Accepted Manuscript

Development of modern benthic ecosystems in eutrophic coastal oceans: The foraminiferal record over the last 200 years, Osaka Bay, Japan

Akira Tsujimoto, Moriaki Yasuhara, Ritsuo Nomura, Hideo Yamazaki, Yoshikazu Sampei, Kotaro Hirose, Shusaku Yoshikawa

PII: S0377-8398(08)00098-4

DOI: doi: 10.1016/j.marmicro.2008.08.001

Reference: MARMIC 1232

To appear in: Marine Micropaleontology

Received date: 18 April 2008 Revised date: 1 August 2008 Accepted date: 5 August 2008

Please cite this article as: Tsujimoto, Akira, Yasuhara, Moriaki, Nomura, Ritsuo, Yamazaki, Hideo, Sampei, Yoshikazu, Hirose, Kotaro, Yoshikawa, Shusaku, Development of modern benthic ecosystems in eutrophic coastal oceans: The foraminiferal record over the last 200 years, Osaka Bay, Japan, *Marine Micropaleontology* (2008), doi: 10.1016/j.marmicro.2008.08.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Revised Manuscript for Marine Micropaleontology

Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan Akira Tsujimoto^a*, Moriaki Yasuhara^b, Ritsuo Nomura^c, Hideo Yamazaki^d, Yoshikazu Sampei^e, Kotaro Hirose^a, and Shusaku Yoshikawa^a

- ^a <u>Division of Biology and Geosciences, Graduate School of Science, Osaka City</u>

 <u>University, Osaka 558-8585, Japan</u>
- ^b <u>Department of Paleobiology, National Museum of Natural History, Smithsonian</u> <u>Institution, Washington, DC 20013-7012, USA</u>
- ^c Foraminiferal Laboratory, Faculty of Education, Shimane University, Matsue,

 Shimane 690-8504, Japan
- ^d <u>Department of Life Science, School of Science and Engineering, Kinki University,</u>
 <u>Higashiosaka, Osaka 577-8502, Japan</u>
- ^e <u>Department of Geoscience, Faculty of Science and Engineering, Shimane University,</u>

 Matsue, Shimane 690-8504, Japan
- * Corresponding author. Tel. and fax: +81-6-6605-3176.

Postal address: Division of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan E-mail: tujimoto@sci.osaka-cu.ac.jp (A. Tsujimoto)

Abstract

2	The ecosystem dynamics of a modern benthic community in Osaka Bay was
3	studied by analyzing sediment cores and fossil foraminifera deposited during the past
4	200 years. The results suggest that the high-density/low-diversity assemblage has
5	appeared in the early 1900s, coinciding with the eutrophication of the bay resulting
6	from the Japanese industrial revolution. This assemblage proliferated during the period
7	1960 to 1970 when the eutrophication and bottom-water hypoxia were most pronounced
8	The development of the assemblage has been characterized by an increase in the relative
9	and absolute abundance of eutrophication-tolerant species ("Ammonia beccarii",
10	Eggerella advena, and Trochammina hadai) and a decrease in many other foraminiferal
11	species, such as Ammonia tepida, Elphidium, Miliolinella subrotunda, and Valvulineria
12	hamanakoensis, that are unable to tolerate low-oxygen conditions. Approximately thirty
13	years after the imposition of discharge restrictions in the 1970s, this assemblage
14	continues to predominate in the inner part of the bay, and Eggerella advena is currently
15	found across the entire bay. These records make a significant contribution to
16	understanding the long-term relationship between anthropogenic impact and ecosystem
17	change.
18	
19	Keywords: benthic foraminifera; ecosystem; eutrophication; hypoxia; Osaka Bay;
20	species diversity

1. Introduction

1

2	1. 1. Urbanization-induced marine eutrophication and benthic response
3	Marine eutrophication leads to an increase in phytoplankton biomass and
4	hypoxia (Justić et al., 1995; Nixon, 1995; Rabalais et al., 1996; Arai, 2001; Boesch et
5	al., 2001; Cloern, 2001). In its early stage, such eutrophication has a positive impact on
6	the benthic community by increasing the food supply (Pearson and Rosenberg, 1978).
7	However, in the advanced stage, the successive and rapid increase in nutrients leads to
8	oxygen depletion, which is inimical to the survival of many eukaryote benthic
9	organisms that are unable to tolerate low-oxygen conditions. Eutrophication and the
10	resulting hypoxia are characterized by extremely high population densities of a few
11	opportunistic species, such as deposit-feeding small polychaetes, which are resistant to
12	low-oxygen conditions (Pearson and Rosenberg, 1978; Justić, 1987; Beukema, 1991;
13	Gray, 1992; Gray et al., 2002). These unusual benthic communities characterized by
14	extremely high-density/low-diversity are found in eutrophic enclosed coastal seas near
15	metropolises throughout the world (e.g., Beukema, 1991; Llansó, 1992; Rumohr et al.,
16	1996; Wilson et al., 1998; Perus and Bonsdorff, 2004). However, when and how these
17	ecosystem changes have progressed is not always clear. Although biological monitoring
18	is a useful tool for assessing the recovery of aquatic ecosystems from anthropogenic
19	impact (Currie and Parry, 1999; Hawkins et al., 2002; Borja et al., 2006), such
20	assessments are typically based on data collected over the past 20 years, a period during
21	which the anthropogenic impact was already manifested; long-term data sets (e.g., for
22	the past 200 years) are generally not available using this approach. In this context,
23	foraminifera-based paleoecological data recorded in sediment cores can make an
24	important contribution.

1. 2. Foraminifera as paleoecological indicators

2	Many studies has been carried out in many areas using foraminitera as
3	bio-indicators of marine pollution, such as heavy metals (e.g., Yanko et al., 1998; Samir
4	and El-Din, 2001; Frontalini and Coccioni, 2008), oil spill (e.g., Morvan et al., 2004;
5	Ernst et al., 2006), and eutrophication (e.g., Thibodeau et al., 2006; Rabalais et al.,
6	2007; Mojtahid et al., 2008).
7	Among the foraminifera, eutrophication and the resulting hypoxia result in the
8	proliferation of a few opportunistic species (Nagy and Alve, 1987; Alve, 1991a, 1991b,
9	1995a, 1995b; Thomas et al., 2000; Tsujimoto et al., 2006a, b). This selective
10	proliferation increases the absolute abundance and decreases the diversity of benthic
11	foraminiferal assemblage, as well as other members of the benthic community
12	(Mojtahid et al., 2008). Moreover, foraminiferal test preserved in sediment cores can be
13	used to trace environmental changes in benthic communities over periods of decades
14	and centuries (Alve, 1991a; Barmawidjaja et al., 1995; Cearreta et al., 2000; Elberling et
15	al., 2003; Hayward et al., 2004a; Platon et al., 2005; Tsujimoto et al., 2006b). Some
16	authors suggested that the specific index derived from the combination of some
17	foraminiferal species is useful to track the history of anthropogenic eutrophication and
18	resulting hypoxia (e.g., Sen Gupta et al., 1996; Karlsen et al., 2000; Osterman, 2003;
19	Osterman et al., 2008). Thus, the records of fossil foraminifera in sediment cores are
20	useful for compiling long-term data sets designed to identify the appearance of
21	anthropogenically stressed ecosystems, typically characterized by the development of
22	unusual benthic community characterized by extremely high-density/low-diversity.
23	However, there are few studies that addressed the spatiotemporal aspect of the impacts
24	of anthropogenic hypoxia using sediment cores (e.g., Osterman et al., 2008).

1	1. 3. Osaka Bay
2	Osaka Bay is close to Osaka City, the second largest city in Japan, from which large
3	amounts of pollutants (e.g., household, agricultural, and industrial wastes) are
4	discharged into the bay via the Yodo River (Association for New Social Infrastructure
5	of Osaka Bay, 1996). Yasuhara et al. (2007) assembled published studies concerned
6	with the eutrophication of Osaka Bay and noted that eutrophication first appeared
7	during the 1900s coinciding with the onset of the Japanese industrial revolution; it
8	reached maximum levels between 1960 and 1970 concomitant with the rapid
9	urbanization after World War II. The authors studied the spatiotemporal variations in
10	ostracode fauna over the past 200 years in Osaka Bay using four short sediment cores,
11	and concluded that these two eutrophication events have changed ostracode absolute
12	abundance and faunas. A preliminary study of foraminifera from a short sediment core
13	(core OBY) suggested that foraminiferal absolute abundance and faunas have also
14	changed during much of the same period (Tsujimoto et al., 2006b). However, detailed
15	spatiotemporal variations of the benthic community in Osaka Bay, including the
16	development of an unusual benthic community characterized by extremely
17	high-density/low-diversity, are still not well understood because fossil ostracodes have
18	become scarce in the inner part of the bay since 1960 and the fact that published fossil
19	foraminiferal data are available from only a single core.
20	The aim of this study was to examine the spatiotemporal relationship between
21	anthropogenic eutrophication and the benthic community, including the development of
22	an unusual benthic community characterized by extremely high-density/low-diversity,
23	using the fossil foraminifera contained in four short sediment cores collected in Osaka
24	Bay.

