PRELIMINARY PHYLOGENETIC ANALYSIS OF GENERIC RELATIONSHIPS WITHIN THE CALLIANASSIDAE AND CTENOCHELIDAE (DECAPODA: THALASSINIDEA: CALLIANASSOIDEA)

Christopher C. Judge, Gary C. B. Poore, and Rafael Lemaitre

(CCT, GCBP) Crustacea Laboratory, Museum Victoria, P.O. Box 666E, Melbourne, Victoria 3001, Australia; (CCT, RL) Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560-0163, U.S.A.
(corresponding author (CCT) e-mail: tudge.christopher@nmnh.si.edu)

ABSTRACT

A phylogenetic analysis of 106 representatives in the thalassinidean families Ctenochelidae and Callianassidae, based on 93 adult morphological characters, was performed to investigate the interrelationships between the 25 currently recognized genera. The callianideid, Callianidea typa H. Milne Edwards, was used as the out-group. The two in-group families, Ctenochelidae and Callianassidae, were both shown to be monophyletic. Monophyly of the four ctenochelid subfamilies (Anacalliacinae, Callianopsinae, Ctenochelinae, and the recently suggested Gourretinae) was not supported. Three callianassid subfamilies (Callianassinae, Cheraminae, and Eucalliacinae) were found to be monophyletic but with species compositions different from those presently understood. The fourth callianassid subfamily (Callichirinae) is paraphyletic and ancestral to the other subfamilies. Several species described as species of Callianassa s.l. were found to belong to other genera. Recent studies have greatly increased the number of known species in the thalassinidean families Ctenochelidae and Callianassidae (e.g., Matsuzawa and Hayashi, 1997; Sakai, 1999), and Callianassidae (e.g., Ngoc-Ho, 1991, 1994, 1995; Sakai, 1992; Manning and Tamaki, 1998). The callianassids of the Americas in particular have received much attention (e.g., Manning and Felder, 1995; Lemaitre and Felder, 1996; Heard and Manning, 1998; Hernández-Aguilera, 1998). Various classification systems have been proposed for the decapod infraorder Thalassinidea. De Saint Laurent (1973) defined the Upogebiidae and Callianassidae and assigned those species previously in Callianassa s.l. to six distinct genera, Callianassa, Callichirus, Gourretia, Calliax, Callianopsis, Anacalliax, and created a seventh new genus Calliapagurops. Later Manning and Felder (1991a), focusing on the callianassids of the Americas, reviewed the genera in the Callianassidae, erected the new family Ctenochelidae, and concluded that the large and disparate genus Callianassa s.l. should be restricted to a few species in the eastern Atlantic, and that all other “Callianassa” species should be assigned to other genera. Poore (1994) presented a phylogeny of all the families of the Thalassinidea, confirmed the monophyly of the infraorder, established that it contained 11 families in three superfamilies, and that the families Callianassidae and Ctenochelidae are in fact sister taxa. His notable changes in the families Callianassidae and Ctenochelidae were the suggestion that the latter is paraphyletic and the reassignment of the genus Anacalliax from the Ctenochelidae to the Callianassidae. However, many carcinologists have experienced difficulties in applying the classifications of de Saint Laurent (1973) and Manning and Felder (1991a) (e.g., Poore, 1975, 1994; Poore and Griffin, 1979; Rabalais et al., 1981; Williams, 1984; Ngoc-Ho, 1994; Sakai, 1999) and their global application has been questioned. Clearly, additional studies of genera in these two families are still required before true relationships can be ascertained.

A generic-level phylogenetic analysis of the Ctenochelidae and Callianassidae has not previously been attempted although various representatives have been used in investiga-
tions of relationships between other thalassinidean taxa (Borradaile, 1903; Kensley and Heard, 1991; Poore, 1994), or between thalassinideans and other decapods (Martin and Abele, 1986; Scholtz and Richter, 1995). These analyses were based on morphological characters, but others have used comparisons of 18s rRNA nucleotide sequences (Spears and Abele, 1988), neuroanatomy (Paul, 1989; Sandeman et al., 1993), and ultrastructural morphology of spermatozoa and spermatophores (Tudge, 1997).

The objective of this paper is to subject the current taxonomy of the Callianassidae and Ctenochelidae to phylogenetic analysis based on existing, and readily available, character information. The aim is to highlight taxa where taxonomy may not be substantiated by parsimonious analysis rather than to provide a well-defined alternative classification for these two families. The current analysis is not intended for elucidation of species-level taxonomic groupings, and associations at this level should be treated with caution.

MATERIALS AND METHODS
The taxa included in this analysis are indicated by an asterisk (*) in the list of all valid species in the thalassinidean families Ctenochelidae and Callianassidae (Appendix 1). This list includes all valid species known to date (April 1999) arranged according to their most recent generic and subfamily assignments, and not according to their original combinations. The taxa selected for the analysis have greater than 50% of their character states able to be scored at this time (one exception being "Callianassa acutirostella" with 55% missing data). The largest genus is Callianassa s.l., not because it is the largest monophyletic group of species but because many authors have used it as a default name until a more stable systematic arrangement becomes generally acceptable. In the text we use "Callianassa" in quotes where we suspect the generic placement is incorrect. The out-group taxon, Callianidea typa H. Milne Edwards, 1837, (family Callianideidae) is also included in Appendix 1. For each genus, the type species is indicated, and the source of morphological information is indicated in square brackets.

Appendix 2 is a list describing the 93 adult somatic characters used in the analysis and their suggested polarity. There are 56 binary characters and 37 multistate characters. There were no nonapplicable characters. This character list is a modified version of that used by Poore (1994). Throughout this paper the terms "antenna 1" and "antenna 2" refer to the antennule and antenna, respectively. Figures 1 and 2 illustrate some of the characters used. The complete data matrix is provided in Appendix 3. Of the characters employed in this analysis, 13 were considered to be phylogenetically informative due to their being autapomorphies or consistent in state across the included taxa. The missing character states (indicated by "?") indicate that the information was unable to be obtained from the literature or from the specimens examined (e.g., incomplete specimens or only one sex available).

Phylogenetic Analysis
The phylogenetic analysis used PAUP version 3.1.1 (Swofford, 1993), utilizing a data matrix originating in MacClade version 3 (Maddison and Maddison, 1992). Heuristic search analyses were performed with the following options in effect: addition sequence, simple; one tree held at each step during stepwise addition; tree-bi-section-reconnection (TBR) branch-swapping performed; MULPARS option activated; steepest descent option inactive; branches having maximum length zero collapsed to yield polytomies; topological constraints not enforced; trees unrooted; multistate taxa interpreted as uncertainty; character-state optimization, accelerated transformation (ACCTRAN). All characters were unordered, unsealed, and equally weighted.

The large size of the data matrix excluded search strategies other than the heuristic method. The callianideid Callianidea typa was selected as the out-group taxon because of its type species status and the undisputed, close sister-group relationship to the ingroup families Ctenochelidae and Callianassidae (Borradaile, 1903; Kensley and Heard, 1991; Poore, 1994).

