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Abstract 

Lianas are an important component of the biological diversity in two tropical forests with contrasting moisture regimes in Panama. 
However, their presence in a tree crown may be a source of confusion in remotely sensed data collected for inventories or assessment of 
vegetation health. The structural growth form of lianas contrasts with trees in that their proportion of leafy biomass to woody biomass is 
much higher. In effect, they use trees for structural support and typically form a monolayer of leaves above the crown of the supporting tree. 
Here, we investigated possible differences between hyperspectral signatures of lianas and trees at the leaf level using pattern recognition 
techniques. Our method involves principal components analysis followed by training and classification using a selection of supervised 
parametric and nonparametric classifiers. At a tropical dry forest site (Parque Natural Metropolitano), lianas and trees are distinguishable as 
groups based on their leaf spectral refiectance characteristics in dry season conditions. Classification was improved using ancillary data on 
leaf chlorophyll content. Their distinction at this site may be related to drought stress and/or phenological differences between the two 
groups. At a tropical wet forest site (Fort Sherman), discrimination between the two groups was not as clear. Additional research is required 
to determine the physiological basis of possible differences as well as to determine if these differences are observable at the canopy level. 
© 2004 Elsevier Inc. All rights reserved. 
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1. Introduction 

There is mounting evidence towards the increasing 
dominance of lianas in tropical forests (Phillips et al., 
2002). With little investment in woody biomass, these 
aggressive climbers take advantage of existing tree trunks 
and other lianas to make their way to the canopy where they 
are capable of rapidly forming a carpet of leafy vegetation, 
shading the tree beneath (Avalos et al., 1999). There are 
numerous implications of liana infestation to the supporting 
tree, including increased mechanical and wind damage, 
increased probability of falling, and decreased growth rates 
(Clark & Clark, 1990; Putz, 1984). Eventually, these dele- 
terious effects can lead to increased tree mortality. Since 
lianas prefer disturbed habitats, promoting disturbances 
likewise promotes their own proliferation (Schnitzer et al., 
2000). In the long run, these trends could lead to significant 
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alterations in forested ecosystems by affecting regeneration 
rates (Schnitzer et al., 2000) and tree species composition 
(Phillips et al, 2002). 

Where lianas are abundant, their presence in the form of 
a monolayer on top of tree crowns has important implica- 
tions for remote sensing studies. For instance, interpretation 
of vegetation indices relating to photosynthetic activity from 
hyperspectral data over such areas could be erroneous if 
lianas are interpreted as free canopies. Similarly, little or no 
differences between spectral signatures of lianas vs. trees 
could also limit the potential for tree classification. From a 
different point of view, the ability to identify areas heavily 
infested with lianas would be beneficial to efforts at tracking 
the prevalence of lianas in tropical forests over time, a topic 
that demands serious attention in lieu of linkages between 
climate change and increased extent of liana coverage 
(Phillips et al, 2002). 

The current status of hyperspecfral research on tropical 
trees and/or lianas is highly preliminary. Very few datasets 
exist from airborne hyperspectral sensors in the Neotropics, 
and experimental satellite data is just now becoming avail- 
able from the EO-1 Hyperion sensor, with a spatial resolu- 

0034-4257/$ - see front matter © 2004 Elsevier Inc. All rights reserved. 
doi;10.1016/j.ree.2004.01.013 



354 K.L. Castro-Esau et al. /Remote Sensing of Environment 90 (2004) 353-372 

tion of 30 m. At the leaf level, studies by Fung et al. (1999) 
and Cochrane (2000) were aimed at determining if tree 
species recognition is possible with subtropical and tropical 
trees, respectively. Avalos et al. (1999) conducted a study to 
compare the optical properties of lianas and trees using 
absorptance, reflectance and transmittance over the photo- 
synthetically active range rather than examining responses 
at individual wavebands. Their results indicated similar 
absorptance and reflectance between the two groups, but 
significantly lower transmittance of liana leaves as com- 
pared to tree leaves. 

The specific objective of this paper is to determine if it 
is possible to distinguish between lianas and supporting 
trees, as groups, at the leaf level, using hyperspectral 
reflectance measurements taken from two communities of 
tropical liana/tree species in Panama, Republic of Panama: 
Parque Natural Metropolitano (tropical dry forest) and Fort 
Sherman (tropical wet forest). The approach involves 
principal components analysis (PCA) and pattern recogni- 
tion techniques to differentiate between the two groups. 
The power of PCA for hyperspectral data analysis lies in 
the reduction of hundreds of highly correlated bands to a 
few highly discriminatory, uncorrelated eigenvectors, useñil 
for isolating different groups (Chang et al., 2001; Lee et al., 
1990). The study focuses on separation of the two struc- 
tural groups, rather than individual species, since it would 
be impractical to separate individual liana species on a tree 

crown where multiple liana species with different abundan- 
ces from season to season are present. Although the current 
study does not extend to the canopy level, we believe that 
studying leaf reflectance is a critical step for a better 
understanding of spectral responses at the canopy level in 
tropical environments. 

2. Methods 

2.1. Study areas 

2.1.1. Parque Natural Metropolitano 
For this study, tree canopies were accessed using two 

canopy cranes installed by the Smithsonian Tropical Re- 
search Institute (STRI) in Panama. The first is located in a 
tropical dry forest at Parque Natural Mefropolitano (PNM), 
just outside Panama City. The crane is 42 m high with a 
boom radius of 51 m. Annual rainfall at this site is 
approximately 1740 mm. 

The dominant canopy species within reach of the crane is 
Anacardium excelsum (Anacardiaceae). Additional accessi- 
ble tree species include Luehea seemannii (Tiliaceae), 
Annona spraguei (Annonaceae), Cecropia longipes (Cecro- 
piaceae), Enterolobium cyclocarpum (Fabaceae-Mimosoi- 
deae), Astronium graveolens (Anacardiaceae), Ficus 
insípida (Moraceae), and Cordia alltodora (Boraginaceae). 

Table 1 
Liana and tree species sampled for this study 

Parque Natural Met Topolitano 

Trees 

Fort Sherman 

Lianas Lianas Trees 

Species Family Species Family Species Family Species Family 

Aristolochia Aristolochiaceae Anacardium Anacardiaceae Forsteronia Apocynaceae Aspldosperma Apocynaceae 
maxima excelsum myriantha cruenta 
Mikania Asteraceae Annona Annonaceae Odontadenia Apocynaceae Cordia bicolor Boraginaceae 
leiostachya spraguei puncticulosa 
Arrabidaea Bignoniaceae Cordia Boraginaceae Arrabidaea Bignoniaceae Pourourma sp.'' Cecropiaceae 
candidans alliodora verrucosa 
Stizophyllum Bignoniaceae Ficus Moraceae Phryganocydia Bignoniaceae Marlla laxiflora Clusiaceae 
riparium insípida corymbosa 
Bonamia Convolvulaceae Luehea Tiliaceae Pleonotoma Bignoniaceae Termlnalla Combretaceae 
trichantha seemannii variabilis amazonia 
Jacquemontia sp.* Convolvulaceae Maripa 

panamensis 
Convolvulaceae Tachigali 

versicolor 
Fabaceae- 
Caesalpiniodeae 

Doliocarpus Dilleniaceae Doliocarpus Dilleniaceae Lonchocarