HUMAN ORIGINS: ONE MAN’S SEARCH FOR THE CAUSES IN TIME
by Ruth Osterweis Selig

“Alan Walker once said to me, ‘It does not matter how much you can convince yourself; it only matters how much you can convince your skeptics’—that is science in a nutshell.” Rick Potts, interview, 4/2/99.

Of all the animal species on earth, only humans ask from whence they came. Paleoanthropologists strive to answer the what, the why and the how of that remarkable journey. In a recent article, “Why Are We Human?,” Rick Potts, director of the Smithsonian’s Human Origins Program, summarized the state of current knowledge:

Due to the rapid pace of discovery, scientists now have fossils from more than 5,000 individuals as far back as 5 million years. That record offers strong evidence that we evolved from apelike species in Africa, and genetic evidence confirms that our closest biological cousins are the African chimpanzees. Scientists from many different fields agree that humans and chimpanzees evolved from a common ancestor that lived between 5 million and 8 million years ago (1999a:1).

Today we know that as many as 12 to 15 different human-like species evolved in the past. Why did some continue and change while most died out? It is this question that has consumed Rick Potts’ life, beginning when he was a ninth grader in suburban Philadelphia’s Abington High School. The story of Potts’ determination to answer this question reveals much about human evolution and paleoanthropology, but it also offers insight into one scientist’s single-minded passion and the development of a new theory—“variability selection”—to explain the why and the how of human origins. This article presents three intertwined stories:

- the development of one paleoanthropologist’s career;
- the development of the human species through time; and

These three stories illuminate the inextricable nature of scientific advances, human knowledge, and the individual scientist. In addition, the story of Rick Potts underscores the interplay between inherent disposition and environmental influence, no small irony for a scientist whose theory of human evolution focuses on the interplay between the environment and the human lineage’s evolving predisposition toward adaptability, diversity, and versatility. The necessity to understand time both as personal time during which an individual life unfolds and as geologic time within which the human lineage evolved is another theme running through the three stories.
The Early Years
In a recent interview, Potts traced his earliest interest in origins to playground discussions with his older brother, today a mathematician. Potts' awareness of a passion for human origins became evident during a 9th grade world civilization class: “When I left 9th grade, I knew I would become an anthropologist and that I would spend my life studying human origins in East Africa. I went to sleep at night dreaming of doing just that.” That 9th grade year Potts asked his parents, neither of whom had gone to college, to buy him two books: Desmond Morris' *The Naked Ape* and Robert Ardrey's *African Genesis*. He still remembers devouring the sections on animal behavior.

“By the end of 9th grade I was completely hooked; then, in the 11th grade, I took a half year anthropology course.” His brother was studying anthropology at college, and they shared books and ideas. A history and a biology teacher supported Potts' ambitions. “My history teacher shared my passion for understanding time, and we talked many times about the differences between individual and geological time.” She invited Potts to take the AP exam even though his parents could not afford the cost (she paid for the exam) and he was not even in the AP history class. That experience and the encouragement of his biology teacher made a deep impression on Potts. By the end of 12th grade, in 1971, Potts chose a local university, Temple, to study anthropology and pursue his goal of studying human origins in East Africa.

The Environment
Karl Butzer had published his ground breaking *Environment and Archaeology: An Ecological Approach to Prehistory* that same year. Potts’ first anthropology professor at Temple believed the study of the human past could not be separated from the study of ancient ecology and assigned all his students to read Butzer. In his first two years, Potts immersed himself in biological studies, focusing on natural selection and adaptation. He took courses in cognitive sciences and physiology, fascinated by the connection between brain physiology and behavior, realizing there was no way to separate the study of physics from cultural evolution. His senior thesis on stone tools argued that tools carry information not only about human capacity for technology but also about general human behavior. Comparing stone tools of successive hominid species meant comparing cultural and behavioral differences among species. All this seems familiar today, but in the early 1970s studies of stone tools usually meant statistical studies describing various types of technologies, with no reference to such larger issues of behavior or culture.

Graduate School
Potts went straight into graduate school, choosing Harvard primarily because several of its professors called him for interviews (“I felt as if I was a sport’s team recruit; I had not heard much about Harvard given my humble roots, but I was impressed by their interest in me.”) Neanderthal specialist Erik Trinkaus, then a young assistant professor, read Potts’ application, commenting that “he seemed all over the place.” A year later Trinkaus remembered his comment and told him: “Now I understand you want to focus on only one thing, but you want to take everything into account to do it.”

Paleoanthropologist Alan Walker, then also teaching at Harvard, became a mentor. Most importantly, he arranged for Potts to do his Ph.D. research on Olduvai Gorge, gaining Mary Leakey's blessing for the work. Thus began the last phase in Potts' journey to become a paleoanthropologist—working in the field. First he was to travel to France to gain experience at several
archaeological excavations, then to East Africa to work both at Olduvai Gorge in Tanzania and at the Kenya National Museum in Nairobi, Kenya, to work on the materials previously excavated by Mary and Louis Leakey at Olduvai Gorge. Rick Potts was 23 years old, it was 1976, and he was about to live out his boyhood dream.

Potts explained that in the 1960s and even the 1970s, the study of human origins was still about finding fossil bones and analyzing stone tools, particularly for the early Plio-Pleistocene period of 1.5 to 2.5 million years ago. Researchers were not yet really concerned about behavior or landscapes. “It was a wonderful time for me to be starting out, with my growing interests in ecology, behavior and natural selection.”