RESULTS
The 50% majority rule consensus tree calculated from the 1,700 equally parsimonious trees obtained from an heuristic analysis of the data matrix is shown in Figs. 3 and 4 and is the subject of our discussion. The tree length = 838 steps, and the consistency index (CI) = 0.905. Some higher taxonomic categories are shown with brackets and arrows (Fig. 3). Clades not supported by 100% of the trees are indicated (Fig. 4).

For brevity we will mostly discuss the systematic position of species that appear to lie outside the genera with which they are currently classified and apparently poly- or paraphyletic genera. Approximately half (51%) of the species in this analysis have incomplete data sets (Fig. 4, and Appendix 3), and therefore many of the contentious taxa also fall into this category. The average percentage of missing data in the matrix is only 11%, but in some species this percentage is as high as 30% or 50%. The placement of taxa with high proportions of missing data should be viewed with some reservation.

DISCUSSION
The two families Ctenochelidae and Callianassidae are both unambiguously monophyletic, and contrary to Sakai's (1999) view, warrant family rather than subfamily status. Poore (1994) considered the Callianassidae
Fig. 1. Diagrammatic representation of selected ctenochelid and callianassid morphological character states. A, B, Lateral view of carapace: A, Ctenocheles serrifrons; B, Bifarius biformis (both after Manning and Felder, 1991a). C–E, Dorsal view of rostral region and eyestalks: C, Corallichirus xuthus (after Manning and Felder, 1991a); D, Callichirus seilacheri (after Manning and Felder, 1986); E, Lepidophthalmus jamaicense (after Manning and Felder, 1991a). F–H, Maxilliped 1: F, Callianidea typa (after Poore, 1997); G, Bifarius delicatulus (after Rodrigues and Manning, 1992a); H, Glypturus acanthurus (after Biffar, 1971b). I–K, Maxilliped 3: I, Trypaea australiensis (after Poore and Griffin, 1979); J, “Callianassa” praedatrix (after Sakai, 1988); K, Dawsonius latispina (after Manning and Felder, 1991a). Not to scale. Abbreviations: ap, anterolateral projections; c, carpus; cd, crista dentata; co, cornea; cp, cardiac prominence; d, dactylus; do, dorsal oval; e, eyestalk; en, endopod; ex, exopod; i, ischium; lt, linea thalassinica; m, merus; ms, meral spine; p, propodus; r, rostrum; rc, median rostral carina.
Fig. 2. Diagrammatic representation of selected ctenochelid and callianassid morphological character states. A–F, Uropods, telson, and 6th abdominal somite: A, Dawsonius latispina (after Biffar, 1971b); B, Ctenacheles maorianus (after Dworschak, 1992); C, Neocallichirus lemailrei (after Manning, 1993); D, Cheramus profundus (after Biffar, 1973); E, Necallianassa berylae (after Heard and Manning, 1998); F, Callichirus islagrande (after Manning and Felder, 1991a). G–I, Appendix interna on pleopods 3–5: G, Cheramus marginatus; H, Callichirus sellacheri; I, Notiax brachyophthalmia (all after Manning and Felder, 1991a). J, Posterior margin of carapace and abdominal somites 1 and 2. K, Lateral view of abdominal segments 1–6 and tailfan, showing position of plumose setal rows on somites 2–6, and dense tufts of lateral setae on somites 3–5. Not to scale. Abbreviations: A1–6, abdominal somites; ai, appendix interna; al, anterolateral lobes; ca, carina; dl, distolateral spine; dp, dorsal plate; en, endopod; ex, exopod; Ip, lateral projection; Is, lateral setal tufts; pl, pleuron; ps, plumose setal row; s, spine; t, telson.
Fig. 3. Phylogram of 50% majority rule consensus tree of 1,700 equally parsimonious trees obtained from an heuristic analysis of 107 thalassinidean taxa using 93 morphological characters and using the out-group method. Tree length = 838 steps; consistency index (CI) = 0.905. Some higher taxonomic categories are indicated (arrows and brackets), as are type species (boldface).
Fig. 4. Cladogram of 50% majority rule consensus tree of 1,700 equally parsimonious trees obtained from an heuristic analysis of 107 thalassinidean taxa using 93 morphological characters and using the out-group method. Tree length = 838 steps; consistency index (CI) = 0.905. Species without a full complement of character states scored (missing data in the matrix) are indicated with an asterisk (*). Clades are supported by 100% of trees unless otherwise indicated.
paraphyletic, but the synapomorphies—presence of a dorsal plate on the uropodal exopod (= anterodorsal thickening), absence of dorsal carinae on the same uropodal exopod, and absence of a cardiac prominence—define the family.

Ctenochelidae

The four subfamilies (Anacalliacinae, Callianopsinae, Ctenochelininae, Gourretinae) (Manning and Felder, 1991a; Sakai, 1999) are not monophyletic in the present analysis. The subfamily Anacalliacinae, containing the single genus Anacalliax, is not a member of the Callianassidae, as suggested by Poore (1994). This analysis clearly shows that the genus (and subfamily) is part of the Ctenochelidae, supporting the placement of Manning and Felder (1991a) and Sakai (1999). However, most of the taxa used to represent this family in the present analysis have missing data, and the intergeneric relationships shown thus should be treated with caution.

The genus Gourretia is paraphyletic in this analysis, and it has previously been suggested that it comprises more than one genus (Manning and Felder, 1991a). In the analysis G. denticulata, the type species of Gourretia, does not group with the two other species of Gourretia (Figs. 3, 4). The type species differs from them in having a flatly spinose rostrum instead of an upturned one; it has no discernible antero-lateral projections on the frontal margin of the carapace (Fig. 1E); the endopod on maxilliped 1 is elongate (Fig. 1F) and not minute (Fig. 1G); there is a definite heel on the propodus of pereiopod 3; the telson is longer than the uropods and has a rounded distal edge (Fig. 2A) instead of a flattened one; and lastly, transverse setal rows on abdominal somite 6 are absent (Fig. 2K).

Callianassidae

Three of the four subfamilies (Callianassinae, Cheramininae, Eucalliacinae) (Manning and Felder, 1991a) are monophyletic in this analysis only after reappraisal of their constituent taxa. The fourth subfamily, Callichirinae, is paraphyletic.

Restriction of Callianassa (Manning and Felder, 1991a) to Callianassa subterranea is supported by the current analysis and suggests reassessment and reassignment of other Callianassa s.l.

Callianassinae

The clade of nine species and including the type species of Biffarius has 59% support. The genus may therefore include "Callianassa" lewtonae, "C." australis, "C." diaphora, and "Neocallichirus" limosa as well as those originally assigned to it. Although "Callianassa" lewtonae has less than half of the characters unscored, it shares 45 synapomorphies with the five Biffarius species. We consider at least five significant: absence of the anterolateral projections on the frontal margin of the carapace, equal or subequal chelips in the female, denticulate ischium of the minor cheliped, and a telson which is as long as broad but shorter than the uropods. "Callianassa" lewtonae is almost certainly a species of Biffarius.

