly sandier Lower Paleocene Sobral Formation. Although there is a disconformity between the Lopez de Bertodano and Sobral
FIGURE 1—Localities on Seymour Island from which Cretaceous and Paleocene pleurotomariids have been collected.

FIGURE 2—Stratigraphic distribution of Pleurotomariidae in the Upper Cretaceous and Lower Paleogene sediments of the Seymour Island. 1 = medium to fine-grained sandstone, 2 = mudstone, 3 = siltstone, 4 = glauconite.

FIGURES 3–4—Drawings of 3, umbilicate [phaneromphalous] and 4, non-umbilicate [anomphalous] pleurotomariids, illustrating descriptive terms used in the text. b, base; p, periphery; pb, peripheral bulge; ra, ramp angle; s, suture; sa, spire angle; sl, slit; st, spiral threads, sz, selenizone; u, umbilicus.
formations, faunal similarities between the two units indicate that little time is missing (Elliot and Trautman, 1982; Rinaldi et al., 1978; Macellari and Zinsmeister, 1983; Macellari, 1988).

The Sobral Formation (Figs. 1, 2) consists of approximately 255 m (Macellari, 1988) of silty to medium-grained, well-bedded, dark brown to greenish-grey concretionary sandstone. The lower part of the Sobral Formation consists of 40–90 m of loosely consolidated greenish-grey glauconitic sandstone. The upper 120–170 m of Sobral sandstones is essentially the same in composition but better cemented and more resistant to erosion than the lower part. The combination of numerous concretions in the lower part of the formation and resistant beds overlying the concretionary horizons results in the development of higher and steeper hills as compared to the lower gently rolling topography of the Lopez de Bertodano Formation. Cross-bedding on a scale of 1–3 m becomes well developed and fossil remains become more poorly preserved and less abundant in the uppermost 100 m of the Sobral Formation (Zinsmeister and Macellari, 1988; Stillwell and Zinsmeister, 1992). The upper half of the Lopez de Bertodano Formation and lower part of the Sobral Formation are characterized by diverse and well-preserved marine megafossils, dominated by mollusks. Corals, brachiopods, annelid tubes, scaphopods, decapods, echinoderms, marine reptiles and fishes are locally abundant. An early Paleocene (Danian stage) age of the Sobral Formation has been established based on the dinoflagellates (Hall, 1977), planktonic and benthic foraminifers (Huber, 1988; Palmarczuk et al., 1984), and spores and pollen (Askin, 1988), as well as on radiometric dating of glauconite (Macellari, 1984). Specimens used and figured in this paper were collected during the 1994–1995 field seasons on Seymour Island.

Figured types are housed in the United States National Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM). Additional material is housed in the invertebrate fossil collection of the Department of Earth and Atmospheric Sciences, Purdue University (EASPU).

SYSTEMATIC PALEONTOLOGY

Class GASTROPODA Cuvier, 1797

Subclass ORTHOGASTROPODA Ponder and Lindberg, 1997

Superorder VETIGASTROPODA Salvini-Plawen, 1989

Superfamily PLEUROTOMARIOIDEA Swainson, 1840

Family PLEUROTOMARIIDAE Swainson, 1840

Genus LEUROTOMARIA E. Eudes-Deslongchamps, 1864

Type species.—*Pleurotomaria amoena* J. A. Eudes-Deslongchamps, 1849 (By original designation). Bajocian (Middle Jurassic) of France.

Diagnosis.—“Conical or cyrtoconoid, anomphalous to broadly phaneromphalous; whorls weakly to strongly convex, not angular, last one rounded at periphery of convex base; selenizone at mid-whorl; ornament spiral threads that may be cancelled by collateral threads. Middle Jurassic (Bajocian) to Upper Cretaceous (Danian). Cosmopolitan.” (Knight et al., 1960, p. 1219)

Range.—Middle Jurassic (Bajocian) to Paleocene (Thanetian; range extended by Pacad, 2004:fig. 20). Cosmopolitan.

Remarks.—Harasewych and Kiel (2007, p. 77–78) provided an updated synopsis of the superspecific classification within the family Pleurotomariidae and summarized the currently recognized geological ranges of the genera and subgenera (Harasewych and Kiel 2007, fig. 3, Appendix 1) as well as the characters used to distinguish them (Harasewych and Kiel 2007, table 1). Pacad (2004, fig. 20) reported *Pleurotomaria* Defrance, 1826 from multiple Danian (Paleocene) records throughout Europe and extended the ranges of both *Conotomaria* and *Leptomaria* into the Thanetian (Paleocene). These three genera are the only genera that are currently recognized as having survived from the Mesozoic into the Cenozoic.

Whereas the generally applied diagnosis of *Leptomaria* accommodates a broad range of morphologies, the type species, *Leptomaria amoena*, is large, with strongly convex whorls, a well-rounded periphery along the last whorl, a selenizone situated at mid-whorl, and lacking an umbilicus.

