TAXONOMIC REVISION OF THE LATE CENOMANIAN PLANKTONIC FORAMINIFERA

ROTALIPORA GREENHORNENSIS (MORROW, 1934)

ATSUSHI ANDO1,2,3,4 AND BRIAN T. HUBER1

ABSTRACT

Rotalipora greenhornensis has long been considered a representative planktonic foraminiferal species of the single-keeled Rotaliporinae of late Cenomanian age. Its taxonomic identity, however, is still ambiguous because this taxon has been distinguished by morphological criteria (numerous, strongly curved chambers, etc.), whereas the other species of Rotalipora are distinguished primarily by their apertural and ornamental characters (raised sutures, perumbilical ridges, etc.). The presence of strongly raised sutures throughout the umbilical and spiral sides has also been used to identify R. greenhornensis, but this criterion is troublesome as it also applies to its direct ancestor Rotalipora globotruncanoides. Reexamination of the holotype and observation of many topotypes and some North Atlantic and Pacific hypotypes reveals that, despite its remarkable morphological variability, R. greenhornensis is distinguishable by having umbilical sutures that are not fully raised, with the last several being depressed, and supplementary apertures that are umbilical in position and surrounded by a continuous series of closely-spaced perumbilical ridges. Moreover, reduction of the raised sutures tends to occur simultaneously on both the umbilical and spiral sides. Such apertural and ornamental characters of R. greenhornensis serve as its primary distinguishing features, allowing a clear-cut differentiation of this taxon from other species of Rotalipora, particularly the closely associated species R. globotruncanoides and plano-convex Rotalipora deeceki.

INTRODUCTION

Originally described as Globorotalia greenhornensis by Morrow (1934) from the Greenhorn Formation in Kansas, U.S. Western Interior (Pl. 1, fig. 1), Rotalipora greenhornensis (Morrow) has been accepted as an important planktonic foraminiferal taxon occurring in the upper Cenomanian at low-to-middle latitudes worldwide. This species constitutes the terminal part of a major phylectic lineage called the appeninica group (sensu Wonders, 1978) in the single-keeled genus Rotalipora (Table 1), and ultimately evolved into non-keeled Anaticinella multiloculata (Morrow, 1934) during the latest Cenomanian (Eicher, 1972). The importance of R. greenhornensis is further illustrated by the fact that its extinction, along with the other species of Rotalipora and Anaticinella during the latest Cenomanian, has been linked with paleoenviron-

1Department of Paleobiology, MRC NHB 121, Smithsonian National Museum of Natural History, Washington, D.C. 20013-7912, USA.
2Department of Earth Sciences, Faculty of Science, Chiba University, Chiba 263-8522, Japan.
3Now at Research Institute for Humanity and Nature, Motoyama 457-4, Kamigami, Kita-ku, Kyoto 603-8047, Japan.
4Correspondence author. E-mail: ando@chikyu.ac.jp

mental changes associated with Oceanic Anoxic Event 2 (e.g., Leckie, 1985; Jarvis and others, 1988; Huber and others, 1999; Desmarest and others, 2003; Keller and Pardo, 2004).

It has long been considered that R. greenhornensis is easily distinguished from the other species of Rotalipora by its numerous (>8), elongate and strongly curved (i.e., “crescent-shaped”) chambers in the spiral side (e.g., Robaszynski and Caron, 1979; Caron, 1985). Also, the view that R. greenhornensis is characterized by its strongly raised sutures throughout the umbilical and spiral sides (e.g., Robaszynski and Caron, 1979; Caron, 1985) has widely been accepted; the strongly curved and raised aspect of umbilical sutures is often expressed as “horseshoe-like.” On the other hand, these morphological and sulptural characteristics have been arbitrarily interpreted and used by previous researchers, and the practice resulted in extremely high variability in the hypotypes of R. greenhornensis.

González-Donoso and Linares in Robaszynski and others (1993) have reintroduced Rotalipora globotruncanoides Sigal, 1948 (= senior synonym of the more familiar Rotalipora brotzeni Sigal, 1948; see also Appendix 1 herein), whose phylectic position is directly ancestral to R. greenhornensis. Due to its biostratigraphic importance as an index species defining the base of the Cenomanian Stage (Robaszynski and Caron, 1995; Gale and others, 1996; Kennedy and others, 2004), there has been a significant increase in the use of R. globotruncanoides in the recent literature. Nevertheless, there remains uncertainty regarding the taxonomy of R. globotruncanoides because its diagnosis states that the umbilical sutures are fully curved and raised, which also applies to R. greenhornensis (Table 1). Although it is generally considered that R. greenhornensis has “strongly” raised sutures, the criterion that differentiates “strongly” and “normally” raised states of sutures has not been established.

If the taxonomic difference between R. greenhornensis and R. globotruncanoides is only determined by chamber morphologies, criteria for separating these species are questionable. The genus Rotalipora has been shown to have considerable inraspecific variability, and the species level of this taxon seems to be more reasonably assigned based on the positions of supplementary apertures and the presence or absence of ornamental elements (raised sutures, perumbilical ridges, etc.) than by morphological criteria (e.g., González-Donoso and Linares in Robaszynski and others, 1993). Thus, it is still difficult to reasonably invalidate the previous considerations that R. globotruncanoides should be synonymized under R. greenhornensis based on the order of publication date (Loeblich and Tappan, 1961; Pessagno, 1967; Carter and Hart, 1977; Masters, 1977; Leckie, 1984; Caron, 1985).

To establish the taxonomic identity of R. greenhornensis, it is necessary that its apertural and ornamental character-
Holotype of *Rotalipora greenhornensis* (Morrow) (= *Globorotalia greenhornensis* Morrow), USNM 75378. 1 Type figure by Morrow (1934): (a) spiral, (b) edge and (c) umbilical views. 2 Figure redrawn by Brönnimann and Brown (1956): (a) spiral, (b) edge and (c) umbilical views. 3 Uncoated SEM images: (a) spiral, (b) edge and (c) umbilical views. 4 Stereomicroscopic images: (a) spiral, (b) umbilical and (c) inclined rear views; SA = supplementary aperture; de = depressed umbilical suture; ra = raised umbilical suture. Note the presence of perumbilical ridges on all of the chamber surfaces as relatively light-colored and smoothed areas. All scale bars = 100 μm.
istics be uniquely differentiated from those of the other species of *Rotalipora*, particularly its direct ancestor *R. globotruncanoides*. However, such taxonomically important characters have remained uncertain due to a lack of information from the primary type specimen (one holotype only) as is briefly summarized below: (1) Morrow’s (1934) type description and figure show that *R. greenhornensis* exhibits fully depressed umbilical sutures and smooth umbilical chamber surfaces throughout (Pl. 1, fig. 1); (2) Brönnimann and Brown (1956) provided a more detailed redrawing of the holotype showing fully depressed umbilical sutures, periumbilical ridges, and four well-developed supplementary apertures opening in the umbilical area (Pl. 1, fig. 2); (3) Loeblich and Tappan (1961) and Pessagno (1967) made observations on the holotype in their comprehensive taxonomic works and confirmed that Brönnimann and Brown’s (1956) redescription is valid; (4) Masters (1977), on the other hand, found that the holotype exhibits only one supplementary aperture and that its umbilical structure is obscured by infilling of debris, implying poor preservation.