2. Environmental setting

2	Osaka Bay is located at the eastern end of the Seto Inland Sea, Southwest Japan; the	
3	bay entrance is partially closed by Awaji Island (Fig. 1). The bay is elliptical with a long	Figure 1
4	axis of ~60 km, a short axis of ~30 km, a surface area of ~1500 km ² , and a mean depth	
5	of ~20 m. The surface and bottom-water temperatures of the bay are highest in August	Figure 2
6	and September and lowest in February and March, respectively (Fig. 2). In the inner	
7	part of the bay, the surface water salinity fluctuates throughout the year; but, the salinity	
8	of the bottom-water is relatively stable (approximately 32) (Figs. 2, 3a; Osaka	
9	Prefectural Fisheries Experimental Station, 1998–2000). Consequently, a distinct	
10	halocline is formed in the inner part of the bay during the summer season. In the middle	
11	part of the bay, the surface and bottom-water salinities are relatively stable throughout	Figure 3
12	the year (Figs. 2, 3a; Osaka Prefectural Fisheries Experimental Station, 1998–2000).	
13	The chemical oxygen demand (COD) and phosphorus concentrations are high in the	
14	inner part of the Osaka Bay (Figs. 3b, c). Consequently, the productivity of	
15	phytoplankton is high in this area, and algal red tides frequently occur (Association for	
16	New Social Infrastructure of Osaka Bay, 1996). During the summer, warming of surface	
17	waters causes stratification, so that oxygen can not be mixed into the bottom waters.	
18	Decomposition of the phytoplankton material deposited to the bottom then causes	
19	hypoxia or even anoxia in the inner part of the bay (Association for New Social	
20	Infrastructure of Osaka Bay, 1996; Fig. 3d). Thus, the spionid polychaete	
21	Paraprionospio sp., which is tolerant of low-oxygen conditions, predominates in the	
22	inner part of Osaka Bay, where it is characterized by a high biomass and density and	
23	forms part of a high-density/low-diversity community (Association for New Social	
24	Infrastructure of Osaka Bay, 1996).	
25	The population of Osaka City has increased markedly since ~1900, and the	

1	discharge of COD, which was calculated on the basis of the statistical data (population,
2	livestock numbers, annual usage of chemical fertilizer, and annual industrial shipment Figure 4
3	value of the Osaka Prefecture), increased since the early 1900s (Nakatsuji et al., 1998;
4	Osaka City, 2004; Fig. 4). Eutrophication was accelerated by the rapid industrialization
5	and urbanization during the period of high economic growth from the mid 1950s to the
6	early 1970s (Association for New Social Infrastructure of Osaka Bay, 1996).
7	Consequently, the frequency of occurrence of hypoxic bottom-waters and red tides in
8	the innermost part of the bay increased during the 1950s, and reached a maximum in the
9	1970s (Joh, 1986).
10	The "Law Concerning Special Measures for Conservation of the Environment of the
11	Seto Inland Sea" (a sewage treatment program for the Seto Inland Sea) was enacted in
12	1973 in order to reduce the organic pollutant loads (Yamamoto, 2003). As a result, the
13	loads from households, factories, etc., and the occurrences of red tides have decreased
14	since the 1970s (Fig. 4). However, there have been no major further changes in the
15	COD, nitrogen, and phosphorous concentrations over the last 10 years, and red tides Figure 5
16	still occur frequently (Osaka Prefectural Fisheries Experimental Station, 1973–2002;
17	Fig. 5).
18	
19	3. Materials and methods
20	3. 1. Sampling procedures
21	Four sediment cores were obtained along a transect from the mouth of the
22	Yodo River to the middle part of Osaka Bay in September 2001 (core OBY; 14 m water
23	depth, mwd,) and June 2003 [cores OS3 (17.8 mwd), OS4 (19 mwd), and OS5 (25
24	mwd)] by scuba divers using an acrylic corer (Fig. 1). Core OBY was the subject of a
25	preliminarily study by Tsujimoto et al. (2006b). Sediments in core OS3 consisted of

1	inght gray ciay with abundant monuscan snell fragments (105–45 cm) overlain by dark
2	gray clay without molluscan shell fragments (45-0 cm). Sediments in core OS4
3	consisted of blue gray clay with molluscan shell fragments (86–35 cm) overlain by light
4	gray clay with molluscan shell fragments (35-0 cm). Core OS5 consisted of
5	homogeneous light gray clay with molluscan shell fragments throughout the core. In the
6	laboratory, core OBY was subsampled in 2 cm slices, and cores OS3, 4, and 5 were
7	subsampled in 2.4 cm slices [see Yasuhara et al. (2007) for detailed subsampling
8	method]. The chronology of the cores was based on the measurements of ²¹⁰ Pb and
9	¹³⁷ Cs radioactivity in the respective cores, as published in Yasuhara and Yamazaki
10	(2005) and Yasuhara et al. (2007). Depositional ages of more than 100 years were
11	estimated by extrapolation of ages obtained from ²¹⁰ Pb dating of the upper part of the
12	core, thus assuming constant sedimentation rates.
13	
14	3. 2. Geochemical analysis
15	Sliced subsamples of cores OS3-5 were oven-dried at 50 °C and pulverized to
16	silt size using an agate mortar, after which 10-mg samples were enclosed in a thin Ag
17	film cup. To the samples, 1 M HCl was added, and the samples were then dried at
18	110 °C for 30 min. The dried samples were wrapped in a thin Zn film cup. Total organic
19	carbon (TOC), total nitrogen (TN), and total sulfur (TS) concentrations were measured
20	by the combustion method at 1000 °C and then flashy at ca. 1800 °C using a FISONS
21	elemental analyzer EA1108. We calculated the weight ratio of total organic carbon to
22	total nitrogen (C/N), which indicates the source of organic matter (Müller, 1977;
23	Sampei and Matsumoto, 2001). Generally, organic matter derived from planktonic
24	organisms and terrestrial organisms has C/N of 6 to 9 and 15 or higher, respectively
25	(Bordowskiy, 1965a, b). We also calculated the weight ratio of total organic carbon to

1	total sulfur (C/S). Berner and Raiswell (1984) suggested that C/S of >5, 3-5, and <3
2	indicate fresh water conditions, oxic marine to brackish conditions, and reductive
3	marine to brackish conditions, respectively. Hence, a decrease in the C/S indicates the
4	transition toward low-oxygen conditions.
5	
6	3. 3. Foraminiferal analysis
7	Sliced subsamples were washed through a 75- or 63-µm sieve (core OBY and
8	cores OS3-5, respectively), after which the residues were oven-dried at 50 °C, and then
9	dry sieved into the > 105 - μm fractions. We qualitatively scanned 63-105- μm fractions of
10	four samples of core OBY, and confirmed that not many specimens of thin species
11	(Eggerella advena, Buliminella elegantissima, Uvigerinella glabra) that might possibly
12	pass through the 105-µm sieve were present in the smaller size fraction. Foraminiferal
13	assemblages were analyzed in the $>\!105\text{-}\mu\text{m}$ fractions, and samples containing abundant
14	foraminiferal specimens were split into fractions containing approximately 200
15	specimens. Benthic foraminifera were mounted on slides and identified under a
16	stereomicroscope. Absolute abundance of foraminifera (i.e., number of foraminifera per
17	gram of dry sediment) was calculated from the wet weights of samples and the water
18	content. We also calculated the benthic foraminiferal accumulation rates (BFAR;
19	number of specimens/cm ² /yr) using the absolute abundance of foraminifera (AAF;
20	number of specimens/g), dry bulk density of sample (DBD; g/cm ³), and accumulation
21	rates (AR; cm/yr) as follows [see Yasuhara and Yamazaki (2005) and Yasuhara et al.
22	(2007) for data of DBD and AR]:
23	$BFAR = AAF \times DBD \times AR$
24	We determined the number of species in a sample (species richness) and the
25	Shannon index (species diversity; Shannon and Weaver, 1949) by the software "PAST"

- 1 (http://folk.uio.no/ohammer/past/) (Hammer et al., 2001). The Shannon index takes into
- 2 account not only the number of species but also the proportion of each species in a
- 3 sample. The Shannon index is given as follows:

sample. The Shannon index is given as follows:
$$H' = -\sum_{i=1}^{S} (P_i)(\ln P_i),$$
 where $H' = \text{index of species diversity}$

- where H' = index of species diversity, 5
- S = number of species observed in a sample, and 6
- 7 P_i = proportion of each species.
- A Q-mode CABFAC factor analysis (Imbrie and Kipp, 1971; Klovan and 8
- 9 Imbrie, 1971) was performed in order to determine dominant faunal assemblages and
- 10 their temporal downcore patterns using the PaleoToolBox and WinTransfer programs
- 11 (http://www.pangaea.de/software/files/Windows/PaleoTools/; Sieger et al., 1999,
- 12 http://www.agu.org/eos_elec/98131e.html). Species comprising more than 3% of the
- population in at least two samples were used for the analysis (Akimoto et al., 1999). 13
- Tsujimoto et al. (2006b) lumped most of the *Elphidium* species in core OBY 14
- 15 and treated these as a single taxon; therefore, in order to obtain a more accurate estimate
- 16 of species richness and diversity, we reidentified all *Elphidium* individuals to the
- species level (e.g., Matoba, 1970; Miller et al., 1982; Scott et al., 2000). 17

