Taihoro Nukurangi

The Marine Fauna of New Zealand:

Scleractinia (Cnidaria : Anthozoa)

Stephen D. Cairns

FRONTISPIECE:
Top left: Habitat of Oculina virgosa Squires, Three Kings Islands. Photo: Roger V. Grace Top right: Monomyces rubrum (Quoy \& Gaimard), Poor Knights Islands. Photo: Linda Grace Bottom: Culicia rubeola (Quoy \& Gaimard), Mimiwhangata. Photo: Roger V. Grace

COVER PHOTO: Oculina virgosa Squires, Three Kings Islands. Photo: Roger V. Grace.

The Marine Fauna of New Zealand: Scleractinia (Cnidaria : Anthozoa)

by

STEPHEN D. CAIRNS
Smithsonian Institution
Washington, D.C.

New Zealand Oceanographic Institute Memoir 103

Cataloguing in publication
CAIRNS, STEPHEN, D.
The marine fauna of New Zealand: Scleractinia (Cnidaria : Anthozoa) by Stephen D. Cairns - Smithsonian Institution, Washington DC, 1995
(New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 103)
ISBN 0-478-08335-1
I. Title: II. Series

UDC

Series Editor Dennis P. Gordon
Typeset by Rose-Marie C. Thompson
National Institute of Water and Atmospheric Research (NIWA)
(incorporating the New Zealand Oceanographic Institute)

Received for publication - 5 April 1994

CONTENTS

Page
LIST OF TABLES 6
LIST OF KEYS 6
EPIGRAPH 6
ABSTRACT 7
INTRODUCTION 8
MATERIALS AND METHODS 14
LIST OF STATIONS 16
LIST OF SPECIES 25
ZOOGEOGRAPHY 27
MINERALOGY 30
CLASSIFICATION
Suborder FUNGIINA 31
Superfamily FUNGIOIDEA 31
Family FUNGIACYATHIDAE 31
Family MICRABACIIDAE 34
Suborder FAVIINA 38
Superfamily FAVIOIDEA 38
Family RHIZANGIIDAE 38
Family OCULINIDAE 39
Family ANTHEMIPHYLLIIDAE 41
Suborder CARYOPHYLLIINA 42
Superfamily CARYOPHYLLIOIDEA 42
Family CARYOPHYLLIIDAE 42
Family TURBINOLIIDAE 82
Superfamily FLABELLOIDEA 92
Family GUYNIIDAE 92
Family FLABELLIDAE 96
Suborder DENDROPHYLLIINA 118
Family DENDROPHYLLIIDAE 118
ACKNOWLEDGEMENTS 129
REFERENCES 129
INDEX 140

LIST OF TABLES

1. Chronology of knowledge of recent azooxanthellate Scleractinia $\begin{aligned} & \text { of the New Zealand region } 9\end{aligned}$
2. Distribution, patterns, and depth ranges of New Zealand azooxanthellate Scleractinia11
3. Patterns of scleractinian distribution within the New Zealand region 27

LIST OF KEYS

1. Key to the six species of Fungiacyathus known from the New Zealand region.31
2. Key to the 12 species of Caryophyllia (Caryophyllia) known from the

New Zealand region. 43
3. Key to the eight species of Flabellum known from the New Zealand region. 96

EPIGRAPH

> "The living coral fauna of New Zealand is of the poorest kind as far as we know it. One species of Flabellum and one or two Astrangiaceae are all that are known."
(Tenison-Woods 1880: 1-2)

[^0]
The Marine Fauna of New Zealand: Scleractinia (Cnidaria : Anthozoa)

STEPHEN D. CAIRNS

National Museum of Natural History Smithsonian Institution Washington, DC 20560, U.S.A.

Abstract

A total of 105 species of azooxanthellate Scleractinia are reported from the New Zealand region, defined as 24° to $57^{\circ} 30^{\prime} \mathrm{S}$ and $157^{\circ} \mathrm{E}$ to $167^{\circ} \mathrm{W}$. Three new genera (Pedicellocyathus, Temnotrochus, Falcatoflabellum), 21 new species, and one new subspecies are described, and 71 new records for this region are reported. This revision is based on an examination of previously unexamined corals from approximately 804 stations, derived primarily from the collections of the New Zealand Oceanographic Institute and the Museum of New Zealand.

The New Zealand azooxanthellate Scleractinia are primarily (57\%) tropical Indo-West Pacific in affinity, the species having varying degrees of southward extension into the region; $33^{\circ} \mathrm{S}$ is the southern limit for many species and is chosen herein to be the southern limit of the tropical/subtropical azooxanthellate province. There also appears to be a small, relatively shallow-water, warm-temperate (Auckland Province) group of endemic species; a group that is restricted to cold-temperate latitudes; and one species, Flabellum impensum, that has its northern limit in the New Zealand region in an otherwise Antarctic distribution. Six azooxanthellate species are reported from off Lord Howe Island, 18 from off Norfolk Island, and 10 from the Colville Ridge, all three regions containing primarily tropical and eurythermic tropical species. Most (82%) of the 56 azooxanthellate species known from off the Kermadec Islands are also tropical or eurythermic tropical; the remaining 10 species are found in warm- to cold-temperate regions to the south. Although 41 of the 105 species occur at shelf depths $(0-200 \mathrm{~m})$, most (80%) of the New Zealand azooxanthellate Scleractinia occur on the upper slope ($200-1000 \mathrm{~m}$), the deepest record being that of Fungiacyathus marenzelleri at 4954 m .

Keywords: Scleractinia, classification, distribution, new species, new genera, marine fauna, New Zealand, zoogeography.

INTRODUCTION

Despite the impression given in the epigraph of a sparse and poorly known coral fauna, the New Zealand region fauna is now known to be quite a diverse one with at least 105 azooxanthellate species, which includes about 15% of the known azooxanthellate species worldwide. The paucity of shallow-water corals off New Zealand led to the statement (see Epigraph) of Tenison-Woods (1880) that corals are rare off New Zealand, but azooxanthellate corals abound in deeper waters, especially the upper slope, a fact only gradually revealed by deep-sea exploration: viz. Gazelle (Studer 1878); Challenger (Moseley 1881); Terra Nova (Gardiner 1929); and Discovery (Gardiner 1939) expeditions.

Only the azooxanthellate Scleractinia of the New Zealand region are discussed in this account, i.e., those species that lack algal symbionts. Being ecologically defined, the azooxanthellate corals are a polyphyletic group occurring in four of the five scleractinian suborders, but include all of the species that occur off New Zealand; however, the zooxanthellate (hermatypic or reef) corals that occur in the northern New Zealand region off Lord Howe, Norfolk, and the Kermadec Islands are not included in this account.

Azooxanthellate Scleractinia occur from the Arctic Circle to off continental Antarctica, and, although often referred to as "deep-water corals", occur from $0-6328 \mathrm{~m}$, being commonest on the upper slope ($200-1000 \mathrm{~m}$). Scleractinia are exclusively sessile, benthic organisms, with an aragonitic calcium carbonate corallum that is usually white, but may be mottled or streaked with black, brown, or pink pigment. Most azooxanthellate corals are solitary in growth mode (e.g., 83\% of New Zealand species), but colonial azooxanthellate species also occur, both in shallow and deep water.

Previous Studies

Squires (1958), Ralph and Squires (1962), and Squires and Keyes (1967) all presented brief historical resumés of scleractinian species and their distribution in the New Zealand region. Table 1 also briefly summarises all reports of scleractinian corals from this region, including first occurrences of all
species, senior synonyms, and, in some cases, names of the vessels from which the specimens were collected. Only the significant publications are discussed below, and those requiring clarification.

Not surprisingly, the first two species of Scleractinia reported from the New Zealand region were the common, colourful, shallow-water Monomyces rubrum and Culicia rubeola by Quoy and Gaimard (1833).

Milne Edwards and Haime (1848b) reported three species of Coenopsammia from "Nouvelle-Zélande (Quoy et Gaimard)": C. coccinea, C. gaimardi, and C. urvillii, which, according to Wells (1983), are all synonyms of Tubastraea coccinea Lesson, 1829. These records were perpetuated by Milne Edwards and Haime (1857) and Duncan (1870), but not by Hutton (1904) in his list of corals known from New Zealand. In a revealing paragraph, Tenison Woods (1878: 340) cited Captain Hutton, "the well known naturalist at Dunedin", as saying that these three species did not occur off New Zealand. Tenison Woods went on to say that many of the specimens collected by the Astrolabe were mixed and that "many tropical corals quoted by Messrs. Quoy and Gaimard as from Australia and New Zealand, really came from the Pacific Islands within the tropics. Certain it is that very few of the Australian or New Zealand habitats can be verified." Later, Squires (1958) and Ralph and Squires (1962) listed these records as erroneous for the New Zealand region. In fact, Tubastraea had never been collected subsequent to the 1848 report until Squires (1960b) reported T. aurea (another junior synonym of T. coccinea) from the Norfolk Island cable. But even this record is false - the two specimens in question have well-developed Pourtalès Plans and thus are more consistent with the genus Cladopsammia than Tubastraea, although the species identity is unknown.

Six species (Table 1) were added to the inventory of New Zealand corals by three dredge stations of the Terra Nova, as reported by Gardiner (1929). Not all of these records were originally identified to species level, but examination of Gardiner's specimens (now deposited at The Natural History Museum, London, formerly the $\mathrm{BM}(\mathrm{NH})$, British Museum (Natural History)) confirm the identification of six well-known species for this region.

In his thorough revision of the fossil corals of

Table 1. Chronology of knowledge of recent azooxanthellate Scleractinia of the New Zealand region (${ }^{*}$ denotes a significant paper).

*1833	Quoy \& Gaimard	Astrolabe: first records of Turbinolia ($=$ Monomyces) rubra n. sp. and Dendrophyllia (=Culicia) rubeola n.sp.
1848b	Milne Edwards \& Haime	Erroneous reports of three species of Coenopsammia $(=$ Tubastraea $)$ from New Zealand.
1849	Milne Edwards \& Haime	Culicia smithii n .sp. from New Zealand (doubtful record).
1862	Holdsworth	Flabellum nobile n.sp. (= Monomyces rubrum) from New Zealand.
1870	Duncan	Uncritical listing of 7 recent species from New Zealand.
1876	Duncan	Conocyathus zelandiae n.sp. from Cook Strait; not since recollected off New Zealand, but known elsewhere.
1878	Studer	S.M.S. Gazelle: Flabellum latum n. sp. and F. gracile n.sp. (both considered to be forms of Monomyces rubrum).
1879	Tenison Woods	Cylicia huttonin.sp. (= Culicia rubeola) and C. vacua n.sp. (= Monomyces rubrum) from off New Zealand.
1881	Moseley	H.M.S. Challenger: dubious record of Caryophyllia maculata ($=$ Rhizosmilia maculata) and C. lamellifera n.sp. from off the Kermadec Islands.
1904	Hutton	Uncritical list of 8 recent and 1 fossil species from New Zealand.
1906	Dennant	Kionotrochus suteri n. sp. from off Great Barrier Island.
*1929	Gardiner	Terra Nova: Seven deep-water species reported off Three Kings Islands: Flabellum harmeri n.sp (= Monomyces rubrum); Gardineria sp. (= Crispatotrochus curvatus); Desmophyllum cristagalli ($=$ D. dianthus); Caryophyllia profunda; Trochocyathus sp. (= Tethocyathus cylindraceus); Thecopsammia sp. (= Balanophyllia chnous); and Dendrophyllia (= Eguchipsammia) japonica.
1937	Wells	Additional record of Kionotrochus suteri from Cuvier Island.
1939	Gardiner	Discovery: Deltocyathus lens (= Peponocyathus dawsoni) and Sphenotrochus intermedius ($=$ S. squiresi) from off New Zealand.
1947	Powell	Two species listed in "Native Animals of New Zealand".
1948	Ralph	Additional records of Caryophyllia profunda and Flabellum rugulosum ($=$ Monomyces rubrum).
*1958	Squires	Uncritical listing of all recent corals reported from New Zealand coasts.
1958	Wells	Stephanophyllia formosissima (= Letepsammia fissilis) from off New Zealand.
1960a	Squires	Additional notes on Kionotrochus suteri, endemic to New Zealand.
1960b	Squires	First record of Goniocorella dumosa from New Zealand (off Norfolk Island).
1960c	Squires	Notes on fossil and Recent Culicia rubeola.
1962	Ralph \& Squires	Five new records: Oculina virgosa; Sphenotrochus sp. B ($=$ S. ralphae); Stenocyathus decamera n.sp. (= S. vermiformis); Flabellum deludens $(=F$. apertum); and F. knoxi n.sp.
*1963	Squires	Monograph of Flabellum (= Monomyces) rubrum.
1964 a	Squires	Additional records of Caryophyllia profunda, Goniocorella dumosa, and Flabellum knoxi from off Chatham Islands.
1964b	Squires	Seven species reported off northeastern New Zealand, including new records of: Ceratotrochus ($=$ Labyrinthocyathus) limatulus n.sp. and Flabellum aotearoa.
1965	Squires	Deep-water coral coppices reported from Campbell Plateau and Chatham Rise.
1965	Squires \& Ralph	New records of Flabellum lowekeyesi in.sp. and Stephanocyathus sp. (=S. platypus).
*1967	Squires \& Keyes	NZOI: New records of Madrepora vitiae ($=$ M. oculata), Dendrophyllia palita n.sp. (= D. alcocki), and Notocyathus orientalis (= Peponocyathus dawsoni).
1968	Morton \& Miller	Colour illustrations of Culicia rubeola and Flabellum (= Monomyces) rubrum.
1969	Squires	Nine species mapped and discussed from the New Zealand region, including new records of Solenosmilia variabilis and Flabellum impensum.

1974c	Zibrowius	Notes on Dendrophy
1976	Grace \& Grace	Culicia rubeola and Flabellum ($=$ Monomyces) rubrum off Great Mercury Island.
1982	Brook et al.	Sphenotrochus ralphae off Rakitu Island.
1982	Brook	Four shallow-water species off Rakitu Island.
*1982	Cairns	R.V. Eltanin: 13 species reported from Subantarctic New Zealand, including 4 new records: Aulocyathus recidivus, Enallopsammia marenzelleri, E. rostrata, and Fungiacyathus fragilis.
1984	Hayward et al.	Sphenotrochus ralphae off Chickens Islands.
1985	Hayward et al.	Three shallow-water species off Broken Islands.
1988	Cairns	Notes on Kionotrochus suteri.
1989a	Cairns	Javania sp. (= J. pachytheca) and Truncatoguynia sp. (=T. irregularis) reported from off Kermadec Islands.
1992	Stolarski	Notes on Kionotrochus suteri.

New Zealand, Squires (1958) also listed all previous records of recent Scleractinia in an appendix, listing 26 taxa, 18 of which he considered valid. No new records of recent Scleractinia were included in his paper, but he did provide a brief history of recent corals known from New Zealand waters. Except for an addendum by Squires (1962a), the fossil corals have not been subsequently revised and thus Squires' (1958) revision serves as the fossil counterpart to this paper.
The revision of the extant scleractinian corals of New Zealand by Ralph and Squires (1962) was the first of two revisions of the recent corals of this region. They included three new species and five new records for the region (see Table 1). Their material drew from many sources, most now deposited at the Auckland Institute and Museum, and some at the Museum of New Zealand (MoNZ).
Although it deals with only one species, Squires' (1963) monograph of the New Zealand endemic Flabellum (=Monomyces) rubrum is a classic for the New Zealand region, including an extensive, annotated synonymy; a description of morphological variation of corallum and polyp; and a discussion of its ecology, distribution, and fossil record.

The second major revision of the scleractinian fauna of the New Zealand region was that of Squires and Keyes (1967), who based their paper primarily on the NZOI collections (station series AC). They reported, illustrated, and keyed 25 recent species and discussed three other records that they considered of doubtful authenticity: Trochocyathus sp. of Gardiner (1929); Gardineria sp. of Gardiner (1929); and Conocyathus zelandiae Duncan, 1876. Of this number, three were new species, and three were new records for the region (see Table 1), F. raukawaensis n. sp. having previously been reported as F. deludens by Ralph and Squires (1962). Most of their specimens are deposited at NZOI but some are at MoNZ.

In a revision of the Antarctic and Subantarctic fauna, I reported 13 species from Subantarctic New Zealand waters, including four new records for the region (Cairns 1982) .

A tabulation of all species previously reported from the New Zealand region (Table 2) yields 34 species of azooxanthellate Scleractinia. Seventyone additional species are included herein, resulting in a total of 105 species for this region.

Table 2. Distribution patterns and depth ranges of New Zealand azooxanthellate Scleractinia.

Species	$\begin{aligned} & \text { U } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$ 1		3		5	rate	7		Elsewhere		Depth (m) in the region
T. virgatus	TCK								W. Pacific	1A	142-530
Stephanocyathus (S.) platypus		x	x	x			x		Temp. SW Pacific	3A	561-1168
S. (A.) spiniger	LNK	x							Indo-West Pacific	1B	174-590
S. (O.) weberianus	L								W. Pacific	1A	1045
S. (O.) coronatus	NTC								W. Atlantic	1A	646-1276
Vaughnella oreophila	NC								W. Pacific	1A	646-757
V. multipalifera	K	x								2B	1357-1450
Bourneotrochus stellulatus	LNK								W. Pacific	1A	326-710
Deltocyathus ornatus	N								W. Pacific	1A	280-390
D. formosus	NK									2 C	142-565
Conotrochus brunneus	LTK								Indo-West Pacific	1A	486-1051
Aulocyathus recidivus	TK	x	x		X			x	Temp. Indo-West Pacific	3B	245-1137
Dasmosmilia lymani		x							Atlantic	1B	633-1002
Desmophyllum dianthus	NTK	x	x	X	X	x	x	x	Cosmopolitan	1D	25-1750
Thalamophyllia tenuescens	LK								W. Pacific	1A	200-315
Hoplangia durotrix		x							E. Atlantic	3B	7-110
Goniocorella dumosa	N	x	x	x		x	x		Indo-West Pacific	1D	88-1488
Anomocora cf.fecunda	NK	x							Central Pacific	1B	145-388
Solenosmilia variabilis	TK	x	x	x		x	x	x	Cosmopolitan	1D	509-1260
Conocyathus zelandiae			?						Indian Ocean, Australia	-	?
Alatotrochus rubescens	N								W. Pacific	1A	449-751
Sphenotrochus ralphae		x								2A	7-104
S. squiresi		x								2A	66-318
Kionotrochus suteri		x								2A	46-622
Cryptotrochus venustus	T								W. Pacific	1A	1137
Peponocyathus dawsoni	T	x	x	x		x				2D	87-988
Tropidocyathus pileus	N								Indo-West Pacific	1A	319
Notocyathus conicus	NK								W. Pacific	1A	402-710
Thrypticotrochus multilobatus	NK	x							Indo-West Pacific	1B	95-440
Pedicellocyathus keyesi		x								2A	70-194
Truncatoguynia irregularis	NK								W. Pacific	1A	133-248
Stenocyathus vermiformis	TK	x	x	x	x	x	x	x	Cosmopolitan	1D	*30-805
Temnotrochus kermadecensis	K									2C	366-402
Flabellum (F.) knoxi			x	x		x	x	x		2E	160-1167
F. (F.) angiostomum	NT								W. Australia	1A	540-640
F. (F.) impensum							X		Off Antarctica	4	1165-2100
F ((U.) lowekeyesi	LK	x	x	x		x	X		SWIndian Ocean, Tasmania	3A	381-1064
F. (U.) messum	K								Indo-West Pacific	1A	800-1035
F. (U.) aotearoa	LNK	x							Chesterfield Is	2B	130-565
F. (U.) hoffmeisteri	CK								Temp. SE Australia	3A	440-646
F. (U.) apertum apertum			x	x	x	x	x	x	Subantarctic	3A	322-1575

Species			3	Cold	5	rate	7		Elsewhere		Depth (m) in the region
Monomyces rubrum - typical form - forma nobile - forma latum		x	X							2D	$\begin{aligned} & 0-201 \\ & 70-410 \\ & 1-163 \end{aligned}$
Polymyces wellsi	K	x	x						Pacific	1B	355-1165
Rhizotrochus flabelliformis	LNK	x							W. Pacific	1B	228-419
Gardineria hawaiiensis	NTK	x							W. Pacific	1B	142-602
G. sp.	LN								Chesterfield Is	2 C	291-378
Javania lamprotichum	K								Central Pacific	1A	465-710
J. pachytheca	LK	x							Chesterfield Is	2B	360-1045
Truncatoflabellum paripavoninum	K								Indo-West Pacific	1A	1035-1450
T. dens	NK								W. Pacific	1A	$320-555$
T. phoenix	K								off Japan	3B	145-179
T. arcuatum		x								2B	350-364
Placotrochides scaphula			x						Indo-West Pacific	1C	665
Falcatoflabellum raoulensis	K									2C	366-402
Balanophyllia chnous		x								2A	140-549
B. gigas		x	x						W. Pacific	1C	148-640
B. crassitheca	LNK	x								2B	190-508
Endopachys grayi	NK	x							Indo-Pacific	1B	95-143
Eguchipsammia gaditana	NTK	x							Cosmopolitan	1B	57-988
E. fistula	K								Indo-West Pacific	1A	325
E. japonica	NTK	x	x	x					W. Pacific	1 C	142-785
Cladopsammia eguchii	K								Pacific	1A	7
Dendrophyllia arbuscula	NK								W. Pacific	1A	202-259
D. alcocki	LNTK	x	x		x				Indo-West Pacific	1C	*118-570
Enallopsammia rostrata	NTCK	X	x	x			x		Cosmopolitan	1D	110-1276
E. cf. marenzelleri								x	Indo-West Pacific, NE Atlantic	1D	333-371

1 Tropical/Subtropical Region: Lord Howe Island and Seamount Chain (L); Norfolk Island and Ridge north of $33^{\circ} \mathrm{S}$
(N); Three Kings Ridge north of $33^{\circ} \mathrm{S}$ (T); Colville Ridge (C); Kermadec Islands and Ridge north of $33^{\circ} \mathrm{S}$ (K)

Warm Temperate Region: Auckland province
Cold Temperate Cookian Province: southern North Island and South Island
Cold Temperate Cookian Province: Chatham Islands and Chatham Rise
Cold Temperate Antipodean Province: Macquarie Ridge north of $50^{\circ} \mathrm{S}$
Cold Temperate Antipodean Province: Campbell Plateau
7 Cold Temperate Antipodean Province: Bounty Plateau
8 Subantarctic Region: southern Macquarie Ridge south of 50° S and Hjort Seamount

* Shallow depths occur only in fiord localities

MATERIALS AND METHODS

Material

This study is based on the examination of previously unstudied material from eight institutional sources, herein listed in order of decreasing size of the contribution: NZOI^{*} (a rich source of thousands of specimens from 557 stations primarily from the collections made using the R.V. Tangaroa, cruise series D-Z; MoNZ (numerous specimens from 118 stations from R.V. Tangaroa cruise series O, P, and R (1978-1981) and earlier collections made by the R.V. Alert (1957) and R.V. Acheron (1972-1978); AIM (several hundred specimens from throughout the New Zealand region, including collections of Fred Brook from Kermadec, Norfolk, and Three Kings Islands); AUM (deep-water corals from 24 New Zealand localities); AMS (deep-sea corals from nine stations of the R.V. Franklin from seamounts in the Tasman Sea and Lord Howe Seamount Chain); Institute of Geological and Nuclear Sciences (IGNS), formerly the N.Z. Geological Survey (NZGS) (15 lots of relatively shallow-water corals from coastal New Zealand); Portobello Marine Biological Station of the University of Otago (nine lots of deepwater corals from canyons off Dunedin); Otago University Department of Geology (three lots of deep-water coral). Based on these specimens, additional records of 103 of the 105 azooxanthellate New Zealand species are reported and illustrated. Conocyathus zelandiae has never been collected from New Zealand subsequent to its original description in 1876, but is described and illustrated based on Australian specimens. Likewise, Enallopsammia marenzelleri has not been recollected since it was reported from the Macquarie Ridge by Cairns (1982).

In addition to these unstudied collections, previously reported specimens from the following museums were re-examined: AIM (Squires 1960b, 1964b; Ralph \& Squires 1962), AMS (Bourne 1903), BM (NH) (Duncan 1876; Moseley 1881; Gardiner 1929, 1939; Gardiner \& Waugh 1938; Squires 1962b); MoNZ (Ralph \& Squires 1962 (part); Squires \& Ralph 1965 (part)); NZGS (Tenison Woods 1880;

[^1]Squires 1958, 1965; Squires \& Keyes 1967); USNM (Squires 1958 (part), 1964a (part), 1969; Squires \& Ralph 1962 (part); Cairns 1982, 1988, 1989a); ZMA (Alcock 1902b, c); ZMB (Studer 1878). Type material of 78 of the 105 New Zealand species was examined, as well as the types of at least seven junior synonyms.

Methods

It was attempted to provide complete species synonymies, at least regarding records from the New Zealand region, but it is acknowledged that various checklists and smaller publications may have been overlooked. The original description and other significant references outside the New Zealand region are also included in the synonymies, the latter often being a key to the extended synonymy (chresonomy) (sensu Smith \& Smith 1972) of the species. Efforts were made to examine as many types as possible and to verify as many of the previously published records as possible (see Material), but when specimens were unavailable for study and the published accounts unclear, the synonymic entries and corresponding distribution records are queried.

Most of the 105 species included in the revision are described or diagnosed, all but two based on new materal (see Material); however, if a species has recently been described and/or the new records do not add to a previous description, then only a reference to a complete description is given. Conventional scleractinian terminology is used in describing coralla (see Wells 1956; Cairns 1981, 1989a). One new term introduced in this paper is the calicular lancet, which is a group of three or more septa that project well beyond the calicular edge as rectangular or triangular apices, producing a serrate to lacerate calicular edge.

It is important to document which specimens were actually seen by the author of a systematic paper and where those specimens are deposited. Therefore, I have segregated the Material Examined sections into New Records and Previous Records: the former lists previously unreported specimens, the latter lists specimens that have been cited in previous publications. A third category is added
some species named Reference Material, for specimens examined of closely related but not conspecific species. Each Material Examined section begins with a station number, followed by the number of specimens in the lot, and finally the catalogue number and/or museum of deposition.

A detailed map of the geographic range and a bathymetric range within the New Zealand region is given for most species, as well as its extended geographic and bathymetric ranges outside the region.

Holotypes and paratypes of all new species described herein are deposited at the USNM, NZOI, MoNZ, AMS, or AIM, as indicated in the text. An effort was made to list the museums of deposition and type localities for all senior and junior synonyms of all species.

The scanning electron photomicrographs were taken by the author on a Cambridge Stereoscan 100. In some cases in which specimens lacked sufficient contrast for conventional photography, the speci-men was dyed dark red and coated with a thin layer of sublimed ammonium chloride.

The following abbreviations are used in the text.

AIM	Auckland Institute and Museum, Auckland (coral catalog numbers prefaced with "AK").
A	Australian Museum, Sydne
AUM	Auckland University Museum, Geology Department; prefix for specimens held in that collection is AU.
BM(NH)	British Museum (Natural History), London; now The Natural History Museum.
IGNS	Institute of Geological and Nuclear Sciences
	Institute of Oceanology, Moscow
MCZ	Museum of Comparative Zoology, Harvard University, Cambridge.
MNHNP	Muséum National d'Histoire Naturelle, Paris.
MNW	Naturhistorisches Museum, Wien.