In summary, if observations made originally by Morrow (1934) and secondarily by Brönnimann and Brown (1956) are valid, clarification of the greenhornensis concept may be possible on the basis of the depressed nature of umbilical sutures and/or intrumbilically positioned supplementary apertures. However, as suggested by Masters (1977), inconsistencies in previous observations of the type specimen have led to considerable confusion in what characters should be used for the diagnosis and precise identification of *R. greenhornensis*.

To that end we obtained detailed observations of the holotype of *R. greenhornensis* in order to elucidate its taxonomically important apertural and sutural characters. In addition, numerous topotypes of *R. greenhornensis* were also investigated for the purpose of properly constraining its intraspecific variability. We further examined some specimens from North Atlantic and Pacific deep-sea sections to constrain the identity of the plano-convex morphotype *Rotalipora deekei* with respect to *R. greenhornensis* sensu stricto.

MATERIAL AND METHODS

The holotype of *Rotalipora greenhornensis* (Morrow, 1934) (= *Globorotalia greenhornensis* Morrow) is deposited in the Cushman Collection of the Smithsonian National Museum of Natural History (NMNH) with the collection number of USNM 75378. As this specimen co-occurs with *Rotalipora cushmani* (Morrow, 1934) (= *Globorotalia cushmani* Morrow, 1934), the type level is within the *R. cushmani* Zone. Scanning electron microscopic (SEM) images of this specimen were obtained at the Smithsonian NMNH without applying a conductive coating by using a low-kilovoltage setting on a Leica Stereoscan 440 SEM. This specimen was also examined under an OLYMPUS SZX-12-MD stereomicroscope at the Smithsonian NMNH to illustrate its diagenetically enhanced features. This stereomicroscope enables generation of a totally focused magnified image of a specimen by digitally synthesizing multiple focal-depth images taken from top to bottom (e.g., the plan and edge views in Plate 1 were initially captured as three and seven evenly-spaced layers, respectively).

The topotypes of *R. greenhornensis* examined in this study are also deposited in the Cushman Collection of the Smithsonian NMNH. A total of 20 specimens is mounted on a one-hole microslide that is given the collection number of USNM 479719 in the “Loeblich Collection.” In addition, another USNM 371488 specimen that is identical to that figured in Loeblich and Tappan (1961; Pl. 7, fig. 9) was also examined. Information written on both microslides states
that both were collected from Morrow's (1934) type locality (Greenhorn Limestone, Hartland Shale Member, SE 1/4, sec. 31, T. 21 S., R. 22 W., north bank of creek about 1/4 mile west of road, Hodgeman Co., Kansas) by Max Furrer in 1959. This in turn indicates that a suite of USNM 479719 specimens corresponds to those studied in Loeblich and Tappan (1961) as “unfigured topotypes.” Uncoated SEM images of the selected specimens were obtained by using a JEOL JSM-6330F field emission SEM at Tohoku University.

We further present several well-preserved specimens of *R. greenhornensis* and plano-convex *Rotalipora deekei* from the upper Cenomanian of Ocean Drilling Program (ODP) Site 1050 (western North Atlantic Ocean) and Deep Sea Drilling Project (DSDP) Site 463 (central Pacific Ocean) in order to highlight taxonomic differences between the two species. For ODP Site 1050, the samples used are the same as those examined in Huber and others (1999). For DSDP Site 463, the foraminiferal sample was obtained from semi-lithified chalk by applying the glacial acetic acid method (e.g., Tur and others, 2001). Details of the mid-Cretaceous planktonic foraminiferal biostratigraphy for Site 463 will be reported in a forthcoming paper (Ando and Kaiho, unpublished data). These specimens are deposited in the Cushman Collection, Smithsonian NMNH with the collection numbers of USNM 531410–531413.

PRIMARY AND SECONDARY TYPES OF ROTALIPORA GREENHORNENSIS

Reexamination of Holotype

As shown by the SEM and stereomicroscopic images (Pl. 1, figs. 3, 4), the holotype of *Rotalipora greenhornensis* is poorly preserved and has been subjected to dissolution and/or mineralogical replacement of the original test, but, fortunately, its important taxonomic characters are retained. Our reexamination of the holotype is described below, together with comments on the original description by Morrow (1934; Pl. 1, fig. 1 herein) and subsequent observations by Brönnimann and Brown (1956; Pl. 1, fig. 2 herein) and Masters (1977).

Apertural characteristics

The primary aperture is entirely obscured. The supplementary apertures are hardly recognizable, but two faint ones, whose positions are nearly umbilical, are discernible near the umbilical margin along the last two sutures (Pl. 1, fig. 4b). This observation is consistent with that of Masters (1977), who observed only one supplementary aperture. On the other hand, the depiction of four well-developed supplementary apertures by Brönnimann and Brown (1956) is inaccurate.

Ornamental characteristics

The umbilical sutures are difficult to recognize, but we found that the last two are clearly depressed, whereas the others are raised. This feature can be faintly seen in the SEM image (Pl. 1, fig. 3c) and is best shown in the inclined rear view of a stereomicroscopic image (Pl. 1, fig. 4c). This observation is inconsistent with both the original drawing by Morrow (1934) and the secondary drawing by Brönnimann and Brown (1956), respectively, both of whom illustrate fully depressed umbilical sutures. The sutures in the spiral side are fully raised, though not distinctive due to dissolution.

The periumbilical ridges are diagenetically highlighted in the stereomicroscopic view as relatively light-colored and smoothed areas on all of the umbilical chamber surfaces (Pl. 1, fig. 4b). Periiphery ridges were also depicted by Brönnimann and Brown (1956), although the pustule-like structures shown in their illustration are not recognized here.

The porticus (umbilical cover-plate) is unrecognizable because the umbilical area is obscured by diagenetic replacement and infilling of calcite cement. Our observations contradict Brönnimann and Brown’s (1956) redrawing, which shows an empty umbilical area provided with a porticus. By contrast, the observation made by Masters (1977) is appropriate.

Morphological characteristics

Gross morphology and chamber arrangement of the holotype reexamined in this study are similar to those illustrated by Morrow (1934) and Brönnimann and Brown (1956) in that the specimen is 9-chambered with a slightly lobulate periphery and an elliptical peripheral outline. However, some differences exist. The profile is equally biconvex, not asymmetrically biconvex with a more inflated umbilical side (Brönnimann and Brown, 1956). Chambers in the spiral side are initially strongly curved and elongate but become semi-circular in shape, unlike the illustrations by Morrow (1934) and Brönnimann and Brown (1956) that emphasize strongly curved and elongate chambers throughout the final whorl except for the ultimate chamber. The dimension of the umbilicus is about one-third of the maximum test diameter and, as pointed out by Masters (1977), not as small as that illustrated by Morrow (1934).

