MEMOIRS OF THE HOURGLASS CRUISES

Published by
Marine Research Laboratory
Florida Department of Natural Resources
St. Petersburg, Florida

VOLUME III
NOVEMBER 1977
PART IV

STONY CORALS

I. Caryophylliina and Dendrophylliina (Anthozoa: Scleractinia)

By

STEPHEN D. CAIRNS

ABSTRACT

Six species of coral belonging to the Scleractinian suborders Caryophylliina and Dendrophylliina were collected during Project Hourglass, including two new species. All species are described, illustrated and accompanied by synonymies. Five of the six species represent new distributional records for the Gulf of Mexico. A list of the 36 ahermatypes known from the Gulf of Mexico is presented. A key is provided for 32 ahermatypes reported from the eastern Gulf shelf and slope region.

INTRODUCTION

The ahermatypic coral fauna of the eastern Gulf of Mexico was first studied by Pourtalès in 1878, based on collections from three stations of the Blake off the Florida west coast in depths ranging from 183 to 1620 m. Pourtalès reported ten species of ahermatypic corals, seven of which

Contribution No. 304

Division of Biology and Living Resources, Rosenstiel School of Marine and Atmospheric Sciences, Miami, Florida 33149. Present address: Division of Lower Invertebrates, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560.

This public document was promulgated at an annual cost of $1045.00 or $0.50 per copy to provide the scientific data necessary to preserve, manage, and protect Florida’s marine resources and to increase public awareness of the detailed information needed to wisely govern our marine environment.
were from the shallowest station at 183 m. Since 1878, however, few ahermatypes have been re-
ported for the Gulf of Mexico (Moore and Bullis, 1960; Collard and d'Asaro, 1973; Tressler, 1974; 
Keller, 1975). Only Collard and d'Asaro mentioned records for the eastern Gulf of Mexico; the 
other references pertain to the northern and southern Gulf. Most recently, Cairns (1976), as part of 
a larger revision of the ahermatypes of the tropical western Atlantic, listed seven additional species 
from the eastern Gulf of Mexico fauna. Jaap (personal communication) has indicated the presence 
of two more shallow water species from the Florida west coast.

Twelve species of ahermatypes were collected by Project Hourglass. Six shallow water species 
belonging to the suborders Astrocoeniina and Faviina will be reported at a later date along with 
the hermatypic corals. The other six species, reported here, are deeper water species, all belonging 
to the suborders Caryophylliina and Dendrophylliina. Of these latter species, five are new records 
for the Gulf of Mexico.

Since ahermatypic corals do not contain zooxanthellae, they are not limited to the upper 
100 m of sunlit waters, which the zooxanthellae require. This is not to say the ahermatypes are not 
found in shallow water. On the contrary, the ahermatypic genera Astrangia and Phyllangia (sub-
order Faviina) are rarely found deeper than 50 m, and species of Caryophyllia (suborder Caryo-
phylliina) are found from the tide mark to 2700 m. Factors causing certain ahermatypic genera and 
families to be restricted to shallow or deep water are not fully known, but temperature restriction 
is probably most important, as well as substrate, water turbulence, competition and growth form.

ACKNOWLEDGMENTS

I wish to thank Mr. William G. Lyons, Florida Department of Natural Resources (FDNR) for 
allowing me to study the Hourglass specimens and Mr. Walter C. Jaap, FDNR, for transmitting 
specimens, furnishing necessary data, and communicating new eastern Gulf records of shallow water 
ahermatypes. I am indebted to Dr. John W. Wells, Cornell University, for supplying one of the para-
types of Flabellum fragile. Dr. Thomas S. Hopkins and Ms. Diane Grimm, University of Alabama, 
Dauphin Island Sea Lab, loaned specimens from the Bureau of Land Management Outer Continental 
Shelf study.

METHODS AND MATERIALS

The corals were collected during Project Hourglass, a 28-month systematic sampling program 
conducted on the central west Florida shelf off Tampa Bay and Sanibel Island. The project was 
conducted by the Florida Department of Natural Resources Marine Research Laboratory and made 
use of the R/V Hernan Cortez for its monthly sampling stations. Complete descriptions of stations, 
sampling gear, methods and hydrographic data have been published by Joyce and Williams (1969) 
in this series. For convenience, a list of stations (Table 1) and a map of the study area (Figure 1) 
are provided. Hourglass Station E was originally located at 27°37'N, 84°21'W, in 91 m depth, but 
was relocated shoreward to 73 m depth after the first month (August, 1965) because of sampling 
difficulty. The August 1965 station is designated in quotation marks (“E”) to avoid confusion 
with all subsequent collections from Station E in 73 m. Additional species records were obtained 
from specimens recently collected during the U.S. Department of Interior Bureau of Land Man-
agement (BLM) sponsored study of fauna of the eastern Gulf of Mexico Outer Continental Shelf.
Types of most previously described species were examined from collections of the British Museum (Natural History) (BMNH), London; the Museum of Comparative Zoology (MCZ), Harvard University, Cambridge, Massachusetts; and the National Museum of Natural History, Smithsonian Institution (USNM), Washington, D.C. Holotypes and paratypes of the two new species described herein are deposited at the USNM. Single paratypes of the new species and all other Hourglass materials are deposited in the Invertebrate Reference Collection, Marine Research Laboratory, Florida Department of Natural Resources (collection prefix FSBC I). A repository for BLM specimens has not yet been designated.

Stereoscopically paired photographs of the two new species are presented. When used with a stereoscopic viewer, this technique is particularly useful to show depth of the fossa and relative heights of palar and columellar elements (Cairns, 1976).

Synonymies are complete unless otherwise stated.

Abbreviations used in the text are $S_x$, $C_x$, and $P_x$, collective terms for the septa, costae, or pali, respectively, of whatever cycle $x$ represents.

