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Over the last ~3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color,
mineralogy, and geochemistry across Home Plate, an ~80 m-diameter outcrop of basaltic tephra.
Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in
visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with
mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission
Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide
(npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS)
observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in
the west. We propose that these variations are the result of two distinct alteration regimes that may or may
not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of
Home Plate and lower temperature alteration of the western side that produced npOx.

Published by Elsevier B.V.
1. Introduction

In order to maximize discovery when the Mars Exploration Rover
Spirit first landed in Gusev Crater in 2004, a reconnaissance traverse
was conducted that rarely doubled back. But over the last three of its
five years on Mars, Spirit has completed a circumnavigation of Home
Plate (Fig. 1; Arvidson et al., 2008), an ~80 m-diameter platform of
basaltic pyroclastic layered deposits that were variably reworked by
eolian processes (Fig. 2; Squyres et al., 2007). During its traverse,
observations made by Spirit reveal coherent changes in spectral
characteristics, mineralogy, and composition that are consistent with
alteration gradients across the Home Plate outcrop. The extended
traverse around Home Plate made it possible to perform a systematic,
integrated study of this gradient across the structure.
B.V.
Both the Spirit and Opportunity rovers have examined rocks that
indicate diverse alteration conditions at their landing sites, including
variablewater/rock ratios, pHand temperatures (e.g.,Haskinet al., 2005;
Tosca et al., 2005; Hurowitz et al., 2006; Ming et al., 2008). In the Home
Plate region (Fig. 1), Spirit encountered a suite of rocks and soils that
implicate volcanism andhydrothermal activity (e.g., Squyres et al., 2007;
Schmidt et al., 2008; Morris et al., 2008). For example, opalline silica
deposits in theEasternValley (Fig.1) formedbyeither intense acid-vapor
alteration of a volcanic protolith or sinter precipitation from silica-
saturated aqueous fluids (Squyres et al., 2008). To the north and to the
southeast (Tyrone; Fig.1) are hydrated sulfate soils of likely fumarolic or
hydrothermal origin (Yen et al., 2008). At Low Ridge (Fig. 1), rocks have
abundant hematite, high K and/or Zn and were probably affected by
hydrothermal alteration (Ming et al., 2008; Morris et al., 2008). This
studyof themineralogical andcompositional gradient acrossHomePlate
is in the contextof a oncedynamic hydrothermal systemand allowsus to
constrain reactions and conditions over a known distance and to
envision fluid flow in the subsurface of Mars.
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Fig. 1. A: Orbital HiRISE (High Resolution Imaging Science Experiment) images of Home
Plate PSP_005456_1650 (collected 9/25/07). Thin white line denotes Spirit's traverse
(Arvidson et al., 2008). Locations of targets are indicated.
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2. The Home Plate traverse

Spirit performed in situ geochemical and mineralogical observa-
tions of Home Plate at five locations (Fig. 1) over sols 749 to ~1500
(1 sol=1 martian day). At the northwest (Barnhill; Fig. 2A) and east
(Pesapallo; Fig. 2B) scarps, several targets were selected along 1–
2 m stratigraphic sections. Elsewhere, Spirit examined the upper
surface of Home Plate (Texas Chili, Pecan Pie, and Chanute; Arvidson
et al., 2008).

The Home Plate edifice is mainly constructed of a fine-grained,
cross-bedded and laminated unit, but at its northwest corner (Barn-
hill, Fig. 2A) and in the northern Eastern Valley (Fig.1A), a lower, more
coarsely bedded, coarser-grained unit is exposed. The interpretation
that pyroclastic and likely hydrovolcanic processes constructed Home
Plate is based on textures that include graded beds, an apparent bomb
sag and possible accretionary lapilli in the lower unit (Squyres et al.,
2007; Lewis et al., 2008). Compositional characteristics, including
volatile element enrichments indicate that a hydrothermal chloride
brine interacted with the deposit (Schmidt et al., 2008). Cross-
bedding and sorting in the upper part of Home Plate reflect either
eolian reworking or primary base surge deposition. Beds that make up
Home Plate dip 0–35° toward its center, apparently draping a pre-
existing circular depression, such as a small impact crater (Squyres
et al., 2007; Lewis et al., 2008). The eastern rim is 4.4 m higher than
the west (Schröder et al., 2008) and this most likely reflects either
draping of underlying topography or later deformation. Eastern and
southeastern Home Plate are linked stratigraphically by tracing a
conspicuous erosion-resistant doublet marker layer (Fig. 2B) that
occurs at the base of the Pesapallo section and extends southward
around the east side to underlie Texas Chili. Resistant doublet layers
on the east side of Home Plate correlate with those situated between
the lower and upper units of the Barnhill section on the northwest
side (Fig. 2A); they share similar thicknesses, morphologies, and
stratigraphic positions at the base of the cross bedded unit (Lewis
et al., 2008).

