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Abstract. In the absence of long-term monitoring data, inferences about extinctions of
species and populations are generally based on past observations about the presence of a
particular species at specified places and times (sightings). Several methods have been
developed to estimate the probability and timing of extinctions from records of such sightings,
but they differ in their computational complexity and assumptions about the nature of the
sighting record. Here we use simulations to evaluate the performance of seven methods
proposed to estimate the upper confidence limit on extinction times under different extinction
and sampling scenarios. Our results show that the ability of existing methods to correctly
estimate the timing of extinctions varies with the type of extinction (sudden vs. gradual) and
the nature of sampling effort over time. When the probability of sampling a species declines
over time, many of the methods perform poorly. On the other hand, the simulation results also
suggest that as long as the choice of the method is determined by the nature of the underlying
sighting data, existing methods should provide reliable inferences about the timing of past
extinctions.

Key words: extinction probability; extinction time; false extinctions; local extinctions; sighting record;
sudden vs. gradual extinction.

INTRODUCTION

With a few notable exceptions, global extinctions of

species or local extinctions of populations are not

recorded directly but have to be inferred from records

of past occurrences or sighting records (Solow and

Roberts 2003). For some species, information about

past occurrences can be compiled from museum

collections (Shaffer et al. 1998), whereas for others such

as the dodo they may simply be reports of sightings

(Roberts and Solow 2003). Reliably estimating the

timing of extinctions of species (defined here as the

definitive disappearance of a species either locally [local

extinction] or globally) remains a major challenge.

Because sighting records and museum collections are

inherently incomplete, the absence of a species in such

records does not necessarily mean that it is extinct.

Instead it could reflect reduced sampling effort or short-

term variation in the abundance of the species. As a

result, the last time that a species is observed or sampled

will generally occur sometime before its true extinction.

Probabilistic methods can generate confidence intervals

on the true extinction timing, given the sighting record,

which can then be used to evaluate whether a species

that has not been sighted for some time is likely to be

truly extinct (Solow 1993a, 2005, Burgman et al. 1995,

Roberts 2006).

Different methods have been proposed in the last two

decades to generate confidence intervals on the timing of

extinctions. These methods differ in their computational

complexity and in the stringency of their assumptions

about the nature of sampling. The simplest methods

developed in the ecological literature (Solow 1993a,

McInerny et al. 2006) are straightforward in their

calculation, but require the restrictive assumption that

sampling effort is constant over time. Other methods

make no assumption about sampling intensities (Rob-

erts and Solow 2003, Solow and Roberts 2003), but they

tend to produce large confidence intervals (Solow 2005).

A different set of methods explicitly model sampling

effort in calculating confidence intervals and can weight

absences depending on the intensity of sampling during

the intervals in which the taxon was not observed

(Burgman et al. 1995, McCarthy 1998, McInerny et al.

2006). Similar approaches also have been developed in

paleontology (Strauss and Sadler 1989, Marshall 1997,

Hayek and Bura 2001) as a way to estimate the real

stratigraphic ranges of species and higher taxa from the

inherently incomplete sampling of taxon occurrences in

the fossil record (Marshall and Ward 1996, Labandeira

Manuscript received 14 February 2008; revised 2 July 2008;
accepted 25 August 2008. Corresponding Editor (ad hoc): A. R.
Solow.

3 Present address: Centro de Estudios Avanzados en Zonas
Aridas (CEAZA) and Departamento de Biologı́a Marina,
Facultad de Ciencias del Mar, Universidad Católica del
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et al. 2002, Wang and Marshall 2004, Solow et al.

2006b). The basic statistical properties of some of these

methods have been explored in detail elsewhere (Strauss

and Sadler 1989, Solow 1993b, Burgman et al. 1995,

Grogan and Boreman 1998, McCarthy 1998, McInerny

et al. 2006). In addition, Burgman et al. (2000) analyzed

the performance of two of these methods under different

scenarios of population decline and sampling intensities.

