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ABSTRACT

Evolutionary origins of alcohol consumption have rarely been considered in studies of ethanol
addiction. However, the occurrence of ethanol in ripe and decaying fruit and the substantial
heritability of alcoholism in humans suggest an important historical association between primate
frugivory and alcohol consumption. Olfactory localization of ripe fruit via volatilized alcohols,
the use of ethanol as an appetitive stimulant, and the consumption of fruits with substantial
ethanol content potentially characterize all frugivorous primates, including hominoids and the
lineage leading to modern humans. Patterns of alcohol use by humans in contemporary environ-
ments may thus reflect a maladaptive co-option of ancestral nutritional strategies. Although
diverse factors contribute to the expression of alcoholism as a clinical syndrome, historical selection
for the consumption of ethanol in the course of frugivory can be viewed as a subtle yet pervasive

evolutionary influence on modern humans.

HE CONCEPT OF Darwinian medicine

places the study of human disease within
an evolutionary context (Williams and Nesse
1991, 1994; Nesse and Williams 1999). This is
even true of efforts to understand addiction,
the physiological dependence on a psychoac-
tive or mind-influencing substance. Aswith ad-
dictions generally, the disease of alcoholism
represents a major challenge to public health.
Most interpretations of addiction in humans

have emphasized the relative novelty of psy-
choactive chemicals; historical exposure to
such substances is assumed to have been negli-
gible, although ancestral neuroethological
pathways are likely activated in contemporary
manifestations of substance dependence (Nesse
and Berridge 1997; Vallee 1998; Nesse 1999;
Smith 1999). This perspective dominates cur-
rent mechanistic investigations of the biologi-
cal underpinnings of addiction. Relative to
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other psychoactive compounds, however, eth-
anol occupies a unique position in the nutri-
tional ecology of Homo sapiens. Hominoids,
along with other animal frugivores, regularly
ingest ethanol derived from yeast-based fer-
mentation of naturally occurring fruit sugars.
Asaconsequence, historical selection for find-
ing and consuming ripe fruit has likely facili-
tated the evolution of appetitive behaviors
that associate ethanol with caloric gain. This
use of ethanol as a nutritional cue and sub-
strate characterizes a diversity of frugivorous
animal taxa, including various mammals,
birds, Drosophila, and even fruitfeeding but-
terflies. The ethanol ingested during frugivory
originates from the metabolic activity of sugar-
feeding yeasts, and consumption of ferment-
ing fruits thus represents a conceptual starting
point for animal behaviors that ultimately may
be expressed in patterns of alcohol abuse by
modern humans.

FruUITS AND FERMENTATION

Since the work of Pasteur in the nineteenth
century, fermentation of sugars by yeasts has
been universally recognized. In nature, sugars
within fruits represent the predominant sub-
strate for such fermentation. Sugars naturally
occur within the mesocarp (pulp) of fruitand
serve as the primary nutritional reward for
frugivores that subsequently disperse seeds
from the fruit. Birds and mammals are the
principal taxa involved in such behavior, and
are typically attracted to and consume only
ripe fruit. Although the condition is not well
defined, ripeness indicates both readiness for
consumption and the availability of associated
nutritional rewards. For example, sugar con-
centrations within ripe fruits range from trace
quantities to levels as high as 61 % of fruit mass,
with typical values of 5 to 15% (Whiting 1970;
Tucker 1993; Baker et al. 1998).

By contrast, unripe fruit contains seeds in
the state of maturation for which dispersal
would be maladaptive. Accordingly, devel-
oping fruits express a variety of physical and
chemical defenses that deter consumption by
potential dispersers. Related measures pro-
tect against consumption by microbial patho-
gens (see Thompson and Willson 1979; Her-
rera 1982; Janzen 1983). The ripening of
immature fruit is a complex biochemical pro-
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cess that yields changes in color, softening of
texture, increased expression of volatiles, and
conversion of starch to sugars (Brady 1987;
Tucker 1993). The ripening process thus re-
laxes defenses against premature consump-
tion by dispersers, but concomitantly renders
the fruit more vulnerable to attack by microbes.
Fruits are most susceptible to microbial decay
once ripeness is attained, particularly given
that a considerable period of time may pass
before the fruit is consumed by a frugivore.
Because such decay can potentially discourage
or even preclude dispersal by vertebrates (e.g.,
Borowicz 1988; Cipollini and Stiles 1993a),
fruit decomposition can be viewed as a race
between microbes and dispersal agents to gain
nutritional advantage (Janzen 1977).

As one of the primary agents of fruit decay,
yeasts are common both on and inside fruits
(see Batista et al. 1961; Last and Price 1969;
Cipollini and Stiles 1992, 1993b; Spencer and
Spencer 1997). Moreover, the widespread oc-
currence of antifungal agents within ripe fruits
suggests considerable evolutionary pressure
on plants to impede fungi-induced fermenta-
tion and decomposition (Cipollini and Stiles
1992; Cipollini and Levey 1997a—c). Fermen-
tation of fruit sugars by yeasts yields a number
of different alcohols, although ethanol is usu-
ally predominant. The production of ethanol
by yeasts has been viewed as an evolved strat-
egy that renders ripe fruit aversive to verte-
brates (Janzen 1977), although there are no
data that substantiate this possibility. Ethanol
may similarly serve to inhibit the growth of mi-
crobial competitors, and yeast metabolism in
laboratory and oenological contexts is itself
substantially inhibited at ethanol concentra-
tions greater than 12-15%. Unfortunately, the
role of ethanol inhibition for wild yeast strains
growing on natural substrates appears never to
have been investigated. Also, the potential role
of ethanol as a defense against consumption
by either microbial or vertebrate consumers
is likely to be both concentration-dependent
and taxon-specific.

Nonetheless, the widespread occurrence of
yeasts in fruits and the presence of abundant
sugar for fermentation suggest that ripe fruits
generally may contain substantial quantities of
ethanol. Ethanol concentrations within ripe
or decaying fruits that occur in nature seem
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not to have been investigated. Instead, avail-
able data derive from domesticated fruits that
are placed in the field as oviposition sites for
the fly genus Drosophila. These studies record
ethanol concentrations in decomposing fruit
that range from trace quantities to values as
high as 5% (see Gibson etal. 1981; McKechnie
and Morgan 1982; Oakeshott et al. 1982). The
relevance of these measurements to decompo-
sition of wild fruit crops is not entirely clear.
Cultivated fruits may be artificially selected ei-
ther for reduced defense against microbial
pathogens in order to yield greater productiv-
ity, or alternatively for increased postharvest
defense to reduce microbial spoilage. Fer-
mentation of fruit crops may also be more pro-
nounced in warm and humid environments
that promote both yeast growth and rapid de-
composition. Of such habitats, tropical forests
are of primary interest here, given the ecologi-
cal associations of many frugivorous primates.

TuE HistoricaL EcoLoGcy
ofF HoMIiNnoOID FRUGIVORY

Ripe fruitis a scarce commodity within trop-
ical forests (Richards 1996; Leigh 1999). Tem-
poral fruiting patterns of tropical trees are
often highly seasonal, and the considerable
distances between synchronously fruiting trees
require extensive travel by fruit-eaters to move
from one fruit crop to another. Intraspecific
and interspecific competition among frugi-
vores is intense, especially when fruit availabil-
ity is highly variable. Such conditions require
efficient foraging schemes in order to satisfy
the nutritional requirements of frugivores,
and may have promoted the elaboration of
spatial memory and cognitive abilities among
arboreal primates (Milton 1981, 1988, 1993).
The mechanisms used to locate food in the
wild have not been studied in primates, al-
though olfactory cues are likely to be impor-
tant for frugivorous taxa. Odor plumes from
ripe fruit, including such low-molecular weight
volatiles as ethanol and other alcohols (Nurs-
ten 1970), potentially function as long-distance
signals that indicate fruit availability to appro-
priate dispersers. Selection for rapid consump-
tion of ripe fruit is equally likely, given the
competition from other frugivorous taxa and
the presence of microbial agents of decay.