**SYSTEMATICS**

Thirty-six species of ahermatypic corals are now known from the Gulf of Mexico, 32 of which have been recorded from the eastern Gulf; all are listed in Table 2. New combinations in this list are from Cairns (1976). All but nine of the Gulf ahermatypes belong to the suborders Caryophylliina and Dendrophylliina. The following key treats all eastern Gulf ahermatypes. Subsequent systematic accounts treat only those species of Caryophylliina and Dendrophylliina from Hourglass collections.
Figure 1. Hourglass cruise pattern and station locations.
TABLE 2. AHERMATYPIC CORALS OF THE GULF OF MEXICO.

Suborder Astrocoeniina
Family Pocilloporidae
Madracis myriaster
(Milne-Edwards and Haime, 1849)
Madracis sp. cf. asperula
Milne-Edwards and Haime, 1849

Suborder Fungiina
Family Fungiidae
Fungiacyathus crispus (Pourtales, 1871)

Suborder Faviina
Family Faviidae
Cladocora debilis
Milne-Edwards and Haime, 1849

Family Rhizangiidae
Astrangia astreiformis
Milne-Edwards and Haime, 1849
Astrangia solitaria (Lesueur, 1817)
Phyllogorgia americana
Milne-Edwards and Haime, 1849

Family Oculinidae
Madrepora Carolina (Pourtales, 1871), n. comb.
Oculina tenella Pourtales, 1871

Family Caryophylliidae (Continued)
Trochocyathus rawsonii Pourtales, 1874
"Thecocorynites" laevigatus (Pourtales, 1871)
Deltocyathus italicus (Michelotti, 1838)
Deltocyathus calcar Pourtales, 1874
Sphenotrochus sp.
*Lophelia prolifera* (Pallas, 1766)
*Fepocyathus stimpsonii* (Pourtales, 1871)
+Dasmosmilia lymani (Pourtales, 1871)
Dasmosmilia variegata (Pourtales, 1871)
Anomocora secunda (Pourtales, 1871)
Coenosmilia arbuscula Pourtales, 1874
Asterosmilia prolifera (Pourtales, 1871)

Family Flabellidae
*Flabellum moseleyi* Pourtales, 1880
*Flabellum fragile, n. sp.*
"Rhizotrochus" fragilis (Pourtales, 1868)

Family Guyniidae
Guynia annulata Duncan, 1872
Stenocyathus vermiformis (Pourtales, 1874)
Schizocyathus fissilis Pourtales, 1874

Suborder Caryophylliina
Family Caryophylliidae
Balanophyllia floridana (Pourtales, 1868)
Bathypsammia tintinnabulum (Pourtales, 1868)
Enallopsammia profunda (Pourtales, 1867)
*Rhizopammia* manuelensis Chevalier, 1966

* not recorded for eastern Gulf of Mexico
+ species treated here

KEY TO AHERMATYPIC CORALS OF THE SHELF AND SLOPE OF THE EASTERN GULF OF MEXICO

1. Solitary (only one calice present) .................................................. 2
2. Corallum attached ................................................................. 3
2. Corallum not attached (lying free on substrate) ...................... 15
3. Corallum porous, particularly noticeable near calicular edge.................. 4
3. Corallum not porous .......................................................... 5
4. Costae present; septa arranged in Pourtales Plan [some higher cycle septa (i.e., S₅) larger than lower cycle septa (i.e., S₃); S₅ joining as one septum and extending to columella].................. Balanophyllia floridana Pourtales

4. Costae absent, surface vermiculate; septa arranged normally [higher cycle septa progressively smaller, not meeting near columella].................. Bathypsammia tintinnabulum (Pourtales)

5. Adult corallum extremely small (rarely longer than 10 mm, calicular diameter less than 1 mm); septa arranged hexamerally or octamerally in only two cycles....... Guynia annulata Duncan

5. Adult corallum with calicular diameter well over 1 mm; septa arranged hexamerally in three or more cycles.............. 6

6. Pali (or paliform lobes) and columella present; costae present.................. 7

6. Pali absent; columella rudimentary or lacking; costae absent (smooth, delicate epitheca)........ 14

7. Corallum attached to longitudinally split fragment of parent corallum............... 8

7. Corallum attached to substrate.................. 9

8. First two cycles of septa (S₁ and S₂) often very thick, usually black

.................. Dasmosmilia variegata (Pourtales)

8. S₁ and S₂ not thick, never black.................. Dasmosmilia lymani (Pourtales)

9. Pali present before septa of all but last cycle.................. 10

9. Pali present only before septa of penultimate cycle.................. 11

10. Pali often bilobed and indistinguishable from columellar elements; largest corallum known measures 15 mm in calicular diameter, 24 mm tall....... Paracyathus pulchellus (Philippi)

10. Pali always single lobed and distinct from columella; corallum larger, measuring up to 26 mm in calicular diameter, 33 mm tall.................. Trochoocyathus rawsonii Pourtales

11. Columella composed of twisted trabeculae (fascicular).................. 12

11. Columella lamellar, spongy, or composed of pillars.................. 13

12. Costae prominent, ridged; pedicel diameter narrow (10 to 30 per cent of calicular diameter); columellar elements usually fused to one another laterally ...... Caryophyllia horologium, n. sp.

12. Costae usually flat; pedicel diameter larger (30 to 40 percent of calicular diameter); columellar elements usually distinct.................. Caryophyllia berteriana Duchassaing

13. Lower cycle septa (S₁–₃) and costae speckled with brown; costae usually distinct and granulated .................. Caryophyllia maculata (Pourtales)

13. All septa and costae white; costae not well defined, theca often porcellaneous.................. "Thecocyathus" laevigatus Pourtales
14. Pedicel thin, but reinforced with concentric layers of stereome; inner edges of \( S_{1-2} \) usually straight .......................... *Javania cailleti* (Duchassaing and Michelotti)

14. Pedicel very narrow, not reinforced with stereome; inner edges of \( S_{1-2} \) always sinuous .................................. *Flabellum fragile*, n. sp.