Despite this work, it is not yet clear how the

performance of each of the seven methods varies under

different scenarios of extinction (e.g., sudden vs.

gradual) and sampling. This is particularly relevant

given the growing interest in reliably detecting local

extinctions (Hedenas et al. 2002, Ferraz et al. 2003,

Solow and Roberts 2003, Dulvy et al. 2004, Farnsworth

and Ogurcak 2006, McInerny et al. 2006, Robbirt et al.

2006), and given the need to distinguish true extinctions

from the failure to sample a species even when it is

present (i.e., ‘‘Lazarus species,’’ sensu Jablonski 1986,

Roberts 2006).

In this study we focus on the performance of seven

methods proposed in the ecological and paleontological

literature that use sighting records or dated museum

collections to estimate analytically the upper bound of

the confidence interval (CI) of the timing of extinction of

a species. The concept of estimating the confidence

interval for extinction timing is rooted in the paleonto-

logical literature (Strauss and Sadler 1989, Marshall

1990, 1994, 1997, Marshall and Ward 1996, Wang and

Marshall 2004), whereas many of the methods devel-

oped in the ecological literature focus on estimating

extinction probabilities (Solow 1993a, b, McCarthy

1998, McInerny et al. 2006). The two approaches are

very closely related (the upper confidence limit is the

time at which the extinction probability reaches the

nominal 0.05 value) and the usefulness of the confidence

interval methods for ecological data has recently been

highlighted (Roberts and Solow 2003, Solow and

Roberts 2003). These approaches do, however, offer

slightly different views of the same issue; extinction

probabilities denote the plausibility of a taxon being

extinct at a particular point in time, whereas CIs delimit

the plausible temporal window for an extinction event.

A different class of models for estimating site

occupancy and extinctions using survey data also exists

in the literature and has been used to explore temporal

changes in the compositions of ecological communities

(Nichols et al. 1998, MacKenzie et al. 2003, 2006) as well

as fossil assemblages (Nichols and Pollock 1983,

Connolly and Miller 2001). The performance of some

of these models under different sampling protocols has

been evaluated recently (Dorazio 2007) and our aim here

is to provide similar evaluations for models that are

useful for the types of records available from museum

collections and nonquantitative surveys.

Using simulations, we assessed each method under a

set of different but realistic extinction and sampling

scenarios. Confidence intervals produced by each

method were evaluated based on their statistical

coverage, which measures the degree to which intervals
are appropriate in size. For an accurate and precise

method, 95% of simulated extinctions should fall within
the 95% confidence intervals. Our results show that

under some conditions there can be pronounced
differences in the performance of these methods, and
we use these findings to provide some basic guidelines

for their applications to real ecological and paleonto-
logical data sets.

METHODS

Simulated data set

Artificial data sets of sightings were generated using
different combinations of population dynamics and

sampling effort. The length of the time series of sightings
ranged uniformly from 20 to 120 time units (years), in

order to mimic the length of time series typical of
museum and herbarium collections. Then different
sighting series were generated according to a variety of

trends in the probability of occurrence or occupancy
(Po) and the probability of sampling (Ps ) over the length

of the series. We use the latter parameter as a measure of
sampling effort.

We modeled both sudden and gradual extinctions.
For sudden extinctions, Po is constant until the

extinction interval, when it drops instantaneously to
zero. Gradual extinctions were characterized by proba-

bilities of occurrence that declined linearly from 1 (at
year 1) to zero (at Text, ‘‘true’’ extinction time). We do

not claim that population declines in nature are
necessarily linear, but because our goal is to evaluate

differences in model performance resulting from the
nature of the extinction (gradual vs. sudden), the linear

decline provides a useful comparison. An exponentially
declining model may be more realistic for some

populations, but it proved to be less useful for our
purpose in some cases because it can leave too few

sightings for meaningful estimation of confidence
intervals. We did, however, undertake exploratory
analyses using an exponentially declining model and

constraining Text¼120 years to ensure enough sightings.
In this case the results were qualitatively similar to those

of the linearly declining model (see Discussion).
Under perfect sampling, the probability of sampling a

species if it is present at a locality would be 1.0. In
practice, however, sampling is never perfect and its

intensity tends to vary over time, sometimes systemat-
ically. In order to explore such sampling effects, we

added a layer of sampling to the simulations that was
superimposed on the population dynamics (gradual vs.