18

19

- 4. Results
- 20 4. 1. TOC, TN, and TS concentrations, C/N, and C/S
- 21 The temporal variations in TOC, TN, and TS concentrations in cores OS3-5.
- 22 The TOC and TN concentrations of core OS3 were low and stable before the early
- 23 1900s, then gradually increased, and have markedly increased since the 1960s to 1970s
- up to 2.3% and 0.29%, respectively. The TOC and TN concentrations in cores OS4 and 24

Figure 6

1	OS5 gradually increased from the 1880s and the 1900s, respectively (Fig. 6). The TS	
2	concentration in all cores gradually increased until the 1960s to 1970s, and then	
3	decreased to the present day. The C/N of all cores gradually increased until the 1960s to	
4	1970s—although core OS3 was interrupted by a short-term drop of the C/N—and then	
5	decreased to the present day. Conversely, the C/S decreased until the 1960s to 1970s,	
6	and then increased to the present day, although that in core OS3 generally increased to	
7	the present day with the anomalous increase around the 1950s.	
8		
9	4. 2. Absolute abundance of foraminifera, BFAR and diversity	
10	Species richness (number of species in a sample) and species diversity (H')	
11	were measured in order to assess the spatiotemporal trend in foraminiferal biodiversity	<u></u>
12	(Fig. 7). These two measures of biodiversity are generally higher in the outer part of the	Figure 7
13	bay (cores OS4 and OS5). Although no major changes have occurred in core OS5, the	
14	species richness in cores OBY, OS3, and OS4 decreased from around the 1940s to	
15	1950s. Species diversity at all sites decreased from the early 1900s. Species richness	
16	and species diversity in cores OBY and OS3 increased after the 1970s; however, the	
17	richness and diversity in cores OS4 and OS5 are relatively constant after the 1970s.	
18	Absolute abundance of foraminifera and BFAR increased notably after the early 1900s	
19	in core OBY, and after 1940-1960s in cores OS3, OS4 and OS5. Absolute abundance of	
20	foraminifera and BFAR generally decreased from around the 1970s in the inner part	Figure 8
21	(Fig. 8). Although BFAR generally shows a similar trend to the absolute abundance of	
22	foraminifera, there are anomalous increases in the cores OS4 and OS5 around the 1960s	
23	and 2000s, respectively (Fig. 8).	
24		
25	4. 3. Faunal composition	

1	The dominant species from the OBY and OS cores were Ammonia beccarii
2	(Linné), Eggerella advena (Cushman), and Trochammina hadai Uchio. "Ammonia
3	beccarii" of this study has been reported in various Japanese inner bays and coastal
4	areas as Ammonia beccarii (Linné) forma 1 or forma A (e.g., Nomura, 1982, 1983,
5	1997). This Japanese "Ammonia beccarii" specimens is different from topotype
6	specimens from Rimini, Italy (Nomura and Takayanagi, 2000). In our previous study of
7	core OBY, we dealt with this form as "Ammonia beccarii" and showed its morphology
8	in a SEM micrograph (Tsujimoto et al., 2006b). Therefore, in this study, the taxonomy
9	of Ammonia tentatively followed Tsujimoto et al. (2006b) for better comparison to
10	previous Japanese foraminiferal studies. We will discuss detailed taxonomy of Japanese
11	Ammonia elsewhere. Assemblages in cores OBY and OS3 are dominated by "A.
12	beccarii", E. advena, and T. hadai, with subsidiary Buccella frigida (Cushman),
13	Miliolinella subrotunda (Montagu), Valvulineria hamanakoensis (Ishiwada), Ammonia
14	tepida (Cushman), Elphidium spp., and Reussella aculeata Cushman (Fig. 9).
15	Assemblages in core OS4 are dominated by "A. beccarii", E. advena, and T. hadai, with
16	subsidiary Elphidium spp., Pseudononion japonicum Asano, Pseudoparella tamana
17	Kuwano, Pseudorotalia gaimardii (d'Orbigny), and Uvigerinella glabra Millett (Fig. 9).
18	Assemblages in core OS5 are dominated by E. advena, with subsidiary Gavelinopsis
19	praegeri (Heron-Allen and Earland), P. japonicum, P. tamana, and P. gaimardii (Fig. 9).
20	Raw data are provided in Appendix A. Eggerella advena increased in relative
21	abundance and became dominant at all sites after the early 1900s (Fig. 9). "Ammonia
22	beccarii" or T. hadai increased in relative abundance in core OBY after the early 1900s
23	and after the 1950s to 1960s in cores OS3-5 (Fig. 9). These three species reached their
24	maximum levels around the 1970s to 1980s (Fig. 9). In contrast, other species (A. tepida,
25	B. frigida, Elphidium spp., M. subrotunda, and V. hamanakoensis) decreased in relative

1	abundance notably in core OBY after the early 1900s and after the 1940s to 1960s in
2	core OS3 (Fig. 9). The absolute abundances of all species generally show trends similar
3	to these in relative abundance (data not shown).
4	
5	4. 4. Q-mode factor analysis
6	Three varimax factors account for 89.3% of the total variance (Appendix B and
7	C; Fig. 10). The first varimax factor explains 35.2% of the total variance. It is
8	characterized by the high positive varimax scores of $Eggerella\ advena$ (score = 0.920).
9	The first varimax factor loading increased in all sites after about the 1900s. This factor
10	increased rapidly in cores OBY and OS3 after 1990 (Fig. 10). The second varimax
11	factor explains 25.7% of the total variance. It is characterized by the high positive
12	varimax scores of Elphidium excavatum (Terquem) (0.539), Ammonia tepida (0.356),
13	Valvulineria hamanakoensis (0.317), Buccella frigida (0.278), Elphidium clavatum
14	Cushman (0.236), Miliolinella subrotunda (0.226), and Lagenammina sp. (0.213). The
15	second varimax factor loading decreased in all sites after the early 1900s (Fig. 10). The
16	third varimax factor explains 28.5% of the total variance. It is characterized by the high
17	negative varimax scores of "Ammonia beccarii" (-0.883) and Trochammina hadai
18	(-0.284). The third varimax factor loading decreased in all sites after the early 1900s,
19	and increased rapidly in cores OBY and OS3 after the 1990s (Fig. 10).
20	
21	5. Discussion
22	5. 1. The history of eutrophication in Osaka Bay
23	The increase in the concentrations of TOC, TN, and TS and the decrease in C/S
24	in cores (although the trend for the C/S in core OS3 differs from that of the other cores),
25	indicates that eutrophication in the bay commenced some time around 1900.

Figure 10

1	The marked increase in the TOC and TN concentrations in core OS3 after the
2	1950s suggests that eutrophication has strongly influenced the bottom environment in
3	the innermost part of the bay since the 1950s. The reversal of the C/S in cores occurring
4	after the 1970s suggests that eutrophication and the resulting hypoxia gradually
5	weakened as a result of the implementation of discharge restrictions in the early 1970s.
6	However, the reversal of the C/N suggests that primary production has remained largely
7	unaltered after the imposition of restrictions. The steep trend in both the C/S and C/N
8	after the 1990s may be due not to environmental change but instead due to the progress
9	of sulfate reduction by bacteria (Desulfovibrio) at a very early stage of diagenesis
10	(Sampei et al., 1997).
11	We document the stepwise changes in eutrophication from the
12	above-mentioned geochemical data (Fig. 6) and from the history of the areas
13	surrounding Osaka Bay (Fig. 4) as follows:
14	1. Eutrophication commenced some time around 1900.
15	2. Bottom-water hypoxia was restricted to the inner part of the bay during the
16	early stage of eutrophication (~1900s) as indicated by marked increases in the
17	TOC, TN, and TS concentrations in core OS3 after the early 1900s.
18	3. Maximum eutrophication and bottom-water hypoxia occurred around the
19	1970s, followed by a decrease in the TS concentration after the 1970s.
20	4. Eutrophication and bottom-water hypoxia are severe in the inner
21	part of the bay but are not pronounced in the outer part, as indicated by the fact
22	that marked increases in the TOC and TN concentrations occur only in core
23	OS3.
24	
25	5.2. Factor analysis: foraminifera as eutrophication indicators