3. Results

We present observations made by the High Resolution Imaging
Science Experiment (HiRISE) camera onboard the Mars Reconnais-
sance Orbiter (MRO; McEwen et al., 2007) and the instruments of the
Athena Payload on Spirit (Squyres et al., 2003). In particular, we
include results of multispectral imaging by the Panoramic Camera
(Pancam) and analyses by the MB, which determines Fe-bearing
minerals (Table 1); the Mini-TES, which assesses mineralogy remotely
based on emissivity spectra (Table 2); and the APXS, which analyzes
major and some minor element concentrations (Table 3). Wherever
possible, the Rock Abrasion Tool (RAT) brush cleared dust from rock
targets prior to analysis.

3.1. Multispectral observations

Color differences across Home Plate are visible in observations
made by the orbital HiRISE camera, such as a false color composite
(Fig. 3A) illustrating the near-infrared (874 nm), red (694 nm), and
blue-green (536 nm) channels. Colors are exaggerated in a decorrela-
tion stretch of the HiRISE subscene (Fig. 3B) where the surrounding
basalt sand-covered plains are mostly blue, surfaces on the western
rim of Home Plate are yellow-orange and the center and eastern rim of
Home Plate are mottled blue-green to green. Some of these color
differences are also highlighted in the composite of fraction images
(Fig. 3C) derived from spectral mixture analysis (Adams et al., 1993) of
the three color data. Bright dust or bright colored surfaces in the
fraction image are red, basaltic sands or spectrally similar materials
are in green and shaded surfaces are blue. The western rim is red,
indicating a higher fraction of dust and/or bright colored surfaces.
Parts of the eastern rim and southeastern quadrant of Home Plate
have higher proportions of the “basaltic sands” fraction image,
indicating either greater amounts of basaltic sands or the indurated
basaltic clasts that make up the Home Plate outcrop.

Looking south from the summit of Husband Hill (0.7 km to the
north) on sol 595, Pancam obtained multispectral images of Home
Plate. A RGB false-color composite (using 753, 535, and 432 nm
bands; Fig. 4A) reveals a dichotomy between the east (blue/green-
toned) and west (red-toned) portions of Home Plate, consistent with
HiRISE images collected on Spirit's sol 1325 (Fig. 3). The color
differences indicate that the eastern portion of Home Plate is not as
contaminated by airfall dust as the western edge and/or that the
materials comprising the uppermost eastern surface are less
oxidized (thus “bluer”). Pancam color scenes taken on top of Home
Plate confirm higher red/blue ratios towards the west. Extensive
imaging since sol 1477 from the north side of Home Plate is
consistent with these observations, although additional analyses are
ongoing.

The spectral properties of dust-free rock surfaces were evaluated
for RAT brushed rock targets. Corresponding Microscopic Imager (MI)
images confirm near complete removal of dust grainsN0.1 mm.
Pancam spectra of RAT brush spots indicate that rock surfaces in the
western part of Home Plate have greater 535 nm band depths and
shallower (less negative) 601 nm band depths than in the east (Fig. 5).
Band depths at 535 nm tend to correlate with Fe3+/FeTotal in Gusev
rocks measured by the MB, possibly due to the relative abundance
of finely crystalline red hematite (Farrand et al., 2006, 2008).
Differences in the 601 nm band depth can be influenced either by
the ratio of pyroxene/olivine or by the presence of goethite, al-
though MB did not detect goethite in these materials (Table 1).
Because clear spectral differences have been detected in dust-free
rock surfaces, surficial dust deposits are unlikely to be the domi-
nant cause of the persistent color dichotomy. Variations in spectral
parameters across Home Plate verify that color contrasts observed
at greater distances reflect meaningful differences in outcrop
mineralogy.

3.2. Mineralogy

At both the eastern and northwestern sides of Home Plate, there is
little internal mineralogical variability among the multiple targets



Fig. 2. Pancam images of the edges of Home Plate. Marker doublet layer is indicated by arrows. A: Subset of Gibson Panorama at the northwest corner of Home Plate near the Barnhill
section. B: Subset of Ballpark Panorama of east Home Plate near the Pesapallo section (c.f. http://marswatch.astro.cornell.edu/pancam_instrument/mosaics.html). Example
vesicular basalt is indicated by VB.