sudden extinction). We modeled sampling effects using a
parameter representing the probability of sampling an

existing population (Ps), which varied over time
according to one of five patterns: (1) uniform, (2) down,

(3) down–up, (4) up, and (5) up–down (Fig. 1).
Although all of these scenarios constitute only broad

abstractions of reality, they do represent some likely
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real-world situations. Uniform sampling (type 1) is ideal,

but probably the least realistic scenario over long time

periods, although it may occur in areas with long-term

monitoring programs. Sampling types 2 and 5, like

many real sighting records, are heterogeneous over time

in terms of sampling intensity. Sampling types 3 and 4

mimic intensive sampling efforts aimed to confirm the

real extinctions of some species. In all cases, the

sampling process continued up to the year 200, well

beyond the real extinction time (20–120 yr). This is

needed for two of the methods (class 2 methods) that

explicitly require estimates of the pre- and post-

extinction sampling intensity. For these methods,

confidence intervals can be calculated only after

ensuring a large enough post-extinction sampling. The

uniform sampling scenario held Ps constant across the

sampling period from the first year until year 200. In

sampling type 2, Ps is maximum at T1 and then declines

linearly from T1 to Text, where it reaches a stable

minimum of Ps¼ 0.2. In type 3, Ps also declines linearly

from T1 to Text, but then it increases abruptly at Textþ1 to

the initial Ps. In sampling type 4, Ps is zero at T1 and

then it increases linearly reaching a maximum at Text,

which is maintained until the year 200. Finally, in

sampling type 5, Ps starts from zero and increases

linearly from T1 and reaches a maximum Ps at Text but

then it collapses abruptly to a Ps ¼ 0.2 at Textþ1.

The total probability that a species is sighted during a

particular time interval is equal to the probability that it

occurred, multiplied by the probability that it was

sampled (Pt ¼ Po�Ps). Although this total probability is

all that matters for determining the record of sightings,

we chose to model its two components separately so that

we could tease apart the influences of actual occurrence

and sampling effort on each estimation method. We ran

simulations assuming relatively high sighting probabil-

ities (Pt ¼ 0.8, with Po ¼ Ps ¼ 0.894) and relatively low

sighting probabilities (Pt ¼ 0.2, with Po ¼ Ps ¼ 0.447);

these values were chosen based on an empirical

distribution of sighting rates (see Discussion). We also

explored a broader range of values for these parameters,

but similar results were obtained and are not shown

here. With two levels of Pt, two kinds of extinctions

(gradual and sudden), and five sampling scenarios, we

report the results from a total of 20 different simulation

scenarios.

Analyses

For each simulation run we estimated the upper 95%

bound of the CI for extinction time using each of the

seven methods listed in Table 1. Three of these methods

(Solow 1993a, McCarthy 1998, McInerny et al. 2006)

were originally formulated as extinction probabilities,

and they were converted to CIs by rearranging the

equations and solving for the time at which the

probability of extinction equaled 0.05. The seven

methods can be grouped into three major categories

(classes 1, 2, and 3) based on the kind of assumptions

that they make about sampling intensity over time. Class

1 methods make the strictest and most unrealistic

assumption that sightings are a Poisson stationary

process (Strauss and Sadler 1989, Solow 1993a, McI-

nerny et al. 2006), with constant probabilities of

occurrence and sampling through time, and an abrupt

collapse to extinction. Class 2 methods (Marshall 1997,

McCarthy 1998) relax the assumption of uniform

probabilities of occurrence by explicitly accounting for

temporal variation in the probability of sampling (the

‘‘recovery potential’’ of Marshall 1997). This is achieved

by incorporating into the computations a measure (or

proxy) for sampling intensity. In our analyses, we used

the probability of sampling (Ps) as a proxy for sampling

effort or recovery potential. While these methods would

perform best if the total probability of sighting (Pt) were

FIG. 1. Graphical descriptions of the five sampling types
used in the simulations (for details, seeMethods: Simulated data
set). Text is the true time to extinction; probability of sampling is
Ps. Uniform sampling (type 1) is ideal but probably the least
realistic over long time periods. Types 2 and 5, like many real
sighting records, are heterogeneous in sampling intensity over
time. Types 3 and 4 mimic intensive sampling efforts aimed to
confirm true extinctions.
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used, this parameter is generally not available for