15. Corallum patellate or discoidal ........................................... 16

15. Corallum conical, bowl-shaped, vermiform, or cuneiform (wedge-shaped) .................. 18

16. Corallum extremely fragile, only collected in fragments; no pali ...................................................... *Fungiacyathus crispus* (Pourtalès)

16. Corallum usually collected whole; pali before \( S_{1-3} \) ................................................................. 17

17. \( C_1 \) always broader than other costae; long costal spines usually associated with \( C_1 \); \( S_2 \) and \( C_2 \) usually black .................................. *Deltocyathus calcar* Pourtalès

17. \( C_1 \) about same width as other costae; no long costal spines; not pigmented .......... *Deltocyathus italicus* (Michelotti)

18. Corallum cuneiform ......................................................... *Sphenotrochus* sp.

18. Corallum conical, bowl-shaped or vermiform ........................................... 19

19. Parricidal budding common ................................................. 20

19. No parricidal budding; corallum free ........................................ 21

20. Parricidal budding usually from longitudinal fragment representing 1/6 of parent corallum; calicular diameter always less than 3.5 mm .............. *Schizocyathus fissilis* Pourtalès

20. Parricidal budding usually from calice of parent; calicular diameter averaging 10 mm .......... *Asterosmilia prolifera* (Pourtalès)

21. Corallum vermiform ......................................................... *Stenocyathus vermiformis* (Pourtalès)

21. Corallum bowl-shaped or conical ........................................... 22

22. Corallum small (calicular diameter rarely exceeding 7 mm); intercostal grooves very deep .......... *Peponocyathus stimpsonii* (Pourtalès)

22. Calicular diameter of adult greater than 7 mm; intercostal grooves not deep .......... 23

23. Pali before \( S_3 \) ................................................................. *Caryophyllia horologium*, n. sp.

23. Pali or paliform lobes before all but last cycle of septa ........ *Trochocyathus rawsonii* Pourtalès

24. Colonies branching .......................................................... 25
24. Quasi-colonial (corallites united by basal coenosteum) or one corallite with numerous buds still attached ........................................ 31
25. Each calice containing only 10 septa. ................................................................. 26
25. Each calice containing 24 or more septa arranged hexameraly in three or more cycles. .... 27
26. Branches slender (to 3 mm); intercalicular surface spiny .................................................. Madracis sp. cf. asperula Milne-Edwards and Haime
26. Branches thicker (to 8 mm); intercalicular surface striate .................................................. Madracis myriaster (Milne-Edwards and Haime)
27. Calices occurring only at ends of branches ................................................................. 28
27. Calices occurring on sides of branches. ....................................................................... 29
28. Branches long, cylindrical, rarely over 4 mm in diameter; pali before S₂ .................................. Cladocora debilis Milne-Edwards and Haime
28. Each corallite forming a branch tapered toward proximal end; calicular diameter up to 15 mm; no pali. ................................................ Coenosmilia arbuscula Pourtalès
29. Branches porous, especially near calices ................................................................. Enallopsammia profunda (Pourtalès)
29. Branches not porous ....................................................................................................... 30
30. Calicular diameter 2.0 to 2.5 mm; pali before S₁ and S₂ ..................................................... Oculina tenella Pourtalès
30. Calicular diameter 3.5 to 5.5 mm; no pali ................................................................. Madrepora carolina (Pourtalès)
31. Corallum composed of small cluster of corallites, all united basally by common coenosteum or by stolon-like expansions ................................................................. 32
31. Corallum composed of one large corallite with numerous buds still attached or scars of previous attachments ................................................................. Anomocora fecunda (Pourtalès)
32. Corallites united by stolon-like expansions, eventually losing organic connection .......................................................... Astrangia solitaria (Lesueur)
32. Corallites united basally by common coenosteum, rarely losing organic connection ............ 33
33. Colony forming phaceloid clumps; calicular diameter over 10 mm .................................. 34
33. Colonies cerioid; calicular diameter 3 to 4 mm. .......................................................... Astrangia astreiformis Milne-Edwards and Haime
34. S₁ and S₂ about equal size; large coralla with S₅; brown speckles on lower cycle costae and septa .......................................................... Caryophyllia maculata (Pourtalès)
34. $S_1$ more exsert than $S_2$; large coralla rarely with $S_5$; not speckled, often brownish overall…

Phyllangia americana Milne-Edwards and Haime

SUBORDER CARYOPHYLLIINA VAUGHAN AND WELLS, 1943
Superfamily Caryophylliidae Gray, 1847
Family Caryophylliidae Gray, 1847
Genus Caryophyllia Lamarck, 1801

Caryophyllia maculata (Pourtales, 1874)
Plate I, Figures 1-3

Coenocyathus cylindricus: Duchassaing, 1870, p. 25 [not Coenocyathus cylindricus Milne-Edwards and Haime, 1848].

Bathycyathus maculatus Pourtales, 1874, pp. 34, 35, pl. 6, figs. 5, 6.


Coenocyathus bartshii Wells, 1947, pp. 170, 171, pl. 11, fgs. 1-3.

not Caryophyllia maculata: Squires, 1958a, p. 91; 1961, p. 19 [=Caryophyllia profunda Moseley, 1881].


Material examined: HOURGLASS STATION M: 1; 13 January 1967; dredge; FSBC 1 15283.

Description: Corallites cylindrical, round to elliptical in cross section, firmly attached by thin, encrusting base, giving rise extratentacularly to other corallites, producing quasi-colony. Largest known corallite 22.7 x 19.1 mm in calicular diameter, 33.8 mm in height (corallite one of six interconnected corallites forming small phaceloid clump). Equal, flat to slightly convex costae, separated by shallow, narrow intercostal furrows, usually extending from calice to base and even onto encrusting base. Costae bearing large, rounded, blunt granules such that three can be counted across width of each costa near calice. Theca smooth, without costae or granulation on larger corallites. Costae often speckled with brown near calicular edge.