Leptomaria Larseniana (Wilckens, 1910) new combination

Figures 5–6, Table 1

Pleurotomaria larseniana Wilckens, 1910, p. 73, pl. 3, fig. 24.

Original description (translated).—“Only the internal mold of the shell is present. Apex and aperture are missing. Not quite three whorls are preserved. The shape of the shell is broadly conical, the whorls are laterally flattened and roundly edged below. The selenizone seems to have lain quite close above this edge. The base of the last preserved whorl shows weak curvature. Toward the final whorl, the shell seems to have had strong growth striae.

I name this species after the deserving leader of the ship of the Swedish South Pole expedition, Captain Larsen, who brought the first fossils from the Antarctic.

Dimensions:

- Height (incomplete!) .. 98 mm.
- Width .. 114 mm.

Discovery site: Seymour Island, Locality 9: 1 specimen (internal mold).

Similar species: Comparison with other species is made very difficult by the poor preservation of the single specimen, which makes the description of a new species appear somewhat daring. A *Pleurotomaria* of similarly enormous dimensions, but with a flatter shell shape is *Pl. tardensius* Stanton from the Belgrano layers. The form of the whorls is not very different from that of *Pl. larsenii*. Stanton noted that no other Cretaceous species is known to him that could be considered for comparison. There are no similar forms described from the Cretaceous of India, and the Upper Cretaceous and Tertiary of Argentina have not yet produced any *Pleurotomaria.*** (Wilckens, 1910, p. 73).

Redescription.—Shell large for genus (maximum diameter 100.4 mm, minimum diameter 85.1 mm, height 108.8 mm), with a tall, broadly conical spire consisting of eight preserved teleoconch whorls. Base weakly but evenly convex, lacking an
umbilicus (Fig. 6.4). Spire angle ~68°. Spire evenly conical in profile. Suture (Fig. 6.5) weakly adpressed, joining previous whorl at or above a weak peripheral bulge (Fig 6.1). Protoconch and approximately first two teleoconch whorls missing. Subsequent early whorls very weakly gradate, slightly convex, without distinct ramp angle. Spiral sculpture dominant, of six to seven low, narrow cords as broad as intervening spaces between suture and selenizone, and 12–15 between selenizone and peripheral bulge. Base with similar spiral cords, estimated to be 19–22 on final whorl. Selenizone (Fig. 6.5) broad (selenizone width/suture to suture distance = 0.24), weakly convex, situated at mid-whorl. Surface without spiral cords, sculpture limited to strong lunulae. Axial sculpture limited to fine growth striae that become conspicuously
coarser and more irregular on last quarter whorl. Aperture broadly elongate, long axis deflected from the coiling axis by \(\sim 104^\circ \). Outer lip damaged, slit broad (6.2 mm), extending for less than \(\frac{1}{4} \) whorl. Inner lip thickest along columellar region, where it forms a narrow parietal callus.

Type locality.—Seymour Island, Antarctic Peninsula (Fig. 1, Locality 9, 64°16'52.58"S, 56°42'50.64"W).

Material examined.—USNM 467213, Paleocene, Danian, Sobral Formation.

Stratigraphic occurrence.—1,167 m (Fig. 2).

Remarks.—The taxon *Pleurotomaria larseniana* was based on a unique, partial internal mold comprising nearly three whorls, but lacking apex, aperture, or any remnants of shell material (Fig. 5). A redescription of this species, based on a more nearly complete specimen (Fig. 6.1–6.5) from the type locality is provided. This species is transferred to the genus *Leptomaria* on the basis of its high spire, rounded whorl profile, position of selenizone at mid-whorl, absence of shoulder, lack of nodes along periphery or significant axial sculpture and, like the type species, lack of an umbilicus.

Wilckens (1910, p. 73) compared his new species with *Pleurotomaria tardensis* Stanton, 1901 from the Belgrano beds [Barremian, Lower Cretaceous] of Argentina, noting that *P. larseniana* was of similar size but that *P. tardensis* had a much flatter shape. Subsequently, Weaver (1931) reported on four species of pleurotomariids from the Jurassic and Early Cretaceous of west-central Argentina. Of the Argentinian pleurotomariids known to date, the Jurassic [Callovian] *Leptomaria leufuensis* (Weaver, 1931), new combination, most closely resembles *L. larseniana* in shape. However, it is much smaller (55 mm diameter), slightly lower spired (spire angle estimated at 70°), with a narrow selenizone, and a moderately developed umbilicus.

Leptomaria larseniana does not appear to have close relatives in the Maastrichtian of western Australia (Darragh and Kendrick, 1994). Wilckens (1922, p. 3) compared his *Pleurotomaria maoriensis* [Amuri Group, Late Cretaceous and Paleocene, of New Zealand (Roberts, 1992, fig. 2)] with *L. larseniana*, but the two can be easily distinguished, as *P. maoriensis* has a shoulder. Among the Cretaceous species from India, *L. indica* Stoliczka, 1865 [Ootatoor Group, Cenomanian and Arrialoor Group, Maastrichtian] is comparable in size, but is broadly umbilicate, whereas *P. glabella* Stoliczka, 1868 [Ootatoor Group] is similarly high spired, but smaller, with less inflated whorls, much broader selenizone and more sharply angled periphery.