empirical sighting records because it depends on species

abundance and persistence as well as sampling effort. In

contrast, sampling effort can be estimated in a variety of

ways (McCarthy 1998, Ungricht et al. 2005, van der Ree

and McCarthy 2005, Farnsworth and Ogurcak 2006)

and therefore its use as a proxy constitutes a more

realistic test of these methods. Finally, class 3 methods

(Roberts and Solow 2003, Solow and Roberts 2003) are

the least restrictive in that they do not make any

distributional assumptions, although the independence

of sightings is still required. This informal taxonomy of

methods is validated by our results, which show similar

performance for methods within the same class. An

Excel spreadsheet to compute the CIs for all the seven

studied methods is provided (Supplement).

All of the methods evaluated here assume stable

populations with a sudden extinction. Solow (1993b)

developed a method to account for declining popula-

tions, but in that case the numerical solution of the

upper bound of the confidence interval is not always

possible (Solow 2005). Another approach is to use

Bayesian methods to estimate extinction times (Ferraz et

al. 2003), but their application requires a priori

information about population dynamics that usually is

not available for species where extinction times are

estimated from sighting records. Thus these two

methods were not included in our analyses.

Simulations were performed in an Excel spreadsheet

using the PopTools module (Hood 2005). We created

40 000 runs for each of the 20 scenarios explored,

excluding runs with fewer than five sightings, which is

advisable for some of the methods (Strauss and Sadler

1989). Because the R&S method (Roberts and Solow

2003) assumes a Weibull extreme value distribution,

analyzing sighting records with many observations may

violate the asymptotic result upon which this method is

based (Solow 2005). Our preliminary analyses showed

that indeed the inclusion of a large number of sightings

increased the upper bounds of the estimates. Although

the optimal number of included sightings is still an open

question (Solow 2005), we followed a previous study

(Roberts and Solow 2003) in using, at most, the 10 latest

sightings with this method.

TABLE 1. Methods used to estimate the upper bound (95th percentile) of the confidence
interval of extinction times.

Method, by class Source Formula

Class 1

S&S Strauss and Sadler (1989) Tci ¼ Tn þ kR, k ¼ (1 � a)�1/(H�1) � 1

SOL Solow (1993a) Tci ¼ Tn

ð1�aÞð1=HÞ

MCY McInerny et al. (2006) Tci ¼ Tn þ log½1�ðH=TnÞ�ð1� aÞ

Class 2

MAR Marshall (1997)
Xi¼Tci

i¼Tn

ei ¼ k
Xi¼Tn

i¼1

ei

MCC McCarthy (1998)
Xi¼Tci

i¼1

ei ¼

Xi¼Tn

i¼1

ei

að1=HÞ

Class 3

S&R Solow and Roberts (2003) Tci ¼ Tn þ 1�a
a

� �
ðTn � Tn�1Þ

R&S Roberts and Solow (2003) Tci ¼ Tn þ
Tn � Tn�Hþ1

cðaÞ � 1

cðaÞ ¼ �logða=2Þ
H

� ��m̂

m̂ ¼ 1

H � 1

XH�2

i¼1

log
Tn � Tn�Hþ1

Tn � Tiþ1

Notes: Methods are grouped in three classes based on the assumptions made (see Methods:
Analyses). We modified the original notations of the formulae in some cases so that the methods
can be directly compared. In its original formulation, the MAR method is expressed as
integrals, but given the discrete nature of most sighting records, summation may be more
appropriate and is used here. For both class 2 methods, extinction time corresponds to the time
at which the sampling level at the left side of the equations equals the right side of the equation.
Tci is the upper bound of the confidence interval of the extinction time, Tn is the time of the
latest sighting, R is the total temporal span of the sightings, a is the confidence level (0.05), H is
the total number of sightings, and ei is the sampling effort (probability of sampling) in the ith
year.