In this context, it is important to examine
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the frugivorous heritage of Homo sapiens. Ances-
trally, frugivory emerged as a major dietary strat-
egy among anthropoid taxa by the mid- to late
Eocene (Kay et al. 1997), suggesting selective
advantages for as many as 40 million years to
taxa that efficiently foraged on fruits. Frugivo-
rous adaptations among primates likely oc-
curred even earlier, however, given the proba-
ble fruit-based diet of the catarrhine precursors
to anthropoids (Andrews and Aiello 1984).
Basal hominoids appeared approximately 24
million years ago (Ma), as seen in the fossil
genus Proconsul and the clade leading to the
extant gibbons. Teeth of Proconsul are consis-
tent with a diet of soft fruit, and frugivory is
similarly the predominant dietary mode of ex-
tant gibbons and siamangs (see Chivers 1977;
Gittins and Raemaekers 1980; Andrews and
Martin 1991). Additional hominoid lineages
appearing subsequently to the origin of gib-
bons but prior to the hominids include the
subfamilies Afropithecinae, Dryopithecinae,
Kenyapithecinae, and the Ponginae (including
the extinct genus Sivapithecus and the modern
orangutans). With the exception of the unre-
solved dryopithecine diet, frugivory has been
inferred for the aforementioned extinct lin-
eages (see Kay 1977; Andrews and Aiello 1984;
Teaford and Walker 1984; Pickford 1985; Tea-
ford 1988; Andrews 1992, 1996). Similarly, ex-
tant orangutans are primarily frugivorous and
feed mostly on ripe fruits (e.g., Rodman 1988;
Leighton 1993).

Such patterns of frugivory, with a possible
shift from soft to harder fruits, apparently per-
sisted until the appearance of hominids, in-
cluding the australopithecines, gorillas, chim-
panzees, and the genus Homo (Walker 1981;
Grine and Kay 1988; Andrews and Martin
1991; Andrews 1992). The Homo-Pan diver-
gence occurred at 4.5-5.5 Ma, with an earlier
split of Gorilla at 5.5-7 Ma (Goodman et al.
1994). Diets of early hominids are not known
with any precision, but a similarity with the
diet of modern chimpanzees has been in-
ferred (e.g., Gaulin and Konner 1977; Grine
and Kay 1988). Chimpanzees feed preferen-
tially on plant material (approximately 94%
of the diet), mostly in the form of energy-rich
ripe fruits (Ghiglieri 1984; McGrew etal. 1988;
Wrangham etal. 1991; Malenky and Wrangham
1994). Lowland gorillas consume large quanti-
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ties of sugar-rich fruit in an opportunistic fash-
ion, according to availability (Rogers et al. 1990;
Williamson et al. 1990; Tutin et al. 1991; Kur-
oda et al. 1996; Yamagiwa et al. 1996; Remis
1997), and the generally folivorous (leaf-eating)
mountain gorillas also engage seasonally in
frugivory (Goodall 1977; Yamagiwa and Mwanza
1994). Dietary diversification has clearly char-
acterized hominids within the last 5 Ma (e.g.,
Sponheimer and Lee-Thorp 1999), particu-
larly with the inclusion of animal fat and pro-
tein. Even in modern hunter-gatherer societies,
however, such sources of food represent less
than 50% of the total diet (see Eaton and Kon-
ner 1985; Milton 1987). In sum, these observa-
tions suggest a deep-reaching frugivorous her-
itage for the human diet. Mostsuggestive is the
predominantly frugivorous diet of our closest
relatives, the chimpanzees, together with either
nearly exclusive frugivory (gibbons, orang-
utans) or partial frugivory (gorillas) in all
other extant hominoid taxa.

THE COMPARATIVE BIOLOGY OF
ETHANOL INGESTION

Because ripe fruits may contain significant
quantities of ethanol, animal frugivores can
potentially use this substance as a sensory stim-
ulant for resource localization and, by virtue
of ethanol’s association with sugars, for pur-
poses of caloric gain. Unique among the ad-
dictive substances, however, ethanol can also
represent a direct nutritional reward: the calo-
ric value of ethanol (7.1 kcal/g) is nearly twice
that for carbohydrates (4.1 kcal/g). The ener-
getic gain associated with ethanol catabolism
can thus be substantial. For example, humans
who regularly consume alcoholic beverages
may derive 2 to 10% of their total caloric in-
take from ethanol, whereas this value can be
as high as 50% for alcoholics (Bebb etal. 1971;
Lieber 1988). Such a high proportion of calo-
ric intake derived from ethanol has also been
used in clinical contexts to define alcoholism
operationally.

Frugivores in general may display patterns
of ethanol intoxication and addiction similar
to those of modern humans. In the biomedi-
cal literature, nonhuman models of human
alcoholism have generally been termed “ani-
mal” models. This term is misleading, how-
ever, and neglects naturally occurring inges-
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tion of alcohol that potentially characterizes
all frugivores, primate or otherwise. Consider-
able effort has been devoted to the experi-
mental development of nonhuman models of
alcoholism, primarily using rodents and pri-
mates (e.g., Lester and Freed 1973; Mello
1973; Cicero 1979; Pohorecky 1981; Ervin et
al. 1990). Particularly with rodents, various ex-
perimental protocols have been developed for
the administration of ethanol, and these ex-
periments permit subsequent artificial selec-
tion for the genetically based expression of ad-
dictive behavior and withdrawal symptoms
(see Cicero 1980; Li 1991). These and related
experiments have demonstrated a substantial
heritable component to ethanol addiction in
rodents (Li 1991; Crabbe et al. 1994).

Most such studies with rodents and other
nonhuman taxa explicitly attempt to simulate
alcohol consumption in modern humans,
providing ethanol in dilute form as an adjunct
to an otherwise solid diet. Sometimes this ap-
proach is justified by the claim that ethanol
consumption has not historically been impor-
tant for the animal taxon under consideration
(e.g., Deitrich and McClearn 1981; Higley et
al. 1991). Ethanol-seeking behavior of homi-
nid taxa in natural contexts has never been
evaluated, and experimental studies of alco-
holism in primates have instead emphasized
liquid consumption of low-concentration eth-
anol (e.g., Fitz-Gerald 1972; Pieper et al. 1972;
Higley et al. 1991). Recognition of a frugivo-
rous diet in taxa studied, however, suggests
that further insight might be derived by evalu-
ating nutritional and addictive responses to
ethanol under more natural conditions. The
caloric implications of ethanol consumption
also deserve further experimental attention,
given the obligate association of ethanol and
sugars within fermenting fruit. Sugars and eth-
anol potentially interact to stimulate feed-
ing—rodents increase their consumption of
liquid ethanol when sucrose is added to the
solution, although the incremental caloric
gain is small relative to that of simultaneously
available solid food (Samson et al. 1996). Pref-
erence for varying ethanol concentrations in
either solid or semisolid nutritional media
that simulate fermenting fruit can similarly be
investigated, particularly through the use of
binary choice tests that evaluate taste thresh-
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olds and above-threshold preferences (e.g.,
Simmen 1994). Olfactory mechanisms by which
frugivorous taxa locate fermenting fruit over
long distances are similarly amenable to labo-
ratory investigation.

Ethanol molecules are metabolized through
reactions catalyzed initially by the enzyme al-
cohol dehydrogenase (ADH) to yield acetal-
dehyde, and then by the enzyme aldehyde de-
hydrogenase (ALDH) to yield acetate that
subsequently enters the Krebs cycle (see Agar-
wal and Goedde 1989, 1990a; Goedde and
Agarwal 1989). The extensive variation seen
among diverse animal taxa in both ADH and
ALDH suggests that historically there have
been a number of variable selective regimes
for ethanol utilization (Sund and Theorell 1963;
Brandén et al. 1973; Smith 1986). The genus
Drosophila exemplifies intraspecific and inter-
specific differences in ADH activity (e.g., Mc-
Kenzie and Parsons 1972, 1974). Adult female
fruit flies use ethanol and acetaldehyde plumes
to locate suitable oviposition sites, whereas
their larvae consume yeasts and metabolize as-
sociated alcohols within the larval medium
(Hoffmann and Parsons 1984). Drosophila ge-
notypes with higher ADH activity typically ex-
hibit greater tolerance for ethanol as adults,
and an increased preference for ethanol-sup-
plemented larval media (see McDonald and
Avise 1976; Oakeshott 1976; Cavener 1979;
Hickey and McLean 1980; Holmes et al. 1980;
Geer et al. 1990; Mercot et al. 1994). Ironi-
cally, the fairly homogeneous and ethanol-
rich substrates provided by temperate-zone
vineyards and wine seeps have apparently se-
lected for particularly high levels of ethanol
tolerance in fruit flies. Drosophilaholds consid-
erable promise as a useful model for study of
human alcohol preference and consumption,
in that genetic analysis can potentially pin-
point molecular bases to a susceptibility for
inebriation (Miyakawa et al. 1997; Moore et
al. 1998).

Additional nonhuman models of ethanol
intoxication can be identified both within the
insect taxa and among frugivorous vertebrates
other than rodents. Particularly in the tropics,
many butterflies feed on rotting fruits, and lepi-
dopterists have traditionally used these and
other fermenting substances to attract partic-
ular species of butterflies and moths (Utrio
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and Eriksson 1977). Behavioral observations
suggest intoxication of butterflies through con-
sumption both of rotting fruits and of alcoholic
beverages (Gomez 1977; Miller 1997). Anec-
dotal accounts also document fruit-induced
inebriation in wild birds, mammals,and hyme-
nopterans (see Janzen 1977; Siegel 1989), per-
haps most strikingly in elephants feeding on
fermenting fruits (Siegel and Brodie 1984).
Although blood-ethanol concentrations have
never been measured on apparently inebri-
ated frugivores, these behavioral observations
are consistent with occasional ethanol intoxi-
cation in diverse animal taxa. Preference for
ethanol and addictive behavior in humans ob-
viously involves a variety of factors other than
those based on dietary associations, but one po-
tentially important feature of alcoholism may be
co-option of molecular pathways and sensory
biases common to many frugivorous taxa.

AN EvoLuTioNARY HYPOTHESIS
FOR HUMAN ALCOHOLISM

If selection for ethanol consumption during
frugivory has been significant for human an-
cestors, then alcoholism in modern humans
may be viewed conceptually as a disease of nu-
tritional excess (see Cronk 1991; Williams and
Nesse 1991; Nesse and Berridge 1997). In this
perspective, genetically-based behaviors adap-
tive in the ancestral environment become dis-
advantageous in amodern human environment
that provides ad libitum access to nutritional
substrates, including ethanol. This interpreta-
tion of alcoholism is thus analogous to hypoth-
eses thatlink high rates of obesity and diabetes
in modern humans to the ready availability of
fats and carbohydrates in industrialized socie-
ties. Contemporary interpopulational varia-
tion in susceptibility to diabetes has similarly
been attributed to historically variable selec-
tive regimes in the diet of early humans (see
Neel 1962, 1982; O’Dea 1992).

In contrast, evolutionary perspectives are
conspicuously absent from the literature on
human alcoholism. Phylogenetic origins of al-
coholic behavior do not figure in suggestions
that alcoholism will be gradually outbred be-
cause of its deleterious effects (e.g., Milam and
Ketcham 1981; Carpenter and Ewing 1989;
Nesse 1994), or that this apparently maladap-
tive behavior actually promotes advantageous
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social conformity (Logan and Qirko 1996). An
explicit application of Darwinian theory to
psychiatry similarly provides no phylogenetic
perspective on ethanol consumption, sug-
gesting instead that alcoholism is “in part a
strategy to offset the undesirable conse-
quences associated with actual or perceived
failures” (McGuire and Troisi 1998). None of
these various possibilities are precluded by an
ancestral predilection for ethanol consump-
tion during frugivory, but neither do they ad-
dress the important issue of the phylogenetic
origins of such behavior.