Observations of Topotypes

Among 20 topotype specimens mounted in the USNM 479719 microslide, ten fully-adult specimens were selected for SEM imaging (Pls. 2, 3). The rejected specimens are much smaller in size and are not considered here. In addition, SEM images of Loeblich and Tappan’s (1961; Pl. 7, fig. 9) topotype specimen (USNM 371488) are included in Plate 3. Preservation of these specimens is moderate to good, sufficient to retain the details of apertural and ornamental characters as well as pores. It is noteworthy that the selection of the USNM 479719 topotypes by Loeblich and Tappan (1961) was randomly made because (1) specimens with various ontogenetic stages are included in the microslide and (2) rotaliplorid species from the Greenhorn Limestone recorded by Loeblich and Tappan (1961) are *greenhornensis* and *cushmani* only. Thus, these authors were not selective in preparing the microslide.

Apertural and ornamental characteristics

Among the topotypes examined, three of the USNM 479719 specimens (Pl. 2, figs. 1–3) show depression of the
Selected topotypes of *Rotalipora greenbornensis* (Morrow) from USNM 479719 microslide. 1-3 Specimens with depressed last several (one to four) umbilical sutures: (a) spiral, (b) edge and (c) umbilical views. 4-6 Specimens with diminished (discontinuous and/or penetrated by pores) last umbilical suture: (a) spiral, (b) edge and (c) umbilical views, and (d) enlargement of last umbilical suture. Scale bars: 1-3, 4a-c, 5a-c, 6a-c = 100 μm; 4d, 5d, 6d = 50 μm.
last several (one to four) umbilical sutures in the final whorl. An additional three USNM 479719 specimens (Pl. 2, figs. 4–6) exhibit a diminished raised umbilical suture between the ultimate and penultimate chambers, where it is faintly thickened but discontinuous and/or penetrated by pores. These six specimens characteristically have umbilically positioned supplementary apertures, which are surrounded by a continuous series of closely-spaced perumbilical ridges. Such characteristics correspond to those of the holotype and, therefore, we suggest that this toptype suite represents the *greenhornensis* concept.

In contrast, the other four USNM 479719 toptypes and a Loeblich and Tappan (1961) USNM 371488 toptype, all shown in Plate 3, do not correspond to the holotype in that they have fully raised umbilical sutures. The raised umbilical sutures and perumbilical ridges in the later part of the final whorl are united with the adumbilical ridges parallel to the posterior chamber margin; these ornamental elements, together with keeled periphery, exhibit an overall "fish-hook" shape. In addition, their supplementary apertures tend to be in the base-of-suture position and are inserted within the somewhat enlarged gaps between the perumbilical ridges. Such features indicate that these specimens are more appropriately identified as *R. globotruncanoides* (see also Appendix 1).

Both groups of toptypes have an umbilical cover-plate of variable extent. Some of these specimens (e.g., Pl. 2, fig. 4; Pl. 3, fig. 1) exhibit a large-sized "umbilical platform" (*sensu* Eicher, 1972).

Morphological characteristics

On the whole, the morphological features are highly variable among the *greenhornensis* and *globotruncanoides* groups included in the *greenhornensis* toptype suite examined herein (Pls. 2, 3), although a certain morphological trend may exist that both groups consistently have an equally biconvex profile. The number of chambers varies from 5 to 7-1/2. The shape of chambers viewed on the spiral side is semi-circular to strongly curved; only a few specimens exhibit true elongate, crescentic chambers throughout the final whorl (Pl. 2, fig. 5; Pl. 3, figs. 4, 5), the character that was believed typical of *R. greenhornensis*. The mode of increase in chamber size in the last whorl varies from nearly equidimensional to rapid. The periphery is smooth to lobulate, and the peripheral outline is circular to somewhat elliptical. The umbilicus is narrow to broad (one-third the maximum test diameter) in width.

NOTES ON SPECIES-LEVEL CLASSIFICATION OF THE *APPENNINICA* GROUP

Despite apparent polyphyletism, Albian-Cenomanian single-keeled taxa of the subfamily Rotaliporinae have been grouped under the genus *Rotalipora*. Wonders (1978) summarized earlier classifications and proposed three phyletic groups in *Rotalipora*: (1) the *ticinensis* group, which evolved from *Ticinella practiciensis* Sigal, 1966 (Sigal, 1966); (2) the *appenninica* group, which evolved from *Ticinella raynaudi* Sigal, 1966 (Sigal, 1969); and (3) the *cushmani* group, the origin of which is uncertain. For these groups, Wonders (1978) designated the genera *Pseudothalmanninella* Wonders, 1977; *Thalmanninella* Sigal, 1948; and *Rotalipora* Brotzen, 1942, respectively. To date, no general agreement has been reached for the usage of these three phyletic groups at the genus or subgenus level. Nonetheless, the validity of such a three-fold grouping for *Rotalipora* has been well accepted.

With respect to the *appenninica* group, to which *R. greenhornensis* belongs, the following species are presently regarded as valid taxa, and are listed in the order of evolutionary appearance (Table 1): (1) *Rotalipora praebaernaensis* Sigal, 1969; (2) *Rotalipora balernaensis* (Gandolfi, 1957); (3) *Rotalipora appenninica* (Renz, 1936); (4) *Rotalipora gandolfii* Luterbacher and Premoli Silva, 1962; (5) *Rotalipora globotruncanoides* Sigal, 1948; and (6) *Rotalipora greenhornensis* (Morrow, 1934). In addition to this major lineage series, the following two species with a distinctive plano-convex to cylindrical morphology have been considered as having evolved from this lineage: *Rotalipora reicheli* (Mornod, 1950) and *Rotalipora deeckei* (Franke, 1925).

In the early studies of Cretaceous planktonic foraminifera, rotaliporid taxa presently included in the *appenninica* group were typologically classified, drawing attention to evolutionary changes in gross morphologies from thin, spiro-convex forms to thick, umbilico-convex forms (Gandolfi, 1942). Subsequently, Gandolfi (1957) recognized the significance of ornamentation as a distinguishing feature at the (sub)species level, and on this basis he identified differences among *R. balernaensis* [= *Globotruncana* (Rotalipora) *appenninica balernaensis*], *R. gandolfii* [= *G. (R.) appenninica appenninica*] and *R. globotruncanoides* [= *G. (R.) appenninica globotruncanoides*]. Gandolfi (1957, p. 62) stated that "a particular evolutionary trend (bioseries) is therefore suggested, i.e. from tests with radial and depressed umbilical sutures to tests with curved and raised umbilical sutures." Further, Gandolfi (1957) assigned a (sub)species rank to the partly-keeled evolutionary stage for *Rotalipora subticinensis* [= *G. (Thalmanninella) ticinensis subticinensis*] in the *ticinensis* group, and this proposal was followed by Sigal (1969) in the recognition of *R. praebaernaensis*.