MoNZ Museum of New Zealand Te Papa Tonga-rewa (coral catalogue numbers pre-faced with "CO").
NMV National Museum of Victoria, Melbourne.
NZGS New Zealand Geological Survey (now Institute of Geological and Nuclear Sciences, IGNS).
NZOI New Zealand Oceanographic Institute, Wellington.
SAM South Australian Museum, Adelaide.
TIUS Institute of Geology and Paleontology, Tohoku (Imperial) University, Sendai, Japan.
USNM United States National Museum, Washington, DC; now the National Museum of Natural History.
ZMA Zoologische Museum, Amsterdam.
ZMB Zoologisches Museum, Berlin.
Other Abbreviations
GCD Greater calicular diameter of corallum.
GCD:LCD Ratio of greater calicular diameter to lesser calicular diameter of corallum.
D:H Ratio of diameter to height of corallum.
H:D Ratio of height to diameter of corallum.
LCD Lesser calicular diameter of corallum.
LEL:H Ratio of lateral edge length to height of corallum (see Cairns 1989b).
PD:GCD Ratio of pedicel diameter to greater calicular diameter.
SCI Septal concavity index: ratio of distance from thecal edge to point of greatest septal inflection to length of thecal face along that septum.
SSI Septal sinuosity index: ratio of amplitude of lower inner edge of a major septum to thickness of that septum (see Cairns 1989b).
$\mathbf{S x}, \mathbf{C x}, \mathbf{P x}, \mathbf{C S x}$ Cycle of septa, costae, pali, or costosepta, respectively, designated by numerical subscript.
$\mathbf{S x}>\mathbf{S y}$ In the context of a septal formula, septa of cycle x are wider than those of cycle y.

LIST OF STATIONS

NZOI (New Zealand Oceanographic Institute)

Stn No.	Latitude (${ }^{\circ}$ S)	Longitude	Depth (m)	Date
A502	$41^{\circ} 30.0^{\prime}$	$174^{\circ} 32.8^{\prime} \mathrm{E}$	457	14.10 .59
A904	$44^{\circ} 15.2^{\prime}$	$179^{\circ} 35.4^{\prime} \mathrm{E}$	1108	12.9.63
A910	$43^{\circ} 04.0{ }^{\prime}$	$178^{\circ} 39.0^{\prime} \mathrm{W}$	549	13.9 .63
B152	$39^{\circ} 26.8^{\prime}$	$176{ }^{\circ} 56.7^{\prime} \mathrm{W}$	4	25.7.57
B473	$43^{\circ} 20.0^{\prime}$	$169^{\circ} 47.0^{\prime} \mathrm{E}$	215	3-4.6.61
B476	$43^{\circ} 59.7{ }^{\prime}$	$168^{\circ} 17.2^{\prime} \mathrm{E}$	144	4.6.61
B482	$46^{\circ} 08.8{ }^{\prime}$	$166^{\circ} 06.0^{\prime} \mathrm{E}$	88	5-6.6.61
B487	$46^{\circ} 16.0^{\prime}$	$166^{\circ} 03.0^{\prime} \mathrm{E}$	196	6.6.61
B489	$46^{\circ} 39.0{ }^{\prime}$	$166^{\circ} 09.5^{\prime} \mathrm{E}$	198	7.6.61
B490	$45^{\circ} 44.3{ }^{\prime}$	$166^{\circ} 44.8^{\prime} \mathrm{E}$	148	8.6.61
B544	$42^{\circ} 40.0{ }^{\prime}$	$173^{\circ} 39.0^{\prime} \mathrm{E}$	128	4.10 .62
B554	$44^{\circ} 00.0{ }^{\prime}$	$172^{\circ} 58.2^{\prime} \mathrm{E}$	81	6.10 .62
B653	$39^{\circ} 20.0{ }^{\prime}$	$173^{\circ} 42.0^{\prime} \mathrm{E}$	79	23.10.62
B808	$39^{\circ} 29.5{ }^{\prime}$	$173^{\circ} 48.0^{\prime} \mathrm{E}$	55	18.3.63
C344	$37^{\circ} 58.6{ }^{\prime}$	$174^{\circ} 34.4^{\prime} \mathrm{E}$	55	26.10 .59
C399	$41^{\circ} 35.0^{\prime}$	$174^{\circ} 45.7^{\prime} \mathrm{E}$	468	3.5.60
C509	$40^{\circ} 39.0{ }^{\prime}$	$177^{\circ} 03.5^{\prime} \mathrm{E}$	201	20.6.60
C510	$40^{\circ} 36.0^{\prime}$	$177^{\circ} 02.0^{\prime} \mathrm{E}$	384	"
C527	$32^{\circ} 30.0{ }^{\prime}$	$179{ }^{\circ} 12.0^{\prime} \mathrm{W}$	508	18.9.60
C530	$30^{\circ} 38.0{ }^{\prime}$	$178^{\circ} 31.0^{\prime} \mathrm{W}$	183	19.9.60
C531	$29^{\circ} 14.4{ }^{\prime}$	$178{ }^{\circ} 02.0^{\prime} \mathrm{W}$	179	"
C640	$39^{\circ} 17.0^{\prime}$	$171^{\circ} 53.0^{\prime} \mathrm{E}$	364	28.5.61
C642	$39^{\circ} 15.5{ }^{\prime}$	$171^{\circ} 52.5^{\prime} \mathrm{E}$	354	
C690	$42^{\circ} 33.2^{\prime}$	$173^{\circ} 33.8^{\prime} \mathrm{E}$	119	18.6.61
C703	$42^{\circ} 42.0{ }^{\prime}$	$173^{\circ} 37.8^{\prime} \mathrm{E}$	184	19.6.61
C748	$36^{\circ} 00.0^{\prime}$	$173^{\circ} 32.2^{\prime} \mathrm{E}$	135	16.2.62
C752	$35^{\circ} 19.0{ }^{\prime}$	$172^{\circ} 57.5^{\prime} \mathrm{E}$	131	17.2.62
C758	$34^{\circ} 40.0^{\prime}$	$172^{\circ} 14.5$ E	203	"
C764	$34^{\circ} 08.5{ }^{\prime}$	$172^{\circ} 08.5^{\prime} \mathrm{E}$	66	19.2.62
C766	$34^{\circ} 18.2^{\prime}$	$172^{\circ} 48.8{ }^{\prime} \mathrm{E}$	75	"
C769	$34^{\circ} 40.1{ }^{\prime}$	$173^{\circ} 11.2^{\prime} \mathrm{E}$	77	20.2.62
C771	$34^{\circ} 40.0^{\prime}$	$173^{\circ} 27.0^{\prime} \mathrm{E}$	192	"
C774	$35^{\circ} 09.8{ }^{\prime}$	$174^{\circ} 14.4{ }^{\prime} \mathrm{E}$	78	"
C776	$35^{\circ} 20.0^{\prime}$	$174^{\circ} 25.8^{\prime} \mathrm{E}$	77	"
C778	$35^{\circ} 19.8{ }^{\prime}$	$174{ }^{\circ} 47.6^{\prime} \mathrm{E}$	187	"
C780	$35^{\circ} 59.8{ }^{\prime}$	$174^{\circ} 47.4^{\prime} \mathrm{E}$	75	21.2.62
C781	$36.00^{\prime} 0^{\prime}$	$175^{\circ} 20.8^{\prime} \mathrm{E}$	93	"
C782	$35^{\circ} 59.7{ }^{\prime}$	$175^{\circ} 36.7^{\prime} \mathrm{E}$	134	"
C793	$36^{\circ} 39.9{ }^{\prime}$	$175^{\circ} 02.0^{\prime} \mathrm{E}$	132	23.2.62
C804	$37^{\circ} 39.8{ }^{\prime}$	$177^{\circ} 43.6^{\prime} \mathrm{E}$	77	24.2.62
C814	$37^{\circ} 40.0{ }^{\prime}$	$178{ }^{\circ} 56.4^{\prime} \mathrm{E}$	194	25.2.62
C821	$38^{\circ} 40.0{ }^{\prime}$	$178^{\circ} 21.5^{\prime} \mathrm{E}$	32	26.2.62
C910	$41^{\circ} 13.0{ }^{\prime}$	$173^{\circ} 52.7^{\prime} \mathrm{E}$	24	8.2.63
D5	$56^{\circ} 40.6{ }^{\prime}$	$158^{\circ} 45.5^{\prime} \mathrm{E}$	1280	19.4.63
D6	$55^{\circ} 29.0{ }^{\prime}$	$158^{\circ} 31.5^{\prime} \mathrm{E}$	415	20.4.63
D39	$50^{\circ} 58.0{ }^{\prime}$	$165^{\circ} 45.0^{\prime} \mathrm{E}$	549	7.5.63
D74	$50^{\circ} 55.7{ }^{\prime}$	$165^{\circ} 54.8^{\prime} \mathrm{E}$	168	12.8 .63
D87	$49^{\circ} 56.0^{\prime}$	$171^{\circ} 50.0^{\prime} \mathrm{E}$	483	14.5.63

Stn	Latitude	Longitude	Depth (m)
No.	$\left({ }^{\circ} \mathrm{S}\right)$		Date

D136	$48^{\circ} 33.5{ }^{\prime}$	$169^{\circ} 10.0^{\prime} \mathrm{E}$	713	12.1.64
D149	$49^{\circ} 10.5$	$166^{\circ} 51.0^{\prime} \mathrm{E}$	454	14.1.64
D159	$49^{\circ} 01.0^{\prime}$	$164^{\circ} 30.0^{\prime} \mathrm{E}$	741	17.1.64
D166	$49^{\circ} 49.0^{\prime}$	$163^{\circ} 51.0^{\prime} \mathrm{E}$	668	19.1.64
D173	$50^{\circ} 53.0^{\prime}$	$166^{\circ} 32.0^{\prime} \mathrm{E}$	141	21.1.64
D224	$40^{\circ} 47.0{ }^{\prime}$	$169^{\circ} 41.0^{\prime} \mathrm{E}$	903	27.9.64
D225	$40^{\circ} 27.0^{\prime}$	$169^{\circ} 05.0^{\prime} \mathrm{E}$	940	"
D226	$39^{\circ} 54.0{ }^{\prime}$	$168^{\circ} 40.0^{\prime} \mathrm{E}$	823	27-28.9.64
D227	$39^{\circ} 50.0{ }^{\prime}$	$169^{\circ} 43.0^{\prime} \mathrm{E}$	752	28.9.64
D228	$39^{\circ} 08.0{ }^{\prime}$	$170^{\circ} 19.0{ }^{\prime} \mathrm{E}$	662	"
D230	$38^{\circ} 10.0^{\prime}$	$170^{\circ} 21.0^{\prime} \mathrm{E}$	861	29.9.64
D231	$37^{\circ} 53.0{ }^{\prime}$	$169^{\circ} 45.0^{\prime} \mathrm{E}$	774	
D235	$39^{\circ} 43.0{ }^{\prime}$	$167^{\circ} 56.0^{\prime} \mathrm{E}$	792	30.9.64
D242	$38^{\circ} 00.0^{\prime}$	$169^{\circ} 03.0^{\prime} \mathrm{E}$	337	2.10 .64
D244	$39^{\circ} 31.0^{\prime}$	$171^{\circ} 00.0^{\prime} \mathrm{E}$	838	3.10.64
D424	$41^{\circ} 05.0^{\prime}$	$178^{\circ} 00.0^{\prime} \mathrm{E}$	1558	14.3.65
D836	$37^{\circ} 34.0{ }^{\prime}$	$179{ }^{\circ} 22.0^{\prime} \mathrm{E}$	1395	6.3.69
D871	$43^{\circ} 20.0^{\prime}$	$178{ }^{\circ} 40.0^{\prime} \mathrm{W}$	420	24.3.69
D876	$43^{\circ} 20.0{ }^{\prime}$	$176^{\circ} 50.0^{\prime} \mathrm{W}$	148	25.3.69
D888	$44^{\circ} 15.0{ }^{\prime}$	$176{ }^{\circ} 45.0^{\prime} \mathrm{W}$	98	27.3.69
D899	$44^{\circ} 23.0{ }^{\prime}$	$176^{\circ} 49.0^{\prime} \mathrm{W}$	345	29.3.69
D904	$43^{\circ} 58.5{ }^{\prime}$	$78^{\circ} 40.0^{\prime} \mathrm{W}$	459	30.3.69
E74	$44^{\circ} 00.0^{\prime}$	$176^{\circ} 40.0^{\prime} \mathrm{E}$	547	23.3.64
E75	$44^{\circ} 00.0{ }^{\prime}$	$177^{\circ} 25.0^{\prime} \mathrm{E}$	715	
E79	$43^{\circ} 05.0{ }^{\prime}$	$178{ }^{\circ} 00.0^{\prime} \mathrm{E}$	371	24.3.64
E121	$43^{\circ} 15.0{ }^{\prime}$	$175^{\circ} 40.0^{\prime} \mathrm{W}$	693	14.10.64
E123	$43^{\circ} 45.0{ }^{\prime}$	$175^{\circ} 30.0^{\prime} \mathrm{W}$	492	
E148	$44^{\circ} 30.0{ }^{\prime}$	$177^{\circ} 45.0^{\prime} \mathrm{W}$	880	17.10.64
E254	$34^{\circ} 35.0{ }^{\prime}$	$172^{\circ} 25.0^{\prime} \mathrm{E}$	126	6.4.65
E255	$34^{\circ} 39.0{ }^{\prime}$	$172^{\circ} 25.0^{\prime} \mathrm{E}$	154	"
E256	$34^{\circ} 39.0{ }^{\prime}$	$172^{\circ} 20.0^{\prime} \mathrm{E}$	157	"
E258	$34^{\circ} 39.0{ }^{\prime}$	$172^{\circ} 10.0{ }^{\prime} \mathrm{E}$	380	,
E261	$34^{\circ} 35.0{ }^{\prime}$	$172^{\circ} 15.0^{\prime} \mathrm{E}$	161	"
E274	$34^{\circ} 30.0{ }^{\prime}$	$172^{\circ} 05.0^{\prime} \mathrm{E}$	318	7.4.65
E275	$34^{\circ} 25.0{ }^{+}$	$171^{\circ} 45.0^{\prime} \mathrm{E}$	600	"
E278	$34^{\circ} 25.0^{\prime}$	$172^{\circ} 15.0^{\prime} \mathrm{E}$	141	"
E283	$34^{\circ} 25.0{ }^{\prime}$	$172^{\circ} 35.0^{\prime} \mathrm{E}$	79	8.4.65
E291	$34^{\circ} 15.0{ }^{\prime}$	$171^{\circ} 50.0^{\prime} \mathrm{E}$	410	"
E302	$34^{\circ} 06.7$	$172^{\circ} 10.0{ }^{\prime} \mathrm{E}$	132	9.4.65
E313	$34^{\circ} 05.0^{\prime}$	$171^{\circ} 55.0^{\prime} \mathrm{E}$	732	10.4 .65
E319	$33^{\circ} 56.0^{\prime}$	$172^{\circ} 17.0^{\prime} \mathrm{E}$	104	11.4.65
E340	$34^{\circ} 05.0^{\prime}$	$172^{\circ} 40.0^{\prime} \mathrm{E}$	102	12.4.65
E348	$34^{\circ} 37.0^{\prime}$	$173^{\circ} 20.0^{\prime} \mathrm{E}$	150	13.4.65
E349	$34^{\circ} 37.0{ }^{\prime}$	$173^{\circ} 15.0{ }^{\prime} \mathrm{E}$	121	"
E351	$34^{\circ} 37.0^{\prime}$	$173^{\circ} 06.0^{\prime} \mathrm{E}$	62	"
E356	$34^{\circ} 34.0{ }^{\prime}$	$173^{\circ} 05.0^{\prime} \mathrm{E}$	68	14.4.65
E358	$34^{\circ} 34.0{ }^{\prime}$	$173^{\circ} 15.0^{\prime} \mathrm{E}$	143	"
E359	$34^{\circ} 34.0^{\prime}$	$173^{\circ} 20.0^{\prime} \mathrm{E}$	172	"

Stn No.	Latitude $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date	Stn No.	Latitude (${ }^{\circ}$ S)	Longitude	Depth (m)	Date
E364	$34^{\circ} 30.0{ }^{\prime}$	$173^{\circ} 05.0^{\prime} \mathrm{E}$	73	14.4.65	E825	$46^{\circ} 39.5$	$166^{\circ} 40.5^{\prime} \mathrm{E}$	914	24.10 .67
E368	$34^{\circ} 25.0{ }^{\prime}$	$173^{\circ} 07.5^{\prime} \mathrm{E}$	126	"	E826	$46^{\circ} 37.5{ }^{\prime}$	$166^{\circ} 44.2^{\prime} \mathrm{E}$	823	
E370	$34^{\circ} 25.0^{\prime}$	$173^{\circ} 10.0{ }^{\prime} \mathrm{E}$	146	15.4.65	E830	$47^{\circ} 21.0^{\prime}$	$167^{\circ} 00.0^{\prime} \mathrm{E}$	682-619	25.10 .67
E374	$34^{\circ} 20.0{ }^{\prime}$	$173^{\circ} 00.0^{\prime} \mathrm{E}$	117		E840	$33^{\circ} 52.0{ }^{\prime}$	$172^{\circ} 16.0^{\prime} \mathrm{E}$	757-729	16.3.68
E378	$34^{\circ} 20.0^{\prime}$	$172^{\circ} 55.0^{\prime} \mathrm{E}$	102	"	E841	$33^{\circ} 53.0{ }^{\prime}$	$172^{\circ} 17.0^{\prime} \mathrm{E}$	479-428	
E387	$34^{\circ} 15.5$	$172^{\circ} 47.5^{\prime} \mathrm{E}$	88	16.4.65	E846	$34^{\circ} 96.5^{\prime}$	$171^{\circ} 57.5^{\prime} \mathrm{E}$	417-343	"
E389	$34^{\circ} 01.5$	$172^{\circ} 43.5^{\prime} \mathrm{E}$	155	"	E848	$33^{\circ} 59.0^{\prime}$	$171^{\circ} 40.0^{\prime} \mathrm{E}$	250	17.3.68
E390	$34^{\circ} 07.6$	$172^{\circ} 45.0^{\prime} \mathrm{E}$	102		E849	$33^{\circ} 55.0^{\prime}$	$171^{\circ} 32.0^{\prime} \mathrm{E}$	216	
E391	$34^{\circ} 12.6$	$172^{\circ} 45.0^{\prime} \mathrm{E}$	95	"	E850	$33^{\circ} 49.0^{\prime}$	$171^{\circ} 19.0{ }^{\prime} \mathrm{E}$	509-515	
E393	$34^{\circ} 20.0^{\prime}$	$172^{\circ} 45.0^{\prime} \mathrm{E}$	70	"	E852	$33^{\circ} 38.0^{\prime}$	$170^{\circ} 55.0^{\prime} \mathrm{E}$	1024-1049	
E399	$46^{\circ} 00.0{ }^{\prime}$	$171^{\circ} 33.0^{\prime} \mathrm{E}$	1222	6.10 .65	E855	$33^{\circ} 10.0{ }^{\prime}$	$169^{\circ} 56.0^{\prime} \mathrm{E}$	736-710	
E400	$46^{\circ} 00.0^{\prime}$	$171^{\circ} 02.0^{\prime} \mathrm{E}$	622-768	7.10 .65	E859	$32^{\circ} 01.0^{\prime}$	$168^{\circ} 03.0^{\prime} \mathrm{E}$	484-486	18.3.68
E405	$47^{\circ} 20.0{ }^{\prime}$	$169^{\circ} 55.0^{\prime} \mathrm{E}$	1004	9.10 .65	E860	$32^{\circ} 21.0^{\prime}$	$167^{\circ} 41.0^{\prime} \mathrm{E}$	1246-1258	
E410	$46^{\circ} 40.0^{\prime}$	$170^{\circ} 44.6^{\prime} \mathrm{E}$	1086	10.10 .65	E864	$32^{\circ} 36.0^{\prime}$	$167^{\circ} 36.0^{\prime} \mathrm{E}$	130	19.3.68
E413	$45^{\circ} 12.0{ }^{\prime}$	$171^{\circ} 44.0{ }^{\prime} \mathrm{E}$	594	11.10 .65	E865	$32^{\circ} 41.0^{\prime}$	$167^{\circ} 36.0^{\prime} \mathrm{E}$	168	
E421	$44^{\circ} 00.0^{\prime}$	$175^{\circ} 00.0^{\prime} \mathrm{E}$	494	15.10.65	E868	$33^{\circ} 51.0^{\prime}$	$167^{\circ} 20.0^{\prime} \mathrm{E}$	751-762	
E422	$44^{\circ} 15.0{ }^{\prime}$	$175^{\circ} 00.0^{\prime} \mathrm{E}$	615		E869	$33^{\circ} 58.0^{\prime}$	$167^{\circ} 45.0^{\prime} \mathrm{E}$	1705-1685	
E423	$44^{\circ} 18.0{ }^{\prime}$	$174^{\circ} 31.0^{\prime} \mathrm{E}$	640		E870	$34^{\circ} 05.0{ }^{\prime}$	$168^{\circ} 10.0^{\prime} \mathrm{E}$	1488-1556	20.3.68
E424	$44^{\circ} 40.0{ }^{\text { }}$	$172^{\circ} 38.0^{\prime} \mathrm{E}$	293	16.10.65	E873	$34^{\circ} 37.0^{\prime}$	$171^{\circ} 52.0^{\prime} \mathrm{E}$	974-961	21.3.68
E428	$44^{\circ} 16.0{ }^{\prime}$	$174^{\circ} 00.0^{\prime} \mathrm{E}$	646	17.10.65	E876	$34^{\circ} 39.0^{\prime}$	$172^{\circ} 14.0{ }^{\prime} \mathrm{E}$	216-247	
E434	$43^{\circ} 30.0^{\prime}$	$174^{\circ} 30.0^{\prime} \mathrm{E}$	556	18.10.65	E879	$35^{\circ} 19.0{ }^{\prime}$	$172^{\circ} 25.0^{\prime}$ E	768-786	22.3.68
E436	$43^{\circ} 15.0$	$174^{\circ} 00.0{ }^{\prime} \mathrm{E}$	695	"	E880	$35^{\circ} 20.0^{\prime}$	$172^{\circ} 20.0^{\prime} \mathrm{E}$	1029-1074	
E636	$37^{\circ} 28.5$	$177^{\circ} 13.0^{\prime} \mathrm{E}$	190	10.10 .66	E883	$36^{\circ} 00.0^{\prime}$	$172^{\circ} 52.0^{\prime} \mathrm{E}$	999-1046	23.3.68
E707	$40^{\circ} 10.3{ }^{\prime}$	$177^{\circ} 18.3^{\prime} \mathrm{E}$	951-834	21.3.67	E884	$35^{\circ} 59.0^{\prime}$	$173^{\circ} 10.0^{\prime} \mathrm{E}$	701-689	
E712	$39^{\circ} 20.0^{\prime}$	$178^{\circ} 15.8^{\prime} \mathrm{E}$	772-717	22.3.67	E889	$36^{\circ} 48.0{ }^{\prime}$	$173^{\circ} 40.0^{\prime} \mathrm{E}$	727-729	
E713	$39^{\circ} 20.8^{\prime}$	$178^{\circ} 17.0^{\prime} \mathrm{E}$	935-858	"	E890	$36^{\circ} 40.0^{\prime}$	$173^{\circ} 34.0^{\prime} \mathrm{E}$	1014	23-24.3.68
E714	$39^{\circ} 19.6{ }^{\prime}$	$178^{\circ} 21.2^{\prime} \mathrm{E}$	1284-1249		E894	$37^{\circ} 20.0^{\prime}$	$173^{\circ} 57.0^{\prime} \mathrm{E}$	728-708	24.3.68
E715	$38^{\circ} 40.0{ }^{\prime}$	$178^{\circ} 29.3^{\prime} \mathrm{E}$	322	23.3.67	E899	$38^{\circ} 00.0^{\prime}$	$173^{\circ} 47.0^{\prime} \mathrm{E}$	729-715	25.3.68
E717	$38^{\circ} 42.0{ }^{\prime}$	$178^{\circ} 33.3^{\prime} \mathrm{E}$	828-839	"	E902	$37^{\circ} 34.0^{\prime}$	$172^{\circ} 05.0^{\prime} \mathrm{E}$	1064-1066	26.3.68
E718	$38^{\circ} 41.0^{\prime}$	$178^{\circ} 40.0^{\prime} \mathrm{E}$	1041-1019	-	E908	$38^{\circ} 38.0^{\prime}$	$172^{\circ} 41.0^{\prime} \mathrm{E}$	256-336	28.3.68
E719	$38^{\circ} 46.0^{\prime}$	$178^{\circ} 48.0^{\prime} \mathrm{E}$	913-750	"	F10	$38^{\circ} 43.0^{\prime}$	$172^{\circ} 35.0^{\prime} \mathrm{E}$	333	30.10 .64
E720	$37^{\circ} 33.0{ }^{\prime}$	$178^{\circ} 35.0^{\prime} \mathrm{E}$	256-252	24.3.67	F75	$35^{\circ} 30.0^{\prime}$	$174^{\circ} 43.0^{\prime} \mathrm{E}$	121	12.11.64
E725	$37^{\circ} 20.5{ }^{\prime}$	178.00.5'E	1004-942		F81	$49^{\circ} 32.0^{\prime}$	$167^{\circ} 01.0^{\prime} \mathrm{E}$	401	14.1.65
E731	$37^{\circ} 23.5{ }^{\prime}$	$177^{\circ} 12.0^{\prime} \mathrm{E}$	602-503	25.3.67	F90	$49^{\circ} 30.5$	$167^{\circ} 40.0^{\prime} \mathrm{E}$	601	16.1.65
E749	$40^{\circ} 47.0{ }^{\prime}$	$176^{\circ} 57.0^{\prime} \mathrm{E}$	913-997	29.3.67	F100	$49^{\circ} 02.0^{\prime}$	$168^{\circ} 53.5^{\prime} \mathrm{E}$	733-746	18.1.65
E751	$41^{\circ} 39.7{ }^{\prime}$	$175^{\circ} 15.0^{\prime} \mathrm{E}$	300-399	30.3.67	F110	$48^{\circ} 07.0^{\prime}$	$174^{\circ} 02.0^{\prime} \mathrm{E}$	1167	21.1.65
E752	$41^{\circ} 40.7{ }^{\prime}$	$175^{\circ} 15.4{ }^{\prime}$ E	618-596		F112	$48^{\circ} 08.0^{\prime}$	$175^{\circ} 56.0^{\prime} \mathrm{E}$	1427-1481	22.1.65
E753	$41^{\circ} 46.2{ }^{\prime}$	$175^{\circ} 15.0^{\prime} \mathrm{E}$	1074-1227		F123	$47^{\circ} 38.0^{\prime}$	$178^{\circ} 57.0^{\prime} \mathrm{W}$	1280	27.1.65
E755	$42^{\circ} 00.5$	$174^{\circ} 25.4^{\prime} \mathrm{E}$	247-276		F128	$49^{\circ} 09.0^{\prime}$	$177^{\circ} 18.0^{\prime} \mathrm{E}$	978	28.1.65
E756	$42^{\circ} 01.8$	$174^{\circ} 26.5^{\prime} \mathrm{E}$	885-969	"	F135	$50^{\circ} 58.0^{\prime}$	$173^{\circ} 57.0^{\prime} \mathrm{E}$	832	30.1.65
E757	$42^{\circ} 03.2$	$174^{\circ} 27.2^{\prime} \mathrm{E}$	1081-1125	5	F136	$51^{\circ} 20.0{ }^{\prime}$	$172^{\circ} 42.0^{\prime} \mathrm{E}$	547	
E772	$42^{\circ} 00.0^{\prime}$	$170^{\circ} 16.0^{\prime} \mathrm{E}$	748	14-15.10.67	F143	$53^{\circ} 05.5$	$170^{\circ} 13.0^{\circ} \mathrm{E}$	380	1.2.65
E773	$42^{\circ} 00.0^{\prime}$	$169^{\circ} 54.0^{\prime} \mathrm{E}$	968	15.10 .67	F144	$53^{\circ} 29.0^{\prime}$	$178^{\circ} 56.0^{\prime} \mathrm{E}$	596	
E774	$42^{\circ} 00.0^{\prime}$	$169^{\circ} 15.0^{\prime} \mathrm{E}$	1168		F146	$53^{\circ} 00.0{ }^{\prime}$	$172^{\circ} 45.0^{\prime} \mathrm{E}$	435	'
E783	$43^{\circ} 23.0^{\prime}$	$168^{\circ} 36.5^{\prime} \mathrm{E}$	966	16-17.10.67	F147	$52^{\circ} 21.0^{\prime}$	$173^{\circ} 09.0^{\prime} \mathrm{E}$	611	"
E784	$43^{\circ} 23.0^{\prime}$	$168^{\circ} 05.0^{\prime} \mathrm{E}$	1221-1213	3 17.10.67	F319	$19^{\circ} 51.0^{\prime}$	$157^{\circ} 43.8{ }^{\prime} \mathrm{W}$	847-940	27.5.65
E792	$44^{\circ} 40.0{ }^{\prime}$	$167^{\circ} 33.5^{\prime} \mathrm{E}$	213-123	19.10 .67	F750	$44^{\circ} 15.0{ }^{\prime}$	$175^{\circ} 26.0^{\prime} \mathrm{E}$	594	17.8.66
E793	$44^{\circ} 40.0{ }^{\prime}$	$167^{\circ} 32.0^{\prime} \mathrm{E}$	243-253	"	F753	$44^{\circ} 45.0{ }^{\prime}$	$174^{\circ} 30.0^{\prime} \mathrm{E}$	763-854	18.8.66
E796	$45^{\circ} 20.0{ }^{\prime}$	$166^{\circ} 45.5^{\prime} \mathrm{E}$	251-226	20.10 .67	F762	$41^{\circ} 00.0^{\prime}$	$176^{\circ} 30.0^{\prime} \mathrm{E}$	304-326	21.8.66
E797	$45^{\circ} 20.0{ }^{\prime}$	$166^{\circ} 44.7^{\prime} \mathrm{E}$	471-421	"	F764	$41^{\circ} 05.0^{\prime}$	$176^{\circ} 37.5^{\prime} \mathrm{E}$	999-1030	
E800	$45^{\circ} 20.5{ }^{\prime}$	$166^{\circ} 41.5^{\prime} \mathrm{E}$	1003-993	"	F767	$41^{\circ} 30.8{ }^{\prime}$	$176^{\circ} 07.0^{\prime} \mathrm{E}$	1205-1293	
E801	45 ${ }^{\circ} 53.5{ }^{\prime}$	$166^{\circ} 07.0^{\prime} \mathrm{E}$	983-888	"	F797	$37^{\circ} 25.7^{\prime}$	$177^{\circ} 11.0^{\prime} \mathrm{E}$	348	7.9.66
E803	$45^{\circ} 57.0$	$166^{\circ} 09.0^{\prime} \mathrm{E}$	534-514	21.10.67	F868	$37^{\circ} 28.5^{\prime}$	$179^{\circ} 03.5^{\prime} \mathrm{E}$	808-924	2.10 .68
E804	$45^{\circ} 58.5{ }^{\prime}$	$166^{\circ} 18.5^{\prime} \mathrm{E}$	183		F872	$37^{\circ} 20.6{ }^{\prime}$	$178^{\circ} 11.2^{\prime} \mathrm{E}$	878-832	3.10 .68
E821	$46^{\circ} 43.5$	165 ${ }^{\circ} 46.5^{\prime} \mathrm{E}$	549	23.10.67	F873	$37^{\circ} 19.5$	$178^{\circ} 11.0^{\prime} \mathrm{E}$	1050-1053	