The analysis also suggests that "Neocallichirus" limosa should not be in Neocallichirus, where it was placed by Sakai (1988) and Kazmi and Kazmi (1992), but perhaps should be considered as a member of Biffarius. This taxon has a full complement of characters and differs from the ten other species of Neocallichirus in presence of a distinct meral hook on the major cheliped, presence of ventral denticles on the ischium of the minor cheliped, a male first pleopod with the second segment triangular instead of ovate, a male second pleopod vestigial and not overtly biramous, pleopods 3–5 with the appendix interna a stubby projection and not embedded into the rami (Fig. 2H, I), and a terminally rounded telson (Fig. 2A) and not flat or slightly indented (Fig. 2B, C). Placement of "Callianassa" limosa in Neocallichirus is clearly erroneous, and it, "C." australis, and C. diaphora are more probably species of Biffarius. All share similarities in rostral and anterolateral projection morphology, presence of a distinct meral hook on the major cheliped, telson and uropod characteristics, 2nd and 3rd maxilliped morphology and male pleopodal morphology.

Remaining clades within the Callianassinae are well supported.

Callianassa subterranea, type species of this genus, (currently grouping with C. mauritiana) is at the base of a clade that includes other species of Callianassa s.l. plus the genera Notiax, Gilvossius, Neotrypaea, Necallianassa, Nihonotrypaea, and Trypaea. The presence of other species of Callianassa s.l.
in other clades reflects the very broad way this genus name has been applied rather than misclassification. The smaller genera are specialized derivatives of Callianassa s.s. The genus Neotrypaea is not monophyletic, with N. californiensis the sister taxon of Trypaea australiensis and N. gigas the sister taxon of Gilvissius setimanus. Both associations are well supported. Neotrypaea californiensis differs from N. gigas in that abdominal somite 2 is greater in length than abdominal somite 6 (Fig. 2K) and not equal to it; abdominal somites 3–5 have dense tufts of lateral setae (Fig. 2K); antenna 1 peduncle is slightly longer than antenna 2 peduncle, rather than subequal; antenna 1 also has a reasonably dense brush of ventrally directed setae; a more prominent crista dentata is present (Fig. 2J); ischium of the minor cheliped lacks ventral denticulation; propodus of pereiopod 3 has a distinct heel on the proximal corner of the lower margin whereas the same in N. gigas is more oval in shape; male pleopod 1 is present, but is unusually absent in N. gigas; female pleopod 1 is 2-segmented rather than 3-segmented; pleopods 3–5 have an embedded appendix interna (Fig. 2I), as opposed to a stubby projecting one (Fig. 2H); and finally, the telson has equal dimensions in N. californiensis and is broader than long in N. gigas.

“Callianassa” amboinensis sits in a clade remote from other taxa and may warrant separate generic status.

Cheraminae

A well-supported clade (here suggested to constitute the subfamily Cheraminae) is composed of six species of “Callianassa,” Poti gaucha, Cheramus profunda, and C. marginatus (Figs. 3, 4). All except the last are missing significant character information (13% to 39%). “Callianassa” longicauda, “C.” praedatrix, and “C.” propinqua (all from the Southeast Asia region) share a similar rostral morphology, antennal proportions, denticulation of the ischium and merus of the major cheliped, and a distinctive tooth on the distal margin of the merus of the 3rd maxiliped (Fig. 2J). The importance of this latter character in linking these three taxa has previously been recognized (Sakai, 1988). Six of the nine species in this clade (“Callianassa” praedatrix, “C.” propinqua, “C.” rectangularis, “C.” sibogae, Cheramus profunda, and C. marginatus) are linked by the possession of multiple spines on the distal and distolateral edges of the telson (Fig. 2D). Sakai (1970b) placed “Callianassa” spinophthalma in the subgenus Cheramus, and this genus name may be appropriate for all species in this clade.

Eucalliacinae

A monophyletic clade comprises all the investigated members of the subfamily Eucalliacinae, with the exception of Calliax tooradin. Although nearly a third of the character states are missing for Calliax tooradin, it differs from other members of its genus in nine characters (see Appendix 2, characters S. guassutinga, S. guara, S. mirim, and S. guassuinga) occur
in three clades, while three species from Florida (S. trilobata, S. guassutinga, and S. mericeae) occur in two clades. The individual species groups can be identified by sets of characters, but these are not exclusive to each of the clades. Sergio guara and S. guaqueri can be linked by eight characters (but are not sister taxa in this analysis); S. mirim and S. trilobata are linked by five characters; and S. guassutinga, S. mericeae, and S. sulfureus are linked by two characters. The latter two Sergio clades have 100% support, and the close association of S. guassutinga, S. mericeae, and S. sulfureus was supported by Manning and Felder (1995) and Lemaitre and Felder (1996). Sergio may be a paraphyletic genus, but it is possible that their uniting characters are outweighed by convergences elsewhere in this large cladogram.

A monophyletic clade (100% supported) containing 10 species of Neocallichirus also includes “Callianassa” jousseaumii. Nearly half of the character data are missing for this species. However, C. jousseaumii shares 39 of the remaining characters with Neocallichirus, of which four, associated with maxillipeds 3 morphology and shape of the uropodal endopods, are not shared with Callianassa s.s. Biffar (1971b) noted that “C.” jousseaumii showed numerous morphological similarities with Neocallichirus grandimanus (as Callianassa branneri) and N. indica (as Callianassa indica), so its membership of this genus seems certain.

Similarly, “Callianassa” kraussi shares a significant proportion of its characters with the members of Callichirus (seven exclusively), and the cladogram places it in this genus.

De Saint Laurent and Le Loeuff (1979) subdivided the then large genus Callichirus (15 species) into six categories, some upheld in the current analysis. Manning and Felder (1986) redefined Callichirus and restricted its species to C. major, C. islagrande, C. seiacheri, and C. adamas. They stated “... these four species comprise a distinctive group of species within the Callianassidae recognizable as a distinct genus, Callichirus.” (Manning and Felder, 1986: 439). This analysis supports their statement, showing a distinct clade of these four taxa within Callichirus.

The two species of Corallianassa are sister taxa, and the genus is supported.

“Callianassa” ranongensis and “Callichirus” turneranus belong in the clade of seven of the eight published species of Lepidophthalmus, for they share a large proportion of their characters with members of this genus. Both can confidently be transferred to Lepidophthalmus.

The base of the Callianassidae is poorly resolved as most of its taxa have a high proportion of missing data (14% to 37%). “Callianassa” tridentata, with a full complement of character states, is sister taxon of the two investigated species of Corallichirus (C. placidus and C. xuthus). “C.” tridentata shares 71 characters with these two Corallichirus species, and it is possible that “C.” tridentata is a fourth species of Corallichirus.