The Evolution of Early Humans
The context for understanding Potts’ research activities over the next two decades is the story of human evolution, a story he has recounted in several popular accounts of the process that transformed a 5-million-year-old tropical ape into a human species of worldwide influence (1999a). Distinctively human qualities emerged over a period of about 5 million years rather than all at once.

As Potts explains the dramatic story, walking regularly on two legs (bipedalism) was the first big step, forever altering the way our ancestors interacted with their environment. By 4 million years ago, apelike individuals (the australopithecines) had evolved who were bipedal but retained an ability to climb trees. Their brains were about one-third the size of a modern human’s, they weighed between 60 to 108 pounds, and their height ranged from 3.5 to 5 feet tall.

Either among the australopithecines or the earliest members of our own genus Homo, stone toolmaking began to be common by about 2.5 million years ago. The earliest fossils of Homo are at least 2.3 to 2.5 million years old, a time period that also sees an increase in cranial or brain capacity. By 1.9 million years ago, the species H. erectus had reached modern human size and body proportions and was fully committed to bipedal walking. H. erectus was the first hominid to leave Africa, spreading to Asia by about 1.6 million years ago. H. erectus’ brain size, however, was not fully human, on average only about two-thirds to three-fourths that of fossil modern humans. The relationship of H. erectus to the various species before it is still hotly debated. How later fossil humans with modern brain size are related to ourselves is also controversial, particularly in the case of the Neanderthals. (For more information on these current controversies, see Brooks, 1998a,b.)

Only after the brain had reached modern size do we see the complex behaviors we associate with being human: art, clothing, complex stone technology, symbolic representation, and religious behaviors such as burial. These emerged only within the past 100,000 years. Although there is no complete agreement among scientists to explain the emergence of fully modern humans, it is agreed that our species, modern H. sapiens, has been the only human species on Earth for at least the last 25,000 years. It is only within the past 10,000 years that farming and herding, cities, writing, trade and warfare arose.

As should be clear from this brief synopsis, humanity’s features emerged over time; there was no single threshold or step when humans originated.

Olduvai Gorge
It was to examine early stone tool development that Potts traveled to East Africa to do the research for his Ph.D. In 1977 he arrived in Nairobi, Kenya to re-analyze the fossil bones and stone tools discovered and described by the Leakeys, as well as to analyze other data from Bed I of Olduvai Gorge. It was Mary and Louis Leakey’s work at Olduvai Gorge (1936-1985) that had helped shape scientific and popular ideas about the earliest origins of human behavior. It was they who tried to identify the maker of the early “Oldowan stone tools” and to clarify early hominin technology and activity at Olduvai Gorge, then considered the world’s oldest archaeological site. Today, the Oldowan industry has been dated to at least 2.5 million years at older East African sites and lasts with little change for about 1 million years. To some specialists such as Glynn Isaac, the pivotal question in the archaeology of early humans was to explain “how high density clusters of stone artifacts and animals bones were found together”(1994:8).

New taphonomic studies had begun to document the processes by which fossil bones and associated stone artifacts were deposited, damaged, and buried over time. Processes such as water transport or feeding by
carnivores could alter what archaeologists found millions of years later and, therefore, could influence archaeological inferences about hominid activity. Potts and his colleague Pat Shipman conducted a groundbreaking study on bones from Olduvai Gorge using the scanning electron microscope, comparing marks on fossil bones with marks produced by known causes (such as carnivore activity or damage from excavation) on modern bones. In the journal *Nature*, Potts published his first major scientific paper, describing how stone tool marks could be distinguished from damage to bones made by carnivores and other taphonomic processes. With a clearer understanding of human and carnivore tooth marks, Potts now had a way of seeing how early human toolmakers and carnivores had overlapped or interacted (1981). He concentrated on the hominids' ability to make and transport tools over long distances, freeing them from the apes' "eat as you go" survival strategy. The hominids' transporting tools and food to a single place was a critical transition to creating single places of rest, later known as "home base campsites."

Potts' first book, *Early Hominid Activities at Olduvai* (1988), summarizes his detailed re-analysis of Olduvai hominid behavior that explained site formation. Four levels of analysis are detailed: How did the site form? What did humans do there? How did the different sites at Olduvai reflect different activity patterns in space? How did the hominids' activities change through time?

In the late 1970s, while Potts was preparing his Ph.D. dissertation, Glynn Isaac published his influential articles describing home base sites, places where hominids apparently gathered together over one million years ago to share food and tools (1978). Other anthropologists had been studying home base behavior among modern hunters and gatherers, and Isaac proposed an analogy between these societies and the early hominid ancestors. In his dissertation, Potts used studies of taphonomy, water transport, and landscape analysis to challenge Isaac's view. Contrary to Isaac, Potts concluded that the Olduvai sites did not represent home bases; instead, the earliest hominid sites at Olduvai came before home base development. Based on his re-evaluation of the Oldowan material, Potts asserted that hominids collected stone materials and parts of animal carcasses, obtained through scavenging and hunting, and left them at specified locations, so-called "stone caches," for future processing. In fact, carnivores like leopards and hyenas, attracted to the carcass remains, would have prevented the use of these sites by hominids as the places of primary social activity implied by the home base theory. Potts called his hypothesis "resource transport" (1984, 1991). It was a major theoretical breakthrough, made before he had his Ph.D. in hand, and it was well received by older colleagues in the field, including Isaac.