1	The agglutinated foraminitera Eggeretta aavena and Trochammina nadat and the
2	calcareous foraminifera "Ammonia beccarii"—dominant species in this study—indicate
3	eutrophic conditions (e.g., Uchio, 1962; Clark, 1971; Thomas et al., 2000; Tsujimoto et
4	al., 2006a, b). "Ammonia beccarii" and T. hadai dominate in the inner part of Osaka
5	Bay (Tsujimoto et al., 2006a). Eggerella advena is one of the most common species in
6	waste discharge regions around the world (see reviews by Alve, 1995a), and is currently
7	found across the entire bay, and has become dominant during the past 100 years
8	(Tsujimoto et al., 2006a, b). Eutrophication and the resulting hypoxia leads to extremely
9	high population densities of a few opportunistic species such as deposit-feeding small
10	polychaetes, which are able to tolerate low-oxygen condition, and the elimination of
11	mollusks and crustaceans (Beukema, 1991). The polychaete Paraprionospio sp.
12	dominates in the inner part of Osaka Bay with a high biomass and density and forms a
13	high-density/low-diversity community (Association for New Social Infrastructure of
14	Osaka Bay, 1996). Hence, the spatiotemporal records of eutrophication-tolerant species,
15	such as "A. beccarii", E. advena, and T. hadai, archived in sediment cores tell us how
16	the present high-density/low-diversity ecosystem originated.
17	The first varimax factor of Q-mode factor analysis is characterized by the high
18	positive varimax scores of Eggerella advena, thus this varimax factor is defined as
19	eutrophication assemblage A. The second varimax factor is characterized by the high
20	positive varimax scores of Elphidium excavatum, Ammonia tepida, Valvulineria
21	hamanakoensis, Buccella frigida, Elphidium clavatum, Miliolinella subrotunda, and
22	Lagenammina sp. Many of these species inhabit the inner bay; however, they are
23	probably susceptible to eutrophic conditions since they are rare in this part of Osaka
24	Bay where eutrophication is serious (Tsujimoto et al., 2006a). Thus, the second varimax
25	factor is defined as the pre-eutrophication assemblage, which dominated Osaka Bay

1	before eutrophication started. The third varimax factor is characterized by the high
2	negative varimax scores of "Ammonia beccarii" and Trochammina hadai. "Ammonia
3	beccarii" is ubiquitous in brackish lakes influenced by fresh water and in the areas
4	around river mouths in Japan (e.g., Matoba, 1970; Ikeya, 1970; Kosugi et al., 1991;
5	Nomura and Seto, 2002). In Osaka Bay, this species is abundant in the areas along the
6	shore, and the numbers present generally decrease slightly toward the middle of the bay
7	(Tsujimoto et al., 2006a). Trochammina hadai is abundant in organic-rich sediments
8	deposited in brackish waters (Uchio, 1962; Matoba, 1970; Kosugi et al., 1991; Nomura
9	and Seto, 2002). Thus, the third varimax factor is defined as eutrophication assemblage
10	B, which characterizes eutrophication in relatively brackish waters.
11	
12	5. 3. Development of the high-density/low-diversity assemblage over the past 200
13	years
14	Although BFAR and the absolute abundance of foraminifera show a similar tendency
15	to reach high values from the 1960s to the 1980s, BFAR increased very strongly in
16	cores OS4 and OS5 in the 1960s and 2000, respectively, at times of rapid increases in
17	accumulation rates (Fig. 8). These anomalous increases coincide with the rapid
18	increases in the accumulation rates. The accumulation rates of the intervals from 24.9
19	cm to 31.7 cm depth in the core OS4 (= 1960s) and from 0 cm to 12.9 cm depth in the
20	core OS5 (= 2000s) are relatively high, showing 3 cm/yr and 4.57 cm/yr, respectively
21	(Table 1; Yasuhara et al., 2007). The changes in the accumulation rates may cause
22	changes in taphonomy (e.g., transport, degree of preservation). BFAR is an effective
23	measure to estimate the past foraminiferal productivity, but it does not take into account
24	the effect of taphonomic processes (Hayward et al., 2004b). High accumulation rates
25	may cause an accelerated deposition of foraminifera due to better preservation of

Table 1

1	foraminiferal tests. Both accumulation rate and degree of preservation in shallow marine
2	regions fluctuate strongly, so that BFAR as a proxy for foraminiferal productivity
3	should be used with much care. Therefore we use both BFAR and absolute abundance
4	in the discussion below.
5	We discuss spatial and temporal changes in foraminiferal assemblages by sequence in
6	time, using our data combined with regional historical data: 1) before the Japanese
7	industrial revolution (before the early 1900s), 2) Japanese industrial revolution to World
8	War II (the early 1900s to 1940s), 3) high economic growth period (1940s to 1970s),
9	and 4) after the high economic growth period (1970s to 2000s).
10	
11	5.3.1. Before the Japanese industrial revolution (~ early 1900s)
12	Geochemical and foraminiferal data indicate that the bay environment was
13	stable before the early 1900s.
14	
15	5.3.2. Japanese industrial revolution to World War II (early 1900s to 1940s)
16	Eutrophication in Osaka Bay commenced some time around 1900 as a result of
17	the Japanese industrial revolution, and bottom water hypoxia was restricted to the
18	innermost part during the early 1900s (Figs. 4 and 6; Yasuhara et al., 2007). The relative
19	abundance of eutrophication assemblage A and eutrophication assemblage B increased
20	and pre-eutrophication assemblage decreased at all sites after that time (Fig. 10).
21	However, the decrease in the species diversity and the increase in BFAR are remarkable
22	innermost part of the bay (Core OBY, figs. 7, 8), to which hypoxia first was restricted
23	(Yasuhara et al., 2007). Specifically, eutrophication-tolerant species such as "Ammonia
24	beccarii", Eggerella advena, and Trochammina hadai increased in relative and absolute
25	abundance as a result of an increase in food supply, but the successive increase in

Figure 11

1	nutrients led to bottom-water hypoxia, producing conditions inimical to the survival of
2	many species unable to tolerate low-oxygen conditions in the innermost part (Figs. 7, 9,
3	and 11).
4	
5	5.3.3. High economic growth period (1940s to 1970s)
6	The impact of eutrophication extended from the mouth of the Yodo River to the outer
7	part of the bay as a result of rapid urbanization after World War II as indicated by
8	geochemical data. As a consequence, eutrophication assemblage A and B proliferated
9	and the pre-eutrophication assemblage declined at all sites after the 1940s, resulting in
10	the decrease in the species richness (Figs. 7, 9, and 10). "Ammonia beccarii" and
11	Trochammina hadai expanded their range to sites OS3 and OS4 (Fig. 9). Concomitant
12	with this proliferation, molluscan shell fragments markedly decreased in cores OS3 and
13	OS4, most likely representing mortality of mollusks by bottom-water hypoxia.
14	Eutrophication had a significant impact on the entire bay and bottom-water hypoxia
15	covered one-third of the bay during the 1970s (Joh, 1986). This was reflected in the
16	geochemical data that shows peaks in the TS concentration and the C/N (Fig. 6).
17	Eutrophication and bottom-water hypoxia were notable in the inner part, as indicated by
18	above-mentioned geochemical data. Coincident with this, "A. beccarii", Eggerella
19	advena, and T.hadai proliferated rapidly, and the pre-eutrophication assemblage
20	virtually disappeared from the inner part of the bay (OBY and OS3) (Figs. 9 and 11). As
21	a consequence, the two measures of diversity in cores OBY, OS3 reached minimum
22	values during the 1970s (Fig. 7).
23	
24	5.3.4. After the high economic growth period (1970s to 2000s)
25	The Law Concerning Special Measures for Conservation of the Environment of the

1	Seto Inland Sea was enacted in 19/3 in order to reduce the loads of organic pollutants.
2	Fujiwara et al. (2004) analyzed the monitoring data and suggested that the concentration
3	of bottom-water dissolved oxygen in the eastern part of Osaka Bay increased after the
4	1970s. The effect is reflected in the geochemical data that shows reversals in the TS
5	concentration and the C/S and C/N (Fig. 6). Some mesotrophic zooplankton species
6	moved into the innermost part of the bay from the outer parts during the last 20 years,
7	possibly in response to a decrease in primary production or predation pressure or
8	hypoxia (Yamamoto, 2005). A reduction in organic pollution load might lead to a
9	decrease in food supply to the benthos, thus in the abundance of eutrophication-tolerant
10	species ("A. beccarii", E. advena, T. hadai) and an increase in diversity in the inner part
11	of the bay (Figures 7, 11). Buccella frigida rapidly increased in abundance after the
12	period of maximum pollution in the 1970s. This species may be relatively tolerant to
13	eutrophication and bottom-water hypoxia (Schafer, 1973).
14	Eutrophication assemblage A increased and eutrophication assemblage B rapidly
15	decreased in cores OBY and OS3 after the 1990s (Fig. 10). The accumulation rate of
16	"Ammonia beccarii" decreased rapidly in the inner part at that time (Fig. 11). Tsujimoto
17	et al. (2006a, b) suggest that these changes might be related to the changes of food
18	supply to the bottom. The change in composition of dominant red tide-causing algae
19	from dinoflagellates (e.g., Ceratium furca, Gymnodium lacustre, Olisthodiscus sp., and
20	Peridinium sp.) to diatoms (e.g., Chaetoceros spp., Nitzschia pungens, and Rhizosolenia
21	fragilissima) in 1980-1990 may have caused the changes in food supply for
22	detritivorous foraminifera and, consequently, dramatic changes in foraminiferal
23	compositions might have been occurred (Tsujimoto et al., 2006a, b). These changes are
24	restricted to the inner part of the bay (cores OBY and OS3; Fig. 10), possibly because
25	the red tides occur frequently in this part of the bay. Thomas et al. (2004) studied