Basally associated with Corallichirus is Glypturus martensi. With only 83% support for the association and with a significant proportion of the character states still missing, it is difficult to decide if this taxon is simply reflecting the lack of characters to link it with its congeners. It shares many character states with Corallichirus (including “Callianassa” tridentata) and differs in seven characters from the majority of Glypturus, of which only two are shared with Corallichirus. The seven character states in which G. martensi differs from the remaining species in Glypturus are: terminally rounded eyestalks (Fig. 1C) instead of pointed (Fig. 1D, E); antenna 1 peduncle is equal to or larger than antenna 2 peduncle rather than shorter; exopod of maxillipeds 1 appears to be 2 or 3 segmented (Fig. 1G) and not consisting of a single segment (Fig. 1H); unlike the other species, the merus of maxillipeds 3 projects beyond the articulation with the carpus (Fig. 2I, J); ventral margin of the merus of the minor cheliped has a convex margin (shared with G. mucronata) instead of a straight or toothed margin; fingers of the minor cheliped are longer than the propodal palm and not shorter than or equal to it; and finally, propodus of pereiopod 3 would appear to lack the distinctive heel seen in the other five species (although this character state is ambiguously scored as oval or heeled in the data matrix, Appendix 3). Glypturus appears polyphyletic with or without the inclusion of “G.” martensi. Glypturus karumba and G. mucronata (both Australian and Southeast Asian species) form a small subclade separated from their congeners, a relationship supported by Poore and Griffin
(1979). These two species share a reduced but spinose rostrum, absence of anterolateral projections on the carapace, and absence of a scaphocerite on antenna 2. All are characters that differentiate them from the other Glypturus species studied (Poore and Suchanek, 1988).

"Callianassa" audax, at the base of the entire callianassid clade, may simply be a case of there being too much missing data to be effectively placed in the family. Of the 59 characters scored for "C." audax, only four differ from the majority of the species currently in Callianassa s.l. Its basal position in the familial clade is enigmatic.

Paraglypturus calderus appears as the sister taxon to all other callianassids. It shares (among other characters) the presence of the anterodorsal thickening (dorsal plate) on the uropodal exopod with all other members of the family but possesses the primitive character of a large exopod on the third maxilliped. This latter character is observed in the out-group taxon, Callianidea typa, the ctenochelids Gourretia and Anacalliax, and the callianassid Calliax tooradin.

CONCLUSION

In spite of the high frequency of missing data (still to be obtained) the cladogram can be interpreted in a meaningful way which supports the existing systematic arrangements.

In the Ctenochelidae there is little justification for the subfamily arrangements recently proposed, and the genus Gourretia appears to be polyphylectic.

The traditional subfamily structure of the Callianassidae is revealed in the cladogram, and it is no surprise that one of the four subfamilies (defined in terms of plesiomorphies) is paraphyletic. The genus name Callianassa has been used loosely in the past, whereas smaller genera remained poorly defined or especially restricted to small, tightly diagnosed groups of species. There are two consequences of this. One is that our cladogram suggests the placement of several species of Callianassa s.l. in alternative monophyletic genera. This may necessitate the rediagnosis and/or subdivision of these genera. The other consequence is that Callianassa can be treated either as a very small genus (e.g., Manning and Felder, 1991a), in which case several new smaller genera need to be diagnosed, or as a large polyphylectic genus from which specialized clades (e.g., Trypaea, Neotrypaea) have derived.

Further progress on elucidating generic structure and relationships in these two families will be made by completing the data matrix, addition of new characters and taxa, and concentration on the better-defined clades in the tree presented here. Examination of specimens of type species of many of the included taxa should add most of the character data that is currently missing from the matrix. This character-state information, with the addition of new characters and the inclusion of newly described taxa, would form the basis for a more complete and rigorous analysis of these two thalassinidean families. Subsequent reanalysis of the individual clades presented in this consensus tree may lend support to the relationships shown and increase confidence in the systematic changes suggested.

We do not believe this cladogram is more than indicative of generic relationships, but hope it is a stimulus for further investigation.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the assistance of B. Kensley and the late R. B. Manning (National Museum of Natural History, Smithsonian Institution) and the late A. B. Williams (National Oceanographic and Atmospheric Administration, National Marine Fisheries Service) for providing access to literature and specimens and advice on character-state assignments. Thanks are also extended to K. Fauchald (National Museum of Natural History, Smithsonian Institution) for facilitating the senior author's access to the Department of Invertebrate Zoology and its collections as a visiting researcher on two separate occasions in 1998 and 1999. The senior author was supported by an Australian Research Council Postdoctoral Research Fellowship (1996-1999). This paper is dedicated to R. B. Manning, in recognition of his many outstanding contributions to the taxonomy and systematics of the Thalassinidea and to the callianassoids of the Americas in particular. Credit is due also to his wife, Lilly King Manning, for preparing the illustrations that accompany many of her husband's papers.

LITERATURE CITED

TUDOE ET AL.: PHYLOGENY OF THE CALLIANASSIDAE AND CTENOCHILIDAE

Kishinouye, K. 1926. Two rare and remarkable forms of macrurous Crustacea from Japan.—Annotationes Zoologicae Japonenses 11: 63-70.

——. 1978. Ctenocheles holthuisi (Decapoda, Thalassinidae), a new remarkable mud shrimp from the Atlantic Ocean.—Crustacea 34: 113–120.

TUDGE ET AL.: PHYLOGENY OF THE CALLIANASSIDAE AND CTENOCHELIDAE

---. 1992. Notes on some species of Thalassinidea.---. 1970b. A small collection of thalassinids from Japan.---. 1970a. Supplementary description of Callianassa ranongensis (Thalassinidea).---. 1987a. On Callianassa (Callichirus) novaebritanniae Borradaile (Thalassinidea, Crustacea) from South—West Japan.---. 1984. Some thalassinideans (Decapoda: Crustacea) from Halmahera, Indonesia.---. 1983. On a new species of the genus Callianassa (Crustacea, Decapoda) from Japan.---. 1996. On Callianassa (Callichirus) novaebritanniae Borradaile (Thalassinidea, Crustacea) from Japan.---. 1999a: Poore, 1994). Sakai recognizes four subfamilies of which only the Eucalliacinae is similar to that subfamily in our analysis. Within this subfamily he has synthesized with Paraglypturus calderus which our analysis places basally within the Callianassidae clade (Calliax looradin Paraglypturus calderus) which our analysis recognizes four subfamilies of which only the Eucalliacinae is similar to that subfamily in our analysis. Within this subfamily he has synthesized with Paraglypturus calderus which our analysis places basally within the Callianassidae clade (Calliax looradin Paraglypturus calderus) which our analysis places basally within the Callianassidae clade and a third (C. novaebritanniae) which clusters with other species of Calliax. The second of Sakai’s subfamilies Calliapaguropsinae, for Calliapaguropsis charcotti only, is an unusual callianassid, hitherto poorly described and not included in our analysis.

RECEIVED: 21 April 1999.

NOTE ADDED IN PROOF

Three new genera and eight new species have been added to the callianassid fauna since this paper was first submitted: Gryynammin Poore, 2000 (type species Gryynammina tamakii Poore, 2000); Podocallichirus Sakai, 1999a (type species Callianassa madagassa Lenz and Richters, 1881); Pseudobiffarius Heard and Manning, 2000 (type species Pseudobiffarius caesari Heard and Manning, 2000); Callianassa gruneri Sakai, 1999a; Callianassa ngochoae Sakai, 1999a; Callianassa poorei Sakai, 1999b (probably a species of Biffarius); Callianassa whitei Sakai, 1999a; Callianassa macroura Sakai, 1999a; Gryynammina tamakii Poore, 2000; Neocalianassa kempi Sakai, 1999a; Neocallichirus raymanningi Blanco Rambia and Lemaire, 1999.