MARCELO M. RIVADENEIRA ET AL.1294 Ecology, Vol. 90, No. 5



The performance of each method under all of the

different scenarios was evaluated according to the

coverage of the resulting confidence intervals. Coverage

is defined as the probability that the true parameter

value occurs within the last sighting and the upper

bound of the 95% CI. In the case of our simulations, the

coverage of a method is equal to the percentage of runs

in which the true extinction time occurs within this

interval (i.e., the upper 95% confidence bound is equal to

or higher than the true extinction time, Tci � Text).

Ideally, coverage should coincide with the nominal level

of the confidence interval, so that, on average, 95% of

simulation runs should have true extinction times that

fall between the last sighting and the upper 95% CI. If a

method produces confidence limits that are systemati-

cally too broad, coverage will be greater than the

nominal percentage, and the procedure is thus too

conservative, inflating Type II error. On the other hand,

if a method tends to produce overly narrow confidence

intervals, its coverage will be below the nominal

percentage, increasing the incidence of Type I errors.

In order to evaluate the consistency of each method, we

ranked them according to the coverage under each

scenario, and for each method we calculated Spearman

rank correlations among all possible pairs of scenarios.

Finally, we analyzed the effect of the number of

FIG. 2. Coverage for 95% confidence intervals of the upper bounds of extinction times, according seven methods under
different simulation scenarios: gradual vs. sudden extinction, and total detection probability (Pt) of 0.2 vs. 0.8 (see Fig. 1 and
Methods: Simulated data set). The broken line shows the nominal 95% indicating a perfect coverage. The methods are: S&S (Strauss
and Sadler 1989), SOL (Solow 1993a), MCY (McInerny et al. 2006), S&R (Solow and Roberts 2003), R&S (Roberts and Solow
2003), MAR (Marshall 1997), and MCC (McCarthy 1998). These methods are grouped based on assumptions about sampling
intensity. Class 1 methods make the strictest, most unrealistic assumption that sightings are a Poisson stationary process, with
constant probabilities of occurrence and sampling through time, and an abrupt collapse to extinction. Class 2 methods relax the
assumption of uniform probabilities of occurrence by accounting for temporal variation in the probability of sampling. Class 3
methods are the least restrictive; they make no distributional assumptions, although they still require independence of sightings.
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sightings (above and below the median of 14 sightings in

the simulations), and the sighting rate (above and below

the median sighting rate in the simulations ¼ 0.33

sightings/year) on the coverage of one method repre-

senting each family of methods. CI values were

calculated under two contrasting scenarios: best case

(sampling type 1, sudden extinction, Pt¼ 0.8) and worst

case (sampling type 2, gradual extinction, Pt¼ 0.8).

RESULTS

Realized coverage of 95% confidence intervals varied

widely under different simulation scenarios and methods

and the results are summarized in Fig. 2. In the simplest

case when the assumptions of all of the methods are met

(uniform sampling effort [type 1] and sudden extinc-

tion), all methods produced confidence intervals that

were overly broad (.95% coverage). When probabilities

of sightings were high (Pt ¼ 0.8), most methods yielded

conservatively broad confidence intervals, with cover-

ages close to 100%. Coverages were lower with gradual

extinction and lowered sighting probabilities (Pt ¼ 0.2),

such that the combination of both of these factors

caused all class 1 and class 2 methods to produce

confidence intervals that were too narrow (,95%

coverage).

Sampling scenarios with probabilities of sampling that

increased toward the real extinction time (types 4 and 5)

produced results similar to those produced under

constant sampling (type 1), with confidence intervals

that were rather broad under most simulated circum-

stances (Fig. 2). However, when sampling efforts

decreased over time (types 2 and 3), method perfor-

mance was often drastically altered. For these sampling

scenarios, realized coverage of the class 1 methods

plummeted below the nominal 95% level, sometimes

markedly so. This effect was more pronounced when

extinctions were gradual and sighting probabilities (Pt )

were high. Class 2 and class 3 methods were less affected

by decreasing sampling intensities (types 2 and 3), but

coverages still decreased, on average, and in some cases

dipped below the nominal 95% level (Fig. 2).