Phenotypic traits may be modified when se-
lection acts on heritable variation. In humans,
the genetic components of alcoholism are
well-established, with estimates of narrow-sense
heritability for alcohol dependence ranging
from 0.2 to 0.6 (see Cloninger 1987; Cook and
Gurling 1990; Goldman 1993). Susceptibility
to alcoholism is also polygenic in character.
Interestingly, contemporary human popula-
tions differ considerably in their physiological
sensitivity to ethanol (see Wolff 1972; Agarwal
and Goedde 1986, 1990b; Goedde and Agar-
wal 1986; Smith 1986; Helzer and Canino
1992). Many East Asians and Native Ameri-
cans, for example, tend to be more susceptible
than Caucasians to the immediately adverse
effects of ethanol ingestion (e.g., cutaneous
flushing, vasodilation, tachycardia; see Agar-
wal and Goedde 1986). Much of this variation
can be correlated with the presence of particu-
lar ADH and ALDH isozymes (Goedde et al.
1979; Agarwal and Goedde 1990a; Goldman
and Enoch 1990; Shen et al. 1997; Osier et al.
1999). For example, frequencies of a deficient
ALDH I allele tend to be higher in East Asians
and indigenous South Americans than in Cau-
casians, which in part explains acetaldehyde
buildup and greater overall sensitivity to etha-
nol in the first two groups (Goedde and Agar-
wal 1986, 1989). Between Native Americans
and Caucasians, however, ADH activity and
rates of ethanol degradation are similar, in
contrast to anecdotal accounts of greater sus-
ceptibility to “firewater” in the former group
(see Reed 1978; Schaefer 1981; Agarwal and
Goedde 1986). Within-group variation in diet
and genetic background may also influence
the ability to clear ethanol. Indigenous peo-
ples of northern Canada, for example, histori-
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cally consumed virtually no carbohydrates and
appear to metabolize ethanol more slowly
than do Caucasians and Native Americans from
more equatorial latitudes (see Schaefer 1986).

Both among and within human popula-
tions, differential propensities toward alco-
holism are at least partially correlated with
variability in the metabolic pathways that de-
grade ethanol and acetaldehyde. For exam-
ple, rates of alcoholism among East Asians
tend to be much lower than those in Caucasian
populations (see Chafetz 1964; Sue 1987), con-
sistent with deterrent effects on ethanol con-
sumption owing to deficient ALDH I alleles
and corresponding accumulation of acetalde-
hyde. However, the high vulnerability of indig-
enous North Americans to alcoholism (Brod
1975) cannot be attributed to deficient ALDH
I alone, as allele frequencies for this isozyme
are low and are much more similar to those of
Caucasians than of East Asians (Goedde and
Agarwal 1989). Alcoholism rates among indig-
enous North and South Americans also tend
to be similar in spite of the much higher rate
of occurrence of deficient ALDH I'in the latter
group (see Goedde and Agarwal 1989, Everett
et al. 1996). Instead, susceptibility to alcohol-
ism may in part derive from the interacting
dynamics of ethanol degradation (via ADH)
and acetaldehyde accumulation (via slow-act-
ing ALDH). Alcoholics within particular Asian
populations, for example, exhibitreduced fre-
quencies of catalytically more effective ADH
alleles, as well as higher frequencies of faster-
acting ALDH alleles (see Chen et al. 1996;
Shen et al. 1997; Tanaka et al. 1997; Harada
et al. 1999; Osier et al. 1999). In general, ge-
notype-by-environment interactions, coupled
with polygenic effects, are likely to be pro-
nounced in the emergence of alcoholism as a
clinical syndrome. Nonetheless, partial ge-
netic contributions to alcohol abuse in hu-
mans have been clearly established.