Sakai’s (1999a) synopses of the Callianassidae has reached conclusions about the taxonomy of the family very different from those of our phylogenetic analysis and from those recently proposed (e.g., Manning and Felder, 1991a; Poore, 1994). Sakai recognizes four subfamilies of which only the Eucalliacinae is similar to that subfamily in our analysis. Within this subfamily he has synthesized with Paraglypturus with Calliax and included Paraglypturus. The four species assigned to this genus include two (Calliax latarum and Paraglypturus calderus) which our analysis places basally within the Callianassidae clade and a third (C. novaebritanniae) which clusters with other species of Calliax.
The third subfamily, Anacalliacinae, was erected in Ctenochelidae by Manning and Felder, and treated within Callianassidae by Poore (1994). It contains a single genus which our analysis suggests is a highly derived clade of Ctenochelidae.

Sakai (1999a) treats all remaining callianassids as members of the Callianassinae. He did not recognise Cheraminiae or Callichirinae. The former is a small, clearly monophyletic clade. The latter is probably paraphyletic but clearly defined (Poore, 2000).

Sakai's treatment of genera diverges from the results of our cladistic analysis. We agree on the monophyly of Neocallichirus but not on the assignment of some species of Glypturus to it. His synonymy of Corallianassa with Glypturus is not supported in our phylogeny. We agree too on the monophyly of Lepidophthalmus. Sakai's division of Callichirus into two genera, Callichirus and Podocallichirus, is not inconsistent with our analysis but is not supported by a clear dichotomy between species groups. All remaining ten genera were synonymised by Sakai into Callianassa. While he recognised that some genera are "fundamentally different" from the type species of Callianassa or cited "the traditional generic criterion" to define this genus and highlighted differences in some characters, he appears so influenced by similarities in others and the presence of "intermediate forms" that synonymy seemed the simplest solution. Results of our phylogenetic analysis do not indicate monophyly of a large genus Callianassa but rather numerous monophyletic clades of few or several species, each supported by one or more synapomorphs. Generic names must be found for these, and we conclude that those erected so far should stand for the time being.

Appendix 1. List of valid species in the Ctenochelidae and Callianassidae, arranged according to their most recent revisions. * indicates taxa used in this analysis; sources of information, reference and/or museum collections are given in square brackets. Species in new combinations are in curly brackets. Collections are from USNM (National Museum of Natural History, Washington, D.C., U.S.A.) and NMV (Museum Victoria, Melbourne, Australia).

Family: Callianideidae Kossmann, 1880
Genus Callianidea Kossmann, 1880
*Callianidea typu Milne Edwards, 1837 TYPE SPECIES [Poore, 1994, 1997; Kensley and Heard, 1991; USNM]

Family: Ctenochelidae Manning and Felder, 1991a
Subfamily Anacalliacinae Manning and Felder, 1991a (as Anacalliaeae)
Genus Anacalliix de Saint Laurent, 1973
*Anacalliix agassizi (Biffar, 1971b) [Biffar, 1971a]
*Anacalliix argentinensis (Biffar, 1971) TYPE SPECIES [Biffar, 1971a; Manning and Felder, 1991a; USNM]

Subfamily Callianopsisae Manning and Felder, 1991a
Genus Callianopsis de Saint Laurent, 1973
*Callianopsis goniophthalma Rathbun, 1902 TYPE SPECIES [Manning and Felder, 1991a; USNM]

Subfamily Ctenochelinae Manning and Felder, 1991a
Genus Ctenocheles Kishinouye, 1926
*Ctenocheles balssi Kishinouye, 1926 TYPE SPECIES [Kishinouye, 1926; Matsuzawa and Hayashi, 1997; Sakai, 1999]

Ctenocheles collini Ward, 1945

Ctenocheles levicbs Rabalais, 1979
*Ctenocheles maiorius Powell, 1949 [Powell, 1949; Dworschak, 1992; USNM]

Ctenocheles serrifrons Le Loeff and Intes, 1974
Genus Dawsonius Manning and Felder, 1991a
*Dawsonius latispina (Dawson, 1967) TYPE SPECIES [Biffar, 1971b; Manning and Felder, 1991a; USNM]

Genus Gourretia de Saint Laurent, 1973
Gourretia barraca Le Loeff and Intes, 1974

Gourretia coolubah Poore and Griffin, 1979
Gourretia croxmsier Ngoc-Ho, 1991
*Gourretia denticulata (Lutze, 1937) TYPE SPECIES [de Saint Laurent and Bozic, 1972; Le Loeff and Intes, 1974; USNM]

Gourretia lahouettea Le Loeff and Intes, 1974

Gourretia manihinae Sakai, 1984

Genus Paracalliix de Saint Laurent, 1979
*Paracalliix bollore de Saint Laurent, 1979 TYPE SPECIES [de Saint Laurent and Le Loeff, 1979]

Family: Callianassidae Dana, 1852
Subfamily Callianassinae Dana, 1852
Genus Biffarius Manning and Felder, 1991a
*Biffarius arenosa (Poore, 1975) [Poore, 1975; Poore and Griffin, 1979; NMV; USNM]
*Biffarius australis (Kensley, 1974), new combination
Biffarius delkatulus Rodrigues and Manning, 1992

*Biffarius ceramica (Fullon and Grant, 1906) [Fullon and Grant, 1906; Poore and Griffin, 1979; NMV; USNM]

*Biffarius delhminus Leech, 1814

Genus Callianassa

*Biffarius diaphora (Le Locuff and Intéls, 1974), new combination

*Biffarius fragilis (Biffar, 1970) [Biffar, 1970, 1971b; USNM]

*Biffarius lewtonae (Nc-Go, Ho, 1994), new combination

*Biffarius limosa (Poore, 1975). new combination

*Biffarius lewtonae (Ngoc-Ho, 1994), new combination

Callianassa abdominalis White, 1847

*Callianassa acutrostrata Sakai, 1988 (Sakai, 1988)

*Callianassa amboinensis de Man, 1888 [de Man, 1928; Poore and Griffin, 1979; Sakai, 1984; Ngoc-Ho, 1991]

*Callianassa assimilis (de Man, 1928)

*Callianassa audax de Man, 1905 [de Man, 1928; Dworschak, 1992]

*Callianassa australis Kensley, 1974 [Kensley, 1974; de Saint Laurent and Le Locuff, 1979; USNM]-removed to *Biffarius

*Callianassa bouchieri Nobili, 1904

*Callianassa brevicaudata (A. Milne-Edwards, 1870)

*Callianassa caledonica Ngoc-Ho, 1991 [Ngoc-Ho, 1991]

*Callianassa calmani Nobili, 1904

*Callianassa candida (Olivi, 1792)