Stn No.	Latitude $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date
F874	$37^{\circ} 18.0{ }^{\prime}$	$178^{\circ} 11.0^{\prime} \mathrm{E}$	1357	3.10.68
F877	$37^{\circ} 31.0^{\prime}$	$177^{\circ} 32.0^{\prime} \mathrm{E}$	783-728	"
F878	$37^{\circ} 28.5{ }^{\prime}$	$177^{\circ} 31.5^{\prime} \mathrm{E}$	997-942	
F896	$36^{\circ} 40.5{ }^{\prime}$	$176^{\circ} 19.2^{\prime} \mathrm{E}$	909-814	6.10 .68
F898	$36^{\circ} 13.0$	$176^{\circ} 10.0{ }^{\prime} \mathrm{E}$	263-260	8.10.68
F900	$36^{\circ} 13.0$	$176^{\circ} 23.0^{\prime} \mathrm{E}$	754-721	9.10 .68
F909	$35^{\circ} 06.4{ }^{\prime}$	$175^{\circ} 11.0^{\prime} \mathrm{E}$	1002-1030	10.10 .68
F911	$34^{\circ} 38.0^{\prime}$	$174^{\circ} 36.0^{\prime} \mathrm{E}$	1295-1412	11.10 .68
F913	$34^{\circ} 43.5{ }^{\prime}$	$174^{\circ} 31.5^{\prime} \mathrm{E}$	743	
F915	$34^{\circ} 58.7{ }^{\prime}$	$174^{\circ} 18.0^{\prime} \mathrm{E}$	251-265	
F916	$34^{\circ} 38.5$	$173^{\circ} 28.0^{\prime} \mathrm{E}$	249-241	12.10.68
F923	$34^{\circ} 07.5$	$172^{\circ} 46.7^{\prime} \mathrm{E}$	143-216	13.10.68
F924	$34^{\circ} 07.5$	$172^{\circ} 47.0^{\prime} \mathrm{E}$	315-439	
F928	$34^{\circ} 06.2^{\prime}$	$172^{\circ} 06.8^{\prime} \mathrm{E}$	388-406	14.10.68
F933	$34^{\circ} 24.0^{\prime}$	$173^{\circ} 10.3^{\prime} \mathrm{E}$	252-249	15.10.68
G1	$32^{\circ} 35.0^{\prime}$	$167^{\circ} 23.0^{\prime} \mathrm{E}$	138	14.9 .66
G3	$26^{\circ} 25.0^{\prime}$	$167^{\circ} 15.0^{\prime} \mathrm{E}$	710	27.9.66
G32	$43^{\circ} 44.0^{\prime}$	$176^{\circ} 29.0^{\prime} \mathrm{E}$	402	23.2.67
G33	$43^{\circ} 40.0{ }^{\prime}$	$177^{\circ} 00.0^{\prime} \mathrm{E}$	457	
G38	$43^{\circ} 37.0^{\prime}$	$179^{\circ} 29.5^{\prime} \mathrm{E}$	415	24.2.67
G172	$43^{\circ} 39.0^{\prime}$	$179^{\circ} 28.0^{\prime} \mathrm{W}$	373	17.1.68
G177	$43^{\circ} 47.0{ }^{\prime}$	$179^{\circ} 28.0^{\prime} \mathrm{W}$	315	
G184	$44^{\circ} 06.0^{\prime}$	$179^{\circ} 25.0^{\prime} \mathrm{W}$	344	
G197	$43^{\circ} 46.0^{\prime}$	$179^{\circ} 44.0{ }^{\prime} \mathrm{W}$	377	18.1.68
G198	$43^{\circ} 48.0^{\prime}$	$179^{\circ} 44.0^{\prime} \mathrm{W}$	366	19.1.68
G200	$43^{\circ} 54.0{ }^{\prime}$	$179^{\circ} 44.0^{\prime} \mathrm{W}$	395	"
G208	$43^{\circ} 30.0{ }^{\prime}$	$179^{\circ} 56.0^{\prime} \mathrm{E}$	413	"
G223	$43^{\circ} 44.0{ }^{\prime}$	$179{ }^{\circ} 50.0^{\prime} \mathrm{E}$	421	21.1.68
G230	$43^{\circ} 33.0{ }^{\prime}$	$179^{\circ} 43.0^{\prime} \mathrm{E}$	410	"
G233	$43^{\circ} 32.0^{\prime}$	$179^{\circ} 36.0^{\prime} \mathrm{E}$	412	"
G240	$43^{\circ} 40.0^{\prime}$	$179^{\circ} 36.0^{\prime} \mathrm{E}$	424	22.1.68
G244	$43^{\circ} 36.0^{\prime}$	$179^{\circ} 30.0{ }^{\prime} \mathrm{E}$	406	
G245	$43^{\circ} 35.0^{\prime}$	$179{ }^{\circ} 31.0^{\prime} \mathrm{E}$	421	
G254	$43^{\circ} 35.0^{\prime}$	$179^{\circ} 29.0{ }^{\prime} \mathrm{E}$	417	23.1.68
G255	$43^{\circ} 39.0^{\prime}$	$179^{\circ} 29.0^{\prime} \mathrm{E}$	424	"
G258	$43^{\circ} 34.0{ }^{\prime}$	$179^{\circ} 22.0^{\prime} \mathrm{E}$	402	"
G259	$43^{\circ} 33.0^{\prime}$	$179^{\circ} 22.0^{\prime} \mathrm{E}$	419	"
G262	$43^{\circ} 30.0^{\prime}$	$179^{\circ} 22.0^{\prime} \mathrm{E}$	412	'
G273	$43^{\circ} 30.0^{\prime}$	$179^{\circ} 15.0^{\prime} \mathrm{E}$	410	24.1.68
G276	$43^{\circ} 35.0^{\prime}$	$179^{\circ} 15.0^{\prime} \mathrm{E}$	413	"
G278	$43^{\circ} 40.0^{\prime}$	$179^{\circ} 15.0^{\prime} \mathrm{E}$	413	"
G279	$43^{\circ} 39.0{ }^{\prime}$	$179^{\circ} 07.0^{\prime} \mathrm{E}$	426	"
G291	$43^{\circ} 42.0{ }^{\prime}$	$179^{\circ} 01.0^{\prime} \mathrm{E}$	402	25.1.68
G292	$43^{\circ} 42.0{ }^{\prime}$	$179^{\circ} 48.0^{\prime} \mathrm{E}$	454	"
G293	$43^{\circ} 40.0{ }^{\prime}$	$179{ }^{\circ} 28.0^{\prime} \mathrm{E}$	421	"
G303	$43^{\circ} 04.0^{\prime}$	$179^{\circ} 20.0^{\prime} \mathrm{W}$	311	26.1.68
G329	$44^{\circ} 06.0^{\prime}$	$179^{\circ} 00.0^{\prime} \mathrm{W}$	417	1.2.68
G344	$43^{\circ} 44.0{ }^{\prime}$	$178^{\circ} 52.0^{\prime} \mathrm{W}$	402	2.2.68
G371	$43^{\circ} 33.0^{\prime}$	$177^{\circ} 50.0^{\prime} \mathrm{W}$	388	5.2.68
G398	$43^{\circ} 25.0{ }^{\prime}$	$178{ }^{\circ} 17.0^{\prime} \mathrm{W}$	424	7.2.68
G651	$44^{\circ} 00.0^{\prime}$	$174^{\circ} 31.0^{\prime} \mathrm{E}$	572	17.1.70
G665	$44^{\circ} 43.0^{\prime}$	$172^{\circ} 40.0^{\prime} \mathrm{E}$	934	18.1.70
G666	$44^{\circ} 52.2$	$172^{\circ} 20.2^{\prime} \mathrm{E}$	1015	18-19.1.70
G667	$44^{\circ} 57.0{ }^{\prime}$	$172^{\circ} 05.0^{\prime} \mathrm{E}$	872	19.1.70
G688	$46^{\circ} 10.0{ }^{\prime}$	$171^{\circ} 00.2^{\prime} \mathrm{E}$	731	20.1.70

$\begin{aligned} & \text { Stn } \\ & \text { No. } \end{aligned}$	Latitude $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date
G697	$46^{\circ} 19.5$	$170^{\circ} 42.0^{\prime} \mathrm{E}$	528	21.1.70
G701	$46^{\circ} 20.0^{\prime}$	$171^{\circ} 30.0^{\prime} \mathrm{E}$	1400	22.1.70
G703	$46^{\circ} 20.0^{\prime}$	$172^{\circ} 04.0^{\prime} \mathrm{E}$	1480	23.1.70
G817	$33^{\circ} 00.9^{\prime}$	$162^{\circ} 56.6^{\prime} \mathrm{E}$	815	14.2.71
G818	$33^{\circ} 00.0^{\prime}$	$162^{\circ} 48.5^{\prime} \mathrm{E}$	791	
G819	$32^{\circ} 57.6^{\prime}$	$162^{\circ} 35.3^{\prime} \mathrm{E}$	782	"
G820	$33^{\circ} 09.0^{\prime}$	$162^{\circ} 36.0^{\prime} \mathrm{E}$	793	15.2.71
G821	$33^{\circ} 18.5{ }^{\prime}$	$162^{\circ} 35.5^{\prime} \mathrm{E}$	791	
G822	$33^{\circ} 20.4{ }^{\prime}$	$162^{\circ} 49.2^{\prime} \mathrm{E}$	815	
G823	$33^{\circ} 10.4{ }^{\prime}$	$162^{\circ} 59.2^{\prime} \mathrm{E}$	798	"
G824	$33^{\circ} 10.4{ }^{\prime}$	$162^{\circ} 59.2^{\prime} \mathrm{E}$	807	"
G825	$33^{\circ} 20.9^{\prime}$	$162^{\circ} 59.5^{\prime} \mathrm{E}$	829	15-16.2.71
G885	$47^{\circ} 54.3{ }^{\prime}$	$179{ }^{\circ} 53.1{ }^{\prime} \mathrm{E}$	210-240	13.12.70
G888	$48^{\circ} 16.0^{\prime}$	$177^{\circ} 50.4^{\prime} \mathrm{E}$	1020	14.12.70
G893	$49^{\circ} 37.0^{\prime}$	$178^{\circ} 19.0^{\prime} \mathrm{E}$	570	16.12.70
G937	$49^{\circ} 41.3{ }^{\prime}$	$167^{\circ} 16.5^{\prime} \mathrm{E}$	520	16.1.71
G938	$49^{\circ} 33.9{ }^{\prime}$	$166^{\circ} 44.5^{\prime} \mathrm{E}$	490	17.1.71
G941	39.59.7	$178^{\circ} 08.0^{\prime} \mathrm{E}$	665-690	17.5.73
G947	$40^{\circ} 13.8{ }^{\prime}$	$177^{\circ} 20.0^{\prime} \mathrm{E}$	1491-1423	30.5.73
G955	$42^{\circ} 40.5{ }^{\prime}$	$174^{\circ} 45.5^{\prime} \mathrm{E}$	1195-1147	3.6.73
H636	$43^{\circ} 26.4{ }^{\prime}$	$179034.9^{\prime} \mathrm{E}$	395	10.3.75
H914	$43^{\circ} 29.4{ }^{\prime}$	$177^{\circ} 55.5^{\prime} \mathrm{W}$	358	11.8.75
H923	$43^{\circ} 29.0^{\prime}$	$179{ }^{\circ} 32.2^{\prime} \mathrm{E}$	395	13.8.75
H939	$43^{\circ} 40.9{ }^{\prime}$	$179^{\circ} 29.8^{\prime} \mathrm{E}$	431	14.8.75
H942	$43^{\circ} 43.8^{\prime}$	$179^{\circ} 28.2^{\prime} \mathrm{E}$	46	
H945	$43^{\circ} 19.4{ }^{\prime}$	$179^{\circ} 29.2^{\prime} \mathrm{E}$	405	15.8.75
I14	$35^{\circ} 35.9{ }^{\prime}$	$174^{\circ} 40.0^{\prime} \mathrm{E}$	103	4.5.75
I15	$35^{\circ} 24.6$	$174^{\circ} 28.0^{\prime} \mathrm{E}$	68-71	
119	$35^{\circ} 25.2^{\prime}$	$175^{\circ} 00.4^{\prime} \mathrm{E}$	270-276	5.5.75
I21	$35^{\circ} 24.2$	$175^{\circ} 25.8^{\prime} \mathrm{E}$	690	"
I25	$35^{\circ} 11.1^{\prime}$	$175^{\circ} 06.1^{\prime} \mathrm{E}$	675	6.5.75
I34	$35^{\circ} 00.0^{\prime}$	$175^{\circ} 13.0^{\prime}$ E	578	7.5.75
I47	$36^{\circ} 00.0^{\prime}$	$174^{\circ} 39.9^{\prime} \mathrm{E}$	48-46	9.5.75
150	36.00.2'	$175^{\circ} 13.2{ }^{\prime} \mathrm{E}$	92	10.5.75
I52	$36^{\circ} 11.2$	$75^{\circ} 13.5^{\prime} \mathrm{E}$	63-66	"
I53	$36^{\circ} 12.1{ }^{\prime}$	$174^{\circ} 55.0^{\prime} \mathrm{E}$	56-54	11.5.75
I56	$36^{\circ} 23.0^{\prime}$	$175^{\circ} 13.1^{\prime} \mathrm{E}$	50-46	
I63	$36^{\circ} 11.3{ }^{\prime}$	$176^{\circ} 23.0^{\prime} \mathrm{E}$	585-400	12.5.75
I64	$36^{\circ} 12.0{ }^{\prime}$	$176^{\circ} 11.8^{\prime} \mathrm{E}$	335-247	"
I71	$29^{\circ} 09.8^{\prime}$	$168^{\circ} 02.1^{\prime} \mathrm{E}$	57	20.7.75
I76	$28^{\circ} 45.0^{\prime}$	$167^{\circ} 45.1^{\prime} \mathrm{E}$	259-190	"
186	$29^{\circ} 29.9{ }^{\prime}$	$167^{\circ} 50.5^{\prime} \mathrm{E}$	280-350	23.7.75
187	$29^{\circ} 25.0^{\prime}$	$167^{\circ} 50.0^{\prime} \mathrm{E}$	89-170	"
191	$29^{\circ} 24.8{ }^{\prime}$	$168^{\circ} 10.0^{\prime} \mathrm{E}$	342-360	,
192	$29^{\circ} 24.8{ }^{\prime}$	$168^{\circ} 13.2^{\prime} \mathrm{E}$	570-578	"
194	$29^{\circ} 20.2^{\prime}$	$168^{\circ} 10.8^{\prime} \mathrm{E}$	308	"
196	$32^{\circ} 10.8^{\prime}$	$167^{\circ} 21.2^{\prime} \mathrm{E}$	356	25.7.75
197	$32^{\circ} 22.9{ }^{\prime}$	$167^{\circ} 28.2^{\prime} \mathrm{E}$	540-544	"
I343	$34^{\circ} 46.4$	$173^{\circ} 23.7^{\prime} \mathrm{E}$	<30	17.11.77
I345	$34^{\circ} 40.4$	$173^{\circ} 31.0^{\prime} \mathrm{E}$	182-227	"
I352	$34^{\circ} 39.0^{\prime}$	$174^{\circ} 04.2^{\prime} \mathrm{E}$	840-815	19.11.77
I353	$34^{\circ} 45.4{ }^{\prime}$	$174^{\circ} 04.1^{\prime} \mathrm{E}$	530	"
I356	$34^{\circ} 52.4{ }^{\prime}$	$174{ }^{\circ} 05.7^{\prime} \mathrm{E}$	269-275	"
I363	$34^{\circ} 50.2{ }^{\prime}$	$174^{\circ} 00.2^{\prime} \mathrm{E}$	227-224	20.11.77
I366	$34^{\circ} 42.3{ }^{\prime}$	$174^{\circ} 17.6^{\prime} \mathrm{E}$	705-684	"

Stn No.	Latitude (${ }^{\circ}$)	Longitude	Depth (m)	Date
1370	$34^{\circ} 10.6{ }^{\prime}$	$172^{\circ} 46.5^{\prime} \mathrm{E}$	94	23.11.77
I371	$34^{\circ} 11.6^{\prime}$	$72^{\circ} 49.5^{\prime} \mathrm{E}$	118-120	"
1374	$34^{\circ} 32.3{ }^{\prime}$	$173^{\circ} 30.3^{\prime} \mathrm{E}$	232-240	"
I375	34.32.7 ${ }^{\prime}$	$173^{\circ} 30.9^{\prime} \mathrm{E}$	-	"
1661	$43^{\circ} 50.2{ }^{\prime}$	$179^{\circ} 05.8^{\prime} \mathrm{W}$	375	11.3.79
I664	47³9.8'	$179^{\circ} 27.8^{\prime} \mathrm{W}$	595	12.3.79
1666	$47^{\circ} 47.5^{\prime}$	$178^{\circ} 59.5^{\prime} \mathrm{W}$	1165	13.3.79
1667	$47^{\circ} 45.6^{\prime}$	$179{ }^{\circ} 17.0^{\prime} \mathrm{W}$	648	"
I669	$47^{\circ} 49.0^{\prime}$	$179^{\circ} 45.7^{\prime} \mathrm{W}$	355	
1671	$48^{\circ} 00.0^{\prime}$	$180^{\circ} 00.0^{\prime} \mathrm{E}$	280	"
I674	$48^{\circ} 00.4^{\prime}$	$179^{\circ} 10.5^{\prime} \mathrm{W}$	750	14.3.79
I676	$48^{\circ} 09.8{ }^{\prime}$	$179^{\circ} 20.0^{\prime} \mathrm{W}$	810	"
1684	$48^{\circ} 20.0^{\prime}$	$179^{\circ} 29.0^{\prime} \mathrm{W}$	705	15-16.3.79
I685	$48^{\circ} 19.5{ }^{\prime}$	$179^{\circ} 29.5^{\prime} \mathrm{W}$	722	16.3.79
I686	$48^{\circ} 30.5{ }^{\prime}$	$179^{\circ} 45.0^{\prime} \mathrm{W}$	710	
I689	$48^{\circ} 51.5^{\prime}$	$178^{\circ} 41.5^{\prime} \mathrm{E}$	808	17.3.79
I694	$49^{\circ} 30.0{ }^{\prime}$	$178{ }^{\circ} 45.0^{\prime} \mathrm{E}$	1004	18.3.79
I698	$48^{\circ} 20.0^{\prime}$	$178^{\circ} 30.0^{\prime} \mathrm{E}$	726	19.3.79
I699	$48^{\circ} 16.0^{\prime}$	$179^{\circ} 00.0^{\prime} \mathrm{E}$	532	
I702	$48^{\circ} 10.0{ }^{\prime}$	$178^{\circ} 44.5{ }^{\prime} \mathrm{E}$	545	20-21.3.79
I703	$48^{\circ} 10.9{ }^{\prime}$	$178^{\circ} 15.9^{\prime} \mathrm{E}$	875	21.3.79
I704	$48^{\circ} 00.0{ }^{\prime}$	$178^{\circ} 29.0^{\prime} \mathrm{E}$	475	
I707	$47^{\circ} 20.0{ }^{\prime}$	$179^{\circ} 30.0^{\prime} \mathrm{E}$	552	22.3.79
I715	$47^{\circ} 05.0{ }^{\prime}$	$178^{\circ} 15.0^{\prime} \mathrm{E}$	623	23.3.79
1716	$44^{\circ} 00.0{ }^{\prime}$	$176^{\circ} 13.9^{\prime} \mathrm{E}$	500	25.3.79
I721	$44^{\circ} 07.4{ }^{\prime}$	$175^{\circ} 46.2^{\prime} \mathrm{E}$	540	26.3.79
I735	$24^{\circ} 42.0^{\prime}$	$159^{\circ} 34.8^{\prime} \mathrm{E}$	360	11.5.79
1741	$22^{\circ} 43.0{ }^{\prime}$	$159^{\circ} 16.0^{\prime} \mathrm{E}$	328	12.5.79
I743	$22^{\circ} 34.2{ }^{\prime}$	$159^{\circ} 09.4{ }^{\prime} \mathrm{E}$	291-298	
1745	$22^{\circ} 06.8{ }^{\prime}$	$159^{\circ} 06.3^{\prime} \mathrm{E}$	1300-1560	
J55	$44^{\circ} 05.5{ }^{\prime}$	$176^{\circ} 12.0^{\prime} \mathrm{E}$	198	17.5.70
J58	$43^{\circ} 31.0^{\prime}$	$179^{\circ} 09.5^{\prime} \mathrm{E}$	512	20.5.70
J59	$43^{\circ} 51.0^{\prime}$	$179^{\circ} 25.0^{\prime} \mathrm{E}$	309	"
J362	$32^{\circ} 32.7{ }^{\prime}$	$166^{\circ} 26.5^{\prime} \mathrm{E}$	1030	25.8.73
J485	$50^{\circ} 38.0^{\prime}$	$167^{\circ} 38.0^{\prime} \mathrm{E}$	320-365	7.12.73
J657	$37^{\circ} 28.2^{\prime}$	$179^{\circ} 03.2^{\prime} \mathrm{E}$	695-726	4.9.74
J658	$36^{\circ} 00.6$	$179^{\circ} 12.8^{\prime} \mathrm{E}$	2515-2505	
J659	$35^{\circ} 00.6$	$179^{\circ} 15.1^{\prime} \mathrm{E}$	695-689	5.9.74
J660	$35^{\circ} 02.0^{\prime}$	$179^{\circ} 15.9^{\prime} \mathrm{E}$	803-788	"
J667	$36^{\circ} 37.5^{\prime}$	$178^{\circ} 19.3{ }^{\prime} \mathrm{E}$	2431	5-6.9.74
J672	$36^{\circ} 26.5^{\prime}$	$175^{\circ} 46.0^{\prime} \mathrm{E}$	25-32	7.9.74
J674	$36^{\circ} 41.8{ }^{\prime}$	$175^{\circ} 55.2^{\prime} \mathrm{E}$	3-33	
J676	$37^{\circ} 22.5{ }^{\prime}$	$177^{\circ} 11.7^{\prime} \mathrm{E}$	341-333	8.9.74
J678	$37^{\circ} 24.7^{\prime}$	$177^{\circ} 12.0^{\prime} \mathrm{E}$	352-350	"
J679	$37^{\circ} 21.1{ }^{\prime}$	$177^{\circ} 11.8^{\prime} \mathrm{E}$	316-328	"
J680	$37^{\circ} 25.8^{+}$	$177^{\circ} 11.8^{\prime} \mathrm{E}$	328-352	"
J683	$37^{\circ} 20.7^{\prime}$	$177^{\circ} 06.8^{\prime} \mathrm{E}$	388-400	"
J686	$37^{\circ} 16.2{ }^{\prime}$	$176{ }^{\circ} 51.2^{\prime} \mathrm{E}$	194-219	"
J699	$37^{\circ} 33.2{ }^{\prime}$	$176^{\circ} 59.2^{\prime}$ E	174-248	10.9.74
J705	$37^{\circ} 16.0^{\prime}$	$176^{\circ} 51.0^{\prime} \mathrm{E}$	190	11.9 .74
J709	$37^{\circ} 15.2{ }^{\prime}$	$176^{\circ} 50.0^{\prime} \mathrm{E}$	328-406	"
J710	$37^{\circ} 15.1^{\prime}$	$176{ }^{\circ} 50.1{ }^{\prime} \mathrm{E}$	195-208	"
J711	$37^{\circ} 15.0{ }^{\prime}$	$176^{\circ} 50.0^{\prime} \mathrm{E}$	366-472	"
J715	$36^{\circ} 04.3{ }^{\prime}$	$178^{\circ} 00.8^{\prime} \mathrm{E}$	683-693	12.9.74
J716	$36^{\circ} 04.2{ }^{\prime}$	$178^{\circ} 00.6^{\prime} \mathrm{E}$	785-990	"