1	benunic foraminiteral assemblages in nine cores in Long Island Sound, and reported the
2	decrease in the absolute abundance of foraminifera and the increase in the relative
3	abundance of "A. beccarii" after the 1960s-1970s. The authors suggested that an
4	increase in N/Si, which leads to blooms in organic-walled primary producers (e.g.,
5	cyanobacteria and dinoflagellates) than diatoms, might cause change from the diatom
6	consuming Elphidium to "A. beccarii" in Long Island Sound. As mentioned-above, the
7	changes in the food supply, which is mainly caused by the changes in primary producers
8	might substantially influence benthic foraminifera. However, further work is necessary
9	to confirm the relationship between benthic foraminifera and primary producers.
10	
11	The unusual benthic assemblage characterized by extremely
12	high-density/low-diversity has developed since the 1900s, and proliferated during the
13	period 1960 to 1970 when eutrophication and bottom-water hypoxia were most
14	pronounced. The assemblage was characterized by an increase in the relative and
15	absolute abundance of eutrophication-tolerant species ("Ammonia beccarii", Eggerella
16	advena, and Trochammina hadai) and the decrease in many other foraminiferal species
17	that are unable to tolerate the low-oxygen conditions. This assemblage remains
18	dominant in the inner part of the bay even after the imposition of discharge restrictions.
19	This indicates the potential difficulty of restoring ecosystem once they have been
20	anthropogenically heavily impacted. Further study is necessary to fully understand
21	human-induced alteration of coastal ecosystems.
22	
23	6. Conclusion
24	The ecosystem dynamics of a modern benthic community were elucidated
25	using fossil foraminifers from four sediment cores deposited over the last ~200 years.

1	Our sediment core study demonstrated that the extremely high-density/low-diversity
2	community, which is found in eutrophic enclosed coastal seas near metropolises
3	throughout the world, was caused by eutrophication and the resulting hypoxia after the
4	early 1900s.
5	The formation of the high-density/low-diversity assemblage has been
6	characterized by an increase in the relative and absolute abundance of
7	eutrophication-tolerant species ("Ammonia beccarii", Eggerella advena, and
8	Trochammina hadai) and a decrease in many other foraminiferal species that are unable
9	to tolerate the low-oxygen conditions. Eggerella advena increased over the entire area
10	of Osaka Bay after the 1900s—the period when eutrophication commenced in Osaka
11	Bay as a consequence of the Japanese industrial revolution. After the early 1900s, a
12	marked decrease in species diversity in the innermost part of the bay, and a less
13	pronounced decrease in the middle part of the bay (OS4 and OS5), occurred as a result
14	of the increase in the relative and absolute abundance of "A. beccarii", E. advena, and T.
15	hadai. "Ammonia beccarii" and T. hadai expanded their range to sites OS3, OS4, and
16	OS5 when the impact of eutrophication extended to the outer parts of the bay (~1950s to
17	1960s). Many other species virtually disappeared from the inner part of the bay (OBY
18	and OS3), as the hypoxic bottom-waters became inimical to their survival of many
19	species. The high-density/low-diversity assemblage proliferated during the period 1960
20	to 1970, when the eutrophication and bottom-water hypoxia were most pronounced. The
21	absolute abundance of "A. beccarii", E. advena, and T. hadai decreased in the inner part
22	(cores OBY and OS3) after the 1970s when the Law Concerning Special Measures for
23	Conservation of the Environment of the Seto Inland Sea was brought into force. The
24	high-density/low-diversity assemblage might be returning to the pre-eutrophication
25	assemblage in the inner part of the bay following the restrictions on nutrient discharge.

1	These results indicate the necessity for substantial decreases in the amounts of the
2	nutrient input in order to restore former diverse benthic communities. This will lead to
3	the recovery of fishery resources such as shellfish. However, modern assemblages in
4	Osaka Bay are still dominated by eutrophication-tolerant species. This suggests the
5	potential difficulty of restoring ecosystems once they have been anthropogenically
6	destroyed. The long-term records provided by fossil foraminifera emphasize the
7	importance of maintaining a harmonious coexistence between development and
8	environmental quality.
9	
10	Acknowledgements
11	We would like to thank Muneki Mitamura for helpful advice, and Hisayo
12	Okahashi, Miho Ishitake, and Shinya Inano for their assistance in sampling and sample
13	preparation. We also thank Shin-ichi Sakai for the sampling of core OBY. Reviews by
14	Lisa Osterman and Thomas Cronin, and editing by Ellen Thomas greatly improved the
15	manuscript. This work was partially supported by Grants-in-Aid for Scientific Research
16	from the Ministry of Education, Culture, Sports, Science and Technology of Japan
17	(05950 to M. Yasuhara and 10896 to A. Tsujimoto).
18	
19	References
20	Akimoto, K., Ureshino, M., Sugiura, M., Irizuki, T., Yamaji, A., Jung, K.K., Lee, Y.G.,
21	1999. Paleoenvironment reconstructed by the Miocene benthic foraminiferal
22	assemblages in the Pohang area, Southeast Korea. The Journal of the Geological
23	Society of Japan 105, 391–409 (in Japanese with English abstract).
24	Alve, E., 1991a. Benthic foraminifera in sediment cores reflecting heavy metal pollution
25	in Sørfjord, western Norway. Journal of Foraminiferal Research 21, 1–19.

1	Aive, E., 1991b. Foramimiera, chinatic change, and pollution: a study of fate Holocene
2	sediments in Drammensfjord, southeast Norway. The Holocene 1, 243-261.
3	Alve, E., 1995a. Benthic foraminiferal responses to estuarine pollution: a review.
4	Journal of Foraminiferal Research 25, 190–203.
5	Alve, E., 1995b. Benthic foraminiferal distribution and recolonization of formerly
6	anoxic environments in Drammensfjord, southern Norway. Marine
7	Micropaleontology 25, 169–186.
8	Arai, M.N., 2001. Pelagic coelenterates and eutrophication: a review. Hydrobiologia
9	451, 69–87.
10	Association for New Social Infrastructure of Osaka Bay (Ed.), 1996. Communication
11	Tool for Sustainable Development. Institute of Coastal Environment Inc., Osaka
12	(in Japanese).
13	Barmawidjaja, D.M., van der Zwaan, G.J., Jorissen, F.J., Puskaric, S., 1995. 150 years
14	of eutrophication in the northern Adriatic Sea: evidence from a benthic
15	foraminiferal record. Marine Geology 122, 367–384.
16	Berner, R.A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine
17	sedimentary rocks. Geology 12, 365–368.
18	Beukema, J.J., 1991. Changes in composition of bottom fauna of a tidal-flat area during
19	a period of eutrophication. Marine Biology 111, 293–301.
20	Boesch, D.F., Brinsfield, R.B., Magnien, R.E., 2001. Chesapeake Bay eutrophication:
21	Scientific understanding, ecosystem restoration, and challenges for agriculture.
22	Journal of Environmental Quality 30, 303–320.
23	Bordowskiy, O.K., 1965a. Accumulation of organic matter in bottom sediments. Marine
24	Geology 3, 33–82.
25	Bordowskiy, O.K., 1965b. Sources of organic matter in marine basins. Marine Geology

1	3, 5–31.
2	Borja, Á., Muxika, I., Franco, J., 2006. Long-term recovery of soft-bottom benthos
3	following urban and industrial sewage treatment in the Nervión estuary
4	(southern Bay of Biscay). Marine Ecology Progress Series 313, 43–55.
5	Cearreta, A., Irabien, M.J., Leorri, E., Yusta, I., Croudace, I.W., Cundy, A.B., 2000.
6	Recent anthropogenic impacts on the Bilbao Estuary, northern Spain:
7	Geochemical and microfaunal evidence. Estuarine, Coastal and Shelf Science
8	50, 571–592.
9	Clark, D.F., 1971. Effects of aquaculture outfall on benthonic foraminifera in Clam Bay
10	Nova Scotia. Maritime Sediments 7, 76–84.
11	Cloern, J.E., 2001 Our evolving conceptual model of coastal eutrophication problem.
12	Marie Ecology Progress Series 210, 223–253.
13	Currie, D.R., Parry, G.D., 1999. Changes to benthic communities over 20 years in Port
14	Phillip Bay, Victoria, Australia. Marine Pollution Bulletin 38, 36–43.
15	Elberling, B., Knudsen, K.L., Kristensen, P.H., Asmund, G., 2003. Applying
16	foraminiferal stratigraphy as a biomarker for heavy metal contamination and
17	mining impact in a fiord in West Greenland. Marine Environmental Research 55
18	235–256.
19	Ernst, S.R., Morvan, J., Geslin, E., Le Bihan, A., Jorissen, F.J., 2006. Benthic
20	foraminiferal response to experimentally induced Erika oil pollution. Marine
21	Micropaleontology 61, 76–93.
22	Frontalini, F., Coccioni, R., 2008. Benthic foraminifera for heavy metal pollution
23	monitoring: A case study from the central Adriatic Sea coast of Italy. Estuarine
24	Coastal and Shelf Science 76, 404–417.
25	Fujiwara, T., Kishimoto, A., Nakajima, M., 2004. Long and short term variation in