In 1983 Potts, then an assistant professor of anthropology at Yale University, returned to Africa, this time to direct paleontological/archaeological excavations...
at Lainymok, Kenya. Mary Leakey traveled down to visit Potts' excavation, and, impressed with his work, she suggested he turn his attention to the much larger area of Olorgesailie (Oh-lorg-eh-SIGH-lee). The following year Potts gained permission from Richard Leakey, Director of the National Museums in Kenya, to work long-term at Olorgesailie. By 1985 the Smithsonian's National Museum of Natural History had hired Potts to start a new Human Origins Program at the Institution. Within a year, he wrote the first of many grant proposals to fund large-scale excavations at Olorgesailie. Potts' career was launched.

Olorgesailie

For an aspiring paleoanthropologist, Olduvai Gorge was a dream come true, but it was Olorgesailie that changed Potts' life. In the beginning he was after bones and tools and the opportunity to test some ideas regarding home bases by enlarging the context of hominid behavior. To do this work, Potts began to develop a landscape-scale approach to the excavation and study of hominid tools, animals bones and the overall environment. At a single level, 990,000 years old, Potts' team excavated many sites including a huge elephant butchery site. For several summers Potts' team worked to reconstruct the lifeways and environmental context of *H. erectus*, 1 million to 600,000 years ago. Potts differentiated his approach from fossil collecting; he was searching to understand the ecological niche of early humans by focusing on excavating an entire landscape, not just surface collecting across the land or putting another fossil onto the family tree.

Soon, however, Potts had begun to ask new questions regarding space and time. What was the ecology of the region through time? What habitats did the various hominids living there have to cope with over a million years in time? With the new dates available at Olorgesailie, Potts realized he could document an entire sequence from 1.2 million up to 49,000 years ago. It was, he said, "an archive of environments, a textbook of hominid behavior...the Rift Valley writ large through time." To analyze and assess this remarkable "archive through time," Potts again assembled an international team to excavate and synthesize the complex data. Potts has always stressed a team approach, working with "geologists, archaeologists, paleontologists, environmental scientists, and a great group of well-trained Kenyan excavators."

Environmental Oscillation

By the early 1990s environmental issues had come to the forefront of public attention and scientific concern, resulting in new research and multiple techniques to measure environments. Potts adapted these techniques to understanding past climates, environments, soils, and vegetation—applying many of these new techniques to his amazing "slice through time." (1998a: 96-104). What he found was startling. The dating and stratigraphic analysis at Olorgesailie uncovered a widening variability through time. Furthermore, Olorgesailie was the tantalizing lead-in to an examination of the larger global picture of environmental change. Looking at the incontrovertible evidence from soils, vegetation, and lake sediments worldwide, Potts could no longer avoid the key word: oscillation.

By 1992 Potts had become committed to understanding the impact of environmental change on early hominids. Much of that year Potts spent walking up and down the hillsides of the site. "I could walk up a hillside and see the bands of the blinding white sediments of the lake replaced by grey and brown soils followed by the thin salt layer indicating the lake had dried up. But then a little further forward in time, the lake would be back. You walk up and down and the oscillation of the environment becomes unmistakable, and you realize that that was the challenge to the hominids, the oscillation of the environment." But how did that challenge operate?

East African Mammal Study

In 1992 Potts thought constantly about the extreme environmental variability he saw as the crucible through which the human lineage had passed. He kept asking himself where had all our human versatility and diversity come from; and if and why humans had evolved differently from other animals, whose evolution he had studied for years. "If natural selection is going to hone an organism's characteristics to the specific environment in which it lives, then how do you transform a small population of apelike hominids into a species of worldwide influence, diverse and extremely flexible in their
behavior. That is the critical ecological question of human evolution."

Understanding the adaptive challenges for other East African mammals might be a key. As Potts explains, with humans we have no comparison, we have the unique situation of human evolution, and our only comparison is with earlier hominids who did not survive. So Potts turned to a study of large mammals in Africa, re-analyzing the fossil animals from Lainymok, a large and diverse sample ideal for such a study. Together Olorgesailie and Lainymok span the time period during which modern human brain size developed—a critical time period for human evolution. Potts and a colleague Alan Deino published their analysis documenting the extinction of an entire group of mammals during this period, around 400,000 years ago (1995). They hypothesized that large numbers of mammals became extinct as a response to rapid climatic fluctuations and extreme dietary specialization. As the mammals eating coarse, low-lying vegetation became extinct, smaller, more versatile, and more generalized eaters emerged; these are the large mammal species still with us today. Potts wondered if the human lineage had gone through a similar pattern of extinction and adaptation as a response to extreme environmental change.

A New Book
In 1990 Potts had signed a contract with William Morrow publishers to write a book dealing with Olorgesailie and environmental change. He wrote half the book and then in 1992 realized his entire thinking was shifting. "I had a series of brainstorms at night, wondering if and how environmental oscillation had been the major influence on the developing human lineage. I realized I had to start the book over again. I called my editors, told them I was throwing out everything I had written, but I promised to start over. I knew I was onto something big, and that it would take time to work out the details. All the training I had in college and graduate school, all the early conversations I had with my brother, all my reading of Charles Darwin flooded back. I knew I had to deal with the question of environmental variability and its impact as a major selective factor explaining human evolution."

Potts realized immediately he would have to challenge one of the major theories and assumptions of human evolution: the transition in Africa from widespread forests to widespread savanna grasslands as the major explanatory factor for the emergence of bipedal, tool using human beings. In his new book, *Humanity's Descent* (1996a), he proposed instead a new theory of environmental variability as the key selective factor explaining the emergence of the human species.