Leptomaria larseniana resembles *L. gyroplata* (Eudes-Deslongchamps, 1849) (see Gründel, 2003, pl. 1, figs. 12–14) from the Bajocian (Middle Jurassic) of southern Germany in terms of size, proportions, absence of umbilicus, shape of whorls, and position and of selenizone.

LEPTOMARIA STILWELLI new species

Figure 7, Table 1

Diagnosis.—Shell large, cyrtoconoid, spire angle \(\sim 96^\circ \), weakly gradate, anomphalous; whors convex; aperture broadly oval; selenizone narrow, just below mid-whorl; peripheral band weak; spiral sculpture dominant, intersected by weak growth striae.

Description.—Shell large (holotype, maximum diameter 95.1 mm, minimum diameter 78.0 mm, height 68.4 mm), with a moderately high, broadly trochiform spire, consisting of three and three quarter preserved teleoconch whors. Base somewhat inflated, broadly convex, lacking an umbilicus...
(Figure 7.4). Spire angle ~96°. Spire conical, weakly gradate in profile. Suture (Fig. 7.5) abutting, joining previous whorl long the top of a weak peripheral bulge (Fig. 7.1). Protoconch and first several teleoconch whorls missing. Subsequent whorls weakly gradate, smoothly convex, with a distinct ramp angle. Spiral sculpture dominant, with an estimated 13–15 broad, closely spaced cords between suture and selenizone, and three to five between the selenizone and periphery. Sculpture along base not well preserved, region near columella smooth (Fig. 7.4). Selenizone (Fig. 7.5) narrow (selenizone width/suture to suture distance = 0.16), weakly convex, situated slightly below mid-whorl. Lunulae concave, surface sculpture unknown. Axial sculpture limited to fine growth striae on early whorls, with weak, low rugae (about 40) developing on final whorl. Aperture broadly ovate, long axis deflected from the coiling axis by ~100°. Outer lip damaged, slit narrow, 4.1 mm, extending for less than one quarter whorl. Shell thickest along inner lip and base near columellar region (2.2 mm), adjacent to a broad, nacreous parietal callus (Fig. 7.4).

Etymology.—This species is named for Dr. Jeffery D. Stilwell, School of Geosciences, Monash University, Melbourne, Australia, for his contribution to the study of Cretaceous and early Tertiary faunas of the Southern Hemisphere.

Types.—Holotype, USNM 467214, Paleocene, Danian, Sobral Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality 9; 64°16'52.58"S, 56°42'50.64"W).

Stratigraphic occurrence.—1,167 m (Fig. 2).

Remarks.—Leptomaria stilwelli co-occurs with *L. larseniana* but can be readily distinguished from that species by its lower, more gradate spire, more inflated base, and narrower...
selenizone, as well as by the presence of axial rugae on the final whorl.

It does not appear to be similar to fossils reported from the Cretaceous of New Zealand or Australia, but it resembles *Leptomaria leufuensis* [Callovian, Argentina], from which it may be separated on the basis of its larger size, more inflated whorls, and absence of an umbilicus, and from *L. daityai* [Das, Bardhan and Kase, 2005 [Callovian–Oxfordian, NW India], which is similar in size and sculpture, but is umbilicate and has strong spiral sculpture along the base, which is lacking in *L. stillwelli*.
LEPTOMARIA SEYMOURENsis—NEW SPECIES

Figures 8–9, Table 1

Conotomaria species C; STILWELL, ZINSMEISTER and OLENIK, 2004, p. 26, pl. 4, fig. 5, 6.

Diagnosis.—Shell large, cyrtoconoid, weakly gradate, spire angle ~84°, anomphalous; whorls weakly convex; aperture broadly rhomboidal; selenizone narrow, just below mid-whorl; peripheral band weak; spiral sculpture dominant, reticulate sculpture present on early whorls and along shell base.