1	hypoxic water in Osaka Bay. Proceedings of Coastal Engineering, JSCE 51,
2	931–935 (in Japanese).
3	Gray, J.S., 1992. Eutrophication in the sea. In: Columbo, G., Ferrari, I., Ceccherelli,
4	V.U., Rossi, R. (eds.), Marine eutrophication and population dynamics. Olsen
5	and Olsen, Fredensborg, 3–15.
6	Gray, J.S., Wu, R.S.S., Or, Y.Y., 2002. Effects of hypoxia and organic enrichment on the
7	coastal marine environment. Marine Ecology Progress Series 238, 249–279.
8	Hammer, Ø., Harper, D. A. T. and Ryan, P. D., 2001. PAST: Paleontological statistics
9	software package for education and data analysis. Palaeontologia Electronica 4,
10	9 p. (http://palaeo-electronica.org/2001_1/past/issue1_01.htm)
11	Hawkins, S.J., Gibbs, P.E., Pope, N.D., Burt, G.R., Chesman, B.S., Bray, S., Proud, S.V.,
12	Spence, S.K., Southward, A.J., Southward, G.A., Langston, W.J., 2002.
13	Recovery of polluted ecosystems: the case for long-term studies. Marine
14	Environmental Research 54, 215–222.
15	Hayward, B.W., Grenfell, H.R., Nicholson, K., Parker, R., Wilmhurst, J., Horrocks, M.,
16	Swales, A., Sabaa, A.T., 2004a. Foraminiferal record of human impact on
17	intertidal estuarine environments in New Zealand's largest city. Marine
18	Micropaleontology 53, 37–66.
19	Hayward, B.W., Sabaa, A., Grenfell, H.R., 2004b. Benthic foraminifera and the late
20	Quaternary (last 150 ka) paleoceanographic and sedimentary history of the
21	Bounty Trough, east of New Zealand. Palaeogeography, Palaeoclimatology,
22	Palaeoecology 211, 59–93.
23	Ikeya, N., 1970. Population ecology of benthic foraminifera in Ishikari Bay, Hokkaido,
24	Japan. Records of Oceanographic Works in Japan 10, 173–191.
25	Imbrie, J., Kipp, N.G., 1971. A new micropaleontological method for Quantitative

1	Paleoclimatology: Application to a late Pleistocene Caribbean Core, in The Late
2	Cenozoic Glacial Ages. In: Turekian, K.K. (Ed.), The Late Cenozoic Glacial
3	Ages, Yale Univ. Press, pp. 71–181.
4	Joh, H., 1986. Studies on the mechanism of eutrophication and the effect of it on
5	fisheries production in Osaka Bay. Bulletin of the Osaka Prefectural Fisheries
6	Experimental Station 7, 1–174 (in Japanese).
7	Justić, D., 1987. Long-term eutrophication of the northern Adriatic Sea. Marine
8	Pollution Bulletin 18, 281–284.
9	Justić, D., Rabalais, N.N., Turner, R.E., Dortch, Q., 1995. Changes in nutrient structure
10	of river-dominated coastal waters: stoichiometric nutrient balance and its
11	consequences. Estuarine, Coastal and Shelf Science 40, 339-356.
12	Karlsen, A.W., Cronin, T.M., Ishman, S.E., Willard, D.A., Kerhin, R., Holmes, C.W.,
13	Marot, M., 2000. Historical trends in Chesapeake Bay dissolved oxygen based
14	on benthic foraminifera from sediment cores. Estuaries 23, 488–508.
15	Klovan, J.E., Imbrie, J., 1971. An algorithm and FORTRAN-IV program for large scale
16	Q-mode factor analysis and calculation of factor scores, Mathematical Geology
17	3, 61–77.
18	Kosugi, M., Kataoka, H., Hasegawa, S., 1991 Classification of foraminifer communities
19	as indicators of environments in an inner bay and its application to
20	reconstruction of paleoenvironments. Fossils (Palaeontological Society of Japan)
21	50, 37–55 (in Japanese with English abstract).
22	Llansó, R.J., 1992. Effects of hypoxia on estuarine benthos: the Lower Rappahannock
23	River (Chesapeake Bay), a case study. Estuarine, Coastal and Shelf Science 35,
24	491–515.
25	Matoba, Y., 1970. Distribution of recent shallow water foraminifera of Matsushima Bay,

1	Miyagi Prefecture, Northeast Japan. Tohoku University, Science Reports, 2nd
2	series (Geology) 42, 1–85.
3	Miller, A.L., Scott, D.B., Medioli, F., 1982. Elphidium excavatum (Terquem):
4	ecophenotypic versus subspecific variation. Journal of Foraminiferal Research
5	12, 116–144.
6	Mojtahid, M., Jorissen, F., Pearson, T.H., 2008. Comparison of benthic foraminiferal
7	and macrofaunal responses to organic pollution in the Firth of Clyde (Scotland).
8	Marine Pollution Bulletin 56, 42–76.
9	Morvan, J., Cadre, V.L., Jorissen, F., Debenay, J.P., 2004. Foraminifera as potential
10	bio-indicators of the "Erika" oil spill in the Bay of Bourgneuf: Field and
11	experimental studies. Aquatic Living Resources 17, 317–322.
12	Müller, P.J., 1977. C/N ration in Pacific deep-sea sediments; Effect of inorganic
13	ammonium and organic nitrogen compounds sorbed by clays. Geochimica et
14	Cosmochimica Acta 41, 765–776.
15	Nagy, J., Alve, E., 1987. Temporal changes in foraminiferal faunas and impact of
16	pollution in Sandebukta, Oslo fjord. Marine Micropaleontology 12, 109–128.
17	Nakatsuji, K., Teraguchi, T., Yamane, T., 1998. Time change of water qualities in
18	Osaka Bay during the past 70 years and numerical experiments. Proceedings of
19	Coastal Engineering, JSCE 45, 1011–1015 (in Japanese).
20	Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future
21	concerns. Ophelia 41, 199–219.
22	Nomura, R., 1982. List and bibliography of the recent benthonic foraminifera.
23	Memories of the Faculty of Education, Shimane University (Natural Science),
24	15, 31–69.
25	Nomura, R., 1983. List and bibliography of the recent benthonic foraminifera.

1	Memories of the Faculty of Education, Shimane University (Natural Science),
2	16, 21–54.
3	Nomura, R., 1997. List of the recent benthic foraminifera. Memories of the Faculty of
4	Education, Shimane University (Natural Science), 31, 1–25.
5	Nomura, R., Seto, K., 2002. Influence of man-made construction on environmental
6	conditions in brackish Lake Nakaumi, southwest Japan: foraminiferal evidence.
7	The Journal of the Geological Society of Japan 108, 394–409.
8	Nomura, R., Takayanagi, Y., 2000. Foraminal structures of some Japanese species of the
9	genera Ammonia and Pararotalia, family Rotaliidae (Foraminifera).
10	Paleontological Research 4, 17–31.
11	Osaka City, 2004. Osakasi-toukeisyo (Data Book of Osaka City). Osaka City, Osaka
12	(in Japanese).
13	Osaka Prefectural Fisheries Experimental Station, 1973–2002. Business report of Osaka
14	Prefectural Fisheries Experimental Station, 1972–2000 (in Japanese).
15	Osterman, L.E., 2003. Benthic foraminifers from the continental shelf and slope of the
16	Gulf of Mexico: An indicator of shelf hypoxia. Estuarine, Coastal and Shelf
17	Science 58, 17–35.
18	Osterman, L.E., Poore, R.Z., Swarzenski, P.W., 2008. The last 1000 years of natural
19	and anthropogenic low-oxygen bottom water on the Louisiana shelf, Gulf of
20	Mexico. Marine Micropaleontology 66, 291–303.
21	Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic
22	enrichment and pollution of the marine environment. Oceanography and Marine
23	Biology: An Annual Review 16, 229–311.
24	Perus, J., Bonsdorff, E., 2004. Long-term changes in macrozoobenthos in the Åland
25	archipelago, northern Baltic Sea. Journal of Sea Research 52, 45–56.