Septa usually hexamerally arranged in 12 half-systems, but large corallites with 11 or 13 complete half-systems are common. Calicular diameter and number of septa directly related. Fourth cycle of septa (48 total septa) usually complete at calicular diameter between 8 and 10 mm; fifth cycle (96 total septa) between 11 and 15 mm; septa of sixth cycle (up to 112 septa) often present in large specimens. $S_1$ equal to or slightly larger than $S_2$, exsert, with straight, vertical inner edges almost reaching columella; upper calicular edges of $S_{1-3}$ speckled with brown, speckles in larger specimens arranged in bands perpendicular to thecal edge. Remaining cycles of septa progressively less exsert, not extending as far toward columella. Last cycle of septa ($S_4$, $S_5$ or $S_6$) often rudimentary, with highly laciniate edges; otherwise, inner edges of other septa smooth, straight. Low, pointed granules covering septal and palar faces.

Palus very large, with rounded upper margin, present before each $S_3$ in small specimens lacking $S_5$; palus separated from its septum by deep narrow notch and extending to columella. [However,
with addition of S₅ to a half-system, each original P₃ is realigned with one of two S₄ in the half-system (becoming, in effect, P₄), while a new P₄ is formed before the other S₄ in the half-system, ultimately producing 24 pali (P₄) in a corallite with 96 septa (five complete cycles).

Fossa moderately deep, bearing elongate, variable columella, usually composed of tangled mass of fused trabeculae but sometimes lamellar or arranged as row of several distinct pillars.

Types: One syntype; MCZ 2783.

Type locality: Off Abrolhos, Brazil; 55 m.

Distribution: Bahamas; Straits of Florida; off west Florida; Yucatan Channel; off Jamaica; Lesser Antilles; off Curacao; off Barra Grande and Abrolhos, Brazil; 3-161 m.

Remarks: C. maculata clearly does not belong in the genus Caryophyllia or Coenocyathus, but is placed in Caryophyllia for convenience. Recent observations indicate that it probably represents a new genus in the Parasmiliinae. It is easily distinguished from the other 11 valid species (Cairns, 1976) of western Atlantic Caryophyllia by the presence of pali before the fourth cycle (not the third or second), and its maculated septa and costae.

The single specimen collected by Project Hourglass, measuring 18.5 x 16.4 mm in calicular diameter and 16.4 mm in height, was long dead when collected. It is quite worn and entirely encrusted with bryozoans and algae.

Caryophyllia horologium, new species

Plate I, Figures 4-6, 9

Material examined: HOURGLASS STATION “E”; 4; 4 August 1965; dredge; (HOLOTYPE, USNM 45760; 2 PARATYPES, USNM 45762; 1 PARATYPE, FSBC I 15282). – OTHER MATERIAL: 1 PARATYPE: west of Cedar Key, Florida, 55 m; July 1963; USNM 45761. – 1 PARATYPE: off Sanibel Island, Florida, 55 m; October 1964; USNM 45763. – 1; BLM Sta. 33 II B, 27°50'N, 84°31'W, 91 m; 27 February 1976. – 2; BLM Sta. 22 I B, 26°25'N, 83°50'W, 91 m; 22 October 1975.

Description: Corallum trochoid in shape, narrowing to slender monocyclic pedicel measuring 10 to 30 percent diameter of calice; narrow pedicel providing rather insecure, easily broken attachment; calice round to elliptical. Holotype (largest specimen) 14.6 x 10.9 mm in calicular diameter, 18.8 mm in height. C₁-₃ highly ridged, especially near calice, becoming less prominent toward base. Area corresponding to C₄ slightly ridged or broad and flat, covered by prominent, pointed granules (about two to three across width of each C₄ near calice). Granules also occurring on thin ridges of C₁-₃, becoming lower and blunter toward base.
Septa arranged in six systems and four cycles, sometimes with $S_5$ present. Holotype with 13 half-systems as result of abnormality caused by fracture and subsequent repair of corallum. $S_1$ and $S_2$ equal in size, exsert, extending almost to columella, their upper edges rounded and inner edges vertical and slightly sinuous. $S_3$ smaller, less exsert, extending only half distance to columella, with very sinuous inner edges. $S_4$ small, rudimentary, lower in fossa, with straight inner edges. $S_5$ occurring in pairs when present, each pair flanking an $S_4$; in such instances, $S_4$ enlarging to size of $S_3$, and $S_5$ about same size as normal $S_4$. Tall, blunt, widely spaced granules covering all septal faces.

Pali large, compressed in plane of septum, occurring before each $S_3$; each palus separated from its septum by deep, narrow notch; pali with sinuous inner and outer margins, rounded upper margins and covered by prominent granules slightly larger than septal granules. Fascicular columella elongate, composed of closely fused mass of broadly twisted ribbons; inner edges of pali fused with columella.

Color of preserved tissue mauve.

**Type locality:** Hourglass Station “E”, 27°37’N, 84°21’W; 91 m depth; about 86 nmi west of Egmont Key, Florida west coast.

**Distribution:** Known only from the west Florida shelf from Sanibel Island to Cedar Key; 55-91 m.

**Etymology:** The specific name *horologium*, from the Greek, means hourglass. It is named in honor of Project Hourglass.

**Remarks:** *Caryophyllia horologium* is similar to *C. berteriana* Duchassaing, 1850, but differs by possessing a narrower base of attachment; more prominent costal granulation; distinct, ridged costae; and columellar pillars which are usually solidly fused to one another, not individualized as in *C. berteriana*. Furthermore, *C. berteriana* is known from 100-850 m whereas *C. horologium* is not known deeper than 91 m.

Genus *Paracyathus* Milne-Edwards and Haime, 1848

*Paracyathus pulchellus* (Philippi, 1842)

Plate II, Figures 2, 3

Synonymy complete for western Atlantic only:

*Cyathina pulchella* Philippi, 1842, p. 42.