In the 1960's and 1970's, several comprehensive taxonomic works were published (Loeblich and Tappan, 1961; Pessagno, 1967; Postuma, 1971; Carter and Hart, 1977; Masters, 1977; Wonders, 1978) in which the major focus of the rotaliporid taxonomy was the generic classification in terms of supplementary apertural positions, i.e., the *Rotalipora* vs. *Thalmanninella* problem. With respect to the species-level classifications adopted therein, there was agreement that species of the *appenninica* group tracked an evolutionary trend from flatter, less-ornamented, few-chambered forms to thicker, ornamented, many-chambered forms, and the trend is basically consistent with Gandolfi's (1957) observation. However, the proposed schemes were still morphologically oriented, and significance of the ornamental characters was less emphasized. Accordingly, there clearly was a tendency of accepting *appenninica* and *greenhornensis* as valid taxa in *Rotalipora*, whereas the other species [including *evoluta* (an early Cenomanian evolute-
PLATE 3
Rotalipora globotruncanoides Sigal from topotype assemblage of Rotalipora greenhornensis (Morrow). 1-4 Selected specimens from USNM 479719 microslide: (a) spiral, (b) edge and (c) umbilical views. 5 Specimen identical to that figured by Loeblich and Tappan (1961; Pl. 7, fig. 9): (a) spiral, (b) edge and (c) umbilical views; USNM 371488. All scale bars = 100 μm.
form) and brotzeni] were more or less treated as synonyms under appenninica, greenhornensis or others.

In their major monographs, Robaszynski and Caron (1979) and Caron (1985) recognized the evolutionary sequence of appenninica–gandolfii–brotzeni in terms of the step-wise acquisition of perumbilical ridges and raised sutures. However, no particular explanation was given for the inclusion of brotzeni or exclusion of some potentially valid species. The work by González-Donoso and Linares in Robaszynski and others (1993) was the first comprehensive treatment of all of the potentially valid taxa in the appenninica group, and used the sequence of evolutionary changes in the ornamental characters rather than morphological features.

This study basically concurs with the species-level classification of the major appenninica group by González-Donoso and Linares in Robaszynski and others (1993), which recognizes the priority of ornamental characters over morphological features. This seems reasonable for Rotalipora, which has empirically been known by its high-intraspecific morphological variability. Moreover, with the exception of greenhornensis, each species in the major appenninica group recognized therein conforms to its primary type.

As a rule, taxonomic characters employed in the species-level classification of Cretaceous planktonic foraminifera include the sizes and arrangement of chambers as well as ornamentation (cf., Huber, 1994), and, in the case of Rotalipora, position of supplementary apertures. These characters are basically treated as equal in taxonomic value, and hence it is difficult to logically demonstrate the priority of ornamental characters over morphological features at the species level. In the evolution of Rotalipora, however, the apparent irreversibility of changes in the ornamental characters implies that there was a genetic basis to the pattern. This is supported by our own observations from North Atlantic and Pacific deep-sea sections. On the other hand, though not verified by rigorous morphometric analysis, remarks on the high-morphological variability in Rotalipora are found elsewhere in the literature. In particular, González-Donoso and Linares in Robaszynski and others (1993, p. 433) have shown that a total of 32 morphotypes can be recognized if the classification of the appenninica group is based solely on morphologies. Thus, morphological features are too variable to be adopted as the primary distinguishing features for the species-level classification. It is our contention that, despite the presence of an overall morphological trend from flat, spirally convex to thick, biconvex forms, the rotaliporid taxonomy should be based on the apertural and ornamental characters that are apparently of unidirectional evolutionary significance (Table 1).

It should be emphasized that all presently valid taxa of the ticinensis group (R. subticinensis, R. ticinensis and R. tehamaensis) and the cushmani group (R. montsalvensis and R. cushmani) are distinguished primarily by apertural and ornamental characters as well. Thus, identification of R. greenhornensis by these non-morphological characters would be favorable from the viewpoint of retaining taxonomic coherence among the rotaliporid species.

TAXONOMIC CLARIFICATION OF ROTALIPORA GREENHORNENSIS

By accepting the significance of the apertural and ornamental characters as the first-order distinguishing features in the species-level classification of the genus Rotalipora, it is possible to clarify the concept of Rotalipora greenhornensis. Recognition of the partly raised nature of the umbilical sutures in the holotype is considered essential (Pl. 1). This character is common in many of the topotypes examined (Pl. 2). This finding reasonably rules out the previous view (e.g., Robaszynski and Caron, 1979; Caron, 1985) that R. greenhornensis is typified by having "strongly" raised sutures throughout the umbilical and spiral sides (Table 1). Observations of the topotypes further show that the depression of raised umbilical sutures begins with the last one and then progresses backward.

It is proposed that the onset of reduction of raised umbilical sutures (i.e., with at least one umbilical suture discontinuous and/or penetrated by pores) defines the evolutionary appearance of R. greenhornensis from Rotalipora globotruncanoides. This proposition conforms to criteria currently employed in the taxonomy of Cretaceous planktonic foraminifera. Under the current scheme, one means of designating species rank is to identify the non-acquisition, partly acquired, or fully acquired state of a given taxonomic character. For example, in the case of the evolutionary sequence of appenninica–gandolfii–globotruncanoides, R. appenninica is typified by its fully depressed umbilical sutures (= non-acquisition state) and R. globotruncanoides by its fully raised umbilical sutures (= fully acquired state). The intermediate state with partly raised umbilical sutures is attributed to Rotalipora gandolfii, wherein the number of raised sutures is not considered, i.e., if at least one suture in the final whorl is raised, the species rank of gandolfii is given. Our proposed concept of R. greenhornensis is validated by analogy with this case, such that R. greenhornensis is accepted principally as the state with partly raised umbilical sutures that constitutes an evolutionarily transition from R. globotruncanoides (sutures fully raised) to R. greenhornensis and then Anaticinella multiloculata (periphery partly keeled and rounded, sutures fully depressed). Hence, if reduction of at least one raised umbilical suture is recognized, the species rank of greenhornensis should be assigned (this is not simply a return to the state of R. gandolfii; see later discussion).

Though supplementary apertures of the holotype are only faintly recognized due to poor preservation, observations of the greenhornensis topotypes in Plate 2, where the partly depressed nature of umbilical sutures is identical to that of the holotype, allow characterization of the supplementary apertural feature. They are nearly umbilical in position, being surrounded by a continuous series of closely-spaced perumbilical ridges. It seems that the shift of supplementary apertures into the umbilical area is almost simultaneous with the onset of depression of umbilical sutures.