1	Platon, E., Sen Gupta, B.K., Rabalaisc, N.N., Turner R.E., 2005. Effect of seasonal
2	hypoxia on the benthic foraminiferal community of the Louisiana inner
3	continental shelf: The 20th century record. Marine Micropaleontology 54,
4	263–283.
5	Rabalais, N.N., Wiseman, W.J., Turner, R.E., Sen Gupta, B.K., Dortch, Q., 1996.
6	Nutrient changes in the Mississippi River and system responses on the adjacent
7	continental shelf. Estuaries 19, 386–407.
8	Rabalais, N.N., Turner, R.E., Sen Gupta, B.K., Platon, E., Parsons, M.L., 2007.
9	Sediments tell the history of eutrophication and hypoxia in the northern Gulf of
10	Mexico. Ecological Applications 17, 129–143.
11	Rumohr, H., Bonsdorff, E., Pearson, T.H., 1996. Zoobenthic succession in Baltic
12	sedimentary habitats. Archives of Fisheries. and Marine Research 44, 179–213.
13	Samir, A.M., El-Din, A.B., 2001. Benthic foraminiferal assemblages and morphological
14	abnormalities as pollution proxies in two Egyptian bays. Marine
15	Micropaleontology 41, 193–227.
16	Sampei, Y., Matsumoto, E., 2001. C/N ratios in a sediment core from Nakaumi lagoon,
17	southwest Japan - usefulness as an organic source indicator Geochemical
18	Journal 35, 189–205.
19	Sampei, Y., Matsumoto, E., Kamei, T., Tokuoka, T., 1997. Sulfur and organic carbon
20	relationship in sediments from coastal brackish lakes in the Shimane peninsula
21	district, southwest Japan. Geochemical Journal 31, 245–262.
22	Schafer, C.T., 1973. Distribution of foraminifera near pollution sources in Chaleur Bay.
23	Water Air Soil Pollution 2, 219–233.
24	Scott, D.B., Takayanagi, Y., Hasegawa, S., Saito, T., 2000. Illustration and taxonomic
25	reevaluation of Neogene foraminifera described from Japan, Palaeontologia

1	Electronica 3(2), http://palaeo-electronica.org/2000_2/foram/ issue2_00.htm.			
2	Sen Gupta, B.K., Turner, R.E., Rabalais, N.N., 1996. Seasonal oxygen depletion in			
3	continental-shelf waters of Louisiana: Historical record of benthic foraminifers.			
4	Geology 24, 227–230.			
5	Shannon, C.E., Weaver, W., 1949. The mathematical theory of communication.			
6	University of Illinois Press, Urbana.			
7	Sieger, R., Gersonde, R., Zielinski, U., 1999. New extended software package for			
8	quantitative paleoenvironmental reconstructionEOS electronic supplement,			
9	http://www.agu.org/eos_elec/98131e.html.			
10	Thibodeau, B., de Vernal, A., Mucci, A., 2006. Recent eutrophication and consequent			
11	hypoxia in the bottom waters of the Lower St. Lawrence Estuary:			
12	Micropaleontological and geo-chemical evidence. Marine Geology 231, 37-50.			
13	Thomas, E., Gapotchenko, T., Varekamp, J.C., Mecray, E.L., Buchholz ten Brink, M.R.,			
14	2000. Benthic foraminifera and environmental changes in Long Island Sound.			
15	Journal of Coastal Research 16, 641–655.			
16	Thomas, E., Abramson, I., Varekamp, J.C., Buchholtz ten Brink, M.R., 2004.			
17	Eutrophication of Long Island Sound as traced by Benthic Foraminifera.			
18	Proceedings of the 6th Biennual Long Island Sound Research Conference 87–91			
19	Tsujimoto, A., Nomura, R., Yasuhara, M., Yoshikawa, S., 2006a. Benthic foraminiferal			
20	assemblages in Osaka Bay, southwestern Japan: faunal changes over the last 50			
21	years. Paleontological Research 10, 141–161.			
22	Tsujimoto, A., Nomura, R., Yasuhara, M., Yamazaki, H., Yoshikawa, S., 2006b. Impact			
23	of eutrophication on shallow marine benthic foraminifers over the last 150 years			
24	in Osaka Bay, Japan. Marine Micropaleontology 60, 258-268.			
25	Uchio, T., 1962. Influence of the River Shinano on foraminifera and sediment grain size			

1	distribution. Seto Marine Biological Laboratory Publications 10, 363–393.			
2	Wilson, R.S., Heislers, S., Poore, G.C.B., 1998. Changes in benthic communities of			
3	Port Phillip Bay, Australia, between 1969 and 1995. Marine and Freshwater			
4	Research 49, 847–861.			
5	Yamamoto, K., 2005. Changes of environment and zooplankton in the Seto Inland Sea –			
6	a case of Osaka Bay. Aquabiology 158, 222-229 (in Japanese with English			
7	abstract).			
8	Yamamoto, T., 2003. The Seto Inland Sea-eutrophic or oligotrophic? Marine Pollution			
9	Bulletin 47, 37–42.			
10	Yanko, V., Ahmad, M., Kaminski, M., 1998. Morphological deformities of benthic			
11	foraminiferal tests in response to pollution by heavy metals: implications for			
12	pollution monitoring. Journal of Foraminiferal Research 28, 177–200.			
13	Yasuhara, M., Yamazaki, H., 2005. The impact of 150 years of anthropogenic			
14	pollution on the shallow marine ostracode fauna, Osaka Bay, Japan. Marine			
15	Micropaleontology 55, 63–74.			
16	Yasuhara, M., Yamazaki, H., Tsujimoto, A., Hirose, K., 2007. The effect of long-term			
17	spatiotemporal variations in urbanization-induced eutrophication on a benthic			
18	ecosystem, Osaka Bay, Japan. Limnology and Oceanography 52, 1633-1644.			
19				
20	Figure legends			
21	Fig. 1. Index and location maps: (A) showing the location of Osaka Bay; (B) the			
22	location of sediment cores and the water survey stations.			
23	Fig. 2. Monthly changes in the temperature and the salinity (average of observations			
24	from 1996 to 1998; Osaka Prefectural Fisheries Experimental Station, 1998–2000)			
25	The locations of the water survey stations are shown in Figure 1B.			

1	Fig. 3. Present-day distribution of (a) salinity, (b) surface-water chemical oxygen	
2	demand (COD), (c) total phosphorus (TP), and (d) bottom-water dissolved oxygen	
3	(DO) (3-year average from 2001–2003). Data from Osaka Prefectural Fisheries	
4	Experimental Station (2003–2005). Open circles are core locations (see Fig. 1).	
5	Fig. 4. Secular change in the population size of Osaka City (Osaka City, 2004),	
6	discharge of COD from the Osaka Prefecture through the Yodo River (Nakatsuji	
7	et al., 1998), and total occurrences of red tides (Osaka Prefectural Fisheries	
8	Experimental Station, 1973–2002).	
9	Fig. 5. Seasonal and interannual variability in (A) dissolved oxygen (DO), (B) chemical	
10	oxygen demand (COD), and (C) total phosphorus (TP) at Osaka Bay monitoring	
11	site 15 over the past 30 years. Data from Osaka Prefectural Fisheries Experimental	
12	Station (1974–2004). The location of the water survey stations are shown in	
13	Figure 1B.	
14	Fig. 6. Temporal distributions of (a) TOC, TN, and TS concentrations and (b) C/N and	
15	C/S. (A) OS3, (B) OS4, and (C) OS5.	
16	Fig. 7. Temporal changes in (A) species richness and (B) species diversity. The	
17	minimum of the two diversity measures are recognized only in cores OBY and	
18	OS3.	
19	Fig. 8. Temporal changes in (A) absolute abundance of foraminifera and (B) BFAR.	
20	Shadings indicate (a) initial increase (b) peak in absolute abundance of	
21	foraminifera and BFAR occurs after the 1970s.	
22	Fig. 9. Temporal changes in relative abundance of foraminiferal species. (A) OBY, (B)	
23	OS3, (C) OS4, and (D) OS5. The solid circles are analyzed horizons. Gray-filled	
24	species are eutrophication-tolerant species.	
25	Fig. 10. Temporal changes of the varimax factor loadings. Factor 1: eutrophication	

1	assemblage A; factor 2: pre-eutrophication assemblage; factor 3: eutrophication		
2	assemblage B. The scale for factor 3 is reversed. The increase in factors 1 and 3		
3	and the decrease in factor 2 indicates the progress of eutrophication and the		
4	resulting hypoxia (see text).		
5	Fig. 11. Temporal changes in the accumulation rates of "Ammonia beccarii", Eggerella		
6	advena, and Trochammina hadai. (A) OBY, (B) OS3, (C) OS4, and (D) OS5.		
7			
8	Tables		
9	Table 1 Accumulation rates of the cores. Data from Yasuhara et al. (2007).		
10			
11	Appendix Supplementary data		
12	Appendix A.1. Foraminiferal species identified in cores		
13	Appendix A.2. Taxonomic list		
14	Appendix B. List of the varimax factor scores		
15	Appendix C. The varimax factor loadings for samples		

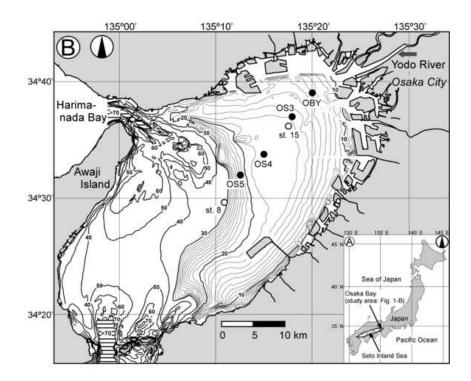


Fig. 1 Tsujimoto et al.