Stn No.	Latitude $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date
J951	$35^{\circ} 02.0^{\prime}$	$172^{\circ} 52.7^{\prime} \mathrm{E}$	52	18.6.81
J953	$34^{\circ} 39.6{ }^{\prime}$	$172^{\circ} 13.1^{\prime} \mathrm{E}$	270-260	"
J954	$34^{\circ} 38.0^{\prime}$	$172^{\circ} 13.5^{\prime} \mathrm{E}$	204-192	"
J959	$34^{\circ} 25.3{ }^{\prime}$	$173^{\circ} 08.8^{\prime} \mathrm{E}$	140-210	19.6.81
J966	$34^{\circ} 51.9{ }^{\prime}$	$173^{\circ} 51.7^{\prime} \mathrm{E}$	120	20.6 .81
J969	$35^{\circ} 08.8^{\prime}$	$174^{\circ} 21.1^{\prime} \mathrm{E}$	70-106	21.6.81
J970	$35^{\circ} 08.6{ }^{\prime}$	$174^{\circ} 21.1^{\prime} \mathrm{E}$	86-91	
J971	$35^{\circ} 25.3{ }^{\prime}$	$174^{\circ} 58.9^{\prime} \mathrm{E}$	246	22.6.81
J976	$35^{\circ} 44.7^{\prime}$	$175^{\circ} 29.6^{\prime} \mathrm{E}$	155-225	"
K527	$41^{\circ} 10.4{ }^{\prime}$	$173^{\circ} 10.0^{\prime} \mathrm{E}$	-	24.7.72
K795	$33^{\circ} 02.6{ }^{\prime}$	$179{ }^{\circ} 34.6{ }^{\prime} \mathrm{W}$	350	18.7.74
K800	$29^{\circ} 11.9^{\prime}$	$177^{\circ} 50.8^{\prime} \mathrm{W}$	670-778	22.7.74
K803	$29^{\circ} 16.0^{\prime}$	$177{ }^{\circ} 50.3^{\prime} \mathrm{W}$	190-140	"
K804	$29^{\circ} 14.8{ }^{\prime}$	$177^{\circ} 49.6^{\prime} \mathrm{W}$	590-490	
K805	$29^{\circ} 10.7^{\prime}$	$177^{\circ} 47.4^{\prime} \mathrm{W}$	1142-1156	22-23.7.74
K806	$28^{\circ} 30.7^{\prime}$	$177^{\circ} 49.3$ W	1165-1185	23.7.74
K818	$29^{\circ} 13.3{ }^{\prime}$	$177^{\circ} 56.4 \times \mathrm{W}$	95-116	24.7.74
K819	$29^{\circ} 13.2{ }^{\prime}$	$177^{\circ} 56.3^{\prime} \mathrm{W}$	100-140	
K820	$29^{\circ} 13.3{ }^{\prime}$	$177^{\circ} 59.8^{\prime} \mathrm{W}$	95-122	
K823	$29^{\circ} 18.5{ }^{\prime}$	$177^{\circ} 56.2^{\prime} \mathrm{W}$	202-131	25.7.74
K825	$28^{\circ} 47.8^{\prime}$	$177^{\circ} 47.8^{\prime} \mathrm{W}$	145	"
K826	$28^{\circ} 48.0^{\prime}$	$177^{\circ} 48.0^{\prime} \mathrm{W}$	142	
K828	$28^{\circ} 35.4{ }^{\prime}$	$177^{\circ} 50.7^{\prime} \mathrm{W}$	440	26.7.74
K828A	$28^{\circ} 35.4{ }^{\prime}$	$177^{\circ} 50.7^{\prime} \mathrm{W}$	508-510	"
K829	$29^{\circ} 13.0{ }^{\prime}$	$177^{\circ} 52.4^{\prime} \mathrm{W}$	565-635	"
K830	$29^{\circ} 11.5$	$177^{\circ} 53.0^{\prime} \mathrm{W}$	545-590	26-27.7.74
K838	$30^{\circ} 15.8^{\prime}$	$178{ }^{\circ} 23.7^{\prime} \mathrm{W}$	200	28.7.74
K839	$30^{\circ} 15.4{ }^{\prime}$	$178{ }^{\circ} 24.0^{\prime} \mathrm{W}$	290	
K840	$30^{\circ} 17.6^{\prime}$	$178{ }^{\circ} 25.3^{\prime} \mathrm{W}$	398-412	"
K842	$30^{\circ} 10.2{ }^{\prime}$	$178{ }^{\circ} 35.9^{\prime} \mathrm{W}$	325-370	29.7.74
K843	$30^{\circ} 10.5$	$178{ }^{\circ} 34.5^{\prime} \mathrm{W}$	254-260	"
K844	$30^{\circ} 11.2^{\prime}$	$178^{\circ} 33.8^{\prime} \mathrm{W}$	290	"
K846	$30^{\circ} 13.1{ }^{\prime}$	$178{ }^{\circ} 32.0^{\prime} \mathrm{W}$	610-640	
K851	$30^{\circ} 33.3{ }^{\prime}$	$178{ }^{\circ} 31.8^{\prime} \mathrm{W}$	106-104	30.7.74
K857	30.33.8'	$178{ }^{\circ} 30.6{ }^{\prime} \mathrm{W}$	165-180	"
K858	$30^{\circ} 34.2{ }^{\prime}$	$178{ }^{\circ} 29.8^{\prime} \mathrm{W}$	465-501	"
K859	$30^{\circ} 34.9$ '	$178^{\circ} 28.2^{\prime} \mathrm{W}$	405-443	"
K860	$30^{\circ} 35.8^{\prime}$	$178{ }^{\circ} 25.7^{\prime} \mathrm{W}$	605-720	'
K867	$31^{\circ} 21.4{ }^{\prime}$	$178{ }^{\circ} 50.6^{\prime} \mathrm{W}$	190-240	1.8.74
K868	$31^{\circ} 21.5$	$178{ }^{\circ} 51.4^{\prime} \mathrm{W}$	335	
K870	$31^{\circ} 21.2$	$178{ }^{\circ} 44.5^{\prime} \mathrm{W}$	510-610	2.8.74
K872	$31^{\circ} 20.4$	$178{ }^{\circ} 49.2^{\prime} \mathrm{W}$	280-235	"
K873	$37^{\circ} 34.0^{\prime}$	$179^{\circ} 22.0^{\prime} \mathrm{W}$	1270-1280	3.8.74
M763	$44^{\circ} 36.2^{\prime}$	$167^{\circ} 49.7^{\prime} \mathrm{E}$	27	29.3.81
M773	$44^{\circ} 37.1{ }^{\prime}$	$167^{\circ} 51.5^{\prime} \mathrm{E}$	25	30.3.81
M774	$44^{\circ} 40.0^{\prime}$	$167^{\circ} 54.6^{\prime} \mathrm{E}$	30	"
M775	$44^{\circ} 38.9^{\prime}$	$67^{\circ} 55.2^{\prime} \mathrm{E}$	20	"
M776	$44^{\circ} 39.5{ }^{\prime}$	$167^{\circ} 54.2^{\prime} \mathrm{E}$	15	,
M779	$44^{\circ} 36.0{ }^{\prime}$	$167^{\circ} 49.4{ }^{\prime} \mathrm{E}$	30	31.3.81
M782	$44^{\circ} 40.0^{\prime}$	$167^{\circ} 55.0^{\prime} \mathrm{E}$	22	1.4.81
M793	$44^{\circ} 36.0^{\prime}$	$167^{\circ} 49.4^{\prime} \mathrm{E}$	30	7.4.81
N369	$34^{\circ} 24.6{ }^{\prime}$	$172^{\circ} 26.3^{\prime} \mathrm{E}$	101	10.12.74
N897	$32^{\circ} 20.7^{\prime}$	$179^{\circ} 03.8^{\prime} \mathrm{W}$	424-426	22.2.77
O841	$45^{\circ} 20.8{ }^{\prime}$	$167^{\circ} 02.4^{\prime} \mathrm{E}$	0-35	26.2.85
O849	$45^{\circ} 16.0{ }^{\prime}$	$167^{\circ} 00.1^{\prime} \mathrm{E}$	0-35	28.2.85

Stn No.	Latitude (${ }^{\circ}$)	Longitude	Depth (m)	Date	Stn No.	Latitude (${ }^{\circ}$ S)	Longitude	Depth (m)	Date
O852	$45^{\circ} 15.6{ }^{\prime}$	$167^{\circ} 09.4^{\prime} \mathrm{E}$	0-35	1.3.85	Q340	$44^{\circ} 06.1^{\prime}$	$176{ }^{\circ} 11.7^{\prime} \mathrm{E}$	435	13.11.79
P1	$32^{\circ} 35.4{ }^{\prime}$	$167^{\circ} 32.0^{\prime} \mathrm{E}$	122	24.1.77	Q341	$44^{\circ} 07.1^{\prime}$	$176^{\circ} 19.2^{\prime} \mathrm{E}$	264	14.11.79
P2	$32^{\circ} 35.7^{\prime}$	$167^{\circ} 31.7^{\prime} \mathrm{E}$	122		Q343	$44^{\circ} 07.8^{\prime}$	$175^{\circ} 47.8^{\prime} \mathrm{E}$	500	
P5	$32^{\circ} 36.4{ }^{\prime}$	$167^{\circ} 30.6^{\prime} \mathrm{E}$	126	25.1.77	Q738	$44^{\circ} 37.3{ }^{\prime}$	$167^{\circ} 51.7^{\prime} \mathrm{E}$	30	11.7.82
P8	$32^{\circ} 40.8^{\prime}$	$167^{\circ} 26.8^{\prime} \mathrm{E}$	757-660		Q741	$44^{\circ} 37.8^{\prime}$	$167^{\circ} 51.7^{\prime} \mathrm{E}$	30	13.7.82
P10	$32^{\circ} 40.0^{\prime}$	$167^{\circ} 28.4^{\prime} \mathrm{E}$	378-352		Q743	$44^{\circ} 57.6^{\prime}$	$167^{\circ} 27.0^{\prime} \mathrm{E}$	37	14.7.82
P13	$32^{\circ} 10.5{ }^{\prime}$	$167^{\circ} 21.2^{\prime} \mathrm{E}$	449-442	"	Q874	$12^{\circ} 22.3{ }^{\prime}$	$178^{\circ} 32.5^{\prime} \mathrm{W}$	1000	23.10.83
P14	$31^{\circ} 47.2{ }^{\prime}$	$16^{\circ} 51.6^{\prime} \mathrm{E}$	319-316	"	R437	$39^{\circ} 35.1^{\prime}$	$178{ }^{\circ} 25.1^{\prime} \mathrm{E}$	800	16.6 .90
P16	$29^{\circ} 36.3{ }^{\prime}$	$168^{\circ} 05.0^{\prime} \mathrm{E}$	310	26.1.77	R438	$39^{\circ} 26.0^{\prime}$	$78^{\circ} 20.3^{\prime} \mathrm{E}$	1010	
P17	$9^{\circ} 35.5{ }^{\prime}$	$168^{\circ} 04.0^{\prime} \mathrm{E}$	248-225	"	R439	$39^{\circ} 26.8^{\prime}$	$178^{\circ} 20.0^{\prime} \mathrm{E}$	1000	
P27	$28^{\circ} 54.6{ }^{\prime}$	$167^{\circ} 44.2^{\prime} \mathrm{E}$	390-402	27.1.77	S6	$42^{\circ} 35.9{ }^{\prime}$	$170^{\circ} 39.7^{\prime} \mathrm{E}$	201	11.9.78
P34	$28^{\circ} 57.8^{\prime}$	$167^{\circ} 45.8^{\prime} \mathrm{E}$	370	28.1.77	S8	$42^{\circ} 38.0{ }^{\prime}$	$170^{\circ} 36.0^{\prime} \mathrm{E}$	120	
P35	$28^{\circ} 57.9{ }^{\prime}$	$167^{\circ} 45.5^{\prime} \mathrm{E}$	392-423		S22	$50^{\circ} 39.0$	$167^{\circ} 39.6^{\prime} \mathrm{E}$	400	17.9.78
P48	$28^{\circ} 42.8{ }^{\prime}$	$167^{\circ} 54.6^{\prime} \mathrm{E}$	279-186	30.1.77	S25	$50^{\circ} 41.8{ }^{\prime}$	$167^{\circ} 40.6^{\prime} \mathrm{E}$	339	
P57	$33^{\circ} 15.0^{\prime}$	$169^{\circ} 59.0^{\prime} \mathrm{E}$	563-614	4.2.77	S27	$50^{\circ} 41.3{ }^{\prime}$	$167^{\circ} 37.5^{\prime} \mathrm{E}$	335	18.9.78
P64	$34^{\circ} 52.5{ }^{\prime}$	$172^{\circ} 34.4{ }^{\prime} \mathrm{E}$	155-163	7.2.77	S28	$50^{\circ} 41.1^{\prime}$	$167^{\circ} 44.0^{\prime} \mathrm{E}$	375	
P68	$38^{\circ} 39.0^{\prime}$	$172^{\circ} 38.2^{\prime} \mathrm{E}$	313-557	9.2.77	S29	$50^{\circ} 40.7{ }^{\prime}$	$167^{\circ} 41.1^{\prime} \mathrm{E}$	300	
P85	$31^{\circ} 38.4$	$159^{\circ} 09.5^{\prime} \mathrm{E}$	430-465	28.5.77	S30	$50^{\circ} 41.0^{\prime}$	$167^{\circ} 40.8^{\prime} \mathrm{E}$	265	
P115	$31^{\circ} 25.9{ }^{\prime}$	$159^{\circ} 02.2^{\prime} \mathrm{E}$	183-179	31.5.77	S42	$53^{\circ} 15.6$	$169^{\circ} 30.5^{\prime} \mathrm{E}$	480	21.9.78
P120	$35^{\circ} 45.7{ }^{\prime}$	$165^{\circ} 04.1^{\prime} \mathrm{E}$	950	3.6.77	S43	$53^{\circ} 29.1{ }^{\prime}$	$170^{\circ} 04.2^{\prime} \mathrm{E}$	693	
P842	$32^{\circ} 34.4$	$156^{\circ} 17.3^{\prime} \mathrm{E}$	285-290	28.11.79	S46	$53^{\circ} 59.8{ }^{\prime}$	$171^{\circ} 13.2^{\prime} \mathrm{E}$	1075	
P846	$31^{\circ} 00.1^{\prime}$	$153^{\circ} 18.3^{\prime} \mathrm{E}$	350-375	3.12.79	S48	$53^{\circ} 30.6{ }^{\prime}$	$172^{\circ} 24.0^{\prime} \mathrm{E}$	625	22.9.78
P925	$27^{\circ} 59.6{ }^{\prime}$	$155^{\circ} 37.5^{\prime} \mathrm{E}$	420	11.12.79	S52	$52^{\circ} 47.0^{\prime}$	$172^{\circ} 54.0^{\prime} \mathrm{E}$	494	23.9.78
P939	$41^{\circ} 20.4$	$166^{\circ} 54.8^{\prime} \mathrm{E}$	1760-1799	22.4.80	S53	$53^{\circ} 00.7^{\prime}$	$172^{\circ} 59.9{ }^{\prime} \mathrm{E}$	450	
P942	$41^{\circ} 00.6{ }^{\prime}$	$169^{\circ} 06.0^{\prime} \mathrm{E}$	914	24.4.80	S67	$48^{\circ} 05.9{ }^{\prime}$	$179{ }^{\circ} 55.2^{\prime} \mathrm{E}$	380	26.9.78
P944	$27^{\circ} 20.8^{\prime}$	$179^{\circ} 20.9^{\prime} \mathrm{W}$	673-670	31.5.80	S72	$48^{\circ} 06.5^{\prime}$	$178^{\circ} 46.8^{\prime} \mathrm{E}$	420	27.9.78
P945	$26^{\circ} 42.9{ }^{\prime}$	$179{ }^{\circ} 20.0^{\prime} \mathrm{W}$	1276-1384	1.6.80	S99	$51^{\circ} 57.8{ }^{\prime}$	$174^{\circ} 48.0^{\prime} \mathrm{E}$	1750-1800	27.11.78
P946	25 ${ }^{\circ} 59.1{ }^{\prime}$	$179{ }^{\circ} 18.1^{\prime} \mathrm{W}$	660	"	S122	$43^{\circ} 35.5^{\prime}$	$175^{\circ} 57.3^{\prime} \mathrm{E}$	322	20.10.79
P947	$25^{\circ} 13.7{ }^{\prime}$	$179^{\circ} 04.1^{\prime} \mathrm{W}$	646-547		S125	$43^{\circ} 32.1^{\prime}$	$175^{\circ} 58.5^{\prime} \mathrm{E}$	365	"
P966	$23^{\circ} 29.8{ }^{\prime}$	$176{ }^{\circ} 34.6{ }^{\prime} \mathrm{W}$	635-695	10.6.80	S126	$43^{\circ} 33.4$	$175^{\circ} 58.6^{\prime} \mathrm{E}$	322	"
Q1	$43^{\circ} 49.7^{\prime}$	$179{ }^{\circ} 00.0^{\prime} \mathrm{W}$	470	12.3.78	S127	$43^{\circ} 35.4{ }^{\prime}$	$175^{\circ} 57.3^{\prime} \mathrm{E}$	322	
Q2	$43^{\circ} 36.8^{\prime}$	$178{ }^{\circ} 43.7^{\prime} \mathrm{W}$	400	"	S130	$43^{\circ} 34.0^{\prime}$	$175^{\circ} 57.7^{\prime} \mathrm{E}$	335	21.10 .79
Q6	$44^{\circ} 09.4{ }^{\prime}$	$179^{\circ} 35.6^{\prime} \mathrm{W}$	468	14.3.78	S142	$44^{\circ} 30.9{ }^{\prime}$	$174^{\circ} 52.5^{\prime} \mathrm{E}$	715	24.10 .79
Q7	$44^{\circ} 06.2{ }^{\prime}$	$179^{\circ} 33.8^{\prime} \mathrm{W}$	408	14-15.3.78	S152	$45^{\circ} 52.3{ }^{\prime}$	$174{ }^{\circ} 04.9^{\prime} \mathrm{E}$	1676	26.10 .79
Q8	$44^{\circ} 02.2{ }^{\prime}$	$179^{\circ} 20.3^{\prime} \mathrm{W}$	305	15.3.78	S154	$45^{\circ} 24.2{ }^{\prime}$	$173^{\circ} 59.8$ ' E	1373	27.10.79
Q11	$43^{\circ} 44.1^{\prime}$	$179{ }^{\circ} 31.6^{\prime} \mathrm{W}$	300		S157	$44^{\circ} 10.5{ }^{\prime}$	$173^{\circ} 29.9^{\prime} \mathrm{E}$	160	28.10.79
Q13	$43^{\circ} 27.6^{\prime}$	$179{ }^{\circ} 46.9^{\prime} \mathrm{W}$	415	"	S159	$44^{\circ} 19.3{ }^{\prime}$	$173^{\circ} 35.5^{\prime} \mathrm{E}$	525	
Q16	43 ${ }^{\circ} 59.4{ }^{\prime}$	$179^{\circ} 15.6^{\prime} \mathrm{W}$	215	16.3.78	S160	$44^{\circ} 13.9{ }^{\prime}$	$173^{\circ} 39.5^{\prime} \mathrm{E}$	550	
Q19B	$44^{\circ} 02.0^{\prime}$	$179{ }^{\circ} 17.2^{\prime} \mathrm{W}$	285		S166	$44^{\circ} 25.4{ }^{\prime}$	$174^{\circ} 07.4^{\prime} \mathrm{E}$	720	29.10.79
Q20	$44^{\circ} 09.6{ }^{\prime}$	$179{ }^{\circ} 14.2^{\prime} \mathrm{W}$	320	17-18.3.78	S168	$44^{\circ} 10.6$	$174^{\circ} 23.3^{\prime} \mathrm{E}$	594	"
Q24	$44^{\circ} 29.7^{\prime}$	$176{ }^{\circ} 33.7^{\prime} \mathrm{W}$	320-300	22.3.78	S173	$43^{\circ} 59.4{ }^{\prime}$	$174^{\circ} 02.0^{\prime} \mathrm{E}$	486	30.10 .79
Q25	$44^{\circ} 26.2^{\prime}$	$176{ }^{\circ} 38.4{ }^{\prime} \mathrm{W}$	360		S174	$44^{\circ} 06.5^{\prime}$	$173^{\circ} 54.1^{\prime} \mathrm{E}$	518	
Q31	$44^{\circ} 15.8{ }^{\prime}$	$176^{\circ} 54.8^{\prime} \mathrm{W}$	340-315	23.3.78	S181	$43^{\circ} 26.7^{\prime}$	$173^{\circ} 30.0^{\prime} \mathrm{E}$	392-260	31.10 .79
Q38	$44^{\circ} 24.8{ }^{\prime}$	$176{ }^{\circ} 43.6{ }^{\prime} \mathrm{W}$	345	23-24.3.78	S216	$42^{\circ} 40.9^{\prime}$	$173^{\circ} 39.2^{\prime} \mathrm{E}$	200	4.11 .79
Q39	$44^{\circ} 26.0^{\prime}$	$176{ }^{\circ} 37.0^{\prime} \mathrm{W}$	255	24.3.78	S222	$42^{\circ} 28.3{ }^{\prime}$	$173^{\circ} 40.2^{\prime} \mathrm{E}$	600-180	5.11 .79
Q40	$44^{\circ} 29.5{ }^{\prime}$	$176^{\circ} 32.5$ ' W	345-380		S248	$44^{\circ} 36.1^{\prime}$	$167^{\circ} 49.2^{\prime} \mathrm{E}$	30	19.2.80
Q46	$33^{\circ} 07.4{ }^{\prime}$	$156^{\circ} 10.1^{\prime} \mathrm{E}$	148	24.5.78	S251	$45^{\circ} 10.9{ }^{\prime}$	$167^{\circ} 07.4^{\prime} \mathrm{E}$	20	20.2.80
Q68	$29^{\circ} 14.0{ }^{\prime}$	$159^{\circ} 00.0^{\prime} \mathrm{E}$	1045-1212	1.6.78	S257	$45^{\circ} 17.0^{\prime}$	$167^{\circ} 00.6^{\prime} \mathrm{E}$	37	21.2.80
Q70	$26^{\circ} 59.7^{\prime}$	$159^{\circ} 18.9^{\prime} \mathrm{E}$	376-427	2.6.78	S260	$45^{\circ} 29.4{ }^{\prime}$	$167^{\circ} 05.1^{\prime} \mathrm{E}$	33	22.2.80
Q83	$33^{\circ} 00.2^{\prime}$	$163^{\circ} 01.2^{\prime} \mathrm{E}$	816-841	7.6.78	S562	$35^{\circ} 49.2{ }^{\prime}$	$172^{\circ} 54.0^{\prime} \mathrm{E}$	600-505	5.8.83
Q84	$32^{\circ} 59.4{ }^{\prime}$	$163^{\circ} 08.7^{\prime} \mathrm{E}$	830	"	S565	$29^{\circ} 18.5^{\prime}$	$169^{\circ} 46.7^{\prime} \mathrm{E}$	1350-830	12.8.83
Q102	$45^{\circ} 38.8{ }^{\prime}$	$166^{\circ} 53.3^{\prime} \mathrm{E}$	0-40	8.11.78	S571	$30^{\circ} 47.3{ }^{\prime}$	$172^{\circ} 45.2^{\prime} \mathrm{E}$	509-480	15.8.83
Q105	$44^{\circ} 38.1{ }^{\prime}$	$167^{\circ} 52.8^{\prime} \mathrm{E}$	0-30	9.11.78	S572	$30^{\circ} 45.5^{\prime}$	$172^{\circ} 47.7^{\prime} \mathrm{E}$	530-403	"
Q174	$41^{\circ} 37.9^{\prime}$	$175^{\circ} 12.8{ }^{\prime} \mathrm{E}$	44	17.12 .78	S573	$30^{\circ} 29.7^{\prime}$	$172^{\circ} 42.3^{\prime} \mathrm{E}$	975-840	"
Q338	$44^{\circ} 00.7{ }^{\prime}$	$176^{\circ} 04.9^{\prime} \mathrm{E}$	480	13.11.79	T7	$44^{\circ} 06.5{ }^{\prime}$	$176^{\circ} 06.5^{\prime} \mathrm{E}$	315	7.3.81

Stn No.	Latitude (${ }^{\circ}$ S)	Longitude	Depth (m)	Date
T8	$44^{\circ} 19.4$	$176^{\circ} 14.0^{\prime} \mathrm{E}$	480-520	7.3.81
T32	$48^{\circ} 23.6{ }^{\prime}$	$179{ }^{\circ} 42.6^{\prime} \mathrm{W}$	668	13.3.81
T38	$49^{\circ} 04.6{ }^{\prime}$	$178{ }^{\circ} 58.2^{\prime} \mathrm{E}$	740	13-14.3.81
T48	$49^{\circ} 18.6{ }^{\prime}$	$177^{\circ} 54.7^{\prime} \mathrm{E}$	990	15.3.81
T88	$44^{\circ} 02.0^{\prime}$	$174{ }^{\circ} 46.6^{\prime} \mathrm{E}$	500	31.3.81
T109	$39^{\circ} 45.8$	$178^{\circ} 14.1^{\prime} \mathrm{E}$	288-350	24.4.81
T182	$18^{\circ} 57.9{ }^{\prime}$	$159^{\circ} 44.0^{\prime} \mathrm{W}$	375-672	14.9.81
T214	$30^{\circ} 40.9{ }^{\prime}$	$178^{\circ} 25.5^{\prime} \mathrm{W}$	565	18.3.82
T217	$30^{\circ} 44.0$	$178{ }^{\circ} 38.1^{\prime} \mathrm{W}$	492	
T225	$29^{\circ} 13.1$	$177^{\circ} 53.5^{\prime} \mathrm{W}$	472	21.3.82
T226	$28^{\circ} 33.0{ }^{\prime}$	$177^{\circ} 50.0^{\prime} \mathrm{W}$	800-930	22.3.82
T233	$29^{\circ} 13.0{ }^{\prime}$	$178^{\circ} 00.0^{\prime} \mathrm{W}$	100	
T235	$30^{\circ} 19.3{ }^{\prime}$	$178{ }^{\circ} 21.0^{\prime} \mathrm{W}$	510-445	23.3.82
T241	30.05.0'	$178^{\circ} 25.1^{\prime} \mathrm{W}$	1087	23-24.3.82
T243	$30.05^{\prime} 0^{\prime}$	$178{ }^{\circ} 15.0^{\prime} \mathrm{W}$	1035	24.3.82
T244	30.05.2'	$178^{\circ} 10.2^{\prime} \mathrm{W}$	1450	
T247	$30^{\circ} 14.0{ }^{\circ}$	$178{ }^{\circ} 27.0^{\prime} \mathrm{W}$	15	
T256	$30^{\circ} 31.0^{\prime}$	$178{ }^{\circ} 39.0^{\prime} \mathrm{W}$	710-725	27.3.82
T257	$31^{\circ} 09.7^{\prime}$	$178{ }^{\circ} 40.0{ }^{\prime} \mathrm{W}$	890	28.3.82
T259	$31^{\circ} 09.8{ }^{\prime}$	$178{ }^{\circ} 30.0^{\prime} \mathrm{W}$	1310-1254	
U197	$34^{\circ} 09.8{ }^{\prime}$	$163^{\circ} 36.7^{\prime} \mathrm{E}$	1186	25.9.82
U198	$34^{\circ} 59.3{ }^{\prime}$	$162^{\circ} 11.2^{\prime} \mathrm{E}$	1573	26.9.82
U203	$35^{\circ} 33.2^{+}$	$159^{\circ} 05.8^{\prime} \mathrm{E}$	4919-4912	29.9.82
U204	$35^{\circ} 29.7{ }^{\prime}$	$157^{\circ} 28.0^{\prime} \mathrm{E}$	4570-4675	30.9.82
U208	$34^{\circ} 13.8{ }^{\prime}$	$151^{\circ} 29.1^{\prime} \mathrm{E}$	498-466	5.10 .82
U224	$36^{\circ} 55.7{ }^{\prime}$	$159^{\circ} 31.5^{\prime} \mathrm{E}$	4954-4961	15.10 .82
U325	$10^{\circ} 52.4{ }^{\prime}$	$165^{\circ} 58.6^{\prime} \mathrm{W}$	1585-1446	21.4.86
U345	$14^{\circ} 56.1{ }^{\prime}$	$172^{\circ} 15.3^{\prime} \mathrm{W}$	1972-2166	26.4.86
U351	$18^{\circ} 39.1{ }^{\prime}$	$172^{\circ} 12.2^{\prime} \mathrm{W}$	996-976	29.4.86
U568	$35^{\circ} 08.4{ }^{\prime}$	$169^{\circ} 28.4^{\prime} \mathrm{E}$	867-865	3.2.88
U573	$33^{\circ} 33.1{ }^{\prime}$	$170^{\circ} 06.4^{\prime} \mathrm{E}$	1260	4.2.88
U574	$33^{\circ} 19.6{ }^{\prime}$	$170^{\circ} 06.9^{\prime} \mathrm{E}$	570-580	
U582	$31^{\circ} 52.0{ }^{\prime}$	$172^{\circ} 26.0^{\prime} \mathrm{E}$	1058-988	5.2.88
U584	$31^{\circ} 26.3^{\prime}$	$172^{\circ} 35.6^{\prime} \mathrm{E}$	1137-1150	6.2.88
U591	$30^{\circ} 51.0^{\prime}$	$172^{\circ} 48.0^{\prime} \mathrm{E}$	486	7.2.88
U592	$30^{\circ} 41.3$	$172^{\circ} 54.0^{\prime} \mathrm{E}$	1067-1058	
U594	$30^{\circ} 20.1{ }^{\prime}$	$172^{\circ} 59.6{ }^{\prime} \mathrm{E}$	406	
U595	$30^{\circ} 21.5$	$173^{\circ} 08.7^{\prime} \mathrm{E}$	1474-1365	
U599	$30^{\circ} 43.0^{\circ}$	$173^{\circ} 16.0^{\prime} \mathrm{E}$	640-590	8.2.88
U602	$31^{\circ} 30.6{ }^{\prime}$	$172^{\circ} 50.9^{\prime} \mathrm{E}$	1216-1385	9.2.88
V365	$43^{\circ} 44.9{ }^{\prime}$	$179^{\circ} 00.4^{\prime} \mathrm{W}$	399	8.9.89
V372	$43^{\circ} 20.2{ }^{\prime}$	$178^{\circ} 58.8^{\prime} \mathrm{E}$	415-409	13.9 .89
V373	$43^{\circ} 35.5^{\prime}$	$178^{\circ} 59.5^{\prime} \mathrm{E}$	385	
V386	$44^{\circ} 05.3{ }^{\prime}$	$177^{\circ} 00.1^{\prime} \mathrm{E}$	665	16.9 .89
V387	$43^{\circ} 49.6{ }^{\prime}$	$176^{\circ} 59.8^{\prime} \mathrm{E}$	498-497	"
V388	$43^{\circ} 34.8{ }^{\prime}$	$176^{\circ} 59.9{ }^{\prime} \mathrm{E}$	331-328	"
X121	$37^{\circ} 24.7^{\prime}$	$177^{\circ} 11.7^{\prime} \mathrm{E}$	340	23.11.89
X122	$37^{\circ} 25.1{ }^{\prime}$	$177^{\circ} 11.1^{\prime} \mathrm{E}$	365	24.11.89
X138	$37^{\circ} 15.0^{\prime}$	$176{ }^{\circ} 50.4{ }^{\prime} \mathrm{E}$	355-265	27.11.89
X152	$36^{\circ} 09.7^{\prime}$	$176^{\circ} 48.4^{\prime} \mathrm{E}$	940-820	28.11.89
X182	$36^{\circ} 48.2{ }^{\text { }}$	$177^{\circ} 28.3^{\prime} \mathrm{E}$	1035-925	3.12.89
X221	$37^{\circ} 20.2^{\prime}$	$177^{\circ} 06.0^{\prime} \mathrm{E}$	405-300	7.12.89
Z2098	$28^{\circ} 39.5$	$173^{\circ} 01.0^{\prime} \mathrm{E}$	850	4.9.67
Z2997	$26^{\circ} 57.0$	$168^{\circ} 10.2^{\prime} \mathrm{E}$	1329	-
Z3907	$43^{\circ} 41.8{ }^{\prime}$	$179^{\circ} 55.1^{\prime} \mathrm{E}$	387	-