260 M.E. Schmidt et al. / Earth and Planetary Science Letters 281 (2009) 258–266
acquired along the two stratigraphic traverses. However, the two sides
are mineralogically distinct. MB observations indicate that Fe in the
Barnhill section is almost equally distributed between npOx, pyrox-
ene, magnetite and olivine, whereas the Fe of the Pesapallo section
occurs dominantly in magnetite (up to 54%) and pyroxene with lesser
amounts in npOx, hematite, and olivine (Fig. 4C; Table 1). The Fe-
bearing mineralogy determined by MB is reported as component
subspectral areas, which reflect the quantitative distribution of Fe
between mineral phases. Subspectral areas can be recast into wt.%
using, for example, the procedure outlined by McSween et al. (2008).
Ranges in Fe concentration found by APXS for targets within the upper
cross-bedded unit are equivalent within error (15.5–16.8 in east vs.
15.4–16.9 in west; Table 3). Across the upper surface of Home Plate,
MB olivine subspectral areas increase steadily from east to west–
northwest (Figs. 4C and 6A and B). The sum of olivine and pyroxene
subspectral areas is nearly constant in the Barnhill and Pesapallo
section rocks (Fig. 6C), but is notably lower in the targets Chanute and
Pecan Pie. The abundant magnetite at Home Plate may constrain the
fO2 during its formation to at or above the quartz–fayalite–magnetite
(QFM) buffer. Higher hematite contents in Chanute and Pecan Pie (14
and 18% subspectral area, respectively) might reflect alteration of the
Fe-silicate phases. From east to west–northwest, npOx increases as a
step (Fig. 6B); 6–11% of the Fe in the Pesapallo targets and 26–31% of
the Fe in other Home Plate targets are contained in npOx.

Remote observations of rock surfaces by Mini-TES also reveal
differences between the Barnhill and Pesapallo sections (Table 2) with
no significant intra-section variation. Deconvolutions of Mini-TES
spectra indicate that pyroxene contents increases to the east, consistent
withMBmeasurements. The difference in olivine contents across Home
Table 1
Mössbauer areas for component subspectra and Fe3+/FeTotal.

Barnhill_Ace Posey_Manager JamesCool PapaBell_Stars Pecan Pie Chan

Section Barnhill Barnhill Barnhill Chan

Unit Lower unit
northwest

Upper unit
northwest

Upper sfc. northwest Upper sfc.
west

Upp
nort

Sol 748 754 762 1370 1411

Type Unbrushed Brushed Brushed Brushed Brus

Ol % 18 17 17 12 9
Px % 22 23 23 15 22
npOx % 29 27 29 31 31
Mt % 24 31 28 29 29
Hm % 7 3 3 14 9
Fe3+/FeTotal 0.53 0.53 0.52 0.64 0.6

Ilmenite, chromite, sulfates, and garnet were not detected by Mössbauer spectrometer in an
±0.03. A more complete summary of these data are presented by Morris et al. (2008).
Plate fromMini-TES deconvolutions is not significant within error (10%
in west vs. 5% in east ±5%; Table 3) and this most likely reflects
detection limits of the instrument. A component modeled as basaltic
glass is dominant in the Barnhill section (northwest), but is less
important in the Pesapallo section (east). The component consistent
with a primary volcanic glass may instead represent devitrified glass or
an unknown amorphous secondary silicate. Other secondary silicates
that are spectrally similar to phyllosilicate and zeolite phases are also
modeled (up to 25%) inwestern Home Plate rocks. A sulfate component
(20%) is detected on the eastern side of HomePlate that is not supported
by S concentrations found by APXS (Table 3). The sulfate component
most likely reflects contamination by surface dust as has been described
elsewhere in Gusev Crater (Ruff et al., 2006). Magnetite was not
detected inMini-TES deconvolutions despite its inclusion in the spectral
library because someof its spectral features are longward of its bandpass
and other features are obscured by the atmospheric CO2 band (Squyres
et al., 2007).

3.3. Geochemistry

The composition of Home Plate is alkali-rich basalt (45–47% SiO2,
Table 3), similar to nearby vesicular basalts (Schmidt et al., 2008).
Targets from the upper cross-bedded unit exhibit similar concentra-
tions of elements that partition strongly into magnetite (Fe, Ti, Cr, Mn;
Fig. 7A; Table 3). In contrast, the lower Barnhill targets have lower Ti
and higher Fe that most likely reflect real stratigraphic differences
because undisturbed soils and dust tend to have lower Fe (Fig. 7A).
Absolute differences are small (~1 wt.%), but Si/Mg and Al tend to be
higher in the east, while Ca tends to be higher in the west (Fig. 7B–C
ute Texas Chili Pesapallo June Emerson Elizabeth Emery Esperanza_Palma

ute Pesapallo Pesapallo Pesapallo basalt

er sfc.
h

Upper sfc.
south

Upper unit
east

Upper unit
east

Upper sfc. east Low ridge

1328 1207 1213 1217 1056

hed Brushed Brushed Brushed Brushed Unbrushed

4 1 2 2 4
30 41 37 38 45
25 11 6 8 4
34 42 54 51 45
7 5 1 1 1

2 0.56 0.48 0.44 0.46 0.40

y of these rocks. Uncertainty in subspectral areas is ±2%. Uncertainty for Fe3+/FeTotal is

http://marswatch.astro.cornell.edu/pancam_instrument/mosaics.html


Table 2
Average Mini-TES spectral deconvolution results for the Barnhill and Pesapallo sections
of Home Plate.