Description.—Shell large for genus (holotype, maximum diameter 94.4 mm, minimum diameter 75.8 mm, height 81.4 mm; paratype 2, maximum diameter 118.4 mm, minimum diameter 102.2 mm, height 87.5 mm), with a broadly conical spire consisting of eight preserved teleoconch whorls. Base weakly sigmoidal, slightly concave near periphery, slightly convex near axis, lacking an umbilicus (Fig. 8.4). Spire angle ~84°. Spire weakly gradate in profile. Suture (Fig. 8.5) abutting previous whorl along top of a peripheral bulge (Figs. 8.2, 8.4) that becomes more pronounced in later whorls. Protoconch and first few teleoconch whorls absent in holotype and paratypes. Subsequent teleoconch whorls become progressively more convex between suture and selenizone without producing an angled shoulder. Region between selenizone and periphery straight to slightly convex. Spiral sculpture dominant, with 13–15 low, narrow cords between the suture and selenizone, 9–11 between the selenizone and periphery. Cords more prominent and closely spaced near the suture and periphery, finer and more widely spaced near the selenizone. Base with 31–33 evenly spaced spiral cords that become slightly more pronounced adaxially. Selenizone (Fig. 8.5) narrow (selenizone width/suture distance = 0.13), flat to weakly convex, situated slightly below mid-whorl. Surface with strong lunulae and zero to one spiral cords in early whorls, thereafter with weaker, less concave lunulae and without spiral sculpture. Axial sculpture of fine growth striae that may produce reticulate sculpture on early whorls and along shell base. Aperture broadly rhomboidal, long axis deflected from the coiling axis by 112–114°. Outer lip damaged, slit narrow ~3.5 mm, extending for less than one third whorl. Inner lip thickest along base and columellar region, where it forms a narrow, nacreous parietal callus.

Etymology.—Named after its type locality, Seymour Island, Antarctica.

Types.—Holotype, USNM 467215, Paratype 1, USNM 467216, Paratype 2, USNM 467217, all Paleocene, Danian, Lopez de Bertodano Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality 746; 64°19’02.4″S, 56°48’42.4″W).

Stratigraphic occurrence.—1,134 m (Fig. 2).

Remarks.—Leptomaria seymourensis appears lower in the stratigraphic column than L. larseniana and L. stillwelli. It is similar to L. stillwelli in spire height but can be readily distinguished from this species on the basis of its more gradate spire, angled periphery, more pronounced peripheral band, and flatter base. Leptomaria seymourensis more closely resembles L. larseniana in whorl profile but has a narrower selenizone and stronger spiral cords, especially along the base. Unlike other species from Seymour Island, L. seymourensis has finely reticulate sculpture on the early whorls. Leptomaria seymourensis also resembles L. asurai Das, Bardhan and Kase, 2005 [Callovian–Oxfordian, NW India] but has a lower, more stepped spire, less inflated whorls, and a more quadrate aperture.

LEPTOMARIA HICKMANAE—NEW SPECIES

Figure 10, Table 1

Diagnosis.—Shell large, cyrtoconoid, spire angle ~70°, anomphalous; whorls strongly convex; aperture broadly ovate; selenizone broad, just below mid-whorl; peripheral band weak; spiral sculpture dominant.
Description.—Shell large for genus (maximum diameter 90.2 mm, minimum diameter 79.9 mm, height 81.0 mm), with a tall, broadly trochiform spire, consisting of three and a half preserved teleoconch whorls. Base inflated, broadly convex, lacking an umbilicus (Fig. 10.4). Spire angle ~70°. Spire evenly conical in profile. Suture adpressed, joining previous whorl at or above a weak peripheral bulge (Figs. 10.1, 10.2). Protoconch and approximately first four teleoconch whorls missing. Subsequent whorls very weakly gradate, smoothly convex, without distinct ramp angle. Spiral sculpture dominant, with an estimated 15–18 low, narrow cords slightly broader than intervening spaces between suture and selenizone, and 9–11 between selenizone and periphery. Base with similar but weaker spiral cords, estimated to be 36 on final whorl. Selenizone moderately wide (Fig. 10.2; selenizone width/suture to suture distance = 0.17), weakly convex, situated slightly below mid-whorl. Lunulae concave, surface sculpture unknown. Axial sculpture limited to fine growth striae. Aperture broadly ovate, long axis deflected from the coiling axis by ~102°. Outer lip damaged, slit moderately wide 5.5 mm, extending for less than one third whorl. Inner lip thickest along columellar region, where it forms a narrow, nacreous parietal callus (Fig. 10.4).

Etymology.—This species is named for Dr. Carole S. Hickman of the University of California at Berkeley, in recognition of her contributions to the study of living and fossil Pleurotomariidae.

Types.—Holotype, USNM 467218, Upper Cretaceous, Maastrichtian, Lopez de Bertodano Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality K 423; 64°15’18.1"S, 56°46’02.3”W).

Stratigraphic occurrence.—855 m (Fig. 2).

Remarks.—Leptomaria hickmanae may easily be distinguished from all other pleurotomarids presently known from Seymour Island on the basis of its cyrtoconoid shape, strongly convex whorls, well rounded periphery, very broadly ovate (nearly circular) aperture, and broad selenizone situated just below mid-whorl. It resembles L. amoena [Bajocian, France], the type species of the genus in shape and general proportions but is larger in size and appears to lack the reticulate surface sculpture of that species.