*Paracyathus confertus* Pourtalès, 1868, p. 134; 1871, p. 11, pl. 6, figs. 11-13; Studer, 1878, p. 628; Agassiz, 1888, pp. 149, 150, fig. 466; Squires, 1958b, p. 258.
Material examined: HOURGLASS STATION “E”: 1; 4 August 1965; dredge; FSBC I 15284.

Description: Shape of corallum variable. Young specimens often short, cylindrical, but sometimes conical; larger specimens usually elongate-conical, tapering to rather narrow pedicel measuring one-fourth to one-half calicular diameter and re-expanding into encrusting, polycyclic base. Calice usually elliptical, but sometimes perfectly round or strongly compressed. Largest known corallum 15.5 x 13.3 mm in calicular diameter, 24.0 mm tall, containing 76 septa. Costae usually conspicuous only near calicular edge as low, slightly convex ridges, separated by narrow, shallow intercostal furrows, but sometimes highly ridged, separated by broad, deep intercostal furrows and extending to base. Costal granulation, when expressed, consisting of low, rounded granules. Proximal two-thirds of corallum often covered by encrusting organisms (e.g., bryozoans, algae, foraminifera), often giving white appearance. Bands of epitheca occasionally deposited in this area, also contributing to milky-white exterior. Otherwise, distal part of corallum and septa usually light or dark brown or reddish brown.

Septa arranged in six systems and five cycles. S5 appearing at calicular diameters above about 8 mm, but full fifth cycle (96 total septa) never attained. One pair of S5 usually occurring in all twelve half-systems before second pair added to any half-system. S1 and S2 equal in size, moderately exsert. Higher cycle septa progressively smaller, less exsert. Inner edges of all septa straight to slightly sinuous. Septal faces with prominent, pointed or rounded granules sometimes fusing to form horizontal ridges at axial margin, making septa appear thick.

Pali most variable character of species, occurring before all but last cycle, tall, compressed in plane of septum, usually bearing granulation more prominent than that of septa; each palus separated from respective septum by deep, narrow notch. P1 and P2 equal in size, lowest in fossa, closest to columella. P3 usually twice as large, terminating higher in fossa, often wedge-shaped, with calicular edges considerably broader than axial edges. P4 about same size as P3, recessed from columella, terminating even higher in fossa than P3. Often two to four additional paliform lobes (multi-lobate) in space between axial edge of P4 and columella, of progressively smaller size nearer columella; innermost lobes sometimes indistinguishable from columella.

Fossa extremely variable in depth, usually deep, but ranging from very deep to level with upper edges of septa; last condition rare. Columella large, usually elliptical, composed of up to 60 close-set, uniform, slender rods, all terminating at same level below that of pali. Columellar elements interconnected basally, fused to inner edges of sometimes indistinguishable paliform lobes.

Types: Syntypes of C. pulchellus (from Trapani, numbers 549 and 552) are at the Berlin Museum. The holotype of P. defilippi, a small specimen of 44 septa measuring only 4.0 x 4.4 mm in calicular diameter, is in the Museo ed Istituto di Zoologia Sistematica, Torino (Coel. 229). Eight syntypes of P. confertus, divided into three lots, are deposited at the MCZ (all numbered 5481); one lot is from Bibb Sta. 39P, but localities of the other two are unknown.

Type locality: Off Naples and Trapani, Mediterranean.

Distribution: Western Atlantic: Blake Plateau to 32°08'N, 79°16'W; Straits of Florida; Bahamas; Antilles; coastal Caribbean; off entire west coast of Florida to Pensacola; off Texas; off French Guiana. Eastern Atlantic: Mediterranean; in the area bounded by Portugal, the Azores, and the Gulf
of Guinea. Most common between 50-250 m depths; however, confirmed extremes range from near the surface to 1225 m (Zibrowius, 1976).

Remarks: Paracyathus defilippi is synonymized here for the first time with the common eastern Atlantic P. pulchellus, resulting in one extremely variable species with an amphitropical distribution. Differences among western Atlantic specimens, even within the same lot, are sometimes far greater than those observed in specimens from opposite sides of the Atlantic. Furthermore, the occidental specimens agree in every respect with the detailed description given by Zibrowius (1976) of P. pulchellus, based exclusively on hundreds of eastern Atlantic specimens. Squires (1959) was the first to state that both P. defilippi and P. pulchellus were amphitropical. However, he maintained that they were different species: pulchellus had single-lobed pali, whereas defilippi had multi-lobate pali. Squires was working with a small number of specimens (40); in a larger suite, every gradation is expressed, sometimes even within the same corallum.

Zibrowius (1976) should be consulted for a complete synonymy of eastern Atlantic references.

The Hourglass specimen was alive when collected. It is 9.7 x 8.8 mm in calicular diameter and contains 64 septa.

Genus Dasmosmilia Pourtalès, 1880

Dasmosmilia lymani (Pourtales, 1871)

Plate I, Figures 7, 8

Parasmilia lymani Pourtalès, 1871, p. 20, pl. 6, figs. 8-10; Verrill, 1882a, p. 316; 1882b, pp. 406, 407.


Material examined: HOURGLASS STATION E: 1; 4 January 1966; dredge; FSBC I 15285.

Description: Corallum cylindrical or conical, often slightly curved, usually with broken base or attached to sector of older corallum of same species; individuals attached to substrate extremely rare. Calice triangular, rectangular, round, or elliptical. Strongly compressed calices attaining 28 mm in greater diameter, with corallum height 50 mm; some entire populations with calicular diameters never exceeding 14 mm and heights never exceeding 30 mm. Costae variable, usually ridged, equal, separated by broad, flat, intercostal furrows; costae sometimes unequal (more prominent costae alternating with less prominent ones), rounded or flattened, separated by narrow, shallow, intercostal spaces. Low, rounded costal granules arranged near calicular edge such that two to four occur across width of each costa. Theca and septa very fragile, often light brown.