Barnhill (Northwest) Pesapallo (East)

Basaltic glass 40 20
Secondary silicates 25 5
Plagioclase 10 10
Olivine 10 5
Pyroxene 5 35
Sulfate 5 20

Values are normalized to 100% and rounded to the nearest 5%. Error is approximately±5%.
Deconvolution routine is presented by Ruff et al. (2006) with a mirror dust correction by
Smith et al. (2006). Secondary silicates may represent phyllosilicate or zeolite phases.
Representative Mini-TES spectra are available in the online electronic supplement.

Table 3
Elemental compositions of Home Plate rocks, Gusev Crater.

Target
name

Barnhill_ Ace Barnhill_Fastball Posey_Manager CoolPapaBell_
Stars

CoolPap
Crawfor

Section Barnhill Barnhill Barnhill Barnhill Barnhill

Location Lower unit
northwest HP

Lower unit
northwest HP

Upper unit
northwest HP

Upper sfc.
northwest HP

Upper s
northw

Type Unbrushed Unbrushed Brushed Brushed Brushed

Sol # 749 750 754 763 764

wt.%
SiO2 45.2 (0.3) 45.3 (0.3) 45.4 (0.4) 46.0 (0.3) 46.6 (0.
TiO2 0.74 (0.06) 0.67 (0.06) 1.01 (0.06) 0.93 (0.06) 1.11 (0.0
Al2O3 8.9 (0.1) 7.9 (0.1) 9.3 (0.1) 9.3 (0.1) 10.0 (0.
FeO* 17.7 (0.1) 17.8 (0.1) 15.4 (0.1) 16.9 (0.1) 15.4 (0.
MnO 0.39 (0.01) 0.47 (0.01) 0.32 (0.01) 0.31 (0.01) 0.29 (0.
MgO 9.2 (0.1) 12.0 (0.1) 9.5 (0.1) 9.6 (0.1) 10.3 (0.
CaO 6.1 (0.0) 5.8 (0.0) 6.7 (0.0) 6.5 (0.0) 6.7 (0.0
Na2O 3.1 (0.2) 2.3 (0.2) 3.5 (0.2) 3.3 (0.2) 3.4 (0.2
K2O 0.32 (0.05) 0.23 (0.05) 0.42 (0.06) 0.21 (0.05) 0.32 (0.
P2O5 0.87 (0.07) 0.79 (0.07) 1.37 (0.07) 1.12 (0.07) 1.27 (0.
Cr2O3 0.45 (0.03) 0.49 (0.03) 0.32 (0.03) 0.39 (0.03) 0.34 (0.
SO3 5.7 (0.1) 4.6 (0.1) 4.8 (0.06) 3.7 (0.05) 2.9 (0.0
Cl 1.3 (0.0) 1.6 (0.0) 1.9 (0.0) 1.7 (0.0) 1.4 (0.0

ppm
Ni 317 (35) 352 (0.39) 379 (35) 318 (37) 297 (40
Zn 400 (11) 415 (14) 407 (11) 422 (13) 314 (14
Br 475 (17) 370 (18) 181 (15) 203 (16) 91 (15)

Target Wendell_Pruit1 Wendell_Pruit2 Texas
Chili_Brushed

Pesapallo

Section Chanute Chanute Pesapallo

Location Upper unit north
HP

Upper unit north
HP

Upper sfc. south
HP

Upper unit e
HP

Type Brushed Brushed Brushed Brushed

Sol # 1489 1491 1326 1206

wt.%
SiO2 45.7 (0.5) 45.7 (0.5) 45.2 (0.3) 46.8 (0.4)
TiO2 1.10 (0.08) 1.06 (0.08) 1.04 (0.07) 1.20 (0.07)
Al2O3 9.4 (0.1) 9.4 (0.2) 9.4 (0.1) 10.2 (0.1)
FeO* 15.7 (0.1) 15.7 (0.1) 16.3 (0.1) 15.5 (0.1)
MnO 0.33 (0.01) 0.32 (0.01) 0.33 (0.01) 0.33 (0.01)
MgO 8.8 (0.1) 8.8 (0.2) 9.2 (0.1) 9.4 (0.1)
CaO 6.8 (0.1) 6.8 (0.1) 6.4 (0.0) 6.4 (0.1)
Na2O 3.1 (0.2) 3.0 (0.3) 3.3 (0.2) 3.0 (0.2)
K2O 0.38 (0.06) 0.39 (0.06) 0.44 (0.06) 0.46 (0.06)
P2O5 1.32 (0.09) 1.35 (0.09) 1.15 (0.07) 1.63 (0.08)
Cr2O3 0.34 (0.04) 0.32 (0.04) 0.32 (0.03) 0.33 (0.03)
SO3 5.7 (0.1) 5.7 (0.1) 5.1 (0.1) 3.8 (0.1)
Cl 1.3 (0.0) 1.4 (0.0) 1.8 (0.0) 0.8 (0.0)

ppm
Ni 381 (49) 339 (49) 349 (40) 478 (48)
Zn 463 (21) 435 (22) 566 (16) 680 (21)
Br 179 (20) 183 (20) 147 (16) 115 (16)