$\overline{\text { Stn }}$		Latitude No.	Longitude	(S$)$
			Depth (m)	Date
Z3909	$43^{\circ} 42.2^{\prime}$	$179^{\circ} 58.0^{\prime} \mathrm{E}$	388	-
Z3911	$43^{\circ} 38.1^{\prime}$	$178^{\circ} 09.2^{\prime} \mathrm{E}$	376	-
Z3924	$43^{\circ} 33.0^{\prime}$	$179^{\circ} 39.0^{\prime} \mathrm{E}$	402	-
Z3925	$43^{\circ} 24.0^{\prime}$	$179^{\circ} 22.5^{\prime} \mathrm{E}$	394	-
Z3928	$43^{\circ} 34.3^{\prime}$	$179^{\circ} 37.6^{\prime} \mathrm{E}$	399	-
Z3934	$43^{\circ} 33.3^{\prime}$	$179^{\circ} 39.4^{\prime} \mathrm{E}$	400	-
Z3936	$43^{\circ} 33.2^{\prime}$	$179^{\circ} 40.1^{\prime} \mathrm{E}$	389	-
Z3939	$43^{\circ} 32.2^{\prime}$	$179^{\circ} 40.0^{\prime} \mathrm{E}$	391	-
Z3943	$43^{\circ} 33.4^{\prime}$	$179^{\circ} 40.1^{\prime} \mathrm{E}$	388	-
Z3947	$43^{\circ} 33.1^{\prime}$	$179^{\circ} 39.9^{\prime} \mathrm{E}$	389	-
Z3948	$43^{\circ} 33.2^{\prime}$	$179^{\circ} 39.9^{\prime} \mathrm{E}$	390	-
Z3950	$43^{\circ} 32.9^{\prime}$	$179^{\circ} 43.6^{\prime} \mathrm{E}$	393	-

MoNZ Stations (BS)

BS208	$37^{\circ} 22.5^{\prime} \quad 176^{\circ} 22^{\prime} \mathrm{E}$	207-219	27.2.57
BS300	$41^{\circ} 30^{\prime} \quad 174{ }^{\circ} 54^{\prime} \mathrm{E}$	603	6.9.72
BS302	Antipodes Is	81	21.11.72
BS307	Raoul I., Kermadecs	110-146	4.4.73
BS309	Raoul I., Kermadecs	165-220	
BS310	Raoul I., Kermadecs	155-165	"
BS313	NW end of Raoul I.	146-201	5.4.73
BS314	$39^{\circ} 22^{\prime} \quad 171^{\circ} 50^{\prime} \mathrm{E}$	236	
BS327	Bay of Islands	7	7.12 .73
BS329	off Moturoa, Bay of Islands	31	8.12.273
BS335	Bay of Islands	37-40	10.12 .73
BS342	Bay of Islands	46-55	14.12.73
BS346	off Motuwhekeke I., Bay of Islands	22-31	"
BS353	$37^{\circ} 30^{\prime} \quad 179{ }^{\circ} 22^{\prime} \mathrm{E}$	1134-1207	7.2.74
BS362	$36^{\circ} 01^{\prime} \quad 174^{\circ} 43^{\prime} \mathrm{E}$	59	13.2.74
BS363	$35^{\circ} 58.5{ }^{\prime} \quad 174{ }^{\circ} 44^{\prime} \mathrm{E}$	62	
BS369	$35^{\circ} 32^{\prime} \quad 174{ }^{\circ} 41^{\prime} \mathrm{E}$	110-113	15.2.74
BS370	$35^{\circ} 29^{\prime} \quad 174^{\circ} 44^{\prime} \mathrm{E}$	110	15.2.74
BS372	$35^{\circ} 22^{\prime} \quad 174{ }^{\circ} 43^{\prime} \mathrm{E}$	146	
BS380	$35^{\circ} 10.5 \quad 174^{\circ} 10^{\prime} \mathrm{E}$	37	16.2.74
BS391	$34^{\circ} 01^{\prime} \quad 172^{\circ} 07^{\prime} \mathrm{E}$	622	18.2.74
BS392	$34^{\circ} 08^{\prime} \quad 172^{\circ} 11^{\prime} \mathrm{E}$	102	"
BS394	$34^{\circ} 11^{\prime} \quad 172^{\circ} 10^{\prime} \mathrm{E}$	91	19.2.74
BS395	$34^{\circ} 10^{\prime} \quad 172^{\circ} 12^{\prime} \mathrm{E}$	252	"
BS396	$34^{\circ} 13^{\prime} \quad 172^{\circ} 11.5^{\prime} \mathrm{E}$	256	"
BS401	$34^{\circ} 22^{\prime} \quad 173^{\circ} 03^{\prime} \mathrm{E}$	121	"
BS402	$34^{\circ} 26^{\prime} \quad 173^{\circ} 14^{\prime} \mathrm{E}$	146	20.2.74
BS415	Bay in Stephenson's I.,	opposite	
	Whangaroa Heads	22-24	23.2.74
BS434	4.1 km off Fleetwood Bluff, Raoul I.	135	25.10 .75
BS437	5.6 km off Fleetwood Bluff, Raoul	154	"
BS438	3.9 km off Nugent I., Raoul I.	146-165	28.10 .75
BS441	3.7 km off Nugent I., Raoul I.366-402	.	

$\begin{aligned} & \text { Stn } \\ & \text { No. } \end{aligned}$	Latitude (${ }^{\circ}$ S)	Longitude	Depth (m)	Date
BS442	$\begin{array}{r} 5.0 \mathrm{~km} \mathrm{o} \\ \text { Raoul } \end{array}$	Nugent I.,	512-549	28.10.75
BS480	$41^{\circ} 26^{\prime}$	$174{ }^{\circ} 47^{\prime} \mathrm{E}$	99-106	29.2.76
BS559	$43^{\circ} 14^{\prime}$	$173^{\circ} 39^{\prime} \mathrm{E}$	512-1006	27.9.76
BS560	$42^{\circ} 35{ }^{\prime}$	$173{ }^{\circ} 41^{\prime} \mathrm{E}$	640	28.9.76
BS570	$29^{\circ} 14^{\prime}$	$177^{\circ} 50^{\prime} \mathrm{W}$	135-146	10.9 .76
BS571	$29^{\circ} 19^{\prime}$	$177^{\circ} 54^{\prime} \mathrm{W}$	219-274	"
BS581	$29^{\circ} 14^{\prime}$	$177^{\circ} 53^{\prime} \mathrm{W}$	530-567	13.9.76
BS630	$42^{\circ} 36^{\prime}$	$170^{\circ} 40^{\prime} \mathrm{E}$	300	13.4.78
BS631(P441)				
	$34^{\circ} 24.0^{\prime}$	$172^{\circ} 16.8^{\prime} \mathrm{E}$	120	20.6.78
BS632(P449)				
	$34^{\circ} 20.0^{\prime}$	$172^{\circ} 30.0^{\prime} \mathrm{E}$	100	"
BS633(P461)				
	$34^{\circ} 20^{\prime}$	$171{ }^{\circ} 48^{\prime} \mathrm{E}$	440	21.6 .78
BS634(P465)				
	$34^{\circ} 17^{\prime}$	$171^{\circ} 45^{\prime} \mathrm{E}$	427	"
BS635(P475)				
	$33^{\circ} 59.2^{\prime}$	$172^{\circ} 13.6^{\prime} \mathrm{E}$	155	23.6 .78
BS636(P476)				
	$34^{\circ} 01.8^{\prime}$	$172^{\circ} 12.9^{\prime} \mathrm{E}$	508	"
BS637(P485)				
	$4^{\circ} 05.5^{\prime}$	$172^{\circ} 24.6^{\prime} \mathrm{E}$	200	24.6.78
BS638(P487)				
	$34^{\circ} 14.2{ }^{\prime}$	$172^{\circ} 32.4{ }^{\prime} \mathrm{E}$	100	"
BS639(P515)				
	$33^{\circ} 58.0^{\prime}$	$172^{\circ} 30.6^{\prime} \mathrm{E}$	550	25.6.78
BS641(P571)				
	$34^{\circ} 02.0^{\prime}$	$171^{\circ} 48.4^{\prime} \mathrm{E}$	188	29.6.78
BS642(P574)				
	$34^{\circ} 06.5$	$172^{\circ} 04.7^{\prime} \mathrm{E}$	310	"
BS649(R7)				
	42 ${ }^{\circ} 29.2^{\prime}$	$176^{\circ} 06.3^{\prime} \mathrm{E}$	1262	11.1.79
BS654(R12)				
	$43^{\circ} 02.6{ }^{\prime}$	$175^{\circ} 24.2^{\prime} \mathrm{E}$	253	12.1.79
BS665(R23)				
	$42^{\circ} 16.3^{\prime}$	$174^{\circ} 20.8^{\prime} \mathrm{E}$	860	14.1.79
BS668(R26)				
	$41^{\circ} 52.1{ }^{\prime}$	$174^{\circ} 43.2^{\prime} \mathrm{E}$	454	"
BS672(R30)				
	$41^{\circ} 31.4^{\prime}$	$174^{\circ} 52.6^{\prime} \mathrm{E}$	533	15.1.79
BS682(R40)				
	$37^{\circ} 35.0^{\prime}$	$178^{\circ} 43.0{ }^{\prime}$ E	129	17.1.79
BS697(R55)				
	$37^{\circ} 25.2^{\prime}$	$177^{\circ} 11.8^{\prime} \mathrm{E}$	318	19.1.79
BS707(R65)				
	$37^{\circ} 24.0{ }^{\prime}$	$177^{\circ} 06.5^{\prime} \mathrm{E}$	740	"
BS709(R67)				
	$37^{\circ} 21.5^{\prime}$	$177^{\circ} 06.0^{\prime} \mathrm{E}$	283	"
BS715(R73)				
	$37^{\circ} 17.0^{\prime}$	$176^{\circ} 51.0^{\prime} \mathrm{E}$	251	20.1.79
BS718(R76)				
	$37^{\circ} 29.1^{+}$	$176^{\circ} 54.7^{\prime} \mathrm{E}$	248	"
BS723(R81)				
	$37^{\circ} 35.9{ }^{\prime}$	$176^{\circ} 59.5^{\prime} \mathrm{E}$	179	"

Stn Latitude No. $\left({ }^{\circ}\right.$ S $)$	Longitude	Depth (m)	Date
BS724(R82)			
$37^{\circ} 37.5{ }^{\prime}$	$176^{\circ} 59.9^{\prime} \mathrm{E}$	129	20.1.79
BS732(R90)			
$37^{\circ} 46.5^{\prime}$	$176^{\circ} 38.5^{\prime} \mathrm{E}$	39	21.1.79
BS733(R91)			
$37^{\circ} 43.4{ }^{\prime}$	$176^{\circ} 38.5^{\prime} \mathrm{E}$	59	"
BS734(R92)			
$37^{\circ} 39.4{ }^{\prime}$	$176^{\circ} 34.4{ }^{\prime} \mathrm{E}$	82	"
BS742(R100)			
$37^{\circ} 22.0^{\prime}$	$176^{\circ} 28.5^{\prime}$ E	448	22.1.79
BS744(R102)			
$37^{\circ} 18.9^{\prime}$	$176^{\circ} 16.2^{\prime} \mathrm{E}$	59	"
BS747(R105)			
$37^{\circ} 16.7^{\prime}$	$176^{\circ} 17.5^{\prime} \mathrm{E}$	104	"
BS748(R106)			
$37^{\circ} 15.2$	$176{ }^{\circ} 14.5{ }^{\prime} \mathrm{E}$	188	"
BS753(R111)			
$37^{\circ} 07.8^{\prime}$	$176^{\circ} 18.7^{\prime} \mathrm{E}$	463	23.1.79
BS756(R114)			
$37^{\circ} 00.8^{\prime}$	$176^{\circ} 12.3$ E	178	"
BS757(R115)			
$37^{\circ} 00.2^{\prime}$	$176^{\circ} 14.8{ }^{\prime} \mathrm{E}$	304	"
BS761(R119)			
37.22.0'	$176^{\circ} 40.0^{\prime} \mathrm{E}$	616	24.1.79
BS762(R120)			
$37^{\circ} 29.0^{\prime}$	$176^{\circ} 32.0^{\prime} \mathrm{E}$	818	"
BS763(R121)			
$37^{\circ} 30.8^{\prime}$	$176^{\circ} 32.3$ E	755	"
BS768(R126)			
$37^{\circ} 33.1{ }^{\prime}$	$178{ }^{\circ} 49.5^{\prime} \mathrm{E}$	94	25.1.79
BS770(R128)			
$37^{\circ} 33.4^{\prime}$	$178{ }^{\circ} 48.3^{\prime} \mathrm{E}$	106	"
BS771(R129)			
$39^{\circ} 15.4{ }^{\prime}$	$178^{\circ} 19.3{ }^{\prime} \mathrm{E}$	413	26.1.79
BS806(O550)			
$35^{\circ} 54{ }^{\prime}$	$172{ }^{\circ} 12^{\prime} \mathrm{E}$	543-597	11.1.81
BS807(O551)			
$35^{\circ} 10.4{ }^{\prime}$	$172^{\circ} 35.4^{\prime} \mathrm{E}$	110-146	"
BS812(O556)			
$35^{\circ} 37.6^{\prime}$	$172^{\circ} 36.5^{\prime} \mathrm{E}$	657	"
BS819(O564)			
$37^{\circ} 06.6^{\prime}$	$173^{\circ} 54.1^{\prime} \mathrm{E}$	952	12.1.81
BS830(O575)			
$39^{\circ} 52.8{ }^{\prime}$	$177^{\circ} 36.5^{\prime}$	785-882	21.1.81
BS831(O576)			
$38^{\circ} 39{ }^{\prime}$	$178{ }^{\circ} 41^{\prime} \mathrm{E}$	725-755	"
BS833(O578)			
$37^{\circ} 38^{\prime}$	$178{ }^{\circ} 56^{\prime} \mathrm{E}$	143-153	22.1.81
BS842(O588)			
$37^{\circ} 17.4^{\prime}$	$176^{\circ} 53.6^{\prime} \mathrm{E}$	292-337	23.1.81
BS843(O589)			
$37^{\circ} 15^{\prime}$	$176{ }^{\circ} 51{ }^{\prime} \mathrm{E}$	163-407	"
BS844(O590)			
$37^{\circ} 11^{\prime}$	$176{ }^{\circ} 39^{\prime} \mathrm{E}$	685-705	"

Stn Latitude No. $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date	$\begin{array}{lc} \hline \text { Stn } & \text { Latitude } \\ \text { No. } & \left({ }^{\circ} \mathrm{S}\right) \end{array}$	Longitude	Depth (m)	Date
BS846(O592)				BS913(O659)			
$37^{\circ} 04^{\prime}$	$176^{\circ} 27^{\prime} \mathrm{E}$	807-872	23.1.81		$172^{\circ} 278^{\prime} \mathrm{E}$	78	2281
BS849(O595)					1727.8 E	78	2.2.81
$37^{\circ} 00^{\prime}$	$176{ }^{\circ} 13^{\prime} \mathrm{E}$	202-207	24.1.81	Miscellaneous Vessels (AIM, AMS, AUM, BM, MoNZ, Portobello, USNM)			
BS856(O602)							
$35^{\circ} 35^{\prime}$	$175{ }^{\circ} 46^{\prime} \mathrm{E}$	327-329	"				
BS866(O612)				Albatross :			
$34^{\circ} 43^{\prime}$	$173^{\circ} 32^{\prime} \mathrm{E}$	163-168	27.1.81	$3708 \quad 35^{\circ} 02^{\prime} \mathrm{N}$	$138^{\circ} 46^{\prime} \mathrm{E}$	110-128	8.5.1900
BS878(O624)				$4894 \quad 32^{\circ} 33^{\prime} \mathrm{N}$	$128^{\circ} 32^{\prime} \mathrm{E}$	174	9.8 .1906
$34^{\circ} 25.7^{\prime}$	$173^{\circ} 12.8{ }^{\prime} \mathrm{E}$	207-221	"	Alexander Nesmeyanov:			
BS881(O627)				N17-6 32 ${ }^{\circ} 15^{\prime}$	$179^{\circ} 10^{\prime} \mathrm{E}$	900-950	Dec 1989
$34^{\circ} 20^{\prime}$	$173^{\circ} 06^{\prime} \mathrm{E}$	163-168	"	N17-15 32 ${ }^{\circ} 15^{\prime}$	$179^{\circ} 10^{\prime} \mathrm{E}$	760-830	Dec 1989
BS882(O628)				Alpha Helix:			
$32^{\circ} 32^{\prime}$	$167^{\circ} 30^{\prime} \mathrm{E}$	113-118	29.1.81				
BS883(O629) ${ }^{\text {3 }}$				79-M15 11 ${ }^{\circ} 31.5^{\prime}$	$135^{\circ} 48.8^{\prime} \mathrm{E}$	24	-
$32^{\circ} 32^{\prime}$	$167^{\circ} 31^{\prime} \mathrm{E}$	113	"	Azuchi Maru:			
BS884(O630) ${ }^{\text {a }}$				$96 \quad 44^{\circ} 17.8^{\prime}$	$177^{\circ} 30.6^{\prime} \mathrm{W}$	512	-
32033'	$167^{\circ} 29^{\prime} \mathrm{E}$	133	"	Belinda:			
BS888(O634) $32^{\circ} 39^{\prime}$	$167^{\circ} 40^{\prime} \mathrm{E}$	357-487	"	$44^{\circ} 10.6{ }^{\prime}$	$147^{\circ} 10.1^{\prime} \mathrm{E}$	1051-1100	-
BS889(0635)	1670	357-48		Challenger:			
$32^{\circ} 41^{\prime}$	$167^{\circ} 38^{\prime} \mathrm{E}$	206-296	30.1.81	Chatham:			
BS891(O637)				$4 \quad 43^{\circ} 14^{\prime}$	$176^{\circ} 11^{\prime} \mathrm{W}$	366	23.1.54
$32^{\circ} 39^{\prime}$	$167^{\circ} 32^{\prime} \mathrm{E}$	133	"	$34 \quad 44^{\circ} 04^{\prime}$	$175^{\circ} 23.5^{\prime} \mathrm{W}$	238	1954
BS893(O639)				Cordilla:			
${ }^{33^{\circ} 59.9}$	$171^{\circ} 45.3^{\prime} \mathrm{E}$	186-196	31.1.81	$42^{\circ} 50^{\prime}$	$177^{\circ} 41^{\prime} \mathrm{W}$	763-775	13.8 .89
BS895(O641) $34^{\circ} 02^{\prime}$				Eltanin:			
BS896(0642) ${ }^{34^{\circ} 02^{\prime}}$	$171^{\circ} 44^{\prime} \mathrm{E}$	246-291	"	$370 \quad 53^{\circ} 54^{\prime}$	$64^{\circ} 36^{\prime} \mathrm{W}$	104-115	12.12.62
BS897(O643)	$171{ }^{\circ} 45 \mathrm{E}$	201-216	,	$171238^{\circ} 24^{\prime}$	$178^{\circ} 53^{\prime} \mathrm{W}$	1354-	
$\mathrm{BS} 897(\mathrm{O} 643)$ $34^{\circ} 02^{\prime}$			"			1995	28.5.66
BS898(O644) ${ }^{34}$	$171{ }^{\circ} 46^{\prime} \mathrm{E}$	206-221		1718 38 ${ }^{\circ} 27^{\prime}$	$168^{\circ} 07^{\prime} \mathrm{W}$	531-659	13.7.66
$\mathrm{BS} 898(\mathrm{O} 644)$ $34^{\circ} 01^{\prime}$			"	1850 49 ${ }^{\circ} 40^{\prime}$	$178{ }^{\circ} 53^{\prime} \mathrm{E}$	103	2.1.67
BS899(0645)	$171^{\circ} 44^{\prime} \mathrm{E}$	206-211	"	1983 47º 11^{\prime}	$147^{\circ} 47^{\prime} \mathrm{E}$	1028-1034	24.2.67
$\mathrm{BS} 899(\mathrm{O} 645)$ $34^{\circ} 00^{\prime}$				Franklin:			
$34^{\circ} 00^{\prime}$ BS902(0648)	$171^{\circ} 47^{\prime} \mathrm{E}$	143-163	"	6/88/4 10 ${ }^{\circ} 34^{\prime}$	$144^{\circ} 13^{\prime} \mathrm{E}$	815-825	20.8.88
$\mathrm{BS902}(\mathrm{O} 648)$ $34^{\circ} 10.5$				6/88/5 $10^{\circ} 37.2^{\prime}$	$144^{\circ} 22.0^{\prime} \mathrm{E}$	990-1053	21.8.88
${ }^{3} 84^{\circ} 10.5$	$172^{\circ} 11.4{ }^{\prime} \mathrm{E}$	153	1.2.81	$5 / 89 / 4 \quad 36{ }^{\circ} 43.1{ }^{\prime}$	$156^{\circ} 13.3^{\prime} \mathrm{E}$	143	1.5.89
BS904(0650) ${ }^{\circ}$			"	$5 / 89 / 5 \quad 33^{\circ} 14^{\prime}$	$156^{\circ} 10^{\prime} \mathrm{E}$	132	"
33 ${ }^{\circ} 57.0^{\prime}$	$172^{\circ} 19.0^{\prime} \mathrm{E}$	128	*	$5 / 89 / 1030^{\circ} 48^{\prime}$	$156^{\circ} 13^{\prime} \mathrm{E}$	288	2.5.89
BS905(O651)			"	5/89/25 28 ${ }^{\circ} 05.8^{\prime}$	$163^{\circ} 06^{\prime} \mathrm{E}$	1051	5.5.89
BS906(O652) ${ }^{33}$	$172^{\circ} 19.4{ }^{\text {E }}$	123-128		$5 / 89 / 3227^{\circ} 12.0{ }^{\prime}$	$160^{\circ} 37.8^{\prime} \mathrm{E}$	1960	7.5.89
BS906(0652) $34^{\circ} 15^{\prime}$				5/89/40 26 ${ }^{\circ} 45.3{ }^{\prime}$	$159^{\circ} 31.0^{\prime} \mathrm{E}$	315-360	8.6 .89
BS907(0653) ${ }^{34^{\circ} 15}$	$172^{\circ} 14$ E	173-178	2.2.81	$5 / 89 / 4127^{\circ} 08.4{ }^{\prime}$	$158^{\circ} 15.2^{\prime} \mathrm{E}$	2860	"
$43^{\circ} 17^{\prime}$	$172^{\circ} 16^{\prime} \mathrm{E}$	123-133	"	5/89/47 $28^{\circ} 17.5^{\prime}$	$158{ }^{\circ} 37.9^{\prime} \mathrm{E}$	419	10.5.89
BS909(0655)	$172{ }^{\circ} 16^{\text {E }}$	123-133		Ikatere:			
$\mathrm{BS} 909(\mathrm{O} 655)$ $34^{\circ} 16^{\prime}$			"	B26 35 ${ }^{\circ} 04^{\prime}$	$174{ }^{\circ} 23^{\prime} \mathrm{E}$	185	-
${ }_{\text {c }}{ }^{344^{\circ} 16^{\prime}}$	$172^{\circ} 15^{\prime} \mathrm{E}$	138-143		J1/56/71			
BS910(O656) $34^{\circ} 19^{\prime}$				$35^{\circ} 05^{\prime}$	$172^{\circ} 27^{\prime} \mathrm{E}$	274	-
BS911(O657) ${ }^{34{ }^{\circ} 19}$	$172^{\circ} 18^{\prime} \mathrm{E}$	88-93		J15/9/76			
$34^{\circ} 20.2^{\prime}$	$172^{\circ} 21.8^{\prime} \mathrm{E}$	121	"	$39^{\circ} 40^{\prime}$	$169^{\circ} 45^{\prime} \mathrm{E}$	712-740	-
BS912(O658)	17.8			J9/15/77			
34 ${ }^{\circ} 22.8^{\prime}$	$172^{\circ} 24.6^{\prime} \mathrm{E}$	121	"	JC10/57/71			
				$47^{\circ} 09^{\prime}$	$169^{\circ} 28.4^{\prime} \mathrm{E}$	429-456	-