This hypothesis thus proposes that natural
selection has acted on human ancestors to as-
sociate ethanol with nutritional reward, pro-
moting rapid identification and consumption
of ethanol-containing fruit resources. Alco-
hol-seeking in humans hasin factbeen termed
an exploratory appetitive behavior (Clon-
inger 1987). An immediate prediction of the
hypothesis that links alcohol consumption to
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frugivory is thathominids in the wild preferen-
tially select and consume ripe fruits that con-
tain ethanol. Quantitative assays of fruit ripe-
ness, ethanol content, and palatability are
clearly essential for any such analysis. As in Dro-
sophila, intraspecific and interspecific varia-
tion in ADH and ALDH activity among extant
frugivorous primates would be predicted to
follow the relative dietary inclusion of ethanol.
For example, frugivorous lowland gorillas
should be more capable of metabolizing etha-
nol than are the more folivorous montane go-
rillas. Similar variability in ethanol-degrading
enzymes should be indicated in interspecific
comparisons of frugivorous mammals and birds
with their nonfrugivorous sister taxa (e.g.,
fruit-eating megachiropteran bats versus in-
sectivorous microchiropterans). Overall, any
general tendency toward addiction would be
predicted to follow both the relative extent of
natural ethanol consumption and the afore-
mentioned human patterns of genetic varia-
tion in the efficacy of ethanol and acetalde-
hyde degradation.

Many chemical compounds that are stress-
ful or toxic at high concentrations are, some-
what paradoxically, beneficial at low dosages.
Such a nutrient-toxin continuum is termed
hormesis (Calabrese etal. 1987; Calabrese and
Baldwin 1998; Gerber et al. 1999), and in
many cases may reflect evolutionary exposure
and adaptation to substances that naturally oc-
cur in the environment at low concentrations.
For animal frugivores, specific hormetic ad-
vantages may derive from historical exposure
to ethanol and fermentation products. In Dro-
sophila species that oviposit on fermented
fruit, for example, adult longevity is enhanced
by exposure to ethanol and acetic acid vapors
relative to controls exposed to water vapor
(Parsons 1983). Similarly, adult survivorship
of Drosophila melanogaster, as of its hymenop-
teran parasitoid, is maximal at acetaldehyde
vapor concentrations near 0.1% and declines
rapidly at higher concentrations (Owen 1985;
Parsons 1989). An evolutionary perspective on
hormesis suggests that behavioral responses
towards particular compounds should vary ac-
cording to relative availability and predictabil-
ity in the diet (Gerber et al. 1999). If regular
exposure to low concentrations of ethanol is
an inevitable consequence of ripe fruit con-
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sumption, then selection will favor the evolu-
tion of metabolic adaptations that maximize
physiological benefits and minimize any costs
associated with ethanol ingestion. This argu-
ment pertains, however, only to those ethanol
concentrations historically encountered by
frugivorous hominoids. Exposure to much
higher concentrations of a hormetic sub-
stance would, by contrast, induce maladaptive
responses (Gerber et al. 1999).

The intentional fermentation of fruits and
grain to yield ethanol arose only recently
within human history. Archeological evidence
dates the production of wine and beer to Mes-
opotamian civilizations in the fourth millen-
nium BCE (see Katz and Voigt 1986; McGov-
ern et al. 1995). Although widespread in the
ancient world (Lutz 1922; Forbes 1964), pro-
duction of alcoholic beverages was apparently
limited to the low ethanol concentrations
yielded by the fermentation process alone
(i.e., 10-15%). The freezing of dilute alcohol
solutions to produce high-concentration etha-
nol (known literally as “frozen-out wine”) ap-
peared in central Asia by 300 CE (Needham
1980). Distillation as a chemical process dates
to the Hellenistic alchemists of Alexandria (0
to 200 CE), although specific distillation of
high-concentration ethanol apparently first
arose in seventh-century China (see Needham
1980). This method subsequently spread into
Central Asia and Arabia, although in western
Europe the distillation of ethanol can be reli-
ably dated only to 1100 CE, at Salerno (Forbes
1948). Medicinal use of alcoholic tinctures
also facilitated a rapid spread of this technol-
ogy throughout medieval Europe, as bever-
ages with higher alcohol concentrations be-
came ever more popular. Relative to the
geological duration of the hominid lineage,
therefore, exposure of humans to concentra-
tions of ethanol higher than those attained by
fermentation alone is strikingly recent.