Leptomaria hickmanae closely resembles Pleurotomaria vacavillensis Hickman, 1976 [California, USA], which is here reassigned to the genus Leptomaria. Leptomaria vacavillensis appears to be higher spired than L. hickmanae, and also to have a broader selenizone that is situated above rather than
below mid-whorl. Hickman (1976, p. 1099) noted that the locality data accompanying the holotype of *L. vacavillensis* "are not sufficiently precise to determine its stratigraphic position, which is either lower Eocene or Upper Cretaceous." Similarities of this species to other *Leptomaria* would suggest that *L. vacavillensis* lived during the Upper Cretaceous rather than the Eocene.

Leptomaria antipodensis new species

Figure 11, Table 1

Diagnosis.—Shell small, conoidal, spire angle ~62°, anomphalous; whorls very weakly convex; aperture rhomboidal; selenizone broad, well below mid-whorl; peripheral band prominent; spiral sculpture weak to absent, axial sculpture limited to growth striae of varying prominence.

Description.—Shell small for genus (maximum diameter 76.5 mm, minimum diameter 68.5 mm, height 75.1 mm), with a tall, conical spire, consisting of four and one half preserved teleoconch whorls. Base weakly convex, nearly flat, lacking an umbilicus (Fig. 11.4). Spire angle ~62°. Spire evenly conical in profile. Suture (Fig. 11.5) abutting previous whorl below periphery of a pronounced peripheral bulge (Figs. 11.2, 11.5). Protoconch and approximately first three teleoconch whors missing. Subsequent whors conical, not gradate, very weakly convex. Spiral sculpture weak to absent between suture and selenizone, limited to weak threads and cords most conspicuous near peripheral bulge. Base without discernible spiral sculpture. Selenizone moderately wide (Fig. 11.5; selenizone width/suture to suture distance = 0.19), flat to weakly convex, situated below mid-whorl. Lunulae strongly concave, surface sculpture unknown. Axial sculpture limited to growth striae of varying intensity. Aperture narrowly ovate, long axis deflected from the coiling axis by ~107°. Outer lip damaged, slit moderately wide 4.5 mm, extending for less than one third whorl. Shell relatively thin, thickest along columellar region and base. Columella with a narrow, nacreous parietal callus (Fig. 11.4).

Etymology.—Antipodes Greek—having the feet opposite, + *ensis*, Latin—place of origin or habitat. = from the opposite end of the world.

Types.—Holotype, USNM 467219, Upper Cretaceous, Maastrichtian, Lopez de Bertodano Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality K-384; 64°16′27.7″S, 56°46′48.3″W).

Other material examined.—Paratype, USNM 468220, Upper Cretaceous, Maastrichtian, Lopez de Bertodano Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality K-46; 64°18′56.7″S, 56°48′43.4″W).

Stratigraphic occurrence.—K-384 = 703 m, K-46 = 666 m (Fig. 2).

Remarks.—This new species is placed in the genus *Leptomaria* with some reservation, as it lacks the strongly convex whors, rounded periphery and medial placement of the selenizone characteristic of the type species. *Leptomaria antipodensis* resembles *L. larsoniana* in spire height, but its shell is more conical, with whors that are nearly straight-sided. Unlike *L. larsoniana*, the suture of *L. antipodensis* is situated below a pronounced peripheral bulge, the selenizone is closer to the shell periphery, and the spiral sculpture appears to be much weaker, limited to the peripheral bulge and adjacent areas. It is similar to *Conotomaria sobralensis* (see below) in terms of size and shell profile but can be readily distinguished from that species by the absence of an umbilicus.

Genus Conotomaria Cox, 1959

Type species.—*Pleurotomaria maileana* d’Orbigny, 1843, (by original designation). Cenomanian (Late Cretaceous) of France.

Diagnosis.—“Conical, anomphalous to broadly planeromphalous; whors flat or slightly sigmoidal in outline, last whorl with sharply angular, often bulging periphery; selenizone at or above mid-whorl, quite close to suture in some species, not coinciding with an angulation; predominant ornament of spiral cords, Jurassic and Cretaceous.” (Cox, 1959, p. 238).

Range.—Middle Jurassic (Bajocian) to Paleocene (Thanian; range extended by Pacaud, 2004, fig. 20). Cosmopolitan.

Remarks.—As with *Leptomaria, Conotomaria* has been broadly defined to include a wide range of shell forms. The type species of *Conotomaria, C. maileana*, has a shell that is large and broadly conical with whors that are sigmoidal in profile, and an angular, slightly bulging periphery, a selenizone that is situated at or above mid-whorl, and a broad umbilicus.

Conotomaria sobralensis new species

Figure 12, Table 1

Conotomaria species A; Stilwell, Zinsmeister and Oleinik, 2004, p. 25, pl. 4, fig. 1, 2.

Diagnosis.—Shell large, conical, spire angle ~68°, narrowly planeromphalous; whors weakly convex; aperture trapezoidal; selenizone broad, at mid-whorl; peripheral band prominent; spiral sculpture of weak broad cords; base with only axial growth striae.