In summary, partly raised umbilical sutures, umbilically positioned supplementary apertures, and closely-spaced perumbilical ridges are taken as the diagnostic features of R. greenhornensis. This allows for decisive differentiation of
Comparison between *Rotalipora deeckei* (Franke) and *Rotalipora greenhornensis* (Morrow). 1 *Rotalipora deeckei* (Franke): (a) spiral, (b) edge and (c) umbilical views; USNM 531410; ODP Sample 1050C-21R-1, 135–136 cm; *Rotalipora cushmani* Zone. 2 *Rotalipora deeckei* (Franke): (a) spiral, (b) edge and (c) umbilical views; USNM 531411; ODP Sample 1050C-21R-1, 135–136 cm; *R. cushmani* Zone. 3 *Rotalipora greenhornensis* (Morrow): (a) spiral, (b) edge and (c) umbilical views, and (d, e) enlargement of diminished last suture on the spiral and umbilical sides, respectively; USNM 531412; ODP Sample 1050C-21R-7, 105–108 cm; *R. cushmani* Zone. Note that the last suture on the spiral side is faintly raised but markedly weaker than the others, and it is penetrated by pores at a part meeting the inner whorl. 4 *Rotalipora greenhornensis* (Morrow): (a) spiral, (b) edge and (c) umbilical views, and (d) enlargement of last umbilical suture; USNM 531413; DSDP Sample 463-37-cc, 3–5 cm; co-occurrence with *Whittonia archaeoaretacea* Pessagno. Note that, the last suture on the spiral side is only faintly rimmed and that on the umbilical side is weakly raised but penetrated by pores at both the umbilical and peripheral ends. Scale bars: 1–2, 3a–c, 4a–e = 100 μm; 3d–e, 4d = 50 μm.
this taxon from its direct ancestor *R. globotruncanoides* (Table 1). It is noteworthy that these criteria also apply to another topotype figured by Robaszynski and Caron (1979; PL. 12, fig. 1), and also Caron (1985; Fig. 32, fig. 2). Wonders (1978, p. 134) noted that "the sutures between the last chambers may be depressed and bordered by weak sutureal bands, if at all," on the basis of observations of Tunisian specimens. As emphasized above, morphological features such as numerous chambers (>8; holotype 9-chambered) in the final whorl, strongly curved and elongate (i.e., crescent-shaped) chambers in the spiral side, and/or smooth and circular peripheral outline have long been considered the keys to identification of *R. greenhornensis*. Though such morphologies certainly exist, previous studies seem to have overemphasized these morphological features. Observations of a suite of the topotypes (Pl. 2) reveal that the chambers in the final whorl are six to eight on average, and their shape on the spiral side is not strictly crescentic, but in many cases semi-circular. Morphological features, such as crescentic chambers or a circular peripheral outline, are not inherent to *R. greenhornensis* but apply to the highly evolved forms of *R. globotruncanoides* (Pl. 3, figs. 4, 5).

Among previous studies dealing with *R. greenhornensis*, it was only Eicher (1972) that presented detailed observations of its intraspecific variation using large numbers of hypotypes. On the basis of materials from the U. S. Western Interior, Eicher (1972) recognized that the *greenhornensis* concept encompasses a series of evolutionary changes in taxonomic characters, and is expressed in considerable morphological variability. It is first manifested by the loss and/or depression of raised umbilical sutures, which begins with the last ones and progresses backwards, with an accompanying inflation of chamber surfaces both umbilically and spirally. This manifestation is followed by the loss of a peripheral keel (at least in part) and rounding of the equatorial periphery, giving rise to *Anaticinella multitocolata* (Morrow, 1934). Our observation of the manner of reduction of raised umbilical sutures agrees with that of Eicher (1972). However, Eicher (1972) made no mention regarding how *R. greenhornensis* is differentiated from *R. globotruncanoides*, because *globotruncanoides* (or *brotzeni*) was not considered a valid taxon. In our opinion, some of the hypotypes identified as *R. greenhornensis* by Eicher (1972; Pl. 1, figs. 1, 4) are more appropriately assigned to *R. globotruncanoides* as judged from their fully raised sutures (see Emended Description).

NOTES ON SO-CALLED ROTALIPORA DEECKEI

Rotalipora deeckei (Franke, 1925) is another potentially valid species of the *appenninica* group that occurs in the *Rotalipora cushmani* Zone of late Cenomanian age. Identification of *R. deeckei* has been morphological, depending on its plano-convex to cylindrical profile, and hence its phyletic position has not yet been established on the basis of the apertural and ornamental characteristics. Such taxonomically important characters are uncertain due to the inadequate understanding of the primary types. The holotype was originally poorly illustrated and, as noted by Dalbiez (1957), it has been lost. Moreover, one paratype is of questionable identity, as it was obtained from an undefined horizon of a completely different locality (Dalbiez, 1957). If differentiation between *Rotalipora greenhornensis* and *R. deeckei* is solely based on dorsal ventral convexity, then they should be considered synonymous (Pessagno, 1967; Cartier and Hart, 1977).

We found a plano-convex rotaliporid species from the *Rotalipora cushmani* Zone of ODP Site 1050 (North Atlantic Ocean) that we confidently identify as *R. deeckei* (Pl. 4, figs. 1, 2). It conforms well to the figured hypotypes by Dalbiez (1957, Text-figs. 1–4), Douglas (1969; Pl. 1, fig. 3), Wonders (1978; Pl. 3, fig. 3) and Robaszynski and Caron (1979; Pl. 9, figs. 1, 2) in terms of external morphology as well as apertural and sutureal characteristics (not comparable to Gonzalez-Donoso and Linares in Robaszynski and others, 1993; Pl. XIX, fig. 6). Our Site 1050 specimens are well preserved and allow further discussion of the apertural and sutureal details of *R. deeckei*. For comparison, two representative specimens of the early evolutionary stage of *R. greenhornensis* from ODP Site 1050 and DSDP Site 463 (central Pacific Ocean) are also presented (Pl. 4, figs. 3, 4).

The two *R. deeckei* specimens from the North Atlantic Ocean exhibit partly raised umbilical sutures. Each of these specimens has four radial, depressed umbilical sutures in the later part of the final whorl, whereas the earlier sutures are curved and raised. Their supplementary apertures are umbilical in position, bordered by periumbilical ridges and/or thickenings that are tightly packed and somewhat umbilically overhanging. These features closely resemble those of *R. greenhornensis*.