Complex historical and cultural attitudes
inform contemporary views of alcoholism
(Lender and Martin 1987; Vallee 1998). In the
United States, the remarkable diversity of ad-
diction treatments developed over the last two
centuries is ample testimony to the complexity
of biological as well as social factors that influ-
ence this persistent medical issue (White 1998).
An evolutionary perspective, however, raises
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the possibility of novel interpretations for the
motivational mechanisms underlying both
ethanol consumption and actual addiction. It
is tempting to speculate, for example, that
hormetic effects underlie recently demon-
strated reductions in cardiovascular risk and
overall mortality that are associated with low-
level alcohol consumption (e.g., Doll et al.
1994; Goldberg et al. 1994; Camargo et al.
1997; McConnell et al. 1997). By contrast,
widespread availability of ethanol at high and
stressful concentrations not only demon-
strates vulnerability in contemporary humans,
but also should elicit a greater range of herita-
ble responses than was evident in the ancestral
environment (see Gerber et al. 1999). The
aforementioned ethnic and populational dif-
ferences, both in physiological reactions to
ethanol and in susceptibility to alcoholism,
are consistent with this prediction. Such ob-
servations are tantalizingly suggestive of horm-
esis, although validation of this hypothesis re-
quires detailed empirical evaluation of dose-
dependent costs and benefits (Gerber et al.
1999). The hormetic range evoked by ethanol
may also vary in modern humans according to
ancestral as well as present-day dietary prac-
tices of particular populations.

Recognition of historically frugivorous diets
among hominoids suggests multiple direc-
tions for research into the natural occurrence
of ethanol consumption. In the wild, what are
the sensory mechanisms by which primates
and other frugivorous taxa localize ripe fruit
over long distances? What are typical ethanol
concentrations within consumed fruit, and to
what extent and how frequently do animal
frugivores actually become inebriated? Does
ethanol act as a feeding stimulant under cer-
tain circumstances? What are the hormetic ef-
fects of ethanol on extant hominids? Answers
to these and related questions are likely to be
taxon-specific, but they will also depend strongly
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on local ecological conditions. Within tropical
and subtropical environments, for example,
the broad taxonomic diversity of potential fruit
crops (and yeasts), coupled with a high degree
of seasonal variability, suggests a correspond-
ing diversity in historical patterns of selection
for efficient fruit consumption. This diversity
may, in turn, have promoted evolution of a
variety of sensory mechanisms that mediate
ethanol ingestion via frugivory. Does the pres-
ence of particular mechanisms predispose or
motivate certain taxa to excessive consump-
tion of ethanol under abnormal conditions of
availability? Because human alcoholism (and
drug addictions generally) are apparently
unique in the animal kingdom, our percep-
tion and treatment of these diseases have been
largely decoupled from the biological context
within which our nutritional and sensory phys-
iology evolved. However, an evolutionary per-
spective places intraspecific and interspecific
variation in preference for ethanol, together
with hormetic effects of this substance, within
a broader and perhaps methodologically more
tractable framework. Identification of the be-
havioral, physiological, and genetic mecha-
nisms underlying abuse of ethanol has to date
proven to be a formidable task. Nonetheless,
ethanol ingestion via frugivory is ancestral in
hominoids and may influence contemporary
behavioral responses by humans. Studies of
historical exposure to this substance can ac-
cordingly provide information for interpre-
ting modern patterns of alcohol consumption
and abuse.
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