Stn No.	Latitude $\left({ }^{\circ} \mathrm{S}\right)$	Longitude	Depth (m)	Date
JC11/2/71				
	$43^{\circ} 56^{\prime}$	$174^{\circ} 35.8^{\prime} \mathrm{E}$	585	-
JC19/9/84				
	$40^{\circ} 06^{\prime}$	$167^{\circ} 57.9^{\prime} \mathrm{E}$	919-922	13.11.84
JC19/19/84				
	$39^{\circ} 42.4$	$168^{\circ} 07^{\prime} \mathrm{E}$	748-780	15.11 .84
K1/24/81				
	$40^{\circ} 46.1{ }^{\prime}$	$176^{\circ} 59.0^{\prime} \mathrm{E}$	1010-1035	25.11.84
K1/25/81				
	$40^{\circ} 13.3{ }^{\prime}$	$177^{\circ} 11.8^{\prime}$	555-585	25.11.81
KTN17/82				
	$42^{\circ} 46.2$	$176^{\circ} 32.5^{\prime} \mathrm{W}$	1100	-
KTN26/82				
	$42^{\circ} 50^{\prime}$	$176^{\circ} 08^{\prime} \mathrm{W}$	1050	-
Private Collection:				
L892	N. of Cur Kermad	$\text { rtis } \mathrm{I}_{\mathrm{I}},$ decs	30	13.10.85
L999	W. of Esp	perance Rock	22	1.9.88
L1050	W. of N. Raoul I	Meyer I.,	12	1.1 .91
L1051	SW of N Raoul I	apier I.,	36	1.6.91
L1056	$34^{\circ} 11^{\prime}$	$172^{\circ} 03.3^{\prime} \mathrm{E}$	20	18.1.85
L1057	$34^{\circ} 10.5{ }^{\prime}$	$172^{\circ} 02^{\prime} \mathrm{E}$	37	1.2.85
L1413	N . of Ma Kermad	cauley I., decs	20	1.6 .92
L1630	W. side M Raoul I	Meyer I.,	7	1.1.91
L2633	$34^{\circ} 08.2$	$172^{\circ} 10.4{ }^{\prime} \mathrm{E}$	15	19.1 .85
L2641	$34^{\circ} 11^{\prime}$	$172^{\circ} 03.3^{\prime} \mathrm{E}$	15-18	18.1.85
L2680	$37^{\circ} 33.5$	$178^{\circ} 18^{\prime} \mathrm{E}$	10	25.1.85
L2712	$36^{\circ} 37^{\prime}$	$175^{\circ} 48^{\prime} \mathrm{E}$	20	25.10.84
L2715	$36^{\circ} 08^{\prime}$	$175^{\circ} 30^{\prime} \mathrm{E}$	53	2.1.81
L2925	$35^{\circ} 54{ }^{\prime}$	$175^{\circ} 07^{\prime} \mathrm{E}$	23	28.10 .84
L2926	$36^{\circ} 15.5{ }^{\prime}$	$175^{\circ} 19.6{ }^{\prime} \mathrm{E}$	16	23.10 .84
L2929	$35^{\circ} 54{ }^{\prime}$	$175^{\circ} 07^{\prime} \mathrm{E}^{\prime} \mathrm{E}$	30	3.1 .84
L3069	$35^{\circ} 28.4$	$174^{\circ} 43.5^{\prime} \mathrm{E}$	5-7	27.8.84
L3071	$35^{\circ} 28.4{ }^{\prime}$	$174^{\circ} 43.5^{\prime} \mathrm{E}$	5-22	"
L4620	Duncomb Norfolk	be Bay, k I.	10-12	1.11.89
L4621	Duncomb Norfolk	$\begin{aligned} & \text { be Bay, } \\ & \text { k I. } \end{aligned}$	20	.
L4622	W. of Ne Norfolk	$\begin{aligned} & \text { epean, } \\ & \text { k I. } \end{aligned}$	15	22.3.92
L4623	Organ Ro Norfolk	$\begin{aligned} & \text { ock, } \\ & \text { k I. } \end{aligned}$	15	1.11.89
L4721	W. of Ch Kermad	eeseman I., decs	26	1.9 .88

LIST OF SPECIES

Order SCLERACTINIA Suborder FUNGIINA Superfamily FUNGIOIDEA Family FUNGIACYATHIDAE

Fungiacyathus (Fungiacyathus) stephanus (Alcock)
Fungiacyathus (Fungiacyathus) fragilis G.O. Sars
Fungiacyathus (Fungiacyathus) pusillus pacificus n.ssp.
Fungiacyathus (Bathyactis) marenzelleri (Vaughan)
Fungiacyathus (Bathyactis) margaretae n.sp.
Fungiacyathus (Bathyactis) turbinolioides Cairns

Family MICRABACIIDAE

Letepsammia superstes (Ortmann)
Letepsammia fissilis n.sp.
Letepsammia formosissima (Moseley)
Stephanophyllia complicata Moseley

Suborder FAVIINA
Superfamily FAVIOIDEA
Family RHIZANGIIDAE
Culicia rubeola (Quoy \& Gaimard)

Family OCULINIDAE
Oculina virgosa Squires
Madrepora oculata Linnaeus

Family ANTHEMIPHYLLIIDAE
Anthemiphyllia dentata (Alcock)

Suborder CARYOPHYLLIINA
Superfamily CARYOPHYLLIOIDEA
Family CARYOPHYLLIIDAE
Caryophyllia (Caryophyllia) rugosa Moseley
Caryophyllia (Caryophyllia) hawaiiensis Vaughan
Caryophyllia (Caryophyllia) quadragenaria Alcock
Caryophyllia (Caryophyllia) profunda Moseley
Caryophyllia (Caryophyllia) atlantica (Duncan)
Caryophyllia (Caryophyllia) ralphae n.sp.

Caryophyllia (Caryophyllia) diomedeae Marenzeller
Caryophyllia (Caryophyllia) japonica Marenzeller
Caryophyllia (Caryophyllia) lamellifera Moseley
Caryophyllia (Caryophyllia) elongata Cairns
Caryophyllia (Caryophyllia) scobinosa Alcock
Caryophyllia (Caryophyllia) ambrosia Alcock
Caryophyllia (Premocyathus) compressa Yabe \& Eguchi
Coenocyathus brooki n.sp.
Crispatotrochus curvatus n.sp.
Crispatotrochus rugosus n.sp.
Labyrinthocyathus limatulus (Squires)
Labyrinthocyathus sp.
Polycyathus norfolkensis n.sp.
Trochocyathus (Trochocyathus) rhombocolumna Alcock
Trochocyathus (Trochocyathus) maculatus n.sp.
Trochocyathus (Trochocyathus) gordoni n.sp.
Trochocyathus (Trochocyathus) cepulla n.sp.
Trochocyathus (Aplocyathus) hastatus Bourne
Tethocyathus cylindraceus (Pourtalès)
Tethocyathus virgatus (Alcock)
Stephanocyathus (Stephanocyathus) platypus (Moseley)
Stephanocyathus (Acinocyathus) spiniger (Marenzeller)
Stephanocyathus (Odontocyathus) weberianus (Alcock)
Stephanocyathus (Odontocyathus) coronatus (Pourtalès)
Vaughanella oreophila Keller
Vaughanella multipalifera n.sp.
Bourneotrochus stellulatus (Cairns)
Deltocyathus ornatus Gardiner
Deltocyathus formosus n.sp.
Conotrochus brunneus (Moseley)
Aulocyathus recidivus (Dennant)
Dasmosmilia lymani (Pourtalès)
Desmophyllum dianthus (Esper)
Thalamophyllia tenuescens (Gardiner)
Hoplangia durotrix Gosse
Goniocorella dumosa (Alcock)
Anomocora cf. fecunda (Pourtalès)
Solenosmilia variabilis Duncan

Family TURBINOLIIDAE

Conocyathus zelandiae Duncan
Alatotrochus rubescens (Moseley)
Sphenotrochus (Sphenotrochus) ralphae Squires
Sphenotrochus (Sphenotrochus) squiresi n.sp.
Kionotrochus suteri Dennant

Cryptotrochus venustus (Alcock)
Peponocyathus dawsoni n.sp.
Tropidocyathus pileus (Alcock)
Notocyathus conicus (Alcock)
Thrypticotrochus multilobatus Cairns

Superfamily FLABELLOIDEA Family GUYNIIDAE

Pedicellocyathus keyesi n.gen., n.sp.
Truncatoguynia irregularis Cairns
Stenocyathus vermiformis (Pourtalès)
Temnotrochus kermadecensis n.gen., n.sp.

Family FLABELLIDAE

Flabellum (Flabellum) knoxi Ralph \& Squires Flabellum (Flabellum) angiostomum Folkeson Flabellum (Flabellum) impensum Squires Flabellum (Ulocyathus) lowekeyesi Squires \& Ralph
Flabellum (Ulocyathus) messum Alcock
Flabellum (Ulocyathus) aotearoa Squires
Flabellum (Ulocyathus) hoffmeisteri Cairns \& Parker Flabellum (Ulocyathus) apertum apertum Moseley Monomyces rubrum (Quoy \& Gaimard)
Polymyces wellsi Cairns

Rhizotrochus flabelliformis Cairns
Gardineria hawaiiensis Vaughan
Gardineria sp.
Javania lamprotichum (Moseley)
Javania pachytheca n.sp.
Truncatoflabellum paripavoninum (Alcock)
Truncatoflabellum dens (Alcock)
Truncatoflabellum phoenix n.sp.
Truncatoflabellum arcuatum n.sp.
Placotrochides scaphula Alcock
Falcatoflabellum raoulensis n.gen., n.sp.

> Suborder DENDROPHYLLIINA Family DENDROPHYLLIIDAE

Balanophyllia chnous Squires
Balanophyllia gigas Moseley
Balanophyllia crassitheca n.sp.
Endopachys grayi Milne Edwards \& Haime
Eguchipsammia gaditana (Duncan)
Eguchipsammia fistula (Alcock)
Eguchipsammia japonica (Rehberg)
Cladopsammia eguchii Wells
Dendrophyllia arbuscula Van der Horst
Dendrophyllia alcocki (Wells)
Enallopsammia rostrata (Pourtalès)
Enallopsammia cf. marenzelleri Zibrowius

ZOOGEOGRAPHY

Vaughan and Wells (1943: 88) made the brief statement that $10(56 \%)$ of the 18 species of New Zealand Scleractinia then known were endemic, the other eight being related to a South Pacific fauna. Based on the slightly larger number of 21 species, Ralph and Squires (1962) suggested that the New Zealand coral fauna originated from pre-Pliocene relicts and a more recent invasion from the IndoPacific, and minimised the endemic nature of the fauna. Finally, based on 25 species, Squires and Keyes (1967) stated that 12 species (48%) were endemic, seven were autochthonous (traceable to forms from the New Zealand Neogene), and the remainder shared a relationship with South Pacific and Antarctic faunas, including two species with affinities to the Australian region. They also discussed five general patterns of distribution based on 17 of these 25 species. Their first general pattern (New Zealand endemic) corresponds to pattern 2D discussed below; their second pattern (warm-temperate shelf) corresponds to pattern 2A discussed below; their third pattern includes a
miscellaneous group of three species; the fourth pattern groups four eurythermic tropical species (patterns 1B, C, D discussed below), and their fifth pattern also corresponds to two eurythermic tropical species (pattern 1D) and one widespread temperate species (pattern 3A).

The following analysis is based on 104 species, one species (Conocyathus zelandiae) remaining unclassified. It includes a much larger area than previous studies of the New Zealand region, defined as having latitudinal boundaries of $24^{\circ} \mathrm{S}$ and $57^{\circ} 30^{\prime} \mathrm{S}$ and longitudinal borders of $157^{\circ} \mathrm{E}$ to $167^{\circ} \mathrm{W}$ (the New Zealand region as defined and mapped by Carter (1980)).

Patterns of Distribution

Four general patterns of distribution (Tables 2 and 3) emerge from a study of the distribution patterns of the 104 azooxanthellate species in the New Zealand region, these patterns being in general

Table 3. Patterns of scleractinian distribution within the New Zealand region.
I. Cosmopolitan, Indo-West Pacific, or widespread in Pacific, with a southern range in New Zealand regionextending to:
A. Subtropics (no farther south than 33°), including Wanganella Bank, Norfolk Ridge;
Lord Howe Islands; northern Three Kings Ridge; Colville Ridge; Kermadec Islands ... 29 species
B. Warm-temperate Auckland Province (eurythermic tropical) 12 species
C. Cold-temperate region (southern North Island, South Island, Chatham Rise, Campbell and Bounty Plateaus, northern Macquarie Ridge), broad eurythermic tropical 8 species
D. Subantarctic (Macquarie Ridge south of $50^{\circ} \mathrm{S}$, Hjort Seamount) 10 species
II. "Endemic", or thus far known only from:
A. Warm-temperate Auckland Province 7 species
B. Auckland Province and subtropical ridges and islands to north of New Zealand 6 species
C. Subtropical ridges and islands north of $33^{\circ} \mathrm{S}$ (Lord Howe Island, Norfolk Ridge, Three Kings Ridge, Colville Ridge, and Kermadec Islands) 14 species
D. Temperate (warm and cold) New Zealand 4 species
E. Cold-temperate region 2 species
III. Widespread temperate species
A. Restricted to southern temperate latitudes 5 species
B. Disjunct distribution off Japan or northeast Atlantic and New Zealand 6 species
IV. Antarctic 1 species
agreement with the horizontal distribution of shelf fauna proposed by Briggs (1974).
The commonest pattern of azooxanthellate coral distribution in the New Zealand region is that of species that are widespread in the tropical IndoWest Pacific (or even cosmopolitan) that have their southern limit in the Southwest Pacific in the New Zealand region. Also included in this group are four species (Tethocyathus cylindraceus, Stephanocyathus coronatus, Dasmosmilia lymani, and Hoplangia duro-trix) that are thus far known to occur only in the Atlantic Ocean and New Zealand region. This group (pattern 1 of Tables 2-3) consists of 59 species (57% of regional fauna) and can be further subdivided based on the degree of southward extension into the New Zealand region. For instance, 29 of these 59 species are found no farther south than $33^{\circ} \mathrm{S}$ (pattern 1A). Zooxanthellate corals are known from Lord Howe Island (Veron \& Done 1979; Veron 1993: 65 species), Norfolk Island (Veron 1986; Veron, pers. comm., 1993: 5 species), and the Kermadec Islands (Vaughan 1917: 8 species), the latter assumed by some (e.g., Schiel, Kingsford \& Choat 1986) to be subtropical. However, there are no islands or shallow banks in the New Zealand region between Esperance Rock (the southern limit of zooxanthellate corals, about $31^{\circ} 20^{\prime} \mathrm{S}$) and Three Kings Islands (about 34°), where no zooxanthellate corals are known to occur. But, because 13 of the 29 species having pattern 1A have their southernmost occurrences at $33^{\circ} \mathrm{S}$, often at Wanganella Bank on the southern Norfolk Ridge, this latitude was chosen as the boundary between the subtropics and warm-temperate upper slope $(200-1000 \mathrm{~m})$ region of New Zealand. It is interesting to note that the northern limit of reef corals in the northwest Atlantic is $34-35^{\circ} \mathrm{N}$ (MacIntyre 1970) and the northern limit of reef corals in the northwest Pacific is $34^{\circ} 30^{\prime} \mathrm{N}$ (Veron 1992). Latitude $33^{\circ} \mathrm{S}$ is also considered to be the northern limit of the warmtemperate upper-slope Auckland Province.

A second distributional pattern (pattern 1B) consists of 12 species that are widespread in the tropics but also extend into the warm-temperate region of New Zealand - the Auckland Province. Briggs (1974) defined this region to include the northern half of North Island from East Cape and $38-39^{\circ} \mathrm{S}$ on the west coast. He referred to species having this kind of distribution as eurythermic tropical.

A third distributional pattern (pattern 1C) consists of eight species termed "broad eurythermic tropical" by Briggs (1974), including species that are widespread in the tropics but also extend
into cold-temperate regions. In New Zealand, the cold-temperate region is defined by Briggs (1974) to include the North Island south of the warmtemperate boundary, South Island, Chatham Rise, Bounty and Campbell Plateaus, and northern Macquarie Ridge north of $50^{\circ} \mathrm{S}$. Three of these eight species are cosmopolitan in distribution.

A final, fourth category of widespread species (pattern 1D) is a derivative of the third, consisting of ten species that extend even farther south into Subantarctic waters of the Macquarie Ridge (south of $50^{\circ} \mathrm{S}$) and Hjort Seamount. Seven of these ten species have cosmopolitan or near-cosmopolitan distributions. Squires and Keyes' (1967: fig. 4) fourth general pattern of distribution corresponds to patterns 1C-D discussed above.

A second group of distributional patterns comprises those species that are "endemic" or at least so far known only from a restricted geographic range. Seven species (pattern 2A) occur only in the warm-temperate Auckland Province. Because the bathymetric ranges of these species are fairly shallow (i.e., mostly $50-300 \mathrm{~m}$), most of these species may in fact be endemic to this province. This pattern corresponds to Squires and Keyes' (1967: fig. 2) second general pattern of distribution.

A second pattern of "endemics" (pattern 2B) consists of six species that are known only from the warm-temperate region of New Zealand and the subtropical ridges and islands to the north, of which two species also occur as far north as the Chesterfield Islands. The depth ranges of these species are considerably deeper than those of pattern 2A, i.e., none shallower than 130 m , and most ranging from $500-1000 \mathrm{~m}$. For this reason it is likely that these species may eventually be found to be eurythermic tropical species with broader distributions in the upper-slope tropical region (i.e., pattern 1A).

A third category of "endemics" (pattern 2C) consists of 14 species known only from the subtropical ridges (Norfolk, Colville, Kermadec, and Three Kings north of $33^{\circ} \mathrm{S}$) and islands (Lord Howe, Norfolk, and Kermadecs) north of New Zealand, of which two species also extend to the Chesterfield Islands. Like pattern 2 B , the bathymetric ranges of these species are relatively deep (primarily 300800 m) and it is likely that at least some of these species will be found to occur more widely in tropical regions (i.e., pattern 1A).

A fourth category of "endemics" (pattern 2D) consists of four species known only from off both warm- and cold-temperate New Zealand. Whereas the two shallow-water species, Culicia rubeola and

Monomyces rubrum, are probably endemic to New Zealand, the two other species, Crispatotrochus curvatus (1375-2505 m) and Peponocyathus dawsoni (87988 m) are predicted to be found either to the north of New Zealand or in other temperate areas. Monomyces rubrum characterised Squires and Keyes' (1967: fig. 1) first general pattern of distribution, that species apparently being the only species in their group.

Two species are known only from the cold-temperate region of New Zealand (pattern 2E): Flabellum knoxi and Labyrinthocyathus sp. A. Flabellum knoxi is widespread and common in this region and serves as a reliable indicator of the cold-temperate upper slope New Zealand region.

A third group of distributional patterns includes widespread temperate patterns. Pattern 3A consists of five upper-slope species that occur in the temperate region of the southern Indian Ocean and/ or Australia as well as in the temperate region of New Zealand. Two species (Flabellum hoffmeisteri and Stephanocyathus platypus) are known only off Australia and New Zealand, and constitute the only (1.9%) unique affinity between the species of these two regions.
Pattern 3B consists of five species known from off temperate Japan as well as temperate to subtropical New Zealand, and one species (Hoplangia durotrix) is known only from the temperate northeastern Atlantic and warm-temperate New Zealand. These unusual disjunct distributions may eventually be found to be artefacts of collecting or, possibly the result of species introductions (e.g., H. durotrix). If found to be more widely distributed, these patterns might change to $1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ or even 1 D .

Category 4 consists of only one species, Flabellum impensum, that is Antarctic in distribution with an apparent northern range in the deep water of the cold-temperate Bounty Plateau.

To summarise, a majority (57%) of the 104 azooxanthellate coral species that occur in the New Zealand region represent the southern limit of more widespread tropical or eurythermic tropical species. Some endemic species do seem to occur in the warm-temperate Auckland province (pattern 2A), off New Zealand (pattern 2D), and in the coldtemperate region (pattern 2E), but those known only from the subtropical islands and ridges north of New Zealand (pattern 2C) may well have extended distributions into the tropics. Eleven species (11%) are known from more widespread temperate regions (patterns 3A-B) and one species is Antarctic in affinity (pattern 4).

Briggs (1974: 373) suggested that the horizontal
distribution of upper-slope ($200-1000 \mathrm{~m}$) faunas "closely follows that of the shelf". Azooxanthellate Scleractinia (and Stylasteridae) are good tests for this theory in that most (i.e., 80\%) New Zealand azooxanthellate Scleractinia occur in the upperslope realm (see below). In general, the distribution of deep-water azooxanthellate Scleractinia (Cairns, 1979, 1982, 1994) have been found to be con-sistent with the generally accepted shallowwater regions and provinces, the New Zealand region being no exception. Consistent with Briggs' (1974) shelf regions and provinces, the corals of New Zealand show tropical, eurythermic tropical, and broad eurythermic tropical components, warmtemperate endemics, and cold-temperate endemics. I diverge from Briggs only in the interpretation of the Kermadec Islands (see below).

Regional Affinities

Although 22 azooxanthellate species are known from the Lord Howe Seamount Chain (Table 2), only six are known from off Lord Howe Island or Balls Pyramid. Half of these six species are tropical or eurythermic tropical species (patterns $1 \mathrm{~A}-\mathrm{C}$), two are known only from the subtropical ridges and islands north of New Zėaland (pattern 2C), and one species, Balanophyllia crassitheca, is known from the subtropical New Zealand region as well as the warmtemperate Auckland Province (pattern 2B).
Seventeen of the 36 (Table 2) azooxanthellate species that occur on the Norfolk Ridge also occur off Norfolk Island. Their affinities are primarily tropical (pattern 1A, 9 species) to eurythermic tropical (patterns 1B-D, 5 species). Also, two species are thus far known only from the New Zealand subtropics (pattern 2C) and two species are known from the subtropics and warm-temperate Auckland Province (pattern 2B).

Of the ten species that occur on the Colville Ridge, seven are widespread tropical (pattern 1A) or eurythermic tropical (patterns 1C-D), two are known only from the subtropical ridges north of New Zealand (pattern 2C), and one species, Flabellum hoffmeisteri, occurs off cold-temperate south-eastern Australia and Tasmania (pattern 3A).

The zoogeographic affinities of the Kermadec Islands/Ridge have been debated with mixed opinion, perhaps depending on the animal group being analysed and the depth range being considered. Briggs (1974) considered the Kermadecs as a separate province in the warm-temperate region; from fish distributions Shiel et al., (1986) considered the chain
to be subtropical; and Gordon (1985), based on Bryozoa, suggested that they were transitional between the northern tropical and temperate neozelanic elements. The 56 species of azooxanthellate Scleractinia (Table 2) known from the Kermadec Ridge show a decided correlation with the tropical region - 19 species are widespread tropical species with their southern range in the Kermadecs (pattern 1A), another 18 species are eurythermic tropical (patterns 1B-D), and nine are known only from the subtropical region (north of 33° S) to the north of New Zealand (pattern 2C), of which three of the latter are known only from the Kermadec Islands. Thus, a total of $46(82 \%)$ of the 56 Kermadec species have tropical or subtropical affinities. Four species (7%) occur in the warmtemperate Auckland Province as well as the subtropical ridges north of New Zealand (pattern 2B), giving support to Briggs' hypothesis of a warmtemperate affinity, and six species are widespread in cold-temperate regions having their northern extension or disjunct distribution in the Kermadec Islands (patterns 3A-B).
Of the 13 species that are known from the Chatham Rise (Table 2), eight are broad eurythermic tropical species (patterns 1C-D), one is endemic to the coldtemperate region of New Zealand, and four are more widely distributed primarily in the southern temperate regions (patterns 3A-B).
In summary, the ridges and islands north of New Zealand (Lord Howe and Norfolk Islands and ridges north of 33° S, Colville Ridge, Kermadec Islands and Ridge) show a strong tropical affinity (patterns $1 \mathrm{~A}-\mathrm{D}, 2 \mathrm{C}$) and a very weak affinity to the warmtemperate Auckland province, the latter evidenced by a low number of species sharing pattern 2B.

Bathymetric Distribution

Forty-one (39\%) of the 104 New Zealand species occur at shelf depths ($0-200 \mathrm{~m}$) within the New

Zealand region (Table 2), 14 of which are accessibleby scuba ($0-50 \mathrm{~m}$), viz. Culicia rubeola, Oculina virgosa, Coenocyathus brooki, Labyrinthocyathus limatulus, Polycyathus norfolkensis, Tethocyathus cylindraceus, Hoplangia durotrix, Sphenotrochus ralphae, Kionotrochus suteri, Monomyces rubrum, Cladopsammia eguchii, Caryophyllia profunda, Desmophyllum dianthus, and Stenocyathus vermiformis. The last three species, however, as well as Madrepora oculata, Aulocyathus recidivus, and Dendrophyllia alcocki (Table 2), are found more commonly at upperslope depths ($200-1000 \mathrm{~m}$), occurring in shallow water only in the cool upwelled waters of Fiordland. Most (82 species or 80%) of the New Zealand species occur in the upper slope ($200-1000 \mathrm{~m}$) and 30 species (39%) occur in the lower-slope region ($1000-3000 \mathrm{~m}$). Only one species, Fungiacyathus marenzelleri, is known from the abyssal region, as deep as 4954 m west of the Lord Howe Rise. The percentages above exceed 100 because many species occur in more than one bathymetric region. Conocyathus zelandiae was not included in the bathymetric analysis, but would probably occur in the $0-100 \mathrm{~m}$ zone.
The 104 species (all but Conocyathus zelandiae) were scored for their occurrences in eight bathymetric zones: 0-100 m, 100-200 m, 200-400 m, 400-600 m, $600-800 \mathrm{~m}, 800-1000 \mathrm{~m}, 1000-2000 \mathrm{~m}$, and 20005000 m . These zones were then clustered by UPGMA using NTSYS-PC, version 1.60 (1991). The most obvious result of this cluster analysis was the faunistic break between the species occurring from $0-400 \mathrm{~m}$ and those occurring deeper than 400 m , the similarity coefficient between these two clusters being only 0.265 . Within the three shallower-water zones, those species occurring at $100-200 \mathrm{~m}$ have a strong affinity with those occurring at $200-400 \mathrm{~m}$, whereas the species that occur at $0-100 \mathrm{~m}$ are somewhat independent, joining the $100-400 \mathrm{~m}$ cluster only at the 0.347 level. This faunistic break at 100 m was also noted by Squires and Keyes (1967: 36) in their bathymetric analysis of 23 New Zealand species.

MINERALOGY

In the context of a more comprehensive analysis of the mineralogy of the Scleractinia, the coralla of eight New Zealand species were analysed by X-ray diffraction to determine their calcium carbonate polymorph. All species consisted of 100% aragonite. The species tested were Caryophyllia elongata,
C. diomedeae, Flabellum aotearoa, Truncatoflabellum dens, Javania pachytheca, Falcatoflabellum raoulensis, Truncatoguynia irregularis, and Polymyces wellsi. All recent Scleractinia thus far analysed have proven to be aragonitic (Filkorn, in press).

CLASSIFICATION

Order SCLERACTINIA Suborder FUNGIINA Superfamily FUNGIOIDEA Dana, 1846 Family FUNGIACYATHIDAE Chevalier, 1987

Fungiacyathus Sars, 1872

Corallum solitary, cupolate, and free; septotheca horizontal and usually quite fragile. Costae either thin serrate ridges or rounded and granular. Four or five cycles of septa; septal faces carinate, reflecting underlying trabeculae. All septa attached to their adjacent septa with synapticular plates. Pali may be present; columella spongy.