Despite close affinity in taxonomic characters on the umbilical side, the fundamental difference between *R. deeckei* and *R. greenhornensis* can be discriminated on the basis of the sutureal characters on their spiral sides. In the case of *R. deeckei*, development of the raised spiral sutures is remarkable throughout the final whorl (Pl. 4, figs. 1, 2). On the other hand, there apparently exists a tendency where the spiral sutures of *R. greenhornensis* are not fully raised and the last one is diminished, in concert with those on the umbilical side (Pl. 4, figs. 3, 4). The simultaneous loss of raised sutures on both the spiral and umbilical sides is also recognizable on the topotypes examined in this study (Pl. 2) and by Robaszynski and Caron (1979; Pl. 12, fig. 1). It is also well illustrated on the American and Tunisian hypotypes of Pessagno (1967; Pl. 51, figs. 15–17, 19–21), Eicher and Worstell (1970; Pl. 12, fig. 2) and Wonders (1978; Pl. 3, fig. 2). Notably, a particularly good example of the relationship between *R. deeckei* and *R. greenhornensis* considered herein is presented by Wonders (1978; compare Pl. 3, figs. 2, 3). Recognition of such sutureal characteristics in our central Pacific specimen (Pl. 4, fig. 4) clearly indicates that the presence of depressed spiral and umbilical sutures is not regionally expressed but universal and fundamental to *R. greenhornensis*. Hence, this character is here proposed as an additional criterion for identification of *R. greenhornensis*. It stands to reason that the transition from *R. globotruncanoides* to *R. greenhornensis* was not simply a return to the state of *Rotalipora gandolfii*, but was a unidirectional process attaining a new evolutionary state.
CONCLUDING REMARKS

Detailed observations of the holotype, many topotypes and some North Atlantic and Pacific hypotypes led us to conclude that apertural and ornamental characters rather than morphological features provide a stable basis for the taxonomy of the late Cenomanian planktonic foraminifera *Rotalipora greenhornensis*. Given the reasonable assumption that apertural and ornamental characters take precedence over morphological features for the species-level classification of *Rotalipora*, the partly raised sutures on both the umbilical and spiral sides, umbilically positioned supplementary apertures, and closely-spaced periumbilical ridges are essential for identification of *R. greenhornensis*. From an evolutionary viewpoint, *R. greenhornensis* represents a transitional state from *Rotalipora globotruncanoides* (sutures fully raised and curved, supplementary apertures base-of-suture in position) to *Anaticinella multiloculata* (not entirely keeled, sutures fully depressed, chambers strongly inflated and smooth) via loss of the ornamental elements. Intraspecific variation observed from the topotypes and hypotypes suggests that the previously well-accepted variabilities are of limited taxonomic significance. The robustness of the taxonomic interpretation of *R. greenhornensis* such as numerous (>8), strongly curved and elongate (i.e., crescent-shaped) chambers, have overemphasized one aspect of its variability.

This study provides evidence for unraveling one longstanding problem in the taxonomy of *Rotalipora*, an important group of mid-Cretaceous planktonic foraminiferal biostratigraphy and paleoenvironmental reconstruction. Extinction of *R. greenhornensis* and/or *R. deeciei* has been a subject of wide interest in terms of latest Cenomanian paleoceanographic changes. On the other hand, it seems that difficulty in recognizing their entries led previous micropaleontologists to consider that the evolutionary appearances of *R. greenhornensis* and/or *R. deeciei* have neither biostratigraphic nor paleoenvironmental significance. Taxonomic clarification of these rotaliporid species may facilitate planktonic foraminiferal biostratigraphic, paleoceanographic and biodiversity studies of the middle to late Cenomanian.

EMENDED DESCRIPTION

Family ROTALIPORIDAE Sigal, 1958
Subfamily ROTALIPORINAE Sigal, 1958
Genus *Rotalipora* Broten, 1942
[Type species: *Rotalipora turonica* Broten, 1942 = *Rotalipora cushmani* (Morrow, 1934)]

Rotalipora greenhornensis (Morrow, 1934)
Pl. 1, figs. 3, 4 (holotype); Pl. 2, figs. 1–6 (topotypes); Pl. 4, figs. 3, 4

Globorotalia greenhornensis Morrow in Morrow, 1934, p. 199–200, pl. 31, fig. 1.

Thalmanninella greenhornensis Morrow in Brown and Brown, 1956, p. 535–536, pl. XX, figs. 7–9 (= holotype).

Rotalipora greenhornensis (Morrow) in Pessagno, 1967, p. 295–297, pl. 51, figs. 13–21 [? pl. 50, fig. 3].

Rotalipora greenhornensis (Morrow) in Eicher and Worstell, 1970, p. 312, pl. 12, fig. 2; pl. 13, fig. 3.

Rotalipora greenhornensis (Morrow) in Barr, 1972, p. 16, pl. 3, fig. 3 [non pl. 3, fig. 4].

Rotalipora greenhornensis (Morrow) in Eicher, 1972, p. 186, pl. 1, figs. 2, 3, 6; pl. 2, fig. 1 [? pl. 1, fig. 1; non pl. 1, fig. 4].

Rotalipora greenhornensis (Morrow) in Dailey, 1973, p. 85, pl. 19, fig. 1.

Rotalipora greenhornensis (Morrow) in Carter and Hart, 1977, p. 44–46, pl. 4, figs. 10, 12 [? pl. 4, fig. 11].

Rotalipora greenhornensis (Morrow) in Ujisi and Randrianasolo, 1977, p. 191, pl. 7, fig. 4, pl. 8, fig. 2.

Thalmanninella greenhornensis (Morrow) in Wonders, 1978, p. 133–134, pl. 3, fig. 2 [non pl. 3, fig. 1].

Rotalipora greenhornensis (Morrow) in Rosbash and Caron, 1979, p. 85–90, pl. 3, fig. 1; pl. 12, fig. 1 (= topotype); pl. 13, fig. 1 [non pl. 12, fig. 2 (= topotype); pl. 13, fig. 2].

Rotalipora greenhornensis (Morrow) in Caron, 1985, p. 69, Fig. 32, figs. 1 (= holotype), 2 (= topotype).

Rotalipora greenhornensis (Morrow) in Leckie, 1985, p. 143, pl. 4, figs. 9, 10 [non pl. 4, figs. 13, 14].

Rotalipora greenhornensis (Morrow) in Jarvis and others, 1988, Fig. 12, fig. 4.

Rotalipora greenhornensis (Morrow) in Huber and others, 1999, p. 417, pl. 3, fig. 16 [non pl. 3, fig. 18].

Rotalipora greenhornensis (Morrow) in Desmares and others, 2003, Fig. 2, fig. 1c.

Rotalipora deeciei (Franke) in Keller and Pardo, 2004, pl. 1, figs. 8, 12.

Rotalipora greenhornensis (Morrow) in Loeblich and Tappan, 1961, p. 299–301, pl. 7, figs. 5–8, 9 (= topotype), 10.

Rotalipora greenhornensis (Morrow) in Douglas, 1969, p. 174, pl. 1, fig. 3.

Rotalipora greenhornensis (Morrow) in Ponthial, 1969, p. 533, pl. 1, fig. 7.

Rotalipora youngsonii (Morrow) in Masters, 1977, p. 508–511, pl. 31, figs. 5, 6 (= topotype).

Rotalipora greenhornensis (Morrow) in Petters, 1977, pl. 4, figs. 3–5.