*Callianassa carinadorsis White, 1847

*Callianassa chilensis A. Milne-Edwards, 1860

*Callianassa convexa de Saint Laurent and Le Locuff, 1979

*Callianassa coutierei (Nobili, 1904)

*Callianassa crislala Nobili, 1904

*Callianassa diaphora Le Locuff and Intés, 1974 [Le Locuff and Intés, 1974; de Saint Laurent and Le Locuff, 1979]-removed to *Biffarius

*Callianassa diaphora Le Locuff and Intés, 1974 [Le Locuff and Intés, 1974; de Saint Laurent and Le Locuff, 1979]-removed to *Biffarius

*Callianassa fijholi A. Milne-Edwards, 1878 [Chilton, 1906; Devine, 1966; NMV; USNM]

*Callianassa gilchristi Barnard, 1947

*Callianassa grandidieri Coutière, 1899

*Callianassa graviori Nobili, 1906

*Callianassa intermedia de Man, 1905

*Callianassa jocularis Stebbing, 1902 [Poore and Griffin, 1979; Ngoc-Ho, 1991; USNM]

*Callianassa jocularis Stebbing, 1902 [Poore and Griffin, 1979; Ngoc-Ho, 1991; USNM]-removed to *Biffarius

*Callianassa kewalramamii (Sankalli, 1971)

*Callianassa kraussi Stebbing, 1900 [Barnard, 1950; Holthuis, 1991; USNM]-removed to *Callianassa

*Callianassa lewtonae Ngoc-Ho, 1994 [Ngoc-Ho, 1994]-removed to *Biffarius

*Callianassa longicauda Sakai, 1967 [Sakai, 1967b]-removed to *Biffarius

*Callianassa longicollis A. Milne-Edwards, 1870

*Callianassa macrocephala Lenz and Rietchers, 1881

*Callianassa madagascensis Borradaile, 1904

*Callianassa marchali Le Locuff and Intés, 1974 [Le Locuff and Intés, 1974; de Saint Laurent and Le Locuff, 1979])

*Callianassa maxoomi (Tirmizi, 1970)

*Callianassa mauritiana Miers, 1882 [de Man, 1928; Kensley, 1975]

*Callianassa maxima A. Milne-Edwards, 1870

*Callianassa modesta de Man, 1905

*Callianassa nukasomei Sakai, 1967 [Sakai, 1967a]

*Callianassa parva Edmondson, 1944

*Callianassa parvula Sakai, 1988

*Callianassa pixii Kensley, 1975 [Kensley, 1975]

*Callianassa poncica Czernavsky, 1884

*Callianassa praedatrix de Man, 1905 [de Man, 1928; Sakai, 1988; Ngoc-Ho, 1994]-removed to *Cheramus

*Callianassa propinquata de Man, 1905 [de Man, 1928; Ngoc-Ho, 1991]-removed to *Cheramus

*Callianassa pugnatris de Man, 1905

*Callianassa pygmaea de Man, 1928

*Callianassa ranongensis Sakai, 1983 [Sakai, 1983, 1987a; USNM]-removed to *Lepidophthalmus

*Callianassa rectangularis Ngoc-Ho, 1991 [Ngoc-Ho, 1991]-removed to *Cheramus

*Callianassa rosea Nobili, 1906

*Callianassa rotundicaudata Stebbing, 1902

*Callianassa sibogae de Man, 1905 [de Man, 1928; Ngoc-Ho, 1994]-removed to *Cheramus

*Callianassa spinopithalamus Sakai, 1970 [Sakai, 1970b]-removed to *Cheramus

*Callianassa subterranea (Montagu, 1808) TYPE SPECIES [de Man, 1928; de Saint Laurent and Bozie, 1972; de Saint Laurent and Le Locuff, 1979; Manning and Felder, 1991a; USNM]

*Callianassa tonkiniae Grebenjuk, 1975

*Callianassa tridentata Von Martens, 1868 [de Man, 1928; Sakai, 1970a: USNM]-removed to *Corallichirus

*Callianassa tyrrhenaea (Petagna, 1792) [de Saint Laurent and Bozie, 1972; Holthuis, 1991; USNM]

*Callianassa variabilis Edmondson, 1944

*Callianassa vigilax de Man, 1916

*Callianassa winslowi (Edmondson, 1944)

*Callianassa acutiscalella Sakai, 1988

*Callianassa aculeata Edmondson, 1944)

Genus Calliapagurops de Saint Laurent, 1973

Genus Calliapagurops de Saint Laurent, 1973 TYPE SPECIES

Genus Gilvosius Manning and Felder, 1991b

*Gilvosius setimanus (DeKay, 1844) TYPE SPECIES [Manning and Felder, 1991b; USNM]

Genus Necallianassa Heard and Manning, 1998

Necallianassa acantilura (Carily, 1946)

*Necallianassa berylae Heard and Manning, 1998 TYPE SPECIES [Heard and Manning, 1998]

Necallianassa truncata (Giard and Bonnier, 1890)

Genus Neotrypaea Manning and Felder, 1991a

Neotrypaea biffari (Holthus, 1991)

*Neotrypaea californiensis (Dana, 1854) TYPE SPECIES [Holthus, 1991; Manning and Felder, 1991a; Dworschak, 1992; USNM]

*Neotrypaea gigus (Dana, 1852) [Holthus, 1991; Dworschak, 1992; USNM]

Neotrypaea rochi (Bouvier, 1895)

Neotrypaea uncinata (H. Milne Edwards, 1837)

Genus Nihonotrypaea Manning and Tamaki, 1998

*Nihonotrypaea harmandi (Bouvier, 1901) [de Man, 1928; Manning and Tamaki, 1998; USNM]

*Nihonotrypaea japonica (Oritmani, 1891) TYPE SPECIES [de Man, 1928; Manning and Tamaki, 1998; USNM]

*Nihonotrypaea pelagica (Stimpson, 1860) [Holthus, 1991; USNM]

Genus Notiax Manning and Felder, 1991a

*Notiax brachyophthalma (A. Milne-Edwards, 1870) TYPE SPECIES [Manning and Felder, 1991a; USNM]

*Notiax fuscicrura (†A. Milne-Edwards, 1870) TYPE SPECIES [Manning and Felder, 1991a; USNM]
Appendix 2. List of characters and their states used in analysis of genera of Ctenochelidae and Callianassidae. Alphanumeric character labels correspond with those in Appendix 3.

1. Carapace and rostrum
 a. Linea thalassinica: present and typically extending back to posterior edge of carapace (Fig. 1A) (0); present but incomplete (1); absent (2).
 b. Relative length of cephalothorax to total body length (el/tl): approximately half (0); a third or less (1).
 c. Cardiac prominence (Fig. 1A): present (0); absent (1).
 d. Dorsal oval on carapace (Fig. 1B, D): present (0); absent (1).
 e. Rostrum: present, strongly spinose (Fig. 1A–C, E) (0); present, weakly spinose (1); present, nonspinose and broad (Fig. 1D) (2); absent (3).
 f. Rostrum: present, flatly spinose (Fig. 1A) (0); present, spinose but downturned (Fig. 1B) (1); present, spinose but upturned (2): present, nonspinose and broad (3); absent (4).
 g. Rostrum: dorsally armed with spines (Fig. 1A) (0); dorsally unarmed (1).