Qualitatively, these patterns can be attributed to a few

effects. Under normal circumstances all of the methods

produce confidence intervals that are somewhat broad.

When the probability of observing a species decreases

over time, species are less likely to be observed during

the intervals immediately preceding extinction. As a

result, methods tend to overstate the evidence for early

extinction and therefore produce confidence intervals

that are too narrow. The effect is similar, regardless of

whether the decrease in sighting probabilities is caused

by gradual extinction (decreasing Po) or by declining

sampling effort (Ps). Class 2 methods can correctly

account for the latter but not the former (compare

results for gradual vs. sudden extinction with decreasing

sampling: type 2 in Fig. 2). That this effect is actually

worse when sighting levels are higher (Pt ¼ 0.8) is

perhaps surprising, but explainable because more early

FIG. 3. Median coverage of 95% CI for the three classes of
methods, calculated across the 20 simulated scenarios (see Fig.
2). The broken line shows the nominal 95% indicating a perfect
coverage. See Fig. 2 and Table 1 for method abbreviations.

FIG. 4. Effect of the number of sightings (H ) and sighting rate (number of sightings/yr) on the coverage of the 95% confidence
intervals obtained for three methods representing primary (S&S), secondary (MCC), and tertiary (R&S) methods, under best-case
scenarios (sampling type 1, sudden extinction, Pt¼0.8) and worst-case scenarios (sampling type 2, gradual extinction, Pt¼0.8). The
cutoff level for H and sighting rate correspond to the respective median values. See Fig. 2 and Table 1 for abbreviations.
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sightings (when positive sightings are more probable)

seem to more strongly support erroneously early

extinction estimates.

Performance was generally similar within each family

of methods (Figs. 2 and 3). Median coverage across the

20 simulated scenarios increased from class 1 to class 3

methods, coupled with a decrease in the among-scenario

variation in realized coverage. This ranking of methods

was very consistent across scenarios, with strong Spear-

man rank correlations among all possible pairs of

scenarios (median rS ¼ 0.70, 5th percentile rS ¼ 0.29,

95th percentile rS ¼ 1.0, n ¼ 190). Class 1 methods,

especially the MCY method, produced much narrower

confidence limits compared to other methods. At the

other extreme, class 3 methods nearly always yielded

very broad confidence intervals (median coverage

. 98%).

Both sighting number and sighting rate had an effect

on coverage, but the results varied according the case

scenario and methods (Fig. 4). Under the worst-case

scenario (sampling type 2, gradual extinction, Pt¼ 0.80),

confidence limits were generally too liberal with many

sightings (H . 14 sightings) and high sighting rates

(.0.33); the S&S method was much more affected by

changes in those variables than other methods. At high

sighting number and high sighting rate, all methods

performed poorly (,63% coverage), with coverage

values as low as 21% in the S&S. Overall, the R&S

method yielded more robust estimations under different

combinations of sighting number and sighting rate. In

the best-case scenario (sampling type 1, sudden extinc-

tion, Pt ¼ 0.8), the number of the sightings had no

apparent effect on the coverage, but the increase in the

sighting rates yielded coverage values closer to the

nominal 95% in all of the methods analyzed.

DISCUSSION

Our simulations demonstrate that the ability of

existing methods to correctly estimate the timing of

extinctions varies with the type of extinction (sudden vs.

gradual) and the nature of sampling effort over time.

These results are consistent with previous analyses that

have partially addressed this issue (Strauss and Sadler

1989, Solow 1993b, Burgman et al. 1995, 2000, Grogan

and Boreman 1998, McCarthy 1998, McInerny et al.

2006).