Septa arranged in six systems and five cycles, last cycle rarely complete. S1-3 equal, slightly exert; each septum may bear thin, small paliform lobe on inner edge; otherwise, septum merging with columella. S4 smaller, less exert, usually with sinuous inner edges, with much larger paliform lobes sometimes dissected into two lobes, both merging with columella. S5 smaller, not reaching
columella. Ideal condition of 96 septa rare; usually 12 to 22 larger septa (S1-3) with or without paliform lobes, 12 to 22 paliferous septa (S4), and 24 to 44 S5, resulting in 12 to 22 quartets of septa composed of three different sizes. Granules on larger septa somewhat cup-shaped, often joined together, forming curved lines perpendicular to septal edge.

Columella (called false columella by Pourtalès in 1871) composed of numerous crispate, twisted processes originating from lower inner edges of S1-3 deep in fossa; columella sometimes absent or greatly overshadowed by numerous lamellar paliform lobes.

Types: Forty-nine syntypes, divided into six lots, bearing the numbers 2770, 5625, and 5469, are deposited at the MCZ. Of the six stations at which syntypes were collected, only three (Bibb Stas. 187, 194 and 203) are known for certain. Two additional specimens, perhaps also syntypes, are at the BMNH (1891.2.4.27 and 1970.1.26.33).

Type locality: Off Florida Keys; 128-269 m.

Distribution: Western Atlantic: off eastern United States (to 41°N); Straits of Florida; Florida west coast to off Apalacheecola; off Venezuela; off Guyana; off Cabo Frio, Brazil (23°S). Eastern Atlantic: in the area bounded by Portugal, the Azores, and Sahara Occidental; 73-305 m.

Remarks: The commonest mode of reproduction in this species is asexual budding from wedge-shaped pieces of a parent corallum that have probably resulted from accidental breakage or crushing. Verrill (1908) suggested that fish and large crustaceans were responsible for the longitudinal splitting of the very fragile theca. Verrill (1882a) reported as many as 30 buds from one broken sector.

The Hourglass specimen was probably alive or recently dead when collected. It measures 18.4 x 10.9 mm in calicular diameter, 29.4 mm tall, and contains 110 septa.
Description: Corallum trochoid to turbinate in shape, with basal angle of about 50°, tending to become cylindrical with continued growth. Pedicel very narrow (often only one-tenth calicular diameter), not reinforced by stereome, often slightly bent. Adult coralla often not firmly attached, but base usually containing small, hard object. Calice elliptical; holotype 18.2 x 16.6 mm in calicular diameter, 19.4 mm tall; largest known specimen 20.0 x 17.4 mm in calicular diameter, only 17.2 mm tall. Epithelial wall very thin, bearing chevron-shaped growth lines forming apices at upper, outer edge of every S1-3; epitheca usually encrusted by foraminifera, polychaetes, and/or bryozoans. Calicular margin smooth, continuous, not jagged.

Septa regularly arranged in six systems and four complete cycles. S1 and S2 equal in size, slightly exert, extending to rudimentary columella, inner edges vertical and sinuous. S3 half as large as S1 and S2, not exert, not reaching columella, with less sinuous inner edges. S4 small, rudimentary lower in fossa, inner edges straight. Septal granulation prominent on all septa, expressed as tall (one to two times septal width in height), pointed granules arranged in poorly defined, widely spaced rows oriented obliquely to septal margins.

Fossa moderately deep, containing rudimentary, elongate columella composed of loosely fused mass of randomly arranged trabeculae; columella extending to lower, inner edges of S1 and S2.

Tissue in one preserved specimen reddish brown. Twelve large tentacles, positioned near stomadeum, corresponding to S1 and S2; 12 smaller tentacles corresponding to S3 recessed from stomadeum; smallest tentacles (24) arranged in pairs, one pair flanking each tentacle of third cycle and recessed slightly farther from stomadeum.

Type locality: Hourglass Station “E”: 27°37’N, 84°21’W; 91 m depth; about 86 nmi west of Egmont Key, Florida west coast.

Distribution: Off Florida Keys to south of Apalachicola, Florida; 91-366 m.

Etymology: The specific name fragile refers to the very delicate corallum composed of thin septa and theca.

Remarks: Flabellum fragile is extremely similar to Rhizotrechus fragilis Pourtalès, 1868, differing only in one important character: it does not have the 12 pairs of symmetrically arranged basal rootlets. Three other species, Flabellum moseleyi Pourtalès, 1880, F. alabastrum Moseley, 1873, and F. angulare Moseley, 1876, are known from the western Atlantic; all are easily distinguished from F. fragile by their larger sizes and different corallum shapes.
Balanophyllia floridana Pourtalès, 1868

Plate II, Figures 7, 8

*Balanophyllia floridana* Pourtalès, 1868, p. 137; 1871, pp. 41, 42, pl. 4, figs. 5, 6; 1878, p. 207; 1880, p. 97; Bourne, 1905, pp. 206, 208; Van der Horst, 1922, p. 61; Wells, 1933, pp. 32, 35, pl. 1, figs. 8-11 [Pleistocene]; [?] Squires, 1959, p. 31; Goreau and Wells, 1967, p. 449; Macintyre, 1970, p. 178; Porter, 1972, p. 113; Wells and Lang, 1973, p. 58.

not *Balanophyllia floridana*: Pourtalès, 1874, p. 43, pl. 6, fig. 20 [=*Balanophyllia palifera* Pourtalès, 1878].

*Balanophyllia palifera* Pourtalès, 1878, p. 207 [in part: Blake Sta. 12]; 1880, p. 110 [in part: Blake Stas. 300, 253].

*Balanophyllia floridana*: Moseley, 1881, p. 190.