2. Eyestalks and corneas
 a. Eyestalks: cylindrical (0); flattened (1); flattened but con cave on dorsal surface (2).
 b. Eyestalks: terminally rounded (Fig. 1C) (0); terminally tapered to a blunt point (Fig. 1E) (1); terminally elongate and pointed (Fig. 1D) (2).
 c. Corneas: terminal on eyestalk (Fig. 1C) (0); subterminal on eyestalk (dorsally situated) (Fig. 1D, E) (1); absent (2).
 d. Corneas: equal to eyestalk width (Fig. 1C) (0); less than eyestalk width (Fig. 1D, E) (1); absent (2).
 e. Corneas: subglobular (Fig. 1C) (0); disc-shaped (Fig. 1B, E) (1); indistinct or absent (2).

3. Abdominal somites
 a. Abdominal somite 1, anterolateral lobes (Fig. 2J): present or indicated (0); absent (1).
 b. Abdominal somite 1, pleuron: acute and projecting (0); blunt and obsolete (1).
 c. Anterolateral margin of abdominal somite 2: does not overlap abdominal somite 1 (0); overlaps abdominal somite 1 (1).
 d. Abdominal somite 2: equal to length of somite 6 (0); greater than length of somite 6 (Fig. 2K) (1); less than length of somite 6 (2).
 e. Abdominal somites 3–5: without dense tufts of lateral setae or at most sparse vertical rows (0); with dense tufts of lateral setae (Fig. 2K) (1).
 f. Abdominal somites 3–5: not dorsally ornamented with distinct patterns of grooves and integumental glands (0); dorsally ornamented with strong symmetrical patterning of grooves and integumental glands (1).
 g. Abdominal somite 6: without lateral projections (Fig. 2B–F, K) (0); with lateral projections (Fig. 2A) (1).
 h. Coxa of peraeopod 4: rectangular, without anteromesial lobe (0); flattened, with anteromesial lobe (1).

4. Gills
 a. Epipods: 1–7 (rarely 2–7) present (0); 4–7 vestigial or absent (1); 3–7 absent (2); 2–7 absent (3).
 b. Podobranch 2: present (0); vestigial or absent (1).
 c. Podobranch 2: present (0); 3–7 absent or some rudimentary (1).
 d. Anthrobranches on somites 1–7: 022 2222 (0); 012 2222 (1); 002 2222 (2); 001 2222 (3).
 e. Pleurobranches: 5–7 absent, 8 rudimentary (0); 5–8 absent (1).
5. Epistome and antennae
a. Epistome: without setae (0); with long setae (1).
b. Antenna 1 (antennule), segment 3: longer than segment 2 (0); shorter than or about as long as segment 2 (1).
c. Antenna 1 peduncle: longer than antenna 2 (antenna peduncle) (0); shorter than antenna 2 peduncle (1); as long as antenna 2 peduncle (2).
d. Antenna 1, dense brush of ventrally directed long setae: absent (0); present (1).
e. Antenna 2 scaphocerite: prominent, much longer than wide (0); reduced but articulating, about as long as wide (1); absent (2).

6. Mouthparts
a. Maxilla 2 scaphognathitc: without long setae (0); with one or more long setae(s) (1).
b. Maxilliped 1 endopod: 2- or 3-segmented (or elongate and tapering) (Fig. 1F) (0); minute (Fig. 1G) (1); absent (Fig. 1H) (2).
c. Maxilliped 1 exopod: 2- or 3-segmented (sometimes with flagellum) (Fig. 1G) (0); 1-segmented (Fig. 1F, H) (1).
d. Maxilliped 2 exopod: equal to or longer than merus of endopod (0); shorter than merus of endopod (1); absent (2).
e. Maxilliped 3: pediform, ischium-merus length more than 3 times merus width (Fig. 1K) (0); subpediform, ischium-merus length about twice merus width (Fig. 1J) (1); operculiform, ischium-merus length less than 2 times merus width (Fig. 1I) (2).
f. Maxilliped 3, exopod: reaching almost to end of merus of endopod (0); reduced or vestigial (1); absent (Fig. 1I–K) (2).
g. Maxilliped 3, crista dentata: as prominent toothed ridge (Fig. 1J, K) (0); obsolete or absent (Fig. 1I) (1).
h. Maxilliped 3, meral spine (Fig. 1J, K): present (0); absent (1).
i. Maxilliped 3, mcrus: with a denticulate distal border (Fig. 1J) (0); without a denticulate distal border (Fig. 1I) (1).
j. Maxilliped 3, merus: not projecting beyond articulation with carpus (Fig. 1K) (0); barely projecting beyond articulation with carpus (Fig. 1J) (1); strongly projecting beyond articulation with carpus (Fig. 1I) (2).
k. Maxilliped 3, propodus: slender, longer than broad, at most slightly wider than dactylus (Fig. 1K, K) (0); oval, as broad as long, or at least twice dactylus width (Fig. 1J) (1).
l. Maxilliped 3, dactylus: digitiform and slender, longer than broad (Fig. 1–K) (0); oval, as broad as long (1).

7. Pereiopods
a. Pereiopod 1 (chela) in male: equal or subequal (0); unequal (1).
b. Pereiopod 1 in female: equal or subequal (0); unequal (1).
c. Pereiopod 1, merus of major cheliped: with straight lower margin (0); with convex lower margin (1); with toothed lower margin (2); with distinct meral hook (3).
d. Pereiopod 1, merus of minor cheliped: with straight lower margin (0); with convex lower margin (1); with toothed lower margin (2); with distinct meral hook (3).
e. Pereiopod 1: simple or subchelate (0); chelate (1).
f. Pereiopod 1, major cheliped, carpus and propodus: without three spines on upper margin (0); with three spines on upper margin (1).
g. Pereiopod 1, major cheliped, propodus: tapering distally (0); not tapering distally (1).
h. Pereiopod 1, major cheliped: angle of fixed finger to palm: 90° or less (0); greater than 90° (1).
i. Pereiopod 1, major cheliped, chelae fingers: shorter than, or approximately equal to palm (0); longer than palm (1).
j. Pereiopod 1, minor cheliped, chelae fingers: shorter than or approximately equal to palm (0); longer than palm (1).
k. Pereiopod 1, major cheliped, chelae fingers: without comb of fine teeth (0); with comb of fine teeth (1).
l. Pereiopod 1, major cheliped, length-to-width ratio of propodus: 1.0–2.0 (0); 2.1–3.0 (1); 3.1–4.0 (2); 4.1–5.0 (3).
m. Pereiopod 1, major cheliped denticulation: evenly (0); uneven (with occasional larger teeth) (1).
n. Pereiopod 1, major cheliped, ventral teeth on ischium: present (0); absent (1).
o. Pereiopod 1, minor cheliped, ventral teeth on ischium: present (0); absent (1).
p. Pereiopod 2, row of setae on lower margin of ischium-propodus: absent (0); present (1).
q. Pereiopod 2: simple (0); chelate, with dactylus longer than fixed finger (1); chelate, with dactylus as long as fixed finger (2).
r. Pereiopod 3 propodus: linear (more than 3 times as long as wide) (0); oval (approximately twice as long as wide) (1); oval, but with prominent heel on proximal corner of lower margin (2).
s. Pereiopod 4 propodus: linear (more than 3 times as long as wide) (0); oval and flattened (twice as long as wide or less) (1).
t. Pereiopod 5: simple (0); chelate or subchelate (1).