Within the range of conditions simulated here, the

most important factor in determining the accuracy of

confidence limits is whether there has been a historical

decline in sampling intensity. When sampling efforts

decline over time, there is a substantial chance of falsely

concluding that a species is extinct, especially if class 1

methods are used. For example, if efforts devoted to

build natural history collections that provide temporal

data on species occurrences decline over time, as has

been documented in some cases (McCarthy 1998,

Burgman et al. 2000, Hedenas et al. 2002), the ability

of these methods to accurately estimate past extinction

TABLE 2. Comparison of the coverage of 95% confidence intervals (CIs) of upper bounds of
extinction times vs. the mean length of the upper bound of CIs (in years), for each method
under the best-case and worst-case scenario.

Method,
by class

Best-case scenario Worst-case scenario

Coverage (%)
Mean length
of CIs (yr) Coverage (%)

Mean length
of CIs (yr)

Class 1

S&S 97 9 52 19
SOL 96 8 49 15
MCY 94 6 40 11

Class 2

MCC 97 9 79 31
MAR 97 9 81 31

Class 3

S&R 100 47 97 151
R&S 100 15 88 67

Notes: The best-case scenario is sampling type 1, sudden extinction, and Pt¼ 0.8. The worst-
case scenario is sampling type 2, gradual extinction, and Pt¼ 0.8. The nominal 95% indicates a
perfect coverage.

FIG. 5. Coverage for 95% confidence intervals of the upper
bounds of extinction times, assuming an exponential decline
and a type 1 (uniform) sampling. In order to get enough
sightings, the real extinction time Text was constrained to be 120
years.
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times may be limited in many situations. This problem is

exacerbated when populations gradually decline to

extinction: as both sampling and occurrence probabil-

ities decline, the sighting probability declines even faster

(see also Burgman et al. 2000). The extreme situation of

an exponential decline may potentially amplify the

problem, although our exploratory analyses (Fig. 5)

suggest that under a uniform sampling, and given

enough sightings, the effect of the exponential decline

may be comparable to a linear decline with Pt¼0.2. This

is not surprising, because a both linear and exponential

extinction process violates the main assumption of these

methods that the sighting series should be produced by a

random stationary process (Solow 1993a, 2005, Burg-

man et al. 1995).

Class 1 methods are generally outperformed by class 2

and class 3 methods that are far less sensitive to

temporal variation in sampling intensity. On the other

hand, although class 3 methods are robust to varying

sampling rates and scenarios, they are also the most

conservative, often producing confidence intervals with

coverage much higher than the nominal value. This can

be advantageous if one wishes to be cautious in

declaring a species extinct because false inferences of

extinction are potentially problematic (Roberts 2006,

Roberts and Kitchener 2006, Solow et al. 2006a). On the

other hand, these methods will also risk frequent Type II

errors (an already extinct population is still considered

as extant, e.g., Solow 2005). For instance, the mean

length of CIs obtained for class 3 methods (especially for

S&R method) can be more than 10-fold larger than for

class 1 and class 2 methods (Table 2). Along this

continuum, class 2 methods seem to provide a better

balance between the two types of error, especially when

a locality or region has been well sampled after the

extinction of the target species. However, when the

interval after the true extinction is poorly sampled, the

length of confidence intervals under class 2 methods

increases enormously, and in extreme cases they may not

even be estimated (Labandeira et al. 2002). Moreover,

the choice of the best measure of sampling effort or

‘‘recovery potential’’ (Marshall 1997, McCarthy 1998,

Holland 2003) is not always clear. Several proxies have

been proposed, including the total number of species

and the total occurrences recorded, with applications to

both ecological (McCarthy 1998, Ungricht et al. 2005,

van der Ree and McCarthy 2005, Farnsworth and

Ogurcak 2006) and paleoecological data sets (Laban-

deira et al. 2002, Holland 2003). In our analyses, we used

the simulated probability of sampling as a measure of

recovery potential; a separate issue that we have not

explored here is the performance of class 2 methods

when the metric of recovery potential is noisy or

misleading.

The quality of the data sets used for the estimation of

extinction time, in terms of the length (number of

sightings) and rate of the sighting record, clearly has an

effect on our ability to estimate the timing of extinctions,

although effects were modulated by the sampling type

and type of extinction. More specifically, our simula-

tions suggest that sighting rate, a measure that integrates

ecological and sampling factors affecting occupancy and

probabilities of sampling, may affect the reliability of the

estimations, confirming previous analyses (Burgman et

al. 2000, Solow and Roberts 2003, McInerny et al. 2006).