The Savannah Hypothesis
According to conventional wisdom, our earliest ancestors were forced to adapt to a new, drier savanna environment that replaced a once heavily forested landscape. Bipedal walking developed as a favored adaptation to the ground, with hominids using their newly freed hands to make and use tools, especially for hunting. This led to the eating of meat and increased sources of protein that fueled a larger brain. Eventually food sharing, home base living, social interaction, and division of labor by sex emerged. The savannah hypothesis, which Potts was originally taught, had made a lot of sense, but it didn’t fit the environmental fluctuations that he had documented. Over the short run some hominids may have adapted to specific environments including the savannah, but over the millennia of time, the human lineage had to accommodate to and cope with huge oscillations or swings in the environment that were manifested all over the world (1998a:109-112).

Variability Selection
It was this variability that Potts identified as the key to the three distinctive breakthroughs of human evolution: bipedal walking (4-1.9 million years ago); stone tool making (2.5 million-1.5 million years ago); and increased brain size (between 700,000 to 150,000 years ago)—each coinciding with increased environmental fluctuation. There was a larger amount of savannah in certain areas of the world, but increased fluctuation was just as much a hallmark of global climate and much more influential on the course of human evolution. Potts called his new theory "variability selection," a process that links adaptive change to large degrees of environmental variability. The theory refers to variability as a selection agency, not to the variability or versatility that developed in the human population.

As Potts explains, "variability selection" is, in essence, a hypothesis about how hominid evolution has been a response to environments and environmental change."
After years of reconstructing environmental variability, as well as the evolution and extinction of mammal species, Potts realized that survival of a versatile species capable of adjusting to novel surroundings was the story of human evolution. As environmental conditions drastically fluctuated, the evolutionary winners were populations that evolved a capacity to respond in new ways to diverse habitats. This process—variability selection—favors genes that improve an organism’s adaptability, and the theory explains why our particular pattern of human evolution occurred. As Potts says, “it is not the whole explanation, but I believe it is a critical piece.”

Variability selection is also a theory that Potts knows modifies one of the tenets of Darwinian evolution: long-term directional consistency in selection over time, consistency implied, for example, in the savannah hypothesis. In a 1996 article in *Science*, Potts explains the significance of his theory to understanding human evolution: “Hardly just noise, long-term fluctuation was a signal of potentially major evolutionary consequence. I have proposed the term variability selection to describe the effects of repeated, dramatic shifting in Darwinian selection over time. This inconsistency over many generations may have had an important impact on hominid evolution” (1996b:922).

Natural Selection

As Potts explains in a recent article: “Natural Selection is the process by which adaptive structures are evolved and maintained. As a result of this century’s union of population biology, genetics, and paleontology (the neo-Darwinian synthesis), natural selection is regarded as the main cause of change in organisms in relation to their surroundings” (1998b:81). Traditionally, this meant consistency of adaptation over time. “Selective consistency, or long-term uniform selection pressure, is largely assumed to be the way by which adaptive complexity evolves” (1998b:81). But the adaptive conditions of hominid evolution over time, according to Potts’ research, were highly inconsistent on a local to global scale.

Potts’ theory posits that inconsistency of environmental conditions had critical implications for hominid evolution. There are several ways organisms can respond to habitat fluctuation (1998b:84-85). The first is simply to follow the preferred environment, an adaptive pattern that works for a while, but can lead to extinction when large environmental fluctuations occur. The second is to broaden the range of conditions under which an organism can live. This can be achieved by both genetic polymorphism (several different genetic potentials existing within the same population) or by phenotypic plasticity, when organisms can respond differently at any given time with the same genotypic inheritance.

A third avenue of flexibility is “variability selection,” or the evolution of adaptive mechanisms within a population which “assist an organism’s sophisticated intake of and responsiveness to environmental data” (1998b:85). Examples of such adaptive mechanisms might be new locomotor systems (such as bipedalism) and an enlarged brain to process and generate complex cognitive responses. In light of Potts' theory, the evolution of the brain takes on new meaning, as it is our brain that enables us to adapt to changing conditions, novel problems, and multiple solutions. Climatic oscillation becomes more intense after 700,000 years ago and it is from this time to about 150,000 years ago that the human brain reaches modern size. Potts has stated that his theory requires that we may have to “significantly revise the way natural selection is construed to have operated—not merely as selection pressure or as adaptation to a model environment, but as...
a response to habitat and resource variability from place to place and over time" (1994:23).

Potts points out that in each epoch of human evolution, there were species that evolved as specialists, that adapted to a specific environment and lived alongside more versatile forms that survived after the more specialized forms became extinct. Two examples he cites are the robust australopithecines and the cold-weather adapted Neanderthals, both highly specialized hominids that became extinct. The eventual survival of a single versatile lineage, extraordinarily diverse in its behavior and spread worldwide, may well have evolved as the result of adaptation to our planet’s variable environment.

Nature and Humankind
The relationship of nature and humankind is one of the recurring and most thought provoking themes of Potts’ popular and extremely well-written volume, *Humanity’s Descent* (1996a). “It is important to get the relationship between Nature and humankind right, both in its long-term development and in its present possibility” (44).