8. Pleopods
a. Pleopods: 1 absent or reduced, 2-5 similar and lamellar (0); 1 and 2 variously absent, reduced or sexually modified, 3-5 similar and lamellar (1).
b. Male pleopod 1: absent (0); present, 1-segmented (1); present, 2-segmented, with the 2nd segment more or less triangular (2); present, 2-segmented, with the 2nd segment ovate (3); present, 3- or more segmented (4).
c. Male pleopod 1: absent (0); present, with obvious appendix interna (1); present, appendix interna as minute hooks on ramus (2); present, appendix interna absent (3).
d. Male pleopod 1: present, uniramous (0); present, but vestigial (1); absent (2).
e. Male pleopod 2: present, biramous (0); present, uniramous (1); present, but vestigial (2); absent (3).
f. Male pleopod 2: present, appendix masculina present (0); present, appendix masculina present and fused to appendix interna (1); present, appendix masculina absent (2); absent (3).
g. Female pleopod 1: present, biramous (0); present, uniramous (1).
h. Female pleopod 1: present, 1-segmented (0); present, 2-segmented, with the 2nd segment more or less triangular (1); present, 2-segmented, with the 2nd segment ovate (2); present, 3- or more segmented (3).
i. Female pleopod 2: present, biramous (0); present, uniramous (1).
j. Pleopods 3-5: rami lanceolate (0); rami broad (1).
k. Pleopods 3-5, endopod and exopod: not a hemisphere when combined (0); semispherical when combined (1).
1. Pleopods 3–5: with appendix interna (Fig. 2G–I) (0); without appendix interna (1).

m. Pleopods 3–5, appendix interna: present and digitiform (Fig. 2G) (0); present but reduced and stubby (Fig. 2H) (1); present but embedded (Fig. 2I) (2); absent (3).

9. Uropods and telson

a. Uropodal exopod: simply ovate (Fig. 2A) (0); with anterodorsal setose thickening (= dorsal plate) (Fig. 2C–F, K) (1); bilobed, or markedly bipartite (Fig. 2B) (2).

b. Uropodal exopod: longitudinally carinate dorsally (Fig. 2A, B) (0); acarinate dorsally (Fig. 2C, E, F) (1).

c. Uropodal exopod, lateral notch or incision: present (Fig. 2B) (0); absent (1).

d. Uropodal endopod: oval, distally rounded, with similar length to width (Fig. 2A, D) (0); distally truncate, distolateral margin subacute, wider distally than proximally (Fig. 2C) (1); longer than broad, tapering distally (Fig. 2B, K) (2); much longer than broad, not tapering distally, strap-like (Fig. 2F) (3).

e. Uropodal endopod: longer than broad, tapering, or not tapering, distally (Fig. 2B, E, F) (0); broader than long, flattened distally (Fig. 2C) (1).

f. Uropodal endopod: without distinct distolateral spine (Fig. 2A–D, F, K) (0); with distinct distolateral spine (Fig. 2E) (1).

g. Telson: longer than broad (Fig. 2A, D) (0); as long as broad (Fig. 2B, E) (1); broader than long (Fig. 2C, F) (2).

h. Telson: longer than uropods (Fig. 2A, D) (0); shorter than uropods (Fig. 2B, F, K) (1); equal or subequal to uropods (Fig. 2E, C) (2).

i. Telson: without one or two lateral spines (Fig. 2A–C, F, K) (0); with one or two lateral spines (Fig. 2D, E) (1).

j. Posterior margin of telson: rounded (Fig. 2A, E) (0); flattened (Fig. 2D, F) (1), slightly indented (Fig. 2C) (2); strongly excavate (Fig. 2B) (3).

k. Posterior margin of telson: unarmad (Fig. 2A–C, F) (0); with one spine (1); with more than one spine (Fig. 2D, E) (2).

10. Setal rows

a. Abdominal somite 2, lateral setal row of plumose setae (Fig. 2K): absent (0); present (1).

b. Abdominal somites 3–5, lateral setal row of plumose setae (Fig. 2K): absent (0); present (1).

c. Abdominal somite 6, lateral setal row of plumose setae (Fig. 2K): absent (0); present (1).

d. Abdominal somite 6, transverse setal row of plumose setae on posterior dorsolateral margin (Fig. 2K): absent (0); present (1).

e. Abdominal somite 6, oblique setal row of plumose setae between lateral and transverse setal rows (above) (Fig. 2K): absent (0); present (1).
Appendix 3. Data matrix. (O = 0/1, an equivocal character state assignment)
<table>
<thead>
<tr>
<th>Character number</th>
<th>Taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neocallichirus cabocuriti</td>
</tr>
<tr>
<td>2</td>
<td>Lepidophthalmus jamaicensis</td>
</tr>
<tr>
<td>3</td>
<td>Neocallianassa berylia</td>
</tr>
<tr>
<td>4</td>
<td>Lepidophthalmus fusipes</td>
</tr>
<tr>
<td>5</td>
<td>Lepidophthalmus sauriceps</td>
</tr>
<tr>
<td>6</td>
<td>Neocallichirus lemaire</td>
</tr>
<tr>
<td>7</td>
<td>Neocallichirus laisani</td>
</tr>
<tr>
<td>8</td>
<td>Neocallichirus saussuininga</td>
</tr>
<tr>
<td>9</td>
<td>Neocallianassa rathbunae</td>
</tr>
<tr>
<td>10</td>
<td>Neocallianassa richardi</td>
</tr>
<tr>
<td>11</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>12</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>13</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>14</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>15</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>16</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>17</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>18</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>19</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>20</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>21</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>22</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>23</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>24</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>25</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>26</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>27</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>28</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>29</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>30</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>31</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>32</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>33</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>34</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>35</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>36</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>37</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>38</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>39</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>40</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>41</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>42</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>43</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>44</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>45</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>46</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>47</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>48</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>49</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>50</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>51</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>52</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>53</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>54</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>55</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>56</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>57</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>58</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>59</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>60</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>61</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>62</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>63</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>64</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>65</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>66</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>67</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>68</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>69</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>70</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>71</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>72</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>73</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>74</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>75</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>76</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>77</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>78</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>79</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>80</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>81</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>82</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>83</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>84</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>85</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>86</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>87</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>88</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>89</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>90</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>91</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>92</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>93</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>94</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>95</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>96</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>97</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>98</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>99</td>
<td>Neocallianassa rafsi</td>
</tr>
<tr>
<td>100</td>
<td>Neocallianassa rafsi</td>
</tr>
</tbody>
</table>