High sighting rates (e.g., .0.33 sightings/year in our

simulations) are expected in temporally persistent

and/or well-sampled populations, so relatively small

temporal gaps may be interpreted as true extinctions.

This characteristic will improve estimations under an

ideal best-case scenario (e.g., sudden extinction, sam-

pling type 1), but under a worst-case scenario (e.g.,

gradual extinction, sampling type 2), this same charac-

teristic will increase the chances of falsely inferring

extinctions, especially in longer time series (H . 14

sightings); see Fig. 4. Very short time series may also

lead to misleading results, e.g., when using fewer than six

sightings (Strauss and Sadler 1989), and a search of the

literature shows that the frequency distribution of the

number of sightings used to evaluate extinction proba-

FIG. 6. Frequency distribution of (a) the number of
sightings and (b) sighting rates used to evaluate the extinction
time and probabilities reported in the literature. Cases reported
in the literature include both endangered and non-endangered
species. Data are from Solow (1993b, 2005), Burgman et al.
(1995, 2000), Roberts and Solow (2003), Solow and Roberts
(2003), McInerny et al. (2006), Roberts (2006), Roberts and
Kitchener (2006), and Solow et al. (2006a).
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bilities tends to be strongly right skewed and a number

of empirical studies are based on fewer than six sightings

(Fig. 6a). In those cases, the upper CI could be seriously

inflated (Strauss and Sadler 1989). In addition, the

literature search reveals that a large percentage of

empirical studies of extinctions (.50% of cases) were

based on data sets with relatively high sighting rates (i.e.,

.0.28 sightings/time; Fig. 6b), which may have had an

important effect on the estimations if the sampling

efforts were not uniform across the study intervals.

Because of the nature of historical sighting records,

improving the number of sightings or the sighting rate

is not an option in most cases. Similarly, detailed

knowledge of population dynamics (i.e., probabilities of

occupancy), sampling effort (i.e., probabilities of

sampling), and temporal trends in these variables is

also not readily available for many species. Yet there is

a pressing need to better estimate the timing of

extinctions of species and populations; our results

provide some concrete recommendations regarding the

choice of methods, given the nature of the available

data. Using a battery of different methods to estimate

confidence limits may be a reasonable way to guard

against the shortcomings of any individual method

(Burgman et al. 2000, Ferraz et al. 2003, Ungricht et al.

2005, van der Ree and McCarthy 2005, Farnsworth and

Ogurcak 2006, Robbirt et al. 2006, Roberts and

Kitchener 2006), but our results show that there are

real differences in performance among methods and

that, under some circumstances, some methods are

positively misleading. Thus using all available methods

for any given data set may not always be advisable.

Instead our simulations suggest that the most important

factor to consider in choosing a method is whether

sampling efforts have declined over time or not. If

sampling has declined, class 3 methods seem to give the

best results overall and class 2 methods may be

acceptable if extinction was sudden. If sampling has

not declined over time, class 3 methods generally

appear to be overly conservative and will often fail to

detect true extinctions. Under such circumstances, class

2 methods may be better. Class 1 methods, on the other

hand, should only be used if sampling has not decreased

over time and sampling rates are high (e.g., for species

where long-term biological monitoring programs are in

place). Even then, class 2 methods appear to be better

suited unless a reasonable proxy for sampling intensity

is lacking. Finally, if the emphasis is to avoid false

extinctions, then class 3 methods may be preferred, but

this choice comes with much reduced power to detect

true extinction events.

In summary, reliably estimating extinction timing

from sighting data remains a difficult problem, given the

nature of the extinction process and incomplete infor-

mation about how it unfolds. However, many of the

existing methods can provide reliable estimates of

extinction times as long as the choice of the method is

determined by the nature of the underlying sighting

data.
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SUPPLEMENT

A spreadsheet to estimate extinction times based on a sighting record (Ecological Archives E090-084-S1).
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