Potts explains that humans’ penchant for setting themselves apart from Nature stems from an illusory divide into natural and human domains...a divide that has “never existed over the long course of human presence on Earth” (267). The implications of this key insight have profound public policy ramifications, for, as Potts says, “the world now rests...on the legacy left by a single species” (44). The fact that our essential human qualities emerged as the result of our ecological relationship to Nature contrasts with the ironic observation that our resulting dominion today could disrupt forever the ecological balance on Earth.

Conclusion
Science moves forward by the process of hypothesis testing, development of new theories, unearthing new data, and proposing alternative explanations. In science, the development of a major new hypothesis or theory is always extraordinary in its originality, but it is, nonetheless, also a beginning; colleagues will test such new ideas with their own data and their own understanding. For Potts, Olorgesailie was the inspiration, environmental change the key to the development of a major new theory to explain human evolution. Variability selection is a dramatic insight and a theory that others now must take into account in their attempt to explain the human past. Potts and his fellow paleoanthropologists will develop other insights, and modifications of Potts’ theory of variability selection will inevitably develop through time. But the importance of this new and provocative theory will stand as a major contribution to the ongoing study of human origins.

What Potts’ journey demonstrates is that one scientist’s approach to understanding the world around him can grow from many seeds: a sharp, fertile mind with a penchant of its own for “the big picture”; an enduring life-long passion to find out where humans came from; and a determination to unravel the whole puzzle, not just a single piece. The influence of teachers, mentors, colleagues, and the scientists who came before, all influenced Potts as he developed through time. Just as his theory connects the development of the human lineage to the millennia of challenging environments, so one can see Potts’ life developing from the interaction of his unique mind and driving passion with the influences of his family, teachers, colleagues, and experiences—his environment through time.

Postscript
As this *AnthroNotes* article was being written, Potts flew to London to present his theory of variability selection—at the invitation of the Linnean Society. Potts must have been aware that in July 1858 Charles Darwin and Alfred Wallace, at the urging of the geologist Charles Lyell and the botanist Sir Joseph Hooker, presented simultaneously their papers on evolution through natural selection—to the Linnean Society. On May 24, 1859, Thomas Bell, president of the Society, reported, in his presidential address, that “The year which has passed...has not...been marked by any of those striking discoveries which at once revolutionize, so to speak, the department of science on which they bear” (1860: viii). For the impact of variability selection, as with the theory of natural selection, only time will tell.

Further Reading
Authored by Rick Potts (Richard Potts):

1999a Why Are We Human? The Washington Post. 4/14/99. Horizon Section: 1, 4-5.

Other Publications

**For further references, request the bibliography "Human Evolution and Paleoanthropology " from the Anthropology Outreach Office, Smithsonian Institution, Washington, D.C. 20560-0112.

Ruth O. Selig
AnthroNotes Editor
Selig.Ruth@nmnh.si.edu
TEACHER RESOURCES

SMITHSONIAN RESOURCES

On the Web:
- Anthropology on the Internet for K-12, compiled by Margaret Dittemore, Smithsonian Institution Libraries, is an annotated listing of hot links to selected web sites with information for teachers and students about the field of anthropology. The sites fall under the following headings: general resources, careers, archaeology, social/cultural anthropology, physical anthropology, linguistics, area studies, museums, virtual exhibits, electronic publications, and associations. Each section is illustrated with photos of Smithsonian anthropologists and includes information about their particular research activities. Link it to your own web site! Suggestions of sources to add are welcome. http://www.sil.si.edu/SILPublications/Anthropology-K12/

- Annotated Bibliography on American Indians for K-12 (www.nmnh.si.edu/anth/). Click on the Anthropology Outreach Office. The bibliography, compiled by Ann Kaupp, Fiona Burnett, Maureen Malloy, and Cheryl Wilson, describes over 800 books and is organized by culture area and tribe and is further divided into non-fiction and fiction, traditional stories, and biographies. The Introduction explains how the books were evaluated, provides information about stereotypes, and offers further resources.

- The Smithsonian Office of Education has available on the web (educate.si.edu) and in hard copy two teaching activities for grades 4-9: “Teaching From Objects and Stories: Learning About the Bering Sea Eskimo People” and “Decoding the Past: The Work of Archaeologists.” Also available is the Smithsonian Resource Guide for Teachers, a catalog listing materials (many free) from all the Smithsonian Museums and other educational offices. ($5 for hard copy.) Email: education@soe.si.edu

Educational Kits:
The following kits were produced by the Smithsonian’s Center For Folklife Programs and Cultural Studies and can be ordered from Smithsonian Folkways Mail Order, 414 Hungerford Dr., Suite 444, Rockville, MD 20850; (301) 443-2314; Fax: (301) 443-1819. Orders only: (800) 410-9815. Email: info@folklife.si.edu. Web site: http://www.si.edu.

Land and Native American Cultures introduces students in grades 9-12 to the use of the land in three case studies: the Hopi of Arizona; the Tlingit, Haida, and Tsimshian of Alaska; and the Aymara and Quechua of Bolivia and Peru. The units address subsistence, crafts, mythology, and ritual. Includes teacher/student guide with narrative, photographs, resource listing, and activity questions. 1997. $35.00. Catalog #SF90011.

Wisconsin Powwow/Naamikaaged: Dancer for the People consists of two video sets showing how powwows incorporate historical traditions and modern innovations. A 40-page booklet with historical background, transcription of the soundtrack, classroom questions, and suggestions for further reading and listening accompanies the videos. This kit is focused for grades 6-12. 1996. $34.95. Catalog #SF48004

Borders and Identity, a bilingual kit for grades 6-12, explores the complex notion of identity along the
U.S./Mexican border and is organized into four segments—history, belief, expressive arts, and occupational traditions. The kit includes a four-part video, poster-size cultural map, and a teacher/student guide with classroom activities. 1996. $55.00. Catalog #SF90010

Learning about Folklife: The U.S. Virgin Islands & Senegal focuses on foodways, music, storytelling, and celebrations. The kit for grades 6-12 contains a four-part video-cassette, 2 audio-cassettes, and a teacher's guide with maps, photographs, and line illustrations. 1992. $45.00. Catalog #SF90012.

OTHER RESOURCES
On the web:
• Check out these web sites for Anthropology resources and materials: www.serve.com/archaeology; www.nitehawk.com/alleycat/anth-faq.html; www.plattsburgh.edu/ant/Web_Instructor.html (for the teaching of anthropology), and www.si.edu (Smithsonian Institution website).
• Keep up-to-date on the Kennewick Man controversy through Friends of America's Past, a fledgling nonprofit organization dedicated to promoting and advancing the rights of scientists and the public to learn about America's past. Concerned about maintaining the integrity of science, this organization includes two archaeologists, a physical anthropologist, and an attorney as its board of directors. Friends of America's Past sponsors public lectures and is now involved in raising funds in support of the Kennewick Man case. Contact: Friends of America's Past, 7410 SW Oleson Rd., Suite 202, Portland, OR 97223; website: (www.friendsofpast.org/).
• The KIDS Report is published biweekly with the support of the Internet Scout Project, the National Science Foundation, and a grant from John and Tashia Morgridge. Produced by K-12 students as a resource for other K-12 students, it is an ongoing, cooperative effort of 12 classrooms from around the United States. Teachers assist and provide support; however, students select, evaluate, and annotate all resources included in every issue of the KIDS Report. http://scout.cs.wisc.edu/scout/KIDS/selection.html. This issue of the KIDS Report, "Kids Investigating and Discovering Sites," dated April 27, 1999, was written and produced by students at Elmore Elementary School in Green Bay, Wisconsin. Some of the topics included are: "NOVA Online-Ice Mummies," "Odyssey in Egypt," "Old Sturbridge Village," and "The Tomb of the Chihuahua Pharaohs."

Publications:
• Dig is the Archaeological Institute of America's new bimonthly magazine for young people. Its first issue (April/May 1999) includes articles on mummies, a new dinosaur named after the boy who found it, the discovery of an Andean mummy girl, plus new archaeological discoveries and projects and games for readers and much more. To subscribe, write to Dig, Subscriptions Services, P.O. Box 469076, Escondido, CA 92046-9076; call toll free: 877-673-7344; or subscription@archaeology.org. Check out their website at www.dig.archaeology.org.
• For teachers looking for readable, up-to-date articles, Annual Editions selects articles previously published in magazines, newspapers, and journals and compiles them into one volume. Anthropology, archaeology, and physical anthropology are among the over 65 volume topics available. The 99/00 volume on Physical Anthropology contains Robert Sussman's article "Exploring Our Basic Human Nature: Are Humans Inherently Violent?" (pp. 201-205), originally published in the Fall 1997 issue of AnthroNotes. Annual Editions provides teachers with an Instructor's Resource Guide. Write to: Annual Editions, Dushkin/McGraw-Hill, Sluice Dock, Guilford, CT 06437, or call (800) 338-3987; fax (203) 453-6000. Price: $16.84 for single copy.
• Discovering Archaeology is a new glossy bimonthly archaeology magazine for the general reader and specialist that covers discoveries in archaeology and archaeological sciences. Check their web site (http://www.discoverarchaeology.com/main/htm), or write Discover Archaeology, PO Box 9473, El Paso, TX 79995, or call toll free at (877) 347-2724.
• The Society of American Archaeology now has a bulletin board on "Teaching Archaeology in the 21st Century" to discuss issues related to teaching archaeology to undergraduates. Visit the SAA website at: http://www.saa.org/education/curriculum/ and join in the national dialogue.
URBAN COMMUNITY FIELD RESEARCH PROJECT

by JoAnne Lanouette

If students grow up in downtown Cleveland (Ohio), attend Cuyahoga Community College (CCC), and take Mark Lewine’s anthropology class, they might join a dig on campus and discover much about the history of their own community, an immigrant starting point at various times for English, Germans, Czechs, Italians, Jews, and for African Americans. But the Urban Community Research Project serves many more than one class. In fact, this five-year pilot program in historical archaeology offers an exciting interdisciplinary collaboration among the CCC and a number of area academic institutions, museums and agencies. It draws students from other local community and four-year colleges, junior and senior high schools, and encourages the involvement of citizen volunteers. More than 500 people have participated since the program began in 1994. The team behind this successful effort includes Dr. Mark Lewine, CCC professor of Anthropology and Sociology; consulting historic archaeologist Al Lee; and Dorothy Salem, historian and professor of Women’s Studies and African Studies at CCC.

The first site investigated by the Program was originally a private residential property, now a part of Cuyahoga Community College’s Metro campus. Standing for over one hundred years in the shadow of St. Joseph’s Roman Catholic Church and Franciscan Monastery, the site was somewhat protected from disturbance. The students’ archival and archaeological research, under the supervision of the project’s leaders, led to recovering evidence of two identifiable occupations of the site. The earlier occupation, dating between 1825 and 1840, was by as yet unidentified rural villagers who used the site domestically and for cottage industry soap-making. In the mid-1850s the Burkhart family established a residence and wallpaper business on the property. Through the last quarter of the nineteenth century, as Burkhart daughters grew up and married, their husbands’ building trades such as tinsmithing, roofing, window-making, carpentry and painting were added to the services offered by the wallpaper business.