Results are calibrated according to Gellert et al. (2006) and are more fully presented by Min
FeO. The valence state of S is unknown and is reported here as SO3.
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Table 3). Elements more susceptible to alteration (Fig. 7C–D) exhibit
noticeable (N100 ppm) aerographic variations; Zn, Ni, and K concen-
trations are higher in the east, whereas Cl and Br concentrations
are higher in the west. Texas Chili has high concentrations of Cl, Br, Zn,
and K, (Fig. 7C–D; Table 3), possibly reflecting its intermediate east–
west position (Fig. 1A). Undisturbed Gusev soil analyses represent the
best-guess compositional range for dust contamination. These soils
have less Zn than eastern Home Plate targets and less Cl and Br than
those from the west, indicating that a dust coating did not cause the
geochemical variations across Home Plate.

4. A confluence of observations

Observations made over two years by multiple instruments
consistently indicate that the east and west sides of Home Plate are
aBell_
d

Pecan Pie Chanute_Brushed1 Chanute_Brushed2 Freeman_Brushed1

Chanute Chanute Chanute

fc.
est HP

Upper sfc.
west HP

Upper sfc. north
HP

Upper sfc. north
HP

Upper unit north
HP

Brushed Brushed Brushed Brushed

1368 1432 1434 1453

4) 46.4 (0.5) 45.1 (0.5) 45.1 (0.5) 45.8 (0.5)
7) 0.97 (0.07) 0.97 (0.09) 1.02 (0.07) 1.04 (0.07)
1) 9.2 (0.2) 9.2 (0.1) 9.1 (0.1) 9.1 (0.1)
1) 16.7 (0.1) 16.3 (0.1) 16.3 (0.1) 16.5 (0.1)
01) 0.32 (0.01) 0.32 (0.01) 0.33 (0.01) 0.32 (0.01)
1) 9.7 (0.2) 9.2 (0.1) 9.5 (0.1) 10.2 (0.2)
) 6.4 (0.1) 6.5 (0.1) 6.5 (0.1) 6.3 (0.1)
) 2.7 (0.4) 3.0 (0.3) 3.0 (0.3) 3.1 (0.3)
06) 0.26 (0.06) 0.35 (0.06) 0.33 (0.06) 0.29 (0.06)
08) 1.11 (0.08) 1.13 (0.08) 1.16 (0.08) 1.20 (0.08)
03) 0.34 (0.03) 0.36 (0.04) 0.39 (0.04) 0.38 (0.03)
5) 4.4 (0.1) 6.0 (0.1) 5.5 (0.1) 3.9 (0.1)
) 1.4 (0.0) 1.5 (0.0) 1.6 (0.0) 1.6 (0.0)

) 359 (46) 404 (49) 333 (48) 382 (46)
) 480 (20) 402 (20) 408 (20) 391 (18)

240 (20) 158 (20) 181 (20) 227 (20)

Superpesis Elizabeth
Emery

JuneEmerson Esperanza

Pesapallo Pesapallo Pesapallo

ast Upper unit east
HP

Upper unit east
HP

Upper sfc. east
HP

Low ridge
basalt

Brushed Brushed Brushed Unbrushed

1209 1216 1211 1055

46.0 (0.4) 46.2 (0.1) 46.7 (0.4) 47.9 (0.5)
1.01 (0.07) 0,90 (0.07) 0.86 (0.07) 1.05 (0.08)
10.0 (0.1) 9.7 (0.1) 9.8 (0.1) 8.4 (0.1)
15.9 (0.1) 16.8 (0.1) 16.6 (0.1) 20.2 (0.2)
0.33 (0.01) 0.33 (0.01) 0.34 (0.01) 0.38 (0.01)
8.8 (0.1) 9.2 (0.2) 9.8 (0.1) 8.4 (0.1)
6.2 (0.0) 6.3 (0.0) 6.3 (0.1) 5.6 (0.1)
3.1 (0.3) 2.9 (0.3) 3.1 (0.3) 3.4 (0.3)
0.43 (0.06) 0.40 (0.06) 0.43 (0.06) 0.52 (0.06)
1.08 (0.08) 1.08 (0.08) 1.06 (0.08) 0.91 (0.08)
0.31 (0.03) 0.42 (0.03) 0.45 (0.01) 0.20 (0.03)
5.9 (0.1) 4.9 (0.1) 3.8 (0.1) 2.4 (0.1)
0.8 (0.0) 0.7 (0.01) 0.6 (0.02) 0.5 (0.02)