Description.—Shell large for genus (holotype maximum diameter 107.5 mm, minimum diameter 94.0 mm, height 108.1 mm), with a high conical spire consisting of eight preserved teleoconch whors. Base very weakly convex, with narrow umbilicus (Fig. 12.4). Spire angle ~68°. Early whors conical, trochiform, final whorl broader. Suture (Fig. 12.2) abutting previous whorl along base of peripheral bulge (Fig. 12.2). Protoconch and first few teleoconch whors absent in holotype. Subsequent teleoconch whors convex between suture and selenizone, with maximum curvature just below the suture but without producing an angled shoulder. Region between selenizone and periphery straight. Spiral sculpture of 10–12 weak, broad cords between suture and selenizone, four to five barely discernible cords between the selenizone and periphery, and three to four stronger cords along the peripheral bulge. Base with only axial growth lines and rugae. Selenizone moderately broad (Fig. 12.2; selenizone width/suture to suture distance = 0.15), flat to weakly convex, situated slightly below mid-whorl. Surface with weak lunulae and without discernible spiral cords. Axial sculpture of fine growth striae that become much rugose on final whorl, most evident between selenizone and periphery, and along the base. Aperture broadly rhomboidal, long axis deflected from the coiling axis by ~117°. Outer lip worn, slit broad ~14 mm, extending for about one quarter whorl. Inner lip thickest along base and columellar region. Umbilicus deep and narrow, forming a narrow, nacreous, parietal callus.

Etymology.—Named after the Sobral Formation, described by Rinaldi (1977) as a part of the Marambio Group. Known only from Seymour Island, it was named after Punta Sobral, better known as Penguin Point on the maps of the Seymour Island.

Types.—Holotype, USNM 467221, Paleocene, Danian, Sobral Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality A47; 64°16′56.0″S, 56°42′58.9″W).

Stratigraphic occurrence.—1,240 m (Fig. 2).
Figure 11—*Leptomaria antipodensis* new species. 1, apertural; 2, lateral; 3, apical, and 4, basal views of the holotype, USNM 467219. Locality K-384, Seymour Island. 5, details of sculpture on lateral surface of the holotype; 6, apertural, and 7, apical views of the paratype, USNM 467220. Locality K-46, Seymour Island. Scale bars = 2.0 cm. pb, peripheral bulge; pc, parietal callus; s, suture; sz, selenizone.
Remarks.—This species is assigned to the genus *Conotomaria* on the basis of its broadly conical shell, sigmoidal whorl profile, angular periphery with distinct bulge, and broad umbilicus. It is closely allied with the Cretaceous type species, *C. mailleana* from France but has slightly more convex whorls, a broader, lower selenizone, and a slightly less developed peripheral bulge. Of the Seymour Island pleurotomariids, it resembles *Leptomaria antipodensis* (see above) in general form, but may easily be distinguished by its broad umbilicus, and in having the selenizone above rather than below mid-whorl.

Conotomaria bayeri new species

Figure 13, Table 1

S. TILWELL, ZINSMEISTER AND OLEJNIK, 2004, p. 25–26, pl. 4, fig. 3, 4.

Diagnosis.—Shell small (maximum diameter 48.1 mm, minimum diameter 40.9 mm, height 29.4 mm), thick (1.0 mm on ramp of last whorl), with a broad, low conical spire consisting of three preserved teleoconch whors. Base evenly convex, lacking an umbilicus (Fig. 13.4). Spire angle ~87°. Spire evenly conical, with pronounced peripheral bulge (Figs. 13.1, 13.5). Suture (Fig. 13.5) abutting previous whorl along base of peripheral bulge. Protoconch and first several whors absent in holotype. Subsequent teleoconch whors sigmoidal, slightly convex between suture and selenizone, slightly concave between selenizone and peripheral bulge. Spiral sculpture dominant, with seven to nine low, broad cords between the suture and selenizone, five to six between the selenizone and peripheral bulge. Base poorly preserved, with vestiges of broad, shallow cords (estimated 20–25) and narrow parietal callus (Fig. 13.4). Selenizone moderately broad (Fig. 13.4; selenizone width/suture to suture distance =

Description.—Shell small, conical, spire angle ~87°, narrowly anomphalous; whorl profile weakly sigmoidal; aperture trapezoidal; selenizone broad, at mid-whorl; peripheral broad and weak; spiral sculpture of low broad cords also present on base.
0.20), weakly convex, situated at mid-whorl, with weak lunulae and two to three spiral cords. Axial sculpture of fine, oblique growth striae. Aperture narrowly rhomboidal, long axis deflected from coiling axis by $\sim 100^\circ$. Outer lip not preserved, slit narrow ~ 2.7 mm, extending for less than one third of a whorl. Parietal callus narrow, nacreous.

Etymology.—This species honors the late Dr. Frederick Bayer, in recognition of his contributions to the systematics of living Pleurotomariidae.