Students in the program conducted document research in the archives of the Western Reserve Historical Society, studied maps, and analyzed the remains and contents of cisterns, privies and trash pits recovered archaeologically from the site. The faculty then helped the students integrate the data to help establish the evidence for the social and economic changes that occurred as this outpost of a rural village became a small neighborhood off a large industrialized urban center. Further, the distinctive consumer behavior of the family, who maintained for business reasons a horse and wagon, provides an illuminating
contrast with the more typical "walking city" consumer pattern. Today a parking lot is being built over the site for the CCC's use, but underneath archaeological opportunities still exist.

Current investigations by the Program are at the Long-Severance site, also situated on the metro campus. Student archival research showed that Dr. David Long developed the property in the mid 1840s as a "country estate." Long was a prominent Cleveland physician and merchant. He established his practice and a dry goods store in the village of Cleveland in 1810 and was a central figure in affairs of business, religion, politics, philanthropy and social reform for the next forty years. His descendents, through his daughter Mary Long Severance, have remained prominent in Cleveland business and civic affairs well into the twentieth century.

A major social concern for the Long and Severance families was opposition to slavery. Long and his son-in-law Solomon Severance were founding officers of the Cleveland (1831) and Cuyahoga County (1837) Anti-Slavery Societies. Solomon's brother Theodoric and his wife Caroline were early advocates of a more militant, abolitionist position, and all were later involved in the founding of new Presbyterian churches as old congregations split over the issue. Severance's involvement in African-American affairs continued beyond emancipation; a letter dated 1913 from Booker T. Washington to Louis Severance (Solomon and Mary's son) thanks him for his continued support of Tuskegee Institute.

Urbanization caught up with the Severance home in the early 1860s, by which time Cleveland was the fastest growing urban center in the nation. A portion of the property was subdivided into small, single-family and commercial lots, and a church occupied the corner of a newly erected street. Gradually the area became a middle class section of the walking city, and then gradually the economic and social standing of the neighborhood declined as the area became more industrial. When the Severances moved from the property in 1899, it was purchased and developed for St. Ann's Infant Asylum and Maternity Hospital, an institution operated by the Roman Catholic Diocese of Cleveland for the aid of unwed mothers. The property was obtained from the corporate descendent of St. Ann's in 1973.

Archaeological research is continuing on the Long/Severance site this spring and summer. The Urban Community Research Project has also established an archaeological laboratory with office and teaching facilities. Recently the Martha Holden Jennings Foundation granted funding for the first of what is hoped will be a series of Archaeological Youth Camps, which would attract middle and high school students to the community college and the project. The connection of the Long and Severance families to abolition has served as an initial vehicle for the establishment of a collaborative relationship between the project and the Institute for African American Affairs and Kent State University, Dr. Diedre Badejo, Director.

After five years, Mark Lewine, Al Lee and Dorothy Salem see the collaborative project not just producing a site with findings that promise original and significant contributions to the social and cultural history of Cleveland. Students have learned to integrate information from archives, photos, street maps, census data, and from long-time residents of the area, along with the material culture history found at the site. Originally begun as an applied field experience for Cuyahoga Community College archaeology students, this project has demonstrated its value as a pedagogical tool, a source for interdisciplinary field research, a setting for collaborative work for regional students from a wide variety of schools, and a source for increasing knowledge about community history. The residents' interest in their neighborhood and the significant connection between college and community has deepened. Community college students who participated had their first contacts with students from regional universities, graduate students, faculty from those universities as well as a museum archaeologist and an archivist from the county archives. Visiting these institutions showed the students viable possibilities for their own future study and work opportunities that they never imagined before.

Such a project should inspire other archaeologists, anthropologists, and historians in museums, community colleges, and universities to join together to create community history research projects for their city or town. In the process the barriers between urban

(Continued on page 15)
MAJOR EXHIBITION ON THE AINU: THE INDIGENOUS PEOPLE OF JAPAN

The story of the Ainu of Japan is not unlike that of the indigenous people of other lands, such as the American Indians and the Aboriginal people of Australia. For thousands of years the Ainu occupied the island of Hokkaido in northern Japan as well as the Kurile Islands, southern Sakhalin, and part of northern Honshu. The different geographic areas represented three distinct territorial subcultures with differences in language, oral history, artifact styles, and ceremonial life. Eventually all the Ainu were resettled in Hokkaido as Russia and Japan took control of their lands. Their name for themselves, "Ainu," means "people" or "humans." Their population numbers around 25,000 today, with many more Ainu mixed with the general Japanese population throughout Japan. Because of discrimination, many people do not make known their Ainu ancestry.

The Ainu are physically distinctive from other Japanese and were once thought to be remnants of a "lost" Caucasoid race. The Ainu have more body hair, including heavy beards, rounder eyes, and less facial flatness. DNA, skeletal, and linguistic studies have shed some light on Ainu ancestry. They appear to be more closely related to the Jomon, the ancestral people of Japan, than the people of western and southern Japan. The ancestors of the Western and Southern Japanese were primarily Yayoi immigrants, who brought rice farming from China and Korea before 300 B.C., and to a lesser extent the Jomon.