420 (39) 362 (40) 310 (39) 395 (54)
570 (15) 568 (16) 471 (15) 368 (22)
81 (15) 42 (15) 28 (15) 181 (23)

g et al. (2008). Values in parentheses are 2σ error. FeO* concentrations are total Fe as



Fig. 3. A: False color HiRISE image of Home Plate, PSP_008963_1650 (collected 6/24/07) illustrating the near-infrared (874 nm), red (694 nm), and blue-green (536 nm) channels. B:
Decorrelation stretch of HiRISE subscene. C: Composite of fraction images by spectral mixture analysis (Adams et al., 1993). Bright dust or bright colored surfaces are red, basaltic
sands or spectrally similar materials are in green and shaded surfaces are blue. Images are more fully described in text.
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different. The east side has more pyroxene, magnetite, and higher
Al, Si/Mg, Zn, Ni, and K (e.g., Fig. 7A) whereas the west side has
more olivine, npOx, and higher Cl and Br (e.g., Fig. 7B). VNIR
spectral contrasts observed from orbit by HiRISE (Fig. 3), from the
summit of Husband Hill by Pancam (Fig. 4A–B), and in 13-filter
Pancam images of RAT brush spots (Fig. 5) are consistent with
mineralogical observations and indicate that variations are con-
tinuous across Home Plate and are not limited to rocks examined
in situ.

Compositional similarities in major elements along with
geologic observations (Lewis et al., 2008) indicate that the upper,
cross-bedded materials of Home Plate belong to the same strati-
graphic unit. In contrast, mineralogy and compositions of the more
fluid-soluble elements in the upper unit vary independently of
stratigraphy.

Igneous processes (e.g., peritectic breakdown of olivine or
quartz–fayalite–magnetite, QFM fO2 buffer reaction) are difficult
to envision causing the lateral variations within a single strati-
graphic horizon over 80 m distance. An igneous origin for the
magnetite in the Home Plate rocks was suggested by Morris et al.
(2008) because Martian Shergottite–Nakhlite–Chassignite meteor-
ites have igneous titanomagnetite and airfall dust captured by
magnets on top of the rover contains titanomagnetite (Ming et al.,
2008). While this may point to an igneous origin of the magnet-
captured titanomagnetite, there is no compelling evidence that this
dust was primarily derived from Home Plate. Airfall dust is globally
homogeneous and not dominated by the composition of local rocks
(Yen et al., 2005) and larger saltated particles, while more locally-
derived, could come from any rock in Gusev Crater. Large-scale
movement of dust and sand-sized particles has been an important
process in the Inner Basin of the Columbia Hills, as evidenced by
the existence of the ~0.3 km-wide El Dorado dune field ~0.5 km to
the north (Sullivan et al., 2008). The upper unit of Home Plate at
both the east and west sides has similar concentrations of Fe and Ti
(Fig. 7A) but magnetite contents do vary (Fig. 4C). This indicates
that there is no correlation between Ti concentrations and magne-
tite contents and that titanomagnetite accumulation or fractiona-
tion did not occur. Morris et al. (2008) rule out magnetite formed
by serpentinization of olivine because MB did not detect Fe-bearing
phyllosilicate minerals. But there are many other alteration mecha-
nisms that form magnetite, including oxidizing, low fS2 hydro-
thermal systems (e.g., Simon et al., 2004). Both igneous and
secondary magnetite can be found in the same deposit, such as the
Stardalur magnetic anomaly, Iceland, where anomalous concentra-
tions of magnetite in Fe-rich basalts formed by the peritectitic
breakdown of olivine and subsequent hydrothermal alteration
(Vahle et al., 2007). While we cannot discount that magnetite at
Home Plate may be igneous, a secondary origin as an alteration
product is equally plausible.

Fe-bearing mineral contents at eastern Home Plate are similar to a
nearby, vesicular basalt named Esperanza, which contains mainly
pyroxene andmagnetite and no significant olivine and npOx (Table 1).
This resemblance might indicate that eastern Home Plate is unaltered,
but it does not explain why stratigraphically equivalent rocks across
Home Plate have different olivine contents. Eolian reworking of tephra
deposits might concentrate higher density magnetite close to its
source, but eolian processes would not fractionate olivine from
pyroxene or account for variations among minor elements. We
instead propose that variations across Home Plate reflect overprinting
by both high and low temperature alteration.