Types.—Holotype, USNM 467222, Paleocene, Danian, Sobral Formation, Seymour Island, Antarctic Peninsula (Fig. 1, Locality 9-2; 64°18'34.9"S, 56°43'56.9"W).

Stratigraphic occurrence.—1,167 m (Fig. 2).

Remarks.—This small species is very easily distinguished from all other Pleurotomariidae on Seymour Island by its comparatively small size, distinctly angulated appearance, and prominent spiral sculpture. It also has a significantly thicker shell, in proportion to the size. In outline and size, *C. bayeri* is comparable to *Pleurotomaria gurgitis* Brongniart in Cuvier and Brongniart, 1822 (p. 96, pl. 9, fig. 7A–B; d’Orbigny, 1843, p. 249–250, pl. 192, fig. 4–6) from the Gault region, France, but the whorls in *C. bayeri* are slightly more flush and less convex, and the ornamentation is a bit weaker, compared with *P. gurgitis*. The specimen figured in Brongniart (1822; see

Figure 13—*Conotomaria bayeri* new species. 1, apertural; 2, dorsal; 3, apical, and 4, basal views of the holotype, USNM 467222, Locality 9-2, Seymour Island. 5, Details of sculpture on apertural surface of the holotype. Scale bar $= 2.0$ cm. pb, peripheral bulge; pc, parietal callus; s, suture; sz, selenizone.
DISCUSSION

The Late Cretaceous and early Tertiary fossiliferous deposits of Seymour Island contain the most nearly complete boundary section in the southern hemisphere, and encompass two major events with profound influence on the biota of the region: the K/T extinction event, and the final breakup of Gondwana. The effects of the massive terminal extinction event that marked the end of the Cretaceous appear to have been more gradual and less severe at high southern latitudes (Zinsmeister et al., 1989). Indeed, Feldmann et al. (2005) reported that there is no evidence that the brachyuran fauna of southern Argentina was seriously affected by the K-T extinction event. Many mollusks also survived the K-T extinction event (Stilwell et al., 2004). Sohl (1987, p. 1105) noted that Pleurotomariidae had a cosmopolitan distribution during the Jurassic and Early Cretaceous but experienced a marked reduction in the number of genera surviving into the Cenozoic. More recently, Harasewych et al. (2004) documented a significant increase in the diversity of pleurotomariid gastropods during the Late Cretaceous and Early Cenozoic, with the greatest diversity recorded during the Cenomanian, with many species surviving into the Turonian and remaining stable until the end of the Cretaceous (Sohl, 1987, p. 1105). The combination of extinction events at the end of the Cretaceous and the geographic isolation of the southern continents set the stage for rapid diversification of many components of the modern Antarctic biota, including the brachyuran and gastropod faunas. The combination of the K/T extinction event and the final breakup of Gondwana, along with the geographic isolation of the southern continents, were key factors in the rapid diversification of many components of the modern Antarctic biota.

For example, the known species richness of the pleurotomariid fauna of Seymour Island has increased to seven, with two species of Leptomaria described in this paper. The diversity of pleurotomariid gastropods during the Late Cretaceous and Early Cenozoic is higher than that observed in previous studies, indicating a significant increase in the diversity of this group during this time interval.
Late Cretaceous age, and three species of *Leptomaria* and two species of *Conotomaria* of Danian age. Given that molluscan fossils of Late Cretaceous and Early Paleocene age on Seymour Island are well preserved and moderately well collected (Stillwell et al., 2004), it is likely that this represents but a subset of the true species richness.