*Material examined*: HOURGLASS STATION B: 1; 1 July 1967; dredge; FSBC 1 15275. - 1; 11 August 1967; dredge; FSBC 1 15277. - 1; 2 November 1967; dredge; FSBC 1 15279. - HOURGLASS STATION C: 1; 1 December 1966; dredge; FSBC 1 15261. - 1; 13 December 1966; dredge; FSBC 1 15262. - 2; 6 January 1967; dredge; FSBC 1 15263. - 1; 2 March 1967; dredge; FSBC 1 15267. - 1; 11 September 1967; dredge; FSBC 1 15278. - HOURGLASS STATION D: 2; 6 February 1967; dredge; FSBC 1 15265. - 1; 3 March 1967; dredge; FSBC 1 15268. - HOURGLASS STATION E: 3; 2 August 1966; dredge; FSBC 1 15260. - 5; 3 March 1967; dredge; FSBC 1 15269. - 1; 12 May 1967; trawl; FSBC 1 15273. - 3; 2 July 1967; dredge; FSBC 1 15276. - 1; 3 November 1967; dredge; FSBC 1 15280. - HOURGLASS STATION K: 1; 15 February 1967; dredge; FSBC 1 15266. - 1; 7 April 1967; dredge; FSBC 1 15271. - 1; 6 June 1967; dredge; FSBC 1 15274.

*Diagnosis*: Corallum straight, ceratoid to trochoid, strongly compressed; pedicel usually attached to substrate, sometimes free; costae thin, equal, set apart by deep, narrow intercostal grooves; adult specimens often with full fifth cycle plus some S6, septa arranged in Pourtalès Plan; fossa deep; elongate columella spongy.

*Types*: Three lots totalling 20 syntypes are deposited at the MCZ; one contains 16 specimens (5475), another, three (5475), and the third lot, one (5585). All are labelled 26-63 fms and are presumably from Bibb Sta. 52. The syntypes from off Havana were not found.

*Type locality*: Straits of Florida; 48-115 m.

*Distribution*: Western Atlantic: from Onslow Bay, North Carolina (34°N) through the Straits of Florida; west coast of Florida to off Apalachicola; Jamaica; Lesser Antilles; off Panama; off Louisiana (Pleistocene). Eastern Atlantic: off Senegal; Gulf of Guinea. Depth range 18-183 m. Squires' (1959) record from Bermuda, although not unlikely, is impossible to verify because of the worn condition of the specimen. Pourtalès' (1868) report of worn specimens from off Havana at 494 m was probably of some transported there after death.

*Remarks*: A detailed description of this species is being prepared by the author as part of a larger review of all western Atlantic *Balanophyllia*. Of the seven other valid species (Cairns, 1976) of
Balanophyllia from the western Atlantic, *B. floridana* is most similar to *B. cyathoides* (Pourtalès, 1871). *Balanophyllia floridana* can be distinguished by its less exsert *S*₁, equal *S*₁ and *S*₂, and presence of *S*₅ and even *S*₆, both of which are rare in *B. cyathoides*.

**DISCUSSION**

**ZOOGEOGRAPHY**

Because the deep water coral fauna of the Gulf of Mexico is still poorly known, particularly that of the central basin and western coast, it is still not possible to analyze reliably its zoogeographic affinities. However, a preliminary analysis can be made based on this paper and the distributions discussed by Cairns (1976). Among the 31 ahermatypic species known from the eastern Gulf of Mexico (excluding *Sphenotrochus* sp.), 15 (48.5%) are amphi-Atlantic, 14 (45%) are tropical western Atlantic, and two (6.5%) are cosmopolitan (Table 3). In comparison, Cairns (1976), analyzing all 108 species of ahermatypes from the tropical western Atlantic, found the following components: 65% western Atlantic endemic, 25% amphi-Atlantic, and 8% cosmopolitan. The high number of endemic species was explained as a reradiation after the more or less simultaneous appearance in the Miocene-Pliocene of the Central American land bridge, which interrupted the previously continuous, circumtropical Tethys Sea, and a climatic deterioration, which destroyed much of the tropical fauna of the western Atlantic. The substantial (25%) amphi-Atlantic component reflects a current or recent communication across the Atlantic, particularly by deeper water slope species. It is premature to speculate about the exceptionally high (48.5%) amphi-Atlantic component of the eastern Gulf fauna; however, it may be simply the result of biased collecting.

**TABLE 3. ZOOGEOGRAPHIC AFFINITIES OF EASTERN GULF OF MEXICO AHERMATYPIC CORALS.**

<table>
<thead>
<tr>
<th>Amphi-Atlantic</th>
<th>Tropical Western Atlantic</th>
<th>Cosmopolitan</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Paracyathus pulchellus</em></td>
<td><em>Caryophyllia horologium</em></td>
<td><em>Javania cailleti</em></td>
</tr>
<tr>
<td><em>Dasmosmilia lymani</em></td>
<td><em>Caryophyllia maculata</em></td>
<td><em>Stenocorythus verniformis</em></td>
</tr>
<tr>
<td><em>Balanophyllia floridana</em></td>
<td><em>Flabellum fragile</em></td>
<td></td>
</tr>
<tr>
<td><em>Fungiacanthus crispus</em></td>
<td><em>Madracis myriaster</em></td>
<td></td>
</tr>
<tr>
<td><em>Cladocora dubilis</em></td>
<td><em>Madracis sp. cf. asperula</em></td>
<td></td>
</tr>
<tr>
<td><em>Astrangia astreiformis</em></td>
<td><em>Astrangia solitaria</em></td>
<td></td>
</tr>
<tr>
<td>“Thecocorythus” laevigatus</td>
<td><em>Madrepora carolina</em></td>
<td></td>
</tr>
<tr>
<td><em>Deltocyathus italicus</em></td>
<td><em>Oculina tenella</em></td>
<td></td>
</tr>
<tr>
<td><em>Dasmosmilia variegata</em></td>
<td><em>Caryophyllia berteriana</em></td>
<td></td>
</tr>
<tr>
<td><em>Anomocora fecunda</em></td>
<td><em>Trochocyathus rawsonii</em></td>
<td></td>
</tr>
<tr>
<td><em>Coenosmilia arbuscula</em></td>
<td><em>Deltocyathus calcar</em></td>
<td></td>
</tr>
<tr>
<td><em>Asterosmilia prolifer</em></td>
<td><em>Bathysamnia tininnabulum</em></td>
<td></td>
</tr>
<tr>
<td><em>Guyenia annulata</em></td>
<td><em>Enallopsamnia profunda</em></td>
<td></td>
</tr>
<tr>
<td><em>Schizocorythus fissilis</em></td>
<td><em>Phylangia americana</em></td>
<td></td>
</tr>
<tr>
<td><em>Peponocyatus stimpsonii</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17
It is also noted that the eastern Gulf fauna has a much stronger affinity to the tropical western Atlantic fauna than to the temperate western Atlantic fauna. None of the six ahermatypic species endemic to the northwest Atlantic temperate fauna is found in the Gulf of Mexico, whereas 42% of the eastern Gulf species are endemic to the tropical western Atlantic.