5. Overprinting alteration of Home Plate

Mini-TES observations indicate that a component modeled as
basaltic glass is abundant in western Home Plate rocks, but MB did
not detect Fe-bearing glass (Tables 1 and 2; McSween et al., 2008;
Morris et al., 2008). Glass is meta-stable and should either dissolve
(Bandstra and Brantley, 2008) or devitrify at the martian surface
over time (e.g., Lofgren, 1970). Devitrification of basaltic glass on
Earth in the presence of water occurs by hydration and ion exchange
to form palagonite, an assemblage of Fe-bearing clay and zeolite
(Moore, 1966; Stroncik and Schmincke, 2002). Devitrification and
hydration of basaltic glass at Mars surface condition instead forms
npOx (e.g., Singer, 1982; Morris et al., 2001), which is abundant at
Home Plate according to the MB (Table 1; Morris et al., 2008).
Breakdown of basaltic glass to form npOx may have been caused by
either chemical weathering (Morris et al., 2008) or by low temperature
hydrothermal alteration (Schmidt et al., 2008). A correlation between
npOxcontent andCl concentration (Fig. 7F) for easternHomePlate rocks
supports the notion that devitrification and npOx formation is related to
an influxof volatiles, such as a hydrothermal brine or vapor as suggested
by Schmidt et al. (2008).

Olivine and glass will not persist for greater than 104–106 years if
they are exposed to aqueous fluids, particularly at low pH and or
higher temperatures (e.g., Stopar et al., 2006; Hausrath et al., 2008).
But even at low temperature, olivine dissolution is a relatively rapid
process at the surface of Mars under current cold, dry conditions,
where ephemeral acidic fluids contribute to the dissolution of
olivine (Hurowitz et al., 2006; Tosca et al., 2004). In the Gusev
Plains, for example, Adirondack class basalt rock exteriors and soils
have lower olivine contents than RAT-abraded rock interiors
(Hurowitz et al., 2006; McSween et al., 2006). Importantly, the
olivine found in Home Plate rocks reflects the primary igneous
mineralogy, not a secondary assemblage. The occurrence of olivine



Fig. 4. A: False color Pancam image of Home Plate from the summit of Husband Hill.
RGB=753, 535, 432 nm. B: Composite of A where red is the slope between 436 and
754 nm reflectance values, green is 436 nm reflectance and blue is the slope between
the 754 nm and 1009 nm reflectance values. C: Series of pie charts indicating relative
abundances of Fe-minerals around the perimeter of Home Plate. Ol olivine, Px pyroxene,
Mt magnetite, Hm hematite (Table 1).

Fig. 5. Plot of 601 vs. 535 nm band depths from Pancam images of RAT brush spots
(Fig. 1) and relatively dust-free rock surfaces fromwest and east Home Plate (W HP and
E HP, respectively).
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on the west side (Table 1) probably indicates that aqueous fluids
never persistently saturated those rocks. Basaltic glass is found in
the east according to deconvolutions of the Mini-TES data (~20%;
Table 2), but analogous npOx is not identified in the MB observa-
tions. The Fe component in the basaltic glass may have instead
devitrified to form magnetite.

The near absence of olivine as seen by the MB at eastern Home
Plate indicates either that aqueous fluids dissolved it or that it
recrystallized to yield pyroxene and magnetite. Variations in MgO and
SiO2 fromwest to east could result frommass-balanced removal of 2–
6% olivine (Fig. 7B), but this does not account for the near constant
sum of pyroxene and olivine across Home Plate. Symplectic oxidation
of olivine at TN~500 °C may also produce magnetite and low-Ca
pyroxene with Fe-contents dependent on the fO2 and the initial Fe in
the olivine (3Fe2SiO4+O2→2Fe3O4+3SiO2, where SiO2 combines
with Mg or Fe to form pyroxene). This high temperature reaction has
been suggested to explain lower olivine contents in rock interiors than
exteriors in the Gusev Plains basalts (Gunnlaugsson et al., in press),
but would result in a net loss of the sum of Fe in olivine and pyroxene
(Haggerty and Baker, 1967). The Fe in olivine at the eastern side of
Home Plate was more likely converted to pyroxene through the
addition of SiO2 by a localized, subsolidus peritectic reaction or via a
late-stage fluid combined with symplectic oxidation (Fe2SiO4+
SiO2→2FeSiO3). This processes is supported by a correlation bet-
ween pyroxene and SiO2 concentration (Fig. 7E) excluding hematite-
rich Pecan Pie. Hematite in Pecan Pie correlates with lower total
pyroxene and olivine than other Home Plate targets, suggesting
enhanced alteration of these Fe silicates at this site. The process of
silica addition to olivine to form pyroxene has been identified in
some martian Nahklite meteorites (Treiman, 2005; Trieman and
Irving, in press).