The Seymour Island Late Cretaceous pleurotomariid fauna is comparable in species richness and generic composition to the coeval faunas of Australia (Darragh and Kendrick, 1994), New Zealand (Wilckens, 1922), and southern India (Stoliczka, 1868), less so to the older, more diverse faunas of southern South America (Weaver, 1931), and Madagascar (Delpey, 1948; Collignon, 1959; Kiel, 2006) (Fig. 14). Comparisons of the Danian pleurotomariid fauna to regional contemporaneous faunas are not possible, since Danian Stage pleurotomariid records are presently known only from northern Europe (Hickman, 1976, p. 1092, text-fig. 2; Pacaud, 2004, p. fig. 20). However, there does appear to be an increase in the species richness of the pleurotomariid fauna of Seymour Island during the Paleocene. The pattern of diversification immediately following the K/T extinction in Antarctic faunas has been previously observed in the gastropod genus *Seymourostrauphan*: (Oleinik and Zinsmeister, 1996) as well as in pycnogonids (Askin, 1988), diatoms, and silicoflagellates (Harwood, 1988). The pleurotomariid fauna of the Late Maastrichtian Miria Formation of Northwestern Australia, which was contemporaneous with the Lopez de Bertodano Formation of Seymour Island, consisted of two species of *Conotomaria* and a single species of *Leptomaria* (Darragh and Kendrick, 1994). The ratio of *Conotomaria* to *Leptomaria* sampled in this fauna was 25:1 (n = 390) (Darragh and Kendrick, 1994, table 1). However, given the tentative generic assignments for the most common Seymour Island species—*L. antipodensis* (herein), *C. (?) cypselata* (Darragh and Kendrick, 1994, p. 15) and *L. perancisa* (Darragh and Kendrick, 1994, p. 20), the apparent difference in generic composition between the two faunas may be an artifact of our currently accepted taxonomy. Alternatively, it may indicate that patterns of fine-scale allopatry, possibly on the basis of depth or substrate type, are similar to those evident in Recent pleurotomariid faunas. Although up to four species of living pleurotomariids may be collected on a single sub dive, they are, in fact, allopatric, occurring at different depths and on different substrates. These patterns are both consistent and dramatic (Harasewych, 2002, p. 274, fig. 12) and may also have been present in Late Cretaceous faunas. The sediment type, lack of an associated hard substrate fauna, and co-occurrence of a number of soft-substrate bivalves and gastropods, indicate that Late Maastrichtian and Danian Pleurotomariidae from the Seymour Island inhabited fine-grained sandy and silty substrates of the outer continental shelf, a habitat more similar to that of Permian (Batten, 1958) than Recent pleurotomariids, which inhabit hard substrates and steeply sloped walls along the outer continental shelf and upper continental slope (Harasewych, 2002). Batten (1958) hypothesized that environments with high levels of fine suspended sediments resulted in dwarfing, based on studies of Paleozoic pleurotomariid taxa. However, Seymour Island Pleurotomariidae are of larger size, and more similar to the Recent species than to the smaller Paleozoic forms. The shift in habitat from shallow water to deeper water was evident by the early Eocene (Hickman, 1976, p. 1093). Kanno (1961, p. 115) hypothesized that this shift reflected an ontogenetic pattern, while Hickman (1976, p. 1093) considered it more likely that the shift was due to range constriction and elimination of the shallow-water forms. The elimination of the shallow-water Pleurotomariidae may be related to competition with rapidly diversifying groups of other shelf mollusks following the K/T extinction event. Direct observations from the submersibles and in aquaria, supplemented by gut content analysis, indicate that Recent Pleurotomariidae are primarily spongivorous (Harasewych et al., 1988). However, when kept in aquaria under stressed conditions, pleurotomariids consumed a variety of organisms (Arakawa et al., 1978; Hickman, 1984; Harasewych, 2002), raising the possibility that, in spite of today’s restricted diet and highly specialized radula (Hickman, 1981, 1984; Harasewych, 2002), they may have occupied a broader trophic niche in the past. Radley (1992, p. 173) deduced that Jurassic pleurotomariids lived in warm, shallow-water, photic habitats, and fed at least partly on algae.

In terms of size and morphology, many of the Seymour Island species resemble more closely taxa from the Jurassic of Europe and southern South America than more geographically proximal Late Cretaceous species. *Leptomaria hickmanae*, for example, more closely resembles *L. amoena* [Jurassic, France], *Pleurotomaria vacavilensis* Hickman, 1976 [Cretaceous, California, USA] and *L. tardenis* [Lower Cretaceous, Argentina] than contemporaneous southern hemisphere species. Similarly, Early Paleocene *L. stilwelli* new species, closely morphologically resembles *L. leufuensis* [Late Jurassic, Ar-

<table>
<thead>
<tr>
<th>Table 2—Summary of pleurotomariid occurrences in the Late Cretaceous/Paleocene of the Weddellian Province. See Figure 46 for locations.</th>
</tr>
</thead>
</table>
gentina] and L. daityai [Late Jurassic, India]. Those similarities support the conclusion of Stilwell et al. (2004) concerning the breakup of the Weddelian Province by the end of Cretaceous and interrupted connections with the Australia-New Zealand region. It may also indicate that Antarctic Cretaceous and Early Tertiary Pleurotomariidae were remnants of a once cosmopolitan group that was widespread in the Jurassic and had their habitats fragmented as a result of the progress in the breakup of Gondwana.

ACKNOWLEDGMENTS

We are grateful to Dr. Rüdiger Bieler for translating the original description of *Pleurotomaria larseniana*. Thanks are due to Dr. Shiladri Das for many informative discussions on the systematics and ecology of Mesozoic Pleurotomariidae, particularly from the Kutch region of India. We appreciate and gratefully acknowledge the many helpful comments and insights of the referees, Dr. Steffen Kiel and Dr. Andrzej Kain, as well as of the editors, Dr. Peter Harries and Dr. Richard Lupia, which markedly improved this paper. The field work on Seymour Island was supported by the National Science Foundation grant OPP 93-16034.

REFERENCES

CUVIER, G. and A. BRONGNIART, 1822. Description géologique des environs de Paris [vol. 1, pl. 428, 17 pls. 2 maps].
HARASEWYCH ET AL.—ANTARCTIC CRETACEOUS AND PALEOCENE GASTROPODS 765
ACCEPETED 19 MAY 2009