Key to the six species of Fungiacyathus known from the New Zealand Region

1 Five cycles of septa (96 septa) F. (Fungiacyathus)
Four cycles of septa (48 septa) F. (Bathyactis)

2 Septal and costal edges straight; numerous trabecular spines on inner septal edges
..................................... F. pusillus pacificus
Septal and costal edges sinuous (corrugated); no trabecular spines

3 Small P2 present; septal lobes quite tall

| P2 absent; septal lobes not tall |
| :---: | stephanus

4 Costae rounded and granular; intercostal furrows deep near calicular edges (as in a turbinoliid); coralla small ($\leq 11 \mathrm{~mm}$ GCD) \qquad F. turbinolioides

Costae ridged and serrate or granular; intercostal regions shallow; adult coralla $18-40 \mathrm{~mm}$ in diameter 3

5 Base flat; all costae serrate ridges; trabecular ridges sparse and widely spaced (about $1.0-1.75 \mathrm{~mm}$ apart); diameter up to 40 mm \qquad F. marenzelleri

Base highly concave; C1-3 rounded and granular; trabecular ridges numerous and closely spaced (about every 0.4 mm apart); diameter up to 18 mm F. margaretae

Fungiacyathus (Fungiacyathus) Sars, 1872
Fungiacyathus having 96 septa (5 cycles).
Type Species: Fungiacyathus fragilis Sars, 1872, by monotypy.

Remarks: Six species are known in the nominate subgenus, including one exclusively fossil species (F. euaensis Wells, 1977, Eocene of Tonga) and one as yet undescribed species (F. sp. A of Cairns, 1994, North Pacific). The other four are F. pusillus (Pourtalès, 1868; F. fragilis Sars, 1872, F. stephanus (Alcock, 1893), and F. paliferus (Alcock, 1902). The recent species occur worldwide at $99-2200 \mathrm{~m}$.

Fungiacyathus (F.) stephanus (Alcock, 1893)

(Plate 1, a-c)

Bathyactis stephanus Alcock, 1893: 149, pl. 5, figs 12, 12a. Bathyactis stephana: Alcock 1898: 28-29, pl. 3, figs 5, 5 a . Fungiacyathus (F.) stephanus: Cairns 1989a: 7-9, pl. 1, figs a-k, pl. 2, figs a-b (synonymy); Cairns \& Keller 1993: 230; Cairns 1994: 37, pl. 13, figs g-i.

Material Examined: New Records: NZOI Stn E774, 1, USNM 93983; Stn E784, 2, NZOI; Stn E869, 1, USNM 93984; Stn F911, 1, NZOI; Stn K805, 1, NZOI; Stn U197, 3 , USNM 93985. Previous Records: See Cairns (1989a: 8).

Distribution: New Zealand region: Lord Howe Rise; Norfolk Ridge; Kermadec Ridge; Challenger Plateau; east of North Cape (Map 1); 1142-1705 m. Elsewhere: southwest Indian Ocean; Gulf of Aden; Bay of Bengal; off Japan; Philippines; Indonesia; 245-2000 m.

Types: The holotype is presumed to be deposited at the Indian Museum, Calcutta.

Type Locality: Investigator Stn 133, $15^{\circ} 43^{\prime} 30 \mathrm{~N}$, $81^{\circ} 19^{\prime} 30$ E (off Krishna Delta, Bay of Bengal), 1240 m .

Remarks: Complete descriptions and synonymies of this species are given by Cairns (1989a, 1994) in the context of revisions of the Philippine and North Pacific Scleractinia, respectively. The records reported herein represent a southern range extension
for the species and the first record from the New Zealand region. The largest New Zealand specimen (NZOI Stn U197) is 39.5 mm in calicular diameter and 17.2 mm in height, which is thought to be about the maximum size for the typical (concave base) form of the species.
Fungiacyathus stephanus is quite similar to F. fragilis and is compared to that species in that account. It is distinguished from other species in the subgenus by having extremely tall septal lobes, a broad marginal shelf, and highly corrugated septa.

Fungiacyathus (F.) fragilis G. O. Sars, 1872

(Plate 1, d, f)
Fungiacyathus fragilis Sars, 1872: 58, pl. 5, figs 24-32; Zibrowius 1980: 23-24, pl. 5, figs A-J (synonymy); Cairns 1982: 7, pl. 1, figs 3-7 (synonymy).
Bathyactis hawaiiensis Vaughan, 1907: 145-147, pl. 27, figs 1, 1a.
Not Fungiacyathus symmetricus fragilis Keller, 1976: 41-43 (junior homonym).

Material Examined: New Record: NZOI Stn E880, 2 fragments, USNM 93975. Previous Records: Specimens reported by Cairns (1982): Eltanin Stn 1412 and 1846; holotype of B. hawaiiensis.

Distribution: New Zealand region: off west coast of New Zealand (rare) and Macquarie Ridge (Map 1); 1029-1693 m. Elsewhere: North Atlantic; Hawaiian Islands; 285-2200 m.

Types: One syntype of F. fragilis is known to be deposited at the Oslo Museum (B626). The holotype of B. hawaiiensis is deposited at the USNM (20834).

Type Localities: F. fragilis: "Skraaven in Lofoten" (Norway), 549 m. B. hawaiiensis: Albatross Stn 4125, between Oahu and Kauai, Hawaiian Islands, 17612056 m.

Remarks: Nothing can be added to the descriptions of this species previously given by Zibrowius (1980) and Cairns (1982). The largest New Zealand specimen examined (Eltanin Stn 1846) is 25.6 mm in diameter. It is quite similar to F. stephanus, the only other species in the subgenus to attain a large calicular diameter. In fact, damaged and/or juvenile specimens of the two species are difficult to distinguish; however, adult F. fragilis differs by lacking P 2 , lacking a marginal shelf, and by having much lower septal lobes.

Fungiacyathus (F.) pusillus pacificus n. subsp.
(Plate 1, g-i, l)
Material Examined: Types, q.v.
Distribution: Known only from the New Zealand region on the Norfolk, Three Kings, and southern Colville Ridges (Map 13); 350-988 m.

Description: Holotype 17.5 mm in diameter and 8.8 mm in height; largest specimen (NZOI Stn I97) 21.4 mm in diameter. D:H of most well-preserved specimens about 2. Base flat to slightly concave. Costae straight, finely serrate ridges, appearing as beaded in centre of worn coralla. Intercostal width near calice edge 2-4 times width of a costa. Corallum white.

Septa hexamerally arranged in 5 complete (96 septa) cycles, even in coralla as small as 9.0 mm diameter. S1 consist of 3 or 4 thick, ridged inner trabecular spines that are vertical to slightly incurved in shape. Peripheral to these spines is a tall septal lobe bearing $12-15$ vertical serrate ridges on each face, the ridges alternating in position on either septal face. Peripheral to the tall lobe are 13-15 trabeculae that form a series of disjunct lobes, each composed of only 2 or 3 trabeculae. 11 or 12 synapticulae occur per S1, the largest usually the sixth from the centre. S2 consist of 5 or 6 inner trabecular spines, the inner 3 inclined toward the columella (the third being quite massive), the outer 2 or 3 smaller and inclined outward. Peripheral to these spines is a tall septal lobe similar in size and shape to that of the S1, but positioned slightly further from centre of fossa and inclined slightly outward (not vertical). Peripheral to the tall S2 lobe is a similar arrangement of 13-15 trabeculae that form smaller, disjunct lobes, as in the S1. S3 consist of 4 large inner trabecular spines, each spine consisting of 2 or 3 trabeculae, bordered by a septal lobe consisting of 7-9 ridges per face. S3 lobe positioned further outward from centre of calice than S2 lobe and orientated even more obliquely, its outer edge extending beyond the base. This overextension of the S3 lobes and the virtually vertical outer edges of all septa produces a slight marginal shelf encircling the corallum, quite similar to that seen in some species of Stephanophyllia. Outer edges of S3 consist of 7-9 trabeculae arranged in smaller lobes. S4 consist of 12-15 trabecular spines, some of them doubled into small lobes, but not united into a larger septal lobe. S5 consist of 57 slender trabecular spines. All septa are planar with straight edges, having no sinuousity or undu-
lations. Only S 1 are independent; pairs of S 5 fuse to S4, pairs of S4 to S3, and pairs of S3 to S2, the inner edges of the S1-2 reaching the columella. No septal canopies are present. Columella papillose and indistinguishable from inner septal trabecular spines of S1-2.

Types: Holotype: NZOI Stn U599, NZOI H-621. Paratypes: NZOI Stn G3, 2, NZOI P-1000; Stn I96, 3 , NZOI P-1001; Stn 197, 12, NZOI P-1002, 6, USNM 93974; Stn K795, 3, NZOI P-1003; Stn P10, 3, USNM 93973; Stn U582, 3, USNM 93972; Stn U591, 1, NZOI P-1004; Stn U599, 7, NZOI P-1005, 5, USNM 93971.

Type Locality: $30^{\circ} 43^{\prime} \mathrm{S}, 173^{\circ} 16^{\prime} \mathrm{E}$ (northern Three Kings Ridge), 590-640 m.

Etymologr: The subspecies name pacificus alludes to the larger-sized Pacific subspecies of the species.

Remarks: Fungiacyathus pusillus pacificus is easily distinguished from F. fragilis and F. stephanus by its planar septa and solid corallum; it differs from F. paliferus in having serrate (not granular) costae, and in lacking P2; it differs from Fungiacyathus sp. A (sensu Cairns 1994) in lacking septal canopies and in having a papillose columella. But, F.pusillus pacificus is remarkably similar to the nominate subspecies (Pourtalès 1868), which is known only from the Caribbean at $285-439 \mathrm{~m}$ (see Cairns 1979), apparently differing only in size. The maximum known size for the Atlantic subspecies is 16.8 mm , that of the Pacific subspecies 21.4 mm . Correlated with the larger calicular diameter, F. pusillus pacificus also has better-developed and more numerous trabeculae per corresponding septal cycle.

Fungiacyathus (Bathyactis) Moseley, 1881
Fungiacyathus having 48 (four cycles) septa.
Type Species: Fungia symmetrica Pourtalès, 1871, by monotypy.

Remarks: Nineteen species are known in this subgenus (see Cairns 1989a, Filkorn in press), five of them exclusively fossil in occurrence. The remaining 14 species occur worldwide at depths of 1836328 m .

Fungiacyathus (B.) marenzelleri (Vaughan, 1906)
(Plate 1, j-k)
Bathyactis marenzelleri Vaughan, 1906a: 66-67, pl. 4, figs 1-1b.
Fungiacyathus marenzelleri: Cairns 1979: 35-37, pl. 2, figs 8-9, pl. 3, figs 3, 8 (synonymy); Zibrowius 1980: 24 25, pl. 6, figs A-M, pl. 7, figs A-K (synonymy); Cairns 1982: 5-7, pl. 1, figs 1-2, 8 (synonymy); 1994: 15-16, pl. 1, figs a-f (synonymy).

Material Examined: New Records: NZOI Stn J667, 3, USNM 93976; Stn P939, 1, USNM 93978; Stn U203, 8 , USNM 93977; Stn U204, 1, NZOI; Stn U224, 15, NZOI. Previous Records: Type series of B. marenzelleri.

Distribution: New Zealand region: abyssal plain south of Lord Howe Island; Bellona Trough; Raukumara Plain (Map 1); 1760-4954 m. Elsewhere: virtually cosmopolitan, including amphi-Atlantic, amphi-Pacific, Subantarctic, and off continental Antarctica (Cairns 1994); 300-6328 m.

Thres: The holotype is deposited at the USNM (47415) and three paratypes are at the MCZ.

Type Locality: Albatross Stn 4721, $8^{\circ} 07.5^{\prime} \mathrm{S}$, $104^{\circ} 10.5^{\prime} \mathrm{W}$ (off Peru), 3820 m .

Remarks: Because of its widespread distribution, F. marenzelleri has been adequately described and figured before (see synonymy) and will therefore not be redescribed here. It differs from the other species in its subgenus by having a relatively large corallum, straight septal edges, and relatively few, widely spaced trabecular ridges. A large, wellpreserved New Zealand specimen (NZOI Stn J667, Plate $1, \mathrm{j}, \mathrm{k}$) is 34.7 mm in diameter, but even larger coralla up to 40 mm GCD have been reported (Cairns 1989a). Fungiacyathus marenzelleri is the deepest-living coral known, and represents the deepest record of a scleractinian from the New Zealand region.

Fungiacyathus (B.) margaretae n. sp. (Plate 2, a-c)
Material Examined: Types, q.v.
Distribution: Known only from the northern Colville Ridge (Map 20); 635-673 m.

Description: Holotype 16.3 mm in calicular diameter and 8.3 mm in height; largest specimen (NZOI Stn P944) 18.3 mm in diameter. Base highly concave,
the outer septal edges extending as much as 2 mm beyond basal perimeter. C4 consist of narrow, serrate ridges, but C1-3 are wider (about 0.35 mm) and rounded, bearing small, rounded granules. CS1-3 develop small (1.1 mm), downward projecting spurs at calicular edge. Corallum white.

Septa hexamerally arranged in four complete cycles. S1 consist of 2 or 3 inner trabecular spines bordered by a highly exsert septal lobe that bears 16-23 closely spaced, vertical, serrate ridges, these ridges becom-ing horizontally oriented near calicular edge. S2 less exsert, consisting of 3 or 4 inner trabecular spines, bordered by a slightly smaller lobe consisting of $10-13$ trabecular ridges. S3 about two-thirds width of an S3 and consist of a lobe of 8 or 9 projecting trabecular spines, each pair of S3 solidly fused to their common S2 by an imperforate canopy. S4 about two-thirds width of an S3 and also consist of 8 or 9 projecting trabecular spines, each pair of S4 solidly fused to their common S3 through an imperforate canopy. Both S1 and S2 extend from columella to calicular edge, the S1 being the only independent septa. Septa are planar with straight inner edges. Synapticular plates solid, 7 or 8 per $S 1$ or $S 2$, the sixth from the columella being the tallest, rising well above the adjacent $S 4$. Columella a central, circular plate $2.5-3.0 \mathrm{~mm}$ in diameter, often slightly concave and usually penetrated by various trabecular spines from the inner edges of the S1-2.

Types: Holotype: NZOI Stn P944, NZOI H-622. Paratypes: NZOI Stn P944, 1, USNM 93979; Stn P947, 2, NZOI P-1006; Stn P966, 1, USNM 93980.

Type Locality: $27^{\circ} 20.8^{\prime} \mathrm{S}, 179^{\circ} 20.9^{\prime} \mathrm{W}$ (Colville Ridge), 673 m .

Etymology: This species is named in honour of my wife.

Remarks: Among the 13 other recent species in this subgenus, F. margaretae is most similar to F. granulosus Cairns, 1989a (Philippines, $390-567 \mathrm{~m}$), both species having granular costae and similarly shaped septal trabecular ridges. Fungiacyathus margaretae differs in having a highly concave base, costoseptal spurs, more exsert S1, more highly developed synapticular plates, and a smaller corallum.

Fungiacyathus (B.) turbinolioides Cairns, 1989

(Plate 2, d, e)
Fungiacyathus (B.) turbinolioides Cairns, 1989a: 12-13, pl. 6 , figs a-g.

Material Examined: New Records: NZOI Stn E275, 1 , NZOI; Stn E868, 1, USNM 93981; BS391,6, MoNZ CO252, 3, USNM 93982; Slope Stn 33, 1, USNM, 2, NMV F67776. Previous Records: Type series.

Distribution: New Zealand region: southern Norfolk Ridge; off Three Kings Islands (Map 13); 600-751 m. Elsewhere: Celebes Sea; Formosa Strait; off Victoria (reported herein); 622-930 m.

Types: The holotype and 65 paratypes are deposited at the USNM; two paratypes are also deposited at the AMS.

Type Locality: Albatross Stn 5586, $4^{\circ} 06^{\prime} 50 \mathrm{~N}$, $118^{\circ} 47^{\prime} 20$ E (off Sabah, Celebes Sea), 635 m .

Remarks: Fungiacyathus turbinolioides was recently described and figured; nothing can be added to our knowledge of that species based on the worn New Zealand specimens except for the range extension. It is easily distinguished from other Fungiacyathus by its deep peripheral intercostal furrows that separate wide, granular costae, which makes it appear like a turbinoliid from a basal view. Other distinguishing characters include its robust compound trabecular spines; relatively few (3 or 4), low synapticular plates per S1 (barely visible in an intact corallum); and lack of septal canopies.

Family MICRABACIIDAE Vaughan, 1905
Letepsammia Yabe \& Eguchi, 1932d
Corallum solitary, discoidal, and free; a small marginal shelf usually present. Costae thin and ser-rate, separated by wide, porous intercostal regions. Synapticulothecate, highly perforate septa alternat-ing in position with an equal number of costae. Columella spongy to papillose.

Type Species: Stephanophyllia formosissima Moseley, 1876, by original designation.

Remarks: Three species are currently recognised in this genus: L. formosissima (Moseley, 1876), L. superstes (Ortmann, 1888), and L. fissilis n. sp.

Letepsammia superstes (Ortmann, 1888)
(Plate 2, f-i)
Stephanophyllia superstes Ortmann, 1888: 160-161, pl. 6, fig. 5; Owens 1986b: 487.

Stephanophyllia (Letepsammia) japonica Yabe \& Eguchi, 1932b: 443 (nom. nud.); 1934: 281, figs 1-3; 1942b: 139, 156-157, pl. 12, fig. 8.
Micrabacia japonica: Omura 1983: 119.
Stephanophyllia japonica: Zou 1988: 75, pl. 5, fig. 7.
Letepsammia formosissima forma superstes: Cairns 1994: 40-41, pl. 15, figs. c, f.

Material Examined: New Records: NZOI Stn K795, 3, USNM 94080; Stn K828, 1, USNM 94081; Stn K838, 1, NZOI; Stn K840, 11, USNM 94082; Stn T256, 1, NZOI; BS441, 3, MoNZ CO226.

Distribution: New Zealand region: Kermadec Ridge (Map 20); 200-710 m. Elsewhere: Sagami Bay, Japan, to off Hong Kong, South China Sea; 77-307 m (Cairns 1994).

Description: Corallum discoidal to patellate, some coralla having a flat base but most having a slightly conical base, the basal angle as low as 140°. Largest corallum examined (NZOI Stn K840) 19.7 in diameter and 7.4 mm in height. Costal ridges about 0.15 mm wide near calicular edge, separated by intercostal spaces about 2 times as wide. Each costa bears a uniserial row of small $(0.10-0.15 \mathrm{~mm}$ in height), closely adjacent, blunt teeth, producing finely serrate costal edges. Costae project $0.5-$ 0.7 mm beyond septal edge perimeter, producing a narrow marginal shelf. Regularly spaced cylindrical synapticulae unite each costa to its 2 adjacent septa, 25-36 synapticular bridges occurring per major septum (= corallum radius) depending on size of corallum. Synapticular bridges create a series of intercostal pores that increase in diameter from epicentre to calicular edge (e.g., $0.10-0.25 \mathrm{~mm}$ diameter range). Corallum white.

Septa invariably 96 in number, arranged in typical micrabaciid fashion. S1 independent and semicircular in profile, with an oblique inner edge that slopes toward the columella. S1 bear 16 or 17 slender trabecular spines, the innermost spines inclined toward columella. S2 bear about 13 trabecular spines, the innermost 3 spines quite robust, cylindrical, and finely granular. S3, prior to bifurcation, bear 2 or 3 massive (0.5 mm in diameter), cylindrical spines, which constitute the highest point of corallum. Remaining S3 trabecular spines are smaller diameter cylinders or flattened perpendicular to septal plane. Each pair of S3 solidly fuses to its common S2 near columella. All septa highly porous and solidly fused to one another by synapticular rods that are circular to slightly elliptical in cross section, which usually occur in oblique rows relatively high in corallum.

Fossa shallow, containing an elliptical field of 11-18 slightly clavate granular papillae, all interconnected among their bases.

Types: The holotype of S. superstes is deposited at the Strasbourg Zoological Museum. Two syntypes of S. japonica are deposited at the TIUS (50236).

Type Localities: S. superstes: Sagami Bay. S. japonica: Pleistocene limestone of the Ryukyu Islands.

Remarks: In my revision of the North Pacific Scleractinia (Cairns 1994), I referred to the Japanese populations of this species as L. formosissima forma superstes, the Japanese specimens described as differing from typical L. fomosissima in being smaller, having fewer septa, and having a papillose columella. Having seen additional specimens of this species from the New Zealand region I now believe this "form" to represent a distinct species, L. superstes. It differs from L. formosissima in having a smaller corallum (GCD max. 20 mm vs 47 mm for L. formosissima); having fewer septa ($96 \mathrm{vs} \geq 120$ for L. formosissima); having spinose, sloping inner S1 edges (those of L. formosissima are vertical and not spinose); having a flat-based to patellate corallum (coralla of L. formosissima are exclusively flat); and having a papillose columella (that of L. formosissima is spongy). Overall, L. superstes has a denser, more robust corallum and more closely spaced septa.

Letepsammia fissilis n. sp.
(Plate 3, a-e)
?Stephanophyllia formosissima: Wells 1958: 263 (part: specimen from New Zealand); Ralph \& Squires 1962: 16.

Letepsammia sp. Squires 1964b: 3; Squires \& Keyes 1967: 21, pl. 4, fig. 1.

Material Examined: Types, q.v.; specimens reported by Squires (1964b) as Letepsammia sp. (Ikatere Stn B23, B26, B27, and Lachlan, AIM).

Distribution: Known only from New Zealand region from southernmost Norfolk Ridge; off Three Kings Islands; and off North Island from North Cape to East Cape (Map 10); 106-206 m.

Description: The typical shape of this species is a triangular wedge-shaped sector representing onesixth (or 1 system minus enclosing S1) of a typical micrabaciid corallum. Its outer (calicular) edge is rounded and its two sides straight, making an inner
angle of about 60°. In time, these wedges grow outward as well as generate additional septa, resulting in an increase in radius and edge angle. In only one case (NZOI Stn P5) was an entire circular corallum generated from an initial fragment, the calice being 12.5 mm in diameter. Most sectors appear to originate at a calicular radius of about 9 mm and a septal complement of 19. Multiplying 19 by 6 and adding 6 for the missing S1 yields a theoretical complement of 120 septa for an entire corallum. The holotype began from such a sector, but extended its radius to 12.1 mm and widened its calicular edge to encompass 31 septa. Regeneration of the original wedge-shaped corallum is most easily seen and illustrated in basal view (Plate 3,e) as discontinuities or irregular additions to the costal structure. Costae are typical for the genus, consisting of narrow ($0.10-0.15 \mathrm{~mm}$), finely granular costal ridges separated by rather wide (about 0.3 mm), porous intercostal regions. Virtually all specimens examined were worn, but it would appear that a low marginal shelf is present. Corallum white.

Most coralla contain 12-32 septa, the majority having 19, and only one (the complete but juvenile corallum from NZOI Stn P5) having 96 septa. Septal complements between 20-32 are the result of irregular additions by septal bifurcation of peripheral septa of the original wedge. Because fission appears to occur along the symmetry of the S1, these septa are lost in the process. S2 independent and unbranched, rather low in relief, and highly porous, bearing 20-25 trabecular spines that constitute its entire border. S3 bifurcate in micrabaciid fashion, being quite irregularly developed along edges of regenerating coralla. Synapticulae absent from septal faces, but do occur basally, linking septa to costae. This lack of septal synapticular reinforcement may predispose the corallum to splitting and explain the usual loss of the S 1 and columella following fission.

Types: Holotype: BS881 (O627), MoNZ CO281. Para-types: NZOI Stn E256, 2, NZOI P-1007; Stn E261, 4, NZOI P-1008; Stn E359, 2, NZOI P-1009; Stn P5, 1, NZOI P-1010; BS770 (R128), 1, MoNZ CO308; BS833, 18, MoNZ CO287, 6, USNM 94085; BS881 (O627), 10, MoNZ CO281, 3, USNM 94086; BS897 (O643), 2, MoNZ CO223; Ikatere Stn B26, 6, USNM 81868; Lachlan, 10, USNM 81869.

Type Locality: $34^{\circ} 20^{\prime} \mathrm{S}, 173^{\circ} 06^{\prime} \mathrm{E}$ (off North Cape), 163-168 m.

Etymology: The species name fissilis (Latin fissilis, splittable) refers to the fragile nature of the corallum of this species, which often splits into six wedgeshaped fragments.

Remarks: Letepsammia fissilis is distinguished from its two congeners by its distinctive asexual form of reproduction and regeneration, mitigated by its lack of septal face synapticulae. Although an intact corallum would appear to consist of 120 septa, as in L. formosissima, it differs from that species in having a smaller but more robust corallum. Furthermore, L. formosissima occurs at a greater depth in the New Zealand region. Letepsammia fissilis is approximately the same size as L. superstes, but would appear to have more septa in the fully developed condition (120 vs 96) and a flat base. Furthermore, L. superstes is characteristic of deeper waters to the north of the range of L. fissilis.

Letepsammia formosissima (Moseley, 1876)

(Plate 3, f, g)
Stephanophyllia formosissima Moseley, 1876: 561-562.
Letepsammia formosissima: Owens, 1986b: 486-487; Cairns, 1989a: 15-18, pl. 6, fig. j, pl. 7, fig. g-i, pl. 8, figs a-d (synonymy); Cairns \& Parker, 1992: 8-9, pl. 1, figs f, h; Not Cairns, 1994: 40-41, pl. 15, figs c, f (= L. superstes).

Material Examined: New Records: Stn K804, 5 (dead), NZOI; Stn K844, 1, NZOI; Stn P10, 6, USNM 94084; Stn P14, 5, USNM 49232; Stn T256, 1, NZOI; BS888 (O634), 1, MoNZ.

Distribution: New Zealand region: southern Norfolk Ridge, including Wanganella Bank; Kermadec Islands (off Raoul, Macauley, and Curtis) (Map 10); 290- 378 m . Elsewhere: Indo-West Pacific from south-west Indian Ocean to Hawaiian Islands and South China Sea; 97-457 m.

Diagnosis: Discoidal coralla up to 46.7 mm in diameter (NZOI Stn P10); base flat to slightly convex; D:H up to 4.9 in large specimens. Thin (0.060.07 mm), ridged costae bear very small teeth or short spines, producing a finely serrate edge; intercostal regions quite wide (3-6 times costal width) and porous, the synapticular bars connecting each costa to its 2 alternating, adjacent septa clearly visible in basal view through the intercostal region. Synapticulae circular in cross section and rather scarce, restricted to base and lower edges of septa. A low, marginal shelf up to 3 mm wide present on
well-preserved specimens. Corallum white.
Septa arranged in typical micrabaciid fashion (Cairns 1989a: text-fig. 2), attaining 144 septa at a calicular diameter of $30-40 \mathrm{~mm}$, but larger coralla of up to 46 mm diameter (MoNZ CO153) having up to 199 septa. S1 independent and unbranched, having a smooth upper, inner edge, but a spinose peripheral edge. S2 also unbranched but not independent, a pair of S3 fusing to each S2 near the columella. Each S 3 bifurcates repeatedly, producing a majority of the septa. S1-2 primarily non-porous, except for attenuate region in vicinity of marginal shelf, where all septa are porous. S3 also porous to varying degrees at regions of septal bifurcation. Columella elongate, papillose, and often heavily fused.

Types: Five syntypes are deposited at the $\mathrm{BM}(\mathrm{NH})$.
Type Locality: Philippines and Indonesia, 174-236 m.
Remarks: Letepsammia formosissima is compared to the two other species in its genus in previous remarks, but it is most likely to be confused with Rhombopsammia niphada Owens, 1986a. Letepsammia formosissima differs from the latter in having porous S1 and no vepreculae and lacking septal canopies. Furthermore, R. niphada is more typical of deeper water ($405-804 \mathrm{~m}$) and is not yet known from the New Zealand region.

Stephanophyllia Michelin, 1841

Corallum solitary, discoidal, and free; a small marginal shelf may be present. Costae granular. Synapticulothecate, 96 imperforate septa alternate in position with costae, the septa and costae interconnected by elongate, bar-shaped synapticulae in base (fulturae) or septal face synapticulae circular to elliptical in cross section. Columella lamellar to papillose.