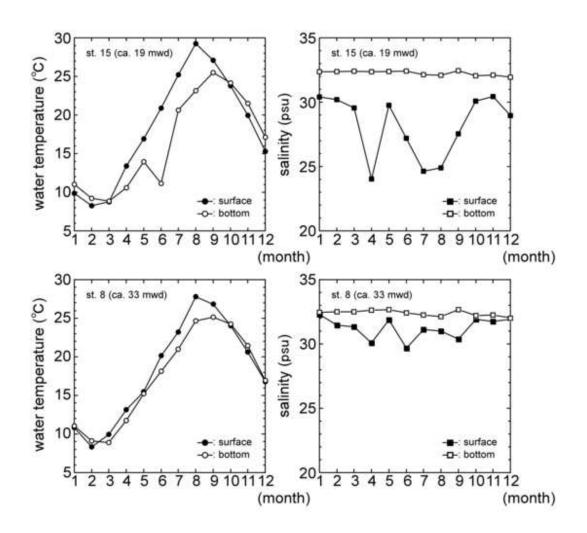


Fig. 2 Tsujimoto et al.

1

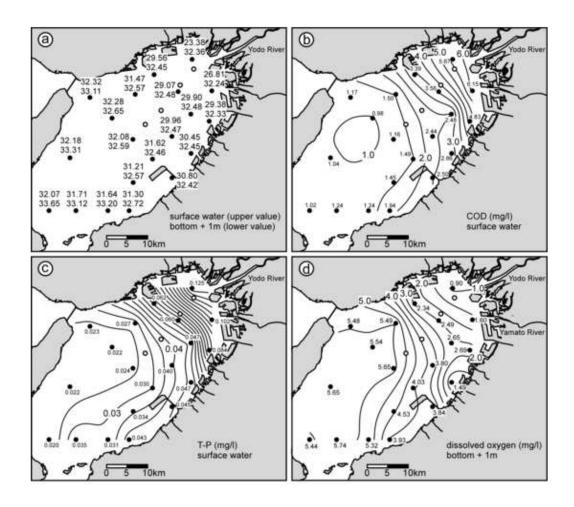


Fig. 3 Tsujimoto et al.

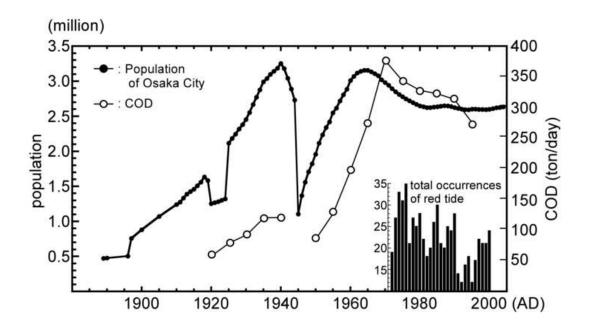


Fig. 4 Tsujimoto et al.

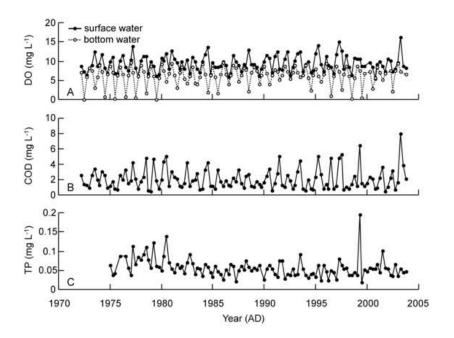


Fig. 5 Tsujimoto et al.

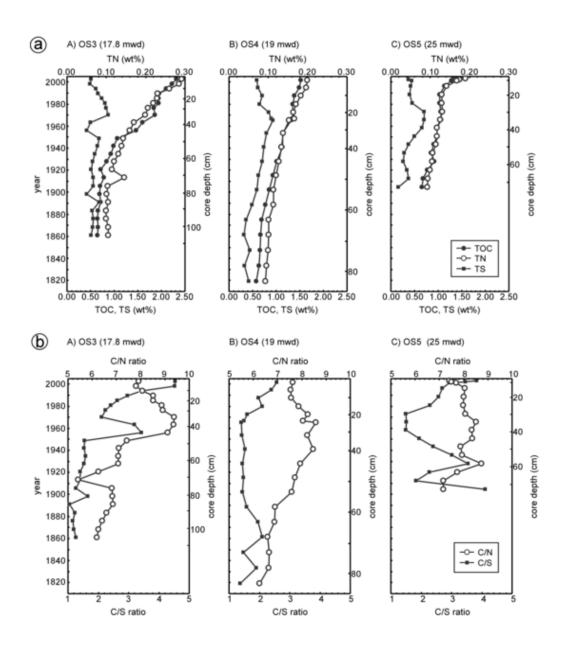


Fig. 6 Tsujimoto et al.

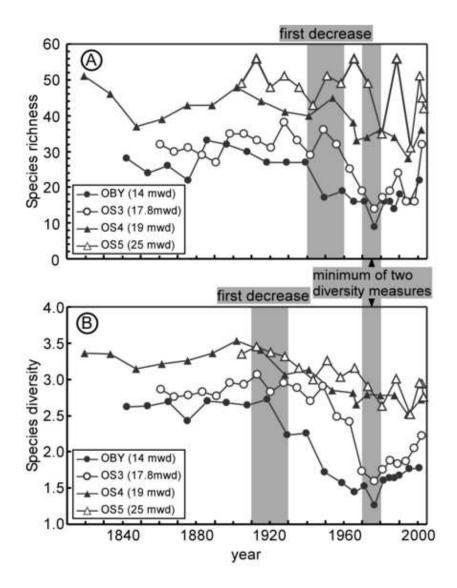


Fig. 7 Tsujimoto et al.

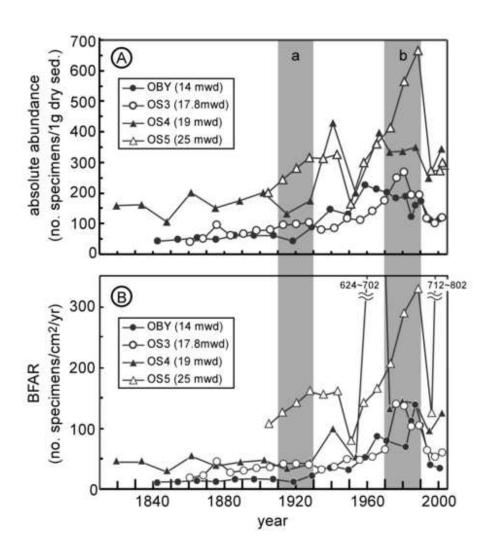


Fig. 8 Tsujimoto et al.

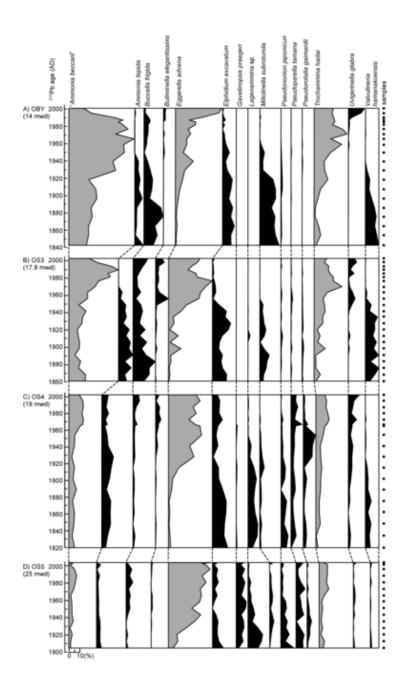


Fig. 9 Tsujimoto et al.

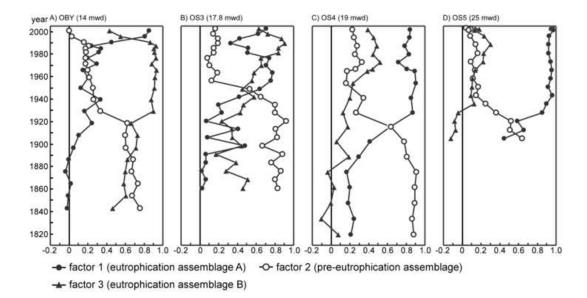


Fig. 10 Tsujimoto et al.

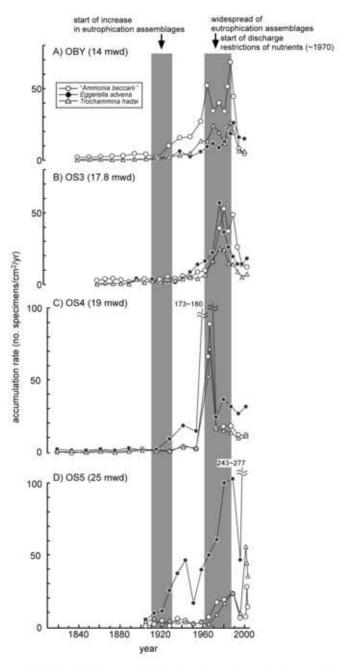


Fig. 11 Tsujimoto et al.

1 Table 1

	OBY (14 mwd)	OS3 (17.8 mwd)	OS4 (19 mwd)	OS5 (25 mwd)
interval (cm)	0–10.9 10.9–22.6 22.6–41.6 >41.6	0–30.9 >30.9	0–24.9 24.9–31.7 >31.7	0–12.9 >12.9
accumulation rate (cm/yr)	0.926 2.029 0.89 0.498	1.105 0.724	0.683 3 0.39	4.57 0.709