Rotalipora greenhornensis (Morrow) in Leckie, 1984, p. 601, pl. 15, figs. 1–4; pl. 16, figs. 7–12.

Rotalipora greenhornensis (Morrow) in Hart and others, 1989, p. 260, pl. 7.23, figs. 1–3.

Rotalipora greenhornensis (Morrow) in González-Donoso and Linares in Rosbash and others, 1993, p. 431, Fig. 13, figs. 7, 8, 10.

Rotalipora greenhornensis (Morrow) in Lipson-Benitah, 1994, p. 85, pl. 1, fig. 7.

Rotalipora greenhornensis (Morrow) in Sliter, 1995, pl. 1, figs. 6–8.

Rotalipora greenhornensis (Morrow) in Lamolda and others, 1997, Fig. 6, figs. a–c.

Rotalipora greenhornensis (Morrow) in Lipson-Benitah and others, 1997, p. 487, Fig. 12, fig. 3.

Rotalipora greenhornensis (Morrow) in Hasegawa, 1999, p. 188, Fig. 9, fig. 5.

Rotalipora greenhornensis (Morrow) in Keller and Pardo, 2004, pl. 1, figs. 1–3.

Diagnosis. *R. greenhornensis* differs principally from the other species in this single-keeled genus in having sutures not fully raised but partly (at least one or more) depressed or diminished (i.e., discontinuous and/or penetrated by pores) on both the umbilical and spiral sides. Supplementary apertures are umbilical in position throughout, surrounded by closely-spaced periumbilical ridges (or thickenings) forming a continuous series. Specifically, onset of diminishment of raised umbilical sutures is proposed as defining the appearance of this taxon.

Emended description. Wall smooth, macroperforate. Test large, trochospiral, equally biconvex, moderate to high in spiral and ventral sides. From 6 to 8, rarely 9, chambers in the final whorl, equidimensional or increasing gradually to somewhat rapidly in size as added, semi-circular to curved in shape on the umbilical side, semi-circular to strongly curved and elongate (i.e., crescentic) in shape on the spiral side. Equatorial periphery smooth to lobulate, circular to slightly elliptical in outline, angular in edge view surrounded entirely by one
keel. Umbilicus deep, narrow to broad (one-third of maximum test diameter), accompanied by an umbilical cover-plate of variable size, sometimes having a large-sized "umbilical platform." Umbilical shoulder provided throughout with periumbilical ridges (or thickenings) that are closely spaced and comprising a continuous series. Umbilical sutures curved, raised and beaded in the earlier part of the last whorl, later becoming smoothly laminate and, ultimately, depressed or diminished (i.e., discontinuous and/or penetrated by pores) at least in part (i.e., one or more). Likewise, spiral sutures curved, raised and beaded in the earlier part, becoming smoothly laminate and then depressed or diminished in the later part. Primary aperture umbilical-extraumbilical, bordered by a lip extended from an umbilical cover-plate. Supplementary apertures nearly umbilical in position (but still opening directly into chamber), each bordered by a lip.

Distinguishing features. *R. greenhornensis* differs from its direct ancestor *Rotalipora glohotruncanoides* in having not entirely raised but partly depressed umbilical and spiral sutures, supplementary apertures that are nearly umbilical in position, and closely-spaced periumbilical ridges. *R. glohotruncanoides* (particularly in its highly evolved stage) is morphologically indistinguishable, but distinctive by having curved, fully raised sutures and supplementary apertures whose positions are base-of-suture. In particular, *R. glohotruncanoides* has diagnostic "fish-hook" ornamentation on the umbilical face, which is characterized by a combination of keeled periphery, raised umbilical suture, perumbral ridge, and adumbilical ridge parallel to the posterior chamber margin. Loss of these characters in *R. greenhornensis* appears to be relevant to more tightly packed chambers, inhibiting the development of supplementary apertures within the sutureal gap and of adumbilical ridges along the posterior chamber margin.

Rotalipora greenhornensis differs from its direct descendent *Anaticinella multiloculata* in that the former has partly raised sutures and an acute, entirely keeled equatorial periphery, whereas the latter has a smooth, rounded equatorial periphery (though it still has, in part, a keel or poreless margin) and fully depressed sutures due to the strong inflation of chambers (Eicher, 1972). Though not encountered in this study, *R. greenhornensis* in its latest evolutionary stage is significantly variable in taxonomic characters (Eicher, 1972). An intermediate morphotype characterized by having fully depressed sutures, but entirely keeled margin is known to exist (Eicher and Worstell, 1970, pl. 13, fig. 3; Eicher, 1972, pl. 1, fig. 6; Leckie, 1985, pl. 4, figs. 9, 10) and has been identified as *R. greenhornensis*.

Plano-convex *Rotalipora deeckei* resembles *R. greenhornensis* in having partly depressed umbilical sutures in the later part of the final whorl and umbilically positioned supplementary apertures. However, sutures on the spiral side of *R. deeckei* are markedly raised throughout, whereas those of *R. greenhornensis* are partly depressed or diminished. Similarly, *Rotalipora gandolfii* superficially resembles *R. greenhornensis* by its morphology and partly depressed umbilical sutures, but it differs in having sutural supplementary apertures and it lacks the partly depressed spiral sutures.

Rotalipora greenhornensis is morphologically highly variable, but it consistently has an equally biconvex, moderate to thick profile. It never presents a compressed profile as thin as *R. greenhornensis* or, to a lesser extent, *R. gandolfii* and *R. deeckei*. We note that the illustration of the spiral view only (specimens with "" in the above list) cannot be taken as evidence for the presence of *R. greenhornensis*.

González-Donoso and Linares in Robaszynski and others (1993) identified some unusual Tunisian specimens of *Rotalipora* of middle Cenomanian age, and assigned them to *R. greenhornensis* on the grounds that they have fully depressed umbilical sutures that are conformable with the holotype illustrations by Morrow (1934) and Brönnimann and Brown (1956). This approach seems reasonable but it is invalidated due to the fact that the fully depressed nature of the umbilical sutures is not represented by the holotype. Besides, the Tunisian specimens differ from *R. greenhornensis* sensu stricto in lacking any evidence for depression of raised sutures on the spiral side and in possessing different supplementary apertural features.

There certainly exists an intermediate morphology between *R. glohotruncanoides* and *R. greenhornensis* in the literature, including Eicher (1972, pl. 1, fig. 4), Leckie (1985, pl. 4, figs. 13, 14), and Lipson-Benitah (1994, pl. 1, fig. 7). These are here regarded as *R. glohotruncanoides* because they have curved and fully raised sutures, although this form differs from *R. glohotruncanoides* sensu stricto and is close to *R. greenhornensis* in having umbilically shifted supplementary apertures and in lacking true fish-hook shaped ornamentation on the umbilical chamber surfaces. Two of our figured specimens of *R. glohotruncanoides* (pl. 3, figs. 2, 5) are similar to this state. Further, it probably corresponds to one of the paratypes of *Thalminnella brozeni* illustrated by J. Sigal (Sigal, 1946; pl. II, fig. 7). If this form constitutes a sufficiently separate biostratigraphic range with respect to *R. greenhornensis* within the evolutionary sequence from *R. glohotruncanoides* to *R. greenhornensis*, it may be worth establishing a new species as it is distinctive on the basis of one of the most important supplementary apertural characters. This is likely, as our preliminary results from DSDP Site 463 and ODP Site 1050 show that this morphotype occurs commonly prior to the evolutionary appearance of *R. greenhornensis* sensu stricto.