Mass transfer during the recrystallization event is implied by
small but systematic changes in composition across Home Plate
(Fig. 7B–D). Under hydrothermal conditions, SiO2 ismore soluble and
Zn and Ni can form chloride complexes whose stability correlates
strongly with temperature (0–300 °C; Sverjensky et al., 1997).
Because higher Si/Mg, Zn, and Ni concentrations are observed in
eastern Home Plate rocks, higher temperatures likely were attained
there. The localized nature of the high temperature alteration
suggests the event was relatively short-lived and temperature
gradients were steep, possibly caused by a nearby dike injection or
influx of volcanic gas. Because no pyrite or Fe-sulfates have been
identified in Home Plate rocks by the MB, the influx of heat that
altered eastern Home Plate was probably associated with a sulfur-
poor fluid or vapor. Acid sulfate vapors have been significant
alteration agents elsewhere in the vicinity of Home Plate, such as
for hydrated Fe-sulfate soils Tyrone (Yen et al., 2008) and the pyrite/
marcasite-bearing float rock FuzzySmith (Squyres et al., 2007). The
heterogeneous distribution of these deposits indicates that alteration
conditions varied in time and space and may have involved the
boiling and fractionation of an acid sulfate vapor from a Cl-rich brine
at depth (Schmidt et al., 2008). Although volatile and soluble
elements, such as Zn and Cl were mobile, ambient water pressu-
res were probably low because no clays or other hydrated mine-
rals have been detected. Lateral advection was probably minor
across Home Plate and thus conduction was the main mode of heat
transport.

The high and low temperature alteration events at Home Platemay
or may not be temporally related to one another, and putting the



Fig. 6. Variation diagrams of subspectral areas for Fe-bearing minerals derived by MB of Home Plate rocks and a nearby vesicular basalt called Esperanza (Table 1). A: Pyroxene vs.
Olivine. B: NpOx vs. Olivine. C: Sum of subspectral areas of npOx and hematite vs. the sum of the subspectral areas of olivine and pyroxene for Home Plate rocks. Also shown are the
hematite-rich layered tephras of Low Ridge and the ultramafic clastic Algonquin rocks from the north side of the Inner Basin of the Columbia Hills (Morris et al., 2008). D: NpOx vs.
the 535 nm band depth from the Pancam spectra of the RAT brush spot. Note that the MB samples a greater depth of the rock (~200 µm) than the Pancam (0–2 µm).
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alteration of Home Plate in context with other altered rocks is
complicated by uncertainties in relative timing of deposition and
alteration. Some layered tephra deposits located to the south of Home
Plate at Low Ridge (Fig. 1) have been found with very high Zn (up to
2300 ppm), Ni (up to 2000 ppm) and K2O (up to 3 wt.%) as well as
very high hematite contents (Ming et al., 2008; Morris et al., 2008).
These rocks may share a common protolith with Home Plate (Ming
et al., 2008) and probably experienced even higher temperatures and
more oxidizing conditions than eastern Home Plate. Other altered
rocks include light-tonedMg-rich, Al-poor outcrops called Everett and
Slide, located several meters east of Home Plate in the Eastern Valley
(Ming et al., 2008). Everett and Slide contain an assemblage of
magnetiteNpyroxeneNnpOx (Morris et al., 2008) and have high Zn
(up to 1340 ppm) and Ni (up to 850 ppm; Ming et al., 2008). These
outcrops may have experienced similar high temperature alteration to
the east side of Home Plate, but their protolith and stratigraphic
position are unknown.

The presence of high silica deposits of hydrothermal origin in the
Eastern Valley is intriguing and may imply a petrogenic link (Fig. 1;
Squyres et al., 2008). But the relationship of the silica deposits with
the higher temperature alteration of eastern Home Plate is not clear
because their lateral extent is unknown and they may be a
stratigraphically lower layer, discontinuous altered pods, or late
sinter deposits. Models for the silica depositionwill be tested as Spirit
explores the areas away from Home Plate. Nevertheless, the sheer
diversity of alteration regimes over a small area (b0.01 km2) suggests
a dynamic, laterally variable hydrothermal system once existed
around Home Plate.

6. Conclusions

The coherent spectral, mineralogical, and geochemical variations
across Home Plate record two discrete alteration regimes: a loca-
lized, high temperature event that affected the east side, and a lower
temperature alteration that formed npOx at the west. The relative
timing of the two alteration events is unknown. Other altered
deposits have been identified in Gusev Crater (e.g., Ming et al., 2006;
Haskin et al., 2005) and, in the Home Plate region, higher tem-
peratures and greater degrees of alteration are inferred (Ming et al.,
2008; Squyres et al., 2008). But Spirit's quasi-circular traverse at
Home Plate has allowed us to incorporate spatial data over a con-
tinuous rock unit and to begin to envision scenarios of lateral heat
and fluid flow.
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