It wasn’t until 1868 during the Meiji Restoration that modernization efforts had a grave impact on Ainu Society. With increasing trade and industrialization and the opening of Japan to the West, the Ainus’ northern island homeland, Ezo, was renamed Hokkaido, and began to be valued for its fish, fertilizers made of fish, and timber. The Japanese were encouraged to emigrate here to farm and take advantage of these natural resources. The Japanese government then initiated efforts to assimilate the Ainu into Japanese society and take away their native rights, land, and resources. By 1899 the government’s actions were codified in a “protection act” meant to destroy Ainu culture. The Ainu, however, kept many aspects of their culture alive such as art, music, rituals and beliefs, while much of their material culture was sold to foreign collectors and museums. Today a renaissance of Ainu culture is taking place in which people are again learning the native language and practicing old traditions such as weaving bark cloth and making dugout canoes. An historic event took place on May 8, 1997 when the Japanese government officially recognized the Ainu as a people with a unique language and culture.

Now the American people have an opportunity to learn about the indigenous people of Japan in a new traveling exhibition that opened on April 30 at the Smithsonian Institution’s National Museum of Natural History. “Ainu: Spirit of a Northern People” is the first major North American exhibition of Ainu culture and the first to feature contemporary Ainu living traditions as well as ethnography. The curators for the exhibition, Chisato Dubreuil, of Ainu ancestry, and William Fitzhugh, Director of the Arctic Studies Center at the National Museum of Natural History, and project manager David Dubreuil, worked closely with Ainu, American, and Japanese scholars to produce the exhibition. An Ainu carver, Masahiro Nomoto, was brought to the Smithsonian to build for the exhibition a traditional Ainu canoe and a house, which is the center of Ainu life.
The five major themes of the exhibition are: spirituality, which permeates all aspects of Ainu life and their relations with nature; the importance of trade with other Pacific Rim peoples; cultural identity as it has evolved over several thousand years; the vitality of Ainu traditions; and the emergence of fine art in Ainu culture. Perhaps the most extraordinary items of the exhibit are the modern paintings, textile pieces, and sculptures by Ainu artists. In combination with more ancient and traditional pieces, these pieces using modern artistic conventions and materials demonstrate the persistence of traditional Ainu themes and symbols as well as the integration of Ainu people and their artists into the modern world.

The exhibition will be at the Smithsonian through January 2, 2000. A comprehensive catalog with over 50 articles by Ainu scholars is available from the Smithsonian museumshops and the Arctic Studies Center.

ARCHAEOLOGY SYMPOSIUM FOR LOCAL EDUCATORS

D.C., Maryland, and Virginia teachers are invited to attend “Teaching the Past Through Archaeology,” a two-day symposium organized by the Smithsonian’s Anthropology Outreach Office and the Society for American Archaeology Public Education Committee, to be held September 22 & 23, 2000. Lectures will cover such topics as the Vikings, ancient diseases, African American archaeology, what bones can tell us about the earliest Americans, and the impact of El Niño on prehistoric populations. Workshops on archaeological concepts, Mayan and underwater archaeology, and teaching with historic places will demonstrate how archaeology can enrich all classroom topics. For more information, contact Ann Kaupp, Department of Anthropology, Smithsonian Institution, Washington, DC 20560; (202) 357-1592; fax: (202) 357-2208; email: kaupp.ann@nmnh.si.edu.

For further information:
Arctic Studies Center homepage at www.nmnh.si.edu/arctic/

Ann Kaupp
AnthroNotes Editor

("Urban Field Research Project" continued from page 13)

community, community college, university, and museum can diminish, and at the very least, student interest in archaeology, anthropology, and other social sciences can increase. For students, learning more about their city's history makes their city come alive for them.

JoAnne Lanouette
AnthroNotes Editor

For further information about the Urban Community Research Project, contact:
Dr. Mark S. Lewine
2900 Community College Ave.
Cleveland, OH 44115
e-mail: lewinest@stratos.net
AnthroNotes offers in-depth articles on current anthropological research, teaching activities, reviews of new resources, and summer fieldwork opportunities. AnthroNotes was originally part of the George Washington University/Smithsonian Institution Anthropology for Teachers Program funded by the National Science Foundation. It is published free-of-charge in the fall and spring.

ANTHRONOTES has a three part mission:

1. To more widely disseminate original, recent research in anthropology in order to help readers stay current in the field;
2. To help those teaching anthropology utilize new materials, approaches, and community resources, as well as integrate anthropology into a wide variety of subjects; and
3. To create a national network of anthropologists, archaeologists, teachers, museum and other professionals interested in the wider dissemination of anthropology, particularly in schools.

This newsletter with its cartoons may be reproduced and distributed free-of-charge by classroom teachers for educational purposes. AnthroNotes is now available on the WEB (http://www.nmnh.si.edu/departments/anthro.html).

HAVE YOU MOVED RECENTLY?

Please don’t forget to notify AnthroNotes editors. If you have not notified us or your forwarding order has expired, the issue is returned marked "Forwarding Order Expired" or the Post Office returns a copy of the back page, discarding the rest of the issue. We have to pay for the initial mailing, pay for the return, and then pay to mail another copy. To keep our expenses down, we will no longer automatically send a second copy of the issue to you. Please help by sending your change of address as soon as possible. AnthroNotes’ email address is kaupp.annts@nmnh.si.edu.

To be added to the mailing list, write:

Anthropology Outreach Office
Smithsonian Institution, Washington, DC 20560-0112
email: kaupp.annts@nmnh.si.edu.