Currently, *Rotalipora brozeni* (= *Thalminnella brozeni*) is considered a junior synonym of *R. glohotruncanoides*. However, *R. brozeni* is reminiscent of *R. greenhornensis* as judged from its type figure (Sigal, 1946, pl. 1, fig. 5) showing a weakly developed last umbilical suture as well as umbilically positioned supplementary apertures; the latter feature was originally considered the diagnosis of the genus *Thalminnella*. This interpretation may be equivocal, because another illustration of *R. brozeni* presented later by the same author (Sigal, 1952, Fig. 25) exhibits development of fully raised umbilical sutures, which in turn suggests that this taxon may be attributed to the above-mentioned *R. glohotruncanoides*—*R. greenhornensis* transitional state or to a pre-adult individual of *R. glohotruncanoides*.

ACKNOWLEDGMENTS

The authors wish to thank Scott Whittaker (SEM Lab, Smithsonian NMNH) and Motoyoshi Oda and Kentaro Hatakeda (both at Tohoku University) for their help with microscopic work. Critical reviews by Michèle Caron (Université de Frîbourg), Antoine A. H. Wonders (Strata-Data Ltd.) and Isabella Premoli Silva (Università di Milano), and editorial handling by the Editor Charlotte A. Brunner (University of Southern Mississippi) are
acknowledged. This study was supported by a Grant-in-Aid for Research Fellow of the Japan Society for the Promotion of Science for Young Scientists to A.A.

REFERENCES

HUBER, B. T., 1994, Ontogenetic morphometrics of some Late Cretaceous trochosorial planktonic foraminifera from the Austrail Realm: Smithsonian Contributions to Paleobiology, no. 77, 85 p.

judged from their differences in growth rate, chamber morphology, the concept adopted in this study (Table 1).

At least at present, however, it is not reasonable to follow the ongoing research by R. glohotruncanoides R. hrotzeni, 1952, Aperçu stratigraphique sur la micropaleontologie du Crétacé: Atlas de Géologie et de Paléontologie, v. 59, p. 107-114.

APPENDIX 1

USNM Metatypes of Rotalipora glohotruncanoides and Thalmanninella brotzeni

After submission of this paper, type materials of J. Sigal were found at le Muséum national d'Histoire naturelle, Paris by M. Caron and I. Premoli Silva. The collection includes the primary types of Rotalipora glohotruncanoides Sigal (one holotype and three paratypes) and Thalmanninella brotzeni Sigal [= Rotalipora brotzeni (Sigal)]. The collection is held in the National Museum of Natural History, Smithsonian Institution, Washington, D.C., and is accessible for research. Additional information is available from the curatorial records of the Institut Français du Pétrole, Méthodologie, et Technologie des Foraminifères, Paris, France.

In anticipation of decisive taxonomic clarification for R. glohotruncanoides and R. brotzeni, we present further evidence that improves upon their equivocal species concepts. Plate A1 presents SEM images of the topotypes of R. glohotruncanoides and T. brotzeni, which are deposited in the Cushman Collection, Smithsonian NMNH. The latter (Pl. A1, fig. 1; collection number: USNM 387929), to our knowledge, has not been figured elsewhere. The former (Pl. A1, fig. 2; collection number: USNM P3930) is identical to a specimen illustrated by Boll (1957: Pl. 9, fig. 7) [the same figure also reprinted in Loeblich and Tappan (1961; Pl. 7, fig. 10) and Loeblich and Tappan (1966; Fig. 528, fig. 53)]. Information written on both microslides states that they were both obtained from the type locality, "Middle Cenomanian: Sidi-Aissa, Algeria" and were "received from J. Sigal." Thus, each specimen can be also called a "metatype" (the topotype identified by the original author at a date subsequent to publication of the original description), which is deemed to have important status; it is apparently more important than the Moroccan paratypes.

The key taxonomic characters of R. glohotruncanoides listed in the text and Table 1 are excellently expressed in the USNM 387929 metatype. In our opinion, R. glohotruncanoides diagnostically exhibits "fish-hook" ornamentation (newly proposed descriptive term) on the umbilical chamber surfaces in the later part of the last whorl, where it is illustrated by a combination of keeled periphery, raised umbilical suture, perumbilical ridge, and adumbilical (= toward umbilicus) ridge parallel to the posterior chamber margin. These lines of additional information reinforce the fidelity of our glohotruncanoides concept and help validate our taxonomic revision for R. glohotruncanoides.

The metatype of T. brotzeni, though not as well preserved, is comparable to R. glohotruncanoides in having entirely raised umbilical sutures and the fish-hook ornamentation on the ultimate chamber. The glohotruncanoides and brotzeni metatypes, on the other hand, may be separable based on their apertural and morphological features, in which the former exhibits sutureal supplementary apertures, a faster
USNM metatypes of *Rotalipora glohotruncanoides* Sigal and *Thalmanninella brotzeni* Sigal. 1 *Rotalipora glohotruncanoides* Sigal: (a) spiral, (b) edge and (c) umbilical views; USNM 387929; maximum diameter = 0.66 mm; maximum thickness = 0.26 mm. 2 *Thalmanninella brotzeni* Sigal [= *Rotalipora brotzeni* (Sigal)]: (a) spiral, (b) edge and (c) umbilical views; USNM P3930; maximum diameter = 0.49 mm; maximum thickness = 0.27 mm. Uncoated SEM images obtained by using a JEOL JSM-6330F field emission SEM at Tohoku University. Note that both specimens are arranged at a common magnification. All scale bars = 100 μm.

growth rate, and an umbilically more convex profile, whereas the latter exhibits umbilically positioned supplementary apertures (only one recognized at the umbilical margin along the last umbilical suture), a slower growth rate, and an equally biconvex profile. This is consistent with the observations of the two holotypes by Caron and Premoli Silva (written communication, 2006). Nevertheless, given their size difference, we cannot rule out the possibility that they represent different ontogenetic stages of the same species, i.e., *R. glohotruncanoides* is a fully adult individual, whereas *T. brotzeni* may be a pre-adult form. In light of significant intraspecific variability in the morphological characteristics of *Rotalipora*, a survey of the entire population is necessary to determine if these two species can be consistently identified in a population. Even if they can be separated morphologically, it is our contention that criteria based on ornamental and apertural characters should be of primary consideration for the species level classification in *Rotalipora*.