Type Species: Fungia elegans Bronn, 1837, by original designation.

Remarks: The generic synonymy is discussed in detail by Cairns (1989a) and the four species compared in a tabular key. The recognised species are S. elegans (Bronn, 1837) (Mio-Pliocene, Europe); S. complicata Moseley, 1876; S. fungulus Alcock, 1902b; and S. neglecta Boschma, 1923.

Stephanophyllia complicata Moseley, 1876
(Plates 3, h, 4, a-e)
Stephanophyllia complicata Moseley, 1876: 558-561, textfig; 1881: 198-201, pl. 4, fig. 12, pl. 13, figs 3-5; Van der Horst 1926: 51; 1931: 11; Gardiner \& Waugh 1939: 234; Pillai \& Scheer 1976: 14; Cairns 1989a: 21, pl. 12, figs. a-b; Cairns \& Keller 1993: 231-232.

Material Examined: New Records: NZOI Stn 196, 1, NZOI; Stn P13, 1, NZOI; Stn P14, 1, USNM 94078; Stn U568, 1, NZOI; Stn U584, 11, USNM 94079; Stn U592, 1, NZOI. Previous Records: Syntypes of S. complicata; specimens reported by Van der Horst (1926, 1931).

Distribution: New Zealand region: southern Norfolk Ridge; Three Kings Ridge (Map 10); 319-1137 m. Elsewhere: Indian Ocean (Saya de Malha Bank, Chagos and Maldive Archipelagos); Banda Sea; 229236 m .

Description: Corallum up to 18 mm in diameter and 7.2 mm in height (NZOI Stn U584), with vertical outer edges and a flat to slightly convex base. Costae flat and relatively wide (about 0.20 mm at calicular edge), each separated by a porous intercostal space about same width. In large coralla each intercostal region is bridged at regular intervals by $20-22$ synapticular bars, which produce the porous basal structure. Each costa bears a central row of granules (about $50 \mu \mathrm{~m}$ in diameter) for its innermost $3-4 \mathrm{~mm}$, beyond which the granules slightly decrease in size and form 2 rows, 1 row on each edge of the costa, the central region being flat to slightly concave. At calicular edge costae often slightly upturned, bifid, and extend about 0.5 mm beyond septal perimeter, producing a small marginal shelf. Corallum white.
Septa invariably 96 in number arranged in typical micrabaciid fashion like that of S. fungulus (Cairns 1989a: text-fig. 3); however, in 2 specimens (figured syntype and 1 from NZOI Stn U584) pairs of very small septa appear to diverge from the outer edges of both S1 and S2. S1 independent, usually unbranched, and have an arched upper edge describing a half circle; a vertical, non-spinose inner edge that borders the columella; and a spinose upper outer edge that reflects the 18-21 trabecular spines that project from the septum. Trabecular spines gradually decrease in size away from the columella, each spine corresponding to a low, serrate ridge (vepreculum) on the septal face. S2 consist of 3 or 4 rather massive, inward-inclined trabecular spines, peripheral to which is a semicircular septal lobe composed of about 15 trabecular spines. S3 and its
subsequent bifurcations also consist of trabecular spines, the innermost region of each S3 bearing 2 or 3 thick spines. Each pair of $S 3$ strongly fused to its common S 2 by their inner edges as well as by numerous synapticular bars. Synapticular bars solidly join all adjacent septa, particularly the S1 and its adjacent septa, the bars (fulturae) occurring from the base to quite high in the corallum. All septa imperforate; S1-2 planar and straight, whereas S3, because of their repeated bifurcations, appear to meander. Fossa shallow, containing a prominent, narrow (0.5 mm wide), lamellar columella, the summit of which is often divided into papillae or stout, lamellar segments.

Types: Two syntypes are deposited at the $\mathrm{BM}(\mathrm{NH})$ (1880.11.25.155A-B).

Type Locality: Challenger Stn $192,5^{\circ} 42^{\prime} \mathrm{S}, 132^{\circ} 25^{\prime} \mathrm{E}$ (off Kai Islands, Banda Sea), 236 m .

Remarks: Stephanophyllia complicata differs from the two other recent species in the genus by having a relatively thin, lamellar columella and in having S1 with vertical, non-spinose inner septal edges. Also, S. complicata attains a larger size than the other species and has more widely spaced septa. Stephanophyllia complicata is further differentiated from S. fungulus by having a thinner base and synapticular bars that are circular in cross section, not as massive and elongate as those in S. fungulus.

> Suborder FAVIINA Superfamily FAVIOIDEA Gregory, 1900 Family RHIZANGIIDAE d'Orbigny, 1851

Culicia Dana, 1846

Corallum colonial (reptoid), consisting of short, cylindrical corallites linked together by stolons. Corallites epithecate, the epitheca often rising above upper, outer septal edges as a thin, continuous rim. S1 and often S2 lobate; higher cycle septa lobate to coarsely dentate. Paliform lobes often present; columella papillose.

Type Species: Culicia stellata Dana, 1846, by subsequent designation (Wells 1936).

Remarks: Approximately 15 species have been described in the genus Culicia, but, like for most other shallow-water azooxanthellate genera, a worldwide
revision is needed to establish the valid species and their synonyms. Despite the report of at least four species of Culicia from New Zealand waters, it is suggested that only one species exists, C. rubeola, and that it may be endemic to this region.

Culicia rubeola (Quoy \& Gaimard, 1833)
(Plates 4, g, h, 5, a-c)
Dendrophyllia rubeola Quoy \& Gaimard, 1833: 197-198, pl. 15, figs 12-15; Dana 1846: 389.
Angia rubeola: Milne Edwards \& Haime 1848c: pl. 7, figs 6, 6a; 1849: 176.
Cylicia rubeola: Milne Edwards \& Haime 1857: 607-608; Not Tenison Woods 1878a: 324, $325(=$ C. hoffmeisteri); ?Tate 1890: 173; Not Dennant 1904: 9 (= C. australiensis); Not Howchin 1909: 247 ($=$ C. hoffmeisteri).
Cylicia huttoni Tenison Woods, 1879: 132, pl. 12, fig. 1; Hutton 1904: 315.
Not Culicia rubeola: Wells 1954: 464-465, pl. 185, figs 3-6.
Culicia rubeola: Squires 1960c: 6-7, figs 5-6; Ralph \& Squires 1962: 4-5, pl. 1, figs 1-5; Squires 1964b: 3; Squires \& Keyes 1967: 21, pl. 1, fig. 1; Morton \& Miller 1968: 159-160, pl. 7, fig. 4; Grace \& Grace 1976: 99; Dawson 1979: 28; Brook 1982: 168-169; Hayward, et al. 1985: 101.
Not Culicia sp. cf. C. rubeola: Cairns 1991a: 7.
Material Examined: New Records: NZOI Stn C910, 1 , NZOI; Stn M763, 3, NZOI; Stn M793, 20, USNM 94000; Stn S251, 3, NZOI; Doubtful Sound, $20-30 \mathrm{~m}, 2$, USNM 76306; Ocean Beach, Kawhia, 20, AUM 12020; Rangaunu Harbour, $82 \mathrm{~m}, 6$, AUM 147; Manukau Harbour on bivalve Perna canaliculus, 2, AUM 140, H1201; between Great and Little Barrier Islands, 77 m, 1, AIM. Previous Records: Some of the specimens reported by Ralph and Squires, 1962 (AIM); Squires, 1964b (AIM); and Squires and Keyes, 1967 (NZOI).

Distribution: New Zealand region: Probably endemic to New Zealand region, off all coasts of North Island and off Fiordland (Map 6); 0-82 m.

Description: Colonies low and encrusting, formed by reptoid budding from short, flat stolons. If the substratum is smooth (e.g., a bivalve shell, Plate 4, $\mathrm{g}, \mathrm{h})$, a circular colony may develop, one of the larger known colonies (AUM 140) being 60 mm in diameter and consisting of about 200 corallites. In these circular colonies, corallites are relatively short ($1.5-2.0 \mathrm{~mm}$) and usually spaced less than 1 calicular diameter from each other, but rarely directly adjacent. The reptoid budding sequence can usually even be traced to a founder corallite, which is invariably ≤ 8 budding generations from
colony edge. Corallites in centre of colony vertical, whereas peripheral corallites are usually inclined outward. But if the substratum is irregular or other organisms are competing from the same space, corallites are more irregular in arrangement, have longer stolons, and are often taller (up to 8 mm). Calices circular and $3.0-6.0 \mathrm{~mm}$ in diameter (although most corallites are $3.5-4.5 \mathrm{~mm}$ in diameter), larger corallites apparently associated with sheltered environments (Brook 1982). Coralla epithecate, bearing thin, horizontal thecal corrugations encircling each corallite. Occasionally vertical granular costae are detectable beneath the veil of epitheca, the epitheca rising above the level of the septa as a thin, entire (smooth), circular rim. Corallum white; polyps pink.
Septa hexamerally arranged in 4 cycles, the fourth cycle rarely complete (most corallites having 30-40 septa); however, one large corallite ($G C D=5.6$, AU147) has 62 septa. Hexameral symmetry often difficult to determine because of unequal development of S4 within systems and the similarity of S2 to S1 in systems having pairs of S4. Often the 2 systems of a corallite on the leading edge of the colony are more developed, these 2 systems each having 2 pairs of S 4 , whereas the proximal systems will have only 1 pair or no $S 4$. Each S1 has 1 or 2 narrow lobes on its upper margin adjacent to epitheca, then widens to a fuller primary septal lobe with a straight inner edge and 1 or 2 tall but narrow pali-form lobes adjacent to columella. S2 half to three-quarters width of an S1 and bear 5 or 6 rounded lobes, the innermost lobes similar in size and shape to P1. If a pair of S4 flanks an S3, the S3 is almost as wide as an S2, each S3 pair fusing with the inner edge of the common S2. Inner edges of these S3 composed of numerous slender, horizontally oriented lobes and several larger, inner paliform lobes. S3 unflanked by pairs of S4 are much smaller, about one-third width of an S2, and composed of numerous slender, horizontally oriented lobes. S4, if present, rudimentary. Fossa moderate to deep, containing a well-developed papillose columella composed of 5-10 slender, nongranular pillars that are indistinguishable in size (about 0.15 mm in diameter) and shape from inner paliform lobes (P1-3).

Types: The type specimen of Dendrophyllia rubeola was stated to be deposited at the Otago Museum by Ralph and Squires (1962: 5, pl. 1, fig. 5); however, this specimen could not be located there in 1991 and it is more likely that Quoy and Gaimard's type would be at the MNHNP. The holotype of C. huttoni was not traced, although the original description implies that it also was deposited in the

Otago Museum, Dunedin.
Type Localities: Dendrophyllia rubeola: Tamise (= Thames) River, New Zealand; depth unknown. Cylicia huttoni: "on old metal near the slip at Wellington, therefore may have been introduced" (Tenison Woods 1879: 132).

Remarks: No attempt was made to rigorously compare C. rubeola to the 12-14 other species in the genus, many of those species being known from few specimens and often from dubious localities. A revision of the genus is obviously needed. It is noted, however, that Wells' (1954) C. rubeola from the Marshall Islands and Cairns' (1991a) specimen from the Galápagos are not conspecific with the New Zealand C. rubeola, and that the New Zealand species is similar to C. hoffmeisteri Squires, 1966 (known from off southeastern Australia), but differs in aspects of septal dentition.

It should also be noted that a second species, C. smithii (Milne Edwards \& Haime, 1849), has been reported from off New Zealand. Only one specimen is known, the reputed type illustrated by Ralph and Squires (1962: pl. 1, fig. 6) and Squires and Keyes (1967: pl. 1, fig. 1). This specimen appears to differ from C. rubeola in having very closely adjacent corallites (cerioid) and, according to Ralph and Squires (1962), its septa are not lobate at the epithecal wall. Squires and Keyes (1967) indicated some uncertainty about the legitimacy of this type specimen as well as the accuracy of its type locality. Because no additional specimens of this shallowwater species have been reported from off New Zealand since 1849, I strongly doubt that C. smithii occurs in New Zealand waters.
A third species, Cylicia vacua Tenison Woods, 1879, is synonymised with Monomyces rubrum.

Family OCULINIDAE Gray, 1847
Oculina Lamarck, 1816
Corallum colonial (arborescent), corallites formed by extratentacular, alternate budding; axial corallites absent. Coenosteum dense and costate or uniformly granular. Pali or paliform lobes present before all but last septal cycle, usually in 2 crowns. Columella papillose.

Type Species: Madrepora virginea Lamarck, 1816 (= Oculina diffusa Lamarck, 1816), by subsequent designation (Milne Edwards \& Haime 1850: xix).

Remarks: Of the approximately 25 nominal species in the genus, probably only 4 or 5 appear to be valid species (Cairns 1991a). The genus includes both zooxanthellate and azooxanthellate species and is commonest in the western Atlantic.

Oculina virgosa Squires, 1958 (Plates 4, f, i, 5, c, d)
Oculina virgosa Squires, 1958: 39, pl. 5, figs 8-16, text-fig. 11; Ralph \& Squires 1962: 5-6, pl. 1, fig. 7; Squires \& Keyes 1967: 22, pl. 1, fig. 3; Cairns 1991a: 10; GrantMackie, 1993: 16, 17, 20.

Material Examined: New Records: NZOI Stn F928, 5 branches, NZOI; Stn J969, NZOI; Stn J970, NZOI; BS895 (O641), 10 branches, MoNZ CO307 and 312; BS898 (O644), 1 colony, MoNZ CO290; BS899 (O645), 3 colonies, MoNZ CO166 and 299; BS907 (O653), MoNZ; BS910 (O656), 1 colony, MoNZ CO27; 5-6 km off North Cape, 40 m, 2 colonies, AUM 9129, H1200; Elingamite wreck, West King Island, $42-46 \mathrm{~m}, 3$ colonies, AIM; off Poor Knights Island, 29 m, NZGS; Cape Karikari, Doubtless Bay, 49 m, NZGS. Previous Records: Specimens reported by Squires (1958) several of which are at the USNM; Ralph and Squires (1962); and Squires and Keyes (1967).

Distribution: Known only from New Zealand region in a circumscribed area off northeast coast of North Island from Three Kings Islands to Poor Knights Island (Map 8); 29-388 m.

Description: Corallum sparsely and irregularly branched, one of the largest specimens examined (AU9129, Plate 4, f) 140 mm in height and 14 mm in basal branch diameter, having 13 terminal branches. Slender terminal branches bear distally inclined, sympodially arranged corallites, but intermediate to large-diameter branches bear perpendicularly oriented corallites that are uniformly distributed on all branch faces. Most corallites are exsert, as much as 3.0 mm ; however, corallites on basal branches sometimes flush or even recessed into coenosteum. Calices circular, ranging from 2.54.5 mm in diameter. Costae conspicuous only near calice, where they are $0.22-0.31 \mathrm{~mm}$ wide and separated by shallow intercostal striae about $30 \mu \mathrm{~m}$ in width. Costae, as well as remaining coenosteum, covered with low, rounded granules $70-80 \mu \mathrm{~m}$ in diameter.

Septa predominantly hexamerally arranged in 4 complete cycles, one pair of $S 4$ usually occurring in each of the 2 systems on the leading (distal) edge of each corallite, resulting in 28 septa ($6: 6: 12: 4$). Occasionally, one system is without the S 4 pair
or a third system acquires a pair of S4, resulting in 26 or 30 septa, respectively. In about 10% of the corallites examined, septa are heptamerally arranged in 3 complete cycles (7:7:14), also resulting in 28 septa. S1 exsert (up to 0.8 mm) and rather narrow (0.7 mm), having straight, vertical, slightly dentate inner edges, each of which bears a narrow (0.15 mm wide) paliform lobe near the columella. S2 slightly less exsert and less wide (about threequarters width) than an S1, each bearing a slightly wider ($0.25-0.30 \mathrm{~mm}$) paliform lobe. S3 half to two-thirds width of an S2 and have dentate inner edges, unless flanked by a pair of S4, in which case they are as wide as an S2 and bear a paliform lobe of equal size and same relative position as a P2, the 2 paliform lobes within such a system being paired. The crown of 6 P 1 lie low in the fossa directly adjacent to the columella; the 6-8 P2 form a second crown of lobes that rise higher in the fossa and are slightly more recessed from the columella than the P1. Columella papillose, composed of 2-4 granular pillars.

Types: The holotype and three paratypes are deposited at the NZGS, the holotype numbered CO1219.

Type Locality: Sandstone, Waitemata Group, the Funnel, Kaipara Harbour, Auckland, North Island, Altonian (early Miocene).

Remarks: Two exclusively fossil species of Oculina are known from New Zealand: O. oamaruensis Park, 1917 (middle Eocene to early Miocene) and O. nefrens Squires, 1958 (Cretaceous), and only one other recent Pacific species is known: O. profunda Cairns, 1991a (Galápagos and California, 119-578 m). Oculina virgosa is distinguished from these three species by its tendency to have 28 septa, either in an incomplete hexamerally arranged fourth cycle or a full heptamerally arranged three cycles. Squires' (1958: text-fig. 11) diagram of the septal plan of this species is incorrect, showing twice as many septa (56) as proper and thus also confusing the paliform lobe arrangement.

Madrepora Linnaeus, 1758

Corallum colonial (arborescent), corallites formed by extratentacular alternate budding; no axial corallites. Coenosteum dense and weakly costate or uniformly granular. P2 sometimes present. Columella papillose or absent.

Type Species: Madrepora oculata Linnaeus, 1758, by subsequent designation (Verrill 1901).

Remarks: Many species names have been attributed to the genus Madrepora (see Zibrowius 1974b); however, there are probably only three or four valid recent species, which includes the highly variable, cosmopolitan M. oculata Linnaeus, 1758. A discussion of its variation is found in Zibrowius (1980) and Cairns (1982, 1991a). Other distinctive species include: M. carolina (Pourtalès, 1871) and M. kauaiensis Vaughan, 1907.

Madrepora oculata Linnaeus, 1758

(Plates 5, e, f, 6, a, b)
Madrepora oculata Linnaeus, 1758: 798; Zibrowius 1974b: 762-766, pl. 2, figs 2-5 (synonymy); Cairns 1979: 3942 , pl. 3, fig. 2, pl. 4, fig. 5, pl. 5, figs 1-3 (synonymy); Zibrowius 1980: 36-40, pl. 13, figs A-P (synonymy); Cairns 1991a: 9-10, pl. 2, fig. j, pl. 3, figs a-d; 1994: 1819, pl. 3, figs. f-h (synonymy).
Madrepora vitiae Squires \& Keyes, 1967: 22, pl. 1, figs 4-8; Dawson 1979: 29-30.

Material Examined: New Records: typical (vitiae) form: NZOI Stn B490, USNM 88376; NZOI Stn C509, NZOI; Stn D6, NZOI; Stn D424 (dead), NZOI; Stn E908, NZOI; Stn F10, NZOI; Stn H222, NZOI; Stn H223, NZOI; Stn P68, NOZI; Stn S572, USNM 93989; Stn T235, NZOI; Stn T256, NZOI; Volcanolog Stn 64, AUM AU12299. Encrusting form: NZOI Stn K828, NZOI; Stn K840, NZOI; Stn K858, NZOI; Stn U591, USNM 93987; Stn U594, USNM 93988; Stn Z2098, NZOI; BS441, MoNZ CO256. Previous Records: Types of M. vitiae; specimens reported by Squires and Keyes (1967) and Cairns (1982).

Distribution: New Zealand region: typical form: widespread from southern Macquarie Ridge to Kermadec and Three Kings Ridges (Map 2); 149946 m, the shallowest records off Fiordland. Symbiotic form: Three Kings and Kermadec Ridges: 398-850 m. Elsewhere: cosmopolitan except for off continental Antarctic; 15-1500 m.

Types: The types of M. oculata are lost (Zibrowius 1980). The holotype and three paratypes of M. vitiae are deposited at the NZOI (H-17, P-18-20) (see Dawson 1979).

Type Localities: M. oculata: Tyrrhenian Sea and off Sicily, Mediterranean; depth unknown. M. vitiae: NZOI Stn B314, $39^{\circ} 22^{\prime} \mathrm{S}, 171^{\circ} 50^{\prime} \mathrm{E}$ (northwest of Cape Farewell), 230-251 m.

Remarks: Madrepora oculata is a widespread and variable species that has been described and illustrated many times (see synonymy). Two forms
of the species occur in the New Zealand region: forma vitiae, decribed as a new species by Squires and Keyes (1967) and the "symbiotic" form, so named because of its association with commensal poly-chaetes that form tube galls throughout the corallum. Forma vitiae consists of robust colonies with long sympodially budded branches that infrequently anastomose. Its coenosteum is white and faintly striate. Calices are $2.6-3.3 \mathrm{~mm}$ in diameter and septa are hexamerally arranged in three complete cycles ($\mathrm{S} 1>\mathrm{S} 2>\mathrm{S} 3$). P2 may or may not be present; the columella is rather small and papillose. The symbiotic form consists of small, bushy colonies that are penetrated by polychaete worm tubes. Its branches are relatively short and frequently anastomose. Its coenosteum is light brown and finely granular, not striate. Calices are smaller, only 1.92.2 mm in diameter, and septa are hexamerally arranged in three cycles ($\mathrm{S} 1>\mathrm{S} 2>\mathrm{S} 3$). P2 may or may not be present; columella papillose and rather large.

Family ANTHEMIPHYLLIIDAE Vaughan, 1907
Anthemiphyllia Pourtalès, 1878
Corallum solitary and patellate or bowl-shaped. Coralla begin attached to substratum but usually become free as an adult. Base porcellanous and/or costate, often showing a scar of attachment. Septotheca thick and dense. Septal edges dentate to coarsely lobate. Pali absent; columella papillose.

Type Species: Anthemiphyllia patera Pourtalès, 1878, by monotypy.

Remarks: Anthemiphyllia is the only genus in the Anthemiphylliidae; however, Best and Hoeksema (1987) consider it to be a faviid genus, with close affinities to Indophyllia Gerth, 1921. Six species are known in the genus: A. patera Pourtalès, 1878 (western Atlantic, $500-700 \mathrm{~m}$); A. dentata (Alcock, 1902a); A. pacifica Vaughan, 1907 (off Hawaiian Islands, 205- 296 m); A. patella Gerth, 1923 (Tertiary, Java); A. frusta Cairns, 1994 (off Japan, 237-241 m); and an undescribed species (A. dentata sensu Cairns 1984) (off Hawaiian Islands, 369 m).

Anthemiphyllia dentata (Alcock, 1902)

(Plate 6, c-g)
Discotrochus dentatus Alcock, 1902a: 104; 1902c: 27, pl. 4, figs 26, 26 a.

Anthemiphyllia dentata: Wells 1958: 264, pl. 1, figs 8-11; Not Cairns 1984: 11, pl. 1, figs F-G (= undescribed species); Best \& Hoeksema 1987: 398-399, figs 9a-c; Cairns \& Parker 1992: 16-17, pl. 4, figs e-f (synonymy); Cairns 1994: 44-45, pl. 18, figs d-f (synonymy).

Material Examined: New Records: NZOI Stn C527, 8, USNM 93990; Stn 192, 1, NZOI; Stn K828, 2, USNM 93991; Stn K840, 3, NZOI; Stn K842, 1 attached form, USNM 93992; Stn K858, 2, NZOI; Stn K872, 1 attached form, USNM 93993; Stn P10, 4, NZOI; Stn T217, 5, USNM 93994; Stn U591, 1, USNM 93995; Stn U594, 2, NZOI; BS441, 16, MoNZ CO226 and 234, 6, USNM 94357.

Distribution: New Zealand region: ridges north of New Zealand, including southern Norfolk, Three Kings, and Kermadec Ridges (Map 14); 280-570 m. Elsewhere: Arabian Sea; Maldives; Sulu and Banda Seas; off Japan; off southeast Australia and Tasmania; $50-560 \mathrm{~m}$.

Description: Corallum shaped as a shallow bowl, the largest specimen examined (NZOI Stn T217) 21.9 mm in diameter and 11.4 mm in height. Most coralla are free, but often display a circular scar or irregularity $4-6 \mathrm{~mm}$ in diameter at centre of base. Several specimens, including all juvenile specimens and 2 adults from NZOI Stn K842 and K872, are firmly attached to the substratum by a region $4-$ 6 mm in diameter. It is believed that free coralla result when specimens originally attach to a small and/or unconsolidated substratum; attached coralla persist if the substratum is large and solid. Central basal region often smooth, even porcellanous, but toward basal perimeter discrete, rounded costae $0.8-1.0 \mathrm{~mm}$ wide occur, separated by narrow (0.2 mm) intercostal furrows that become increasingly deep towards basal edge. Occasionally very thin ridges bisect each intercostal furrow. Costae very finely granular, 6 or 7 granules occurring across the width of a costa, each granules about $50 \mu \mathrm{~m}$ in diameter. Corallum white.

Septa hexamerally arranged in 5 cycles, the last cycle usually incomplete, the most common septal complement being 60, achieved by having one pair of S5 in each system. In some coralla, 2 pairs of S 5 occur in a system, but invariably within the same half-system. S1-2 quite thick (up to 1 mm) and bear 7-11 septal lobes, the number dependent on the calicular radius. Innermost septal lobes cylindrical ($0.3-0.4 \mathrm{~mm}$ in diameter), but become increasingly wider and thicker toward calicular edge such that outermost lobes are quite coarse (up to 1 mm wide) and have blunt tips. S1-2 have straight inner edges and highly granular faces, especially
the faces of the prominent septal lobes. S2 only slightly less exsert and less wide than the S1. S3 almost as wide as the S 2 (reaching almost to columella), but only half as thick. S3 bear 12-16 tall, cyclindrical teeth, the tallest being near the calicular edge. Unflanked S4 and all S5 about half width of an S3 and bear 10-12 tall, laciniate teeth, each about 0.3 mm in diameter. Fossa shallow, containing a granular, papillose columella, the elements about 0.5 mm in diameter, and indistinguishable from inner teeth of S1-2.

Types: Seven syntypes of D. dentatus are deposited at the ZMA (Coel. 716-718) (Van Soest 1979).

Type Locality: Siboga Stns 95, 98, and 100, Sulu Sea; 350-522 m.

Remarks: The New Zealand specimens reported herein differ slightly from those reported from the Indian Ocean (Cairns \& Keller 1993), Australia (Cairns \& Parker 1992), and the Sulu Sea (Alcock 1902a) in having smaller, bowl-shaped coralla. Specimens from other regions are usually larger and flatter, and, being larger, have more septal spines/lobes per septum. The S1-2 septal lobes of the New Zealand specimens are, in general, fewer in number and coarser in shape than those from other regions, but there appears to be great variation in this character, even among specimens from the same station. Anthemiphyllia dentata is distinguished from other species in the genus by having up to 5 cycles of septa and relatively large coralla, most other species having smaller coralla and only 4 cycles of septa. The New Zealand specimens are similar to the unique specimen reported as A. dentata by Cairns (1984), both taxa having bowl-shaped coralla of about the same size and 60 septa, but the Hawaiian specimen is distinguished by its distinctive S1 lobation.

Suborder CARYOPHYLLIINA

Superfamily CARYOPHYLLIOIDEA Dana, 1846 Farmily CARYOPHYLLIIDAE Dana, 1846

Caryophyllia Lamarck, 1816

Corallum solitary; attached (subcylindrical, ceratoid, trochoid) or free (cornute). Calice circular, elliptical, or compressed; thecal edge spines present on species having compressed coralla. Septal symmetry variable, but hexameral symmetry with 4 cycles of septa most common. One crown of pali present before penultimate or (rarely) antipenulti-

[^0]: "The scleractinian corals of New Zealand have received so little attention that they have remained one of the larger unknown quantities of modern coral faunas."
 (Ralph \& Squires 1962: 1)

[^1]: * For explanation of abbreviations, see p. 15