**BATHYMETRY**

The 32 eastern Gulf ahermatypes can be divided into four ranges (Table 4). Five species (16%) belong to a very shallow water environment in the same depth range as hermatypic corals. Six species (19%) belong to a shelf habitat, rarely found below 200 m. The largest number of species, 14 (44%), occurs only on the upper slope, rarely found above 200 m, and rarely extending below 1000 m. A fourth group, termed “shelf/slope” (i.e., 30-400 m), composed of seven (22%) species forms a transition between the shelf and upper slope species. Among the species in Hourglass collections, only *Balanophyllia floridana* was collected shallower than 73 m. Three species appeared only in the single collection from 91 m. Because the Hourglass stations did not extend deeper than 91 m, of the six species collected, four (*C. horologium, C. maculata, D. lymani, and B. floridana*) belong to the shelf fauna, and two (*P. pulchellus* and *F. fragile*) belong to the “shelf/slope” group.

The bathymetric distributions of the 32 eastern Gulf species are very similar to those discussed by Cairns (1976), based on 108 species. He found these components: 10% shallow water, 18% shelf, 58% slope, and 13% “shelf/slope.” The smaller slope and higher shallow water component figures for the eastern Gulf probably represent an uneven collecting effort in the Gulf, with much more intensive collecting in shallow water.
AGASSIZ, A.

BOURNE, G. C.

CAIRNS, S. D.

CHEVALIER, J.-P.

COLLARD, S. B., and C. N. D’ASARO

DUCHAASSAING, P.

DUCHAASSAING, P., and J. MICHELOTTI

DURHAM, J. W.

GARDINER, J. S., and P. WAUGH

GOREAU, T. F., and J. W. WELLS

JOYCE, E. A., JR., and J. WILLIAMS
KELLER, N. B.

LABOREL, J.

LEWIS, J. B.

MACINTYRE, I. G.

MILNE-EDWARDS, H., and J. HAIME

MOORE, D. R., and H. R. BULLIS

MOSELEY, H. N.

PHILIPPI, R. A.

PORTER, J. W.

POURTALES, L. F.
1880. Reports on the results of dredging ... by the United States Coast Survey steamer

RALPH, P. M., and D. F. SQUIRES

SQUIRES, D. F.

SQUIRES, D. F., and I. W. KEYES

STUDER, T.

TOMMASI, L. R.

TRESSLER, R. C.

VAN DER HORST, C. J.

VAUGHAN, T. W.

VERRILL, A. E.
1882b. Brief contributions to zoology from the museum of Yale College, number 52. Notice of the remarkable marine fauna occupying the outer banks off the southern coast


1908. Some singular cases of regeneration and increase in a deep-sea coral by agamic endogenesis. Science 27: 449.

WELLS, J. W.


WELLS, J. W., and J. C. LANG


ZIBROWIUS, H.


Figure 1. *Caryophyllia maculata*: Hourglass Station M, calicular diameter 18.5 x 16.4 mm; FSBC I 15283.

Figure 2. Same specimen, height 16.4 mm.

Figure 3. *Caryophyllia maculata*: better preserved specimen collected off Cozumel, Mexico; greater calicular diameter 19.3 mm; USNM 46811.

Figure 4. *Caryophyllia horologium* (holotype): Hourglass Station “E”, height 18.8 mm; USNM 45760.

Figures 5,6. Same specimen, calicular diameter 14.6 x 10.9 mm, stereo pair of calice.

Figure 7. *Dasmosmilia lymani*: Hourglass Station E, height 29.4 mm; FSBC I 15285.

Figure 8. Same specimen, calicular diameter 18.4 x 10.9 mm.

Figure 9. *Caryophyllia horologium* (paratype): Hourglass Station “E”, calicular diameter 13.5 x 12.0 mm; USNM 45762.
Figure 1. *Flabellum fragile* (paratype): southeast of Alligator Reef, Florida, calicular diameter 20.0 x 17.4 mm; USNM 45767.

Figure 2. *Paracyathus pulchellus*: Hourglass Station “E”, calicular diameter 9.7 x 8.8 mm; FSBC I 15284.

Figure 3. Same specimen.

Figure 4. *Flabellum fragile* (holotype): Hourglass Station “E”, height 19.4 mm; USNM 45764.

Figures 5,6. Same specimen, calicular diameter 18.2 x 16.6 mm, stereo pair of calice.

Figure 7. *Balanophyllia floridana*: 28°37.1’N, 80°04.8’W, 64 m, off Cape Canaveral, Florida east coast, height 28.7 mm; FSBC I 15281.

Figure 8. Same specimen, calicular diameter 18.5 x 14.0 mm.

Figure 9. *Flabellum fragile*, same specimen as in Figure 1, height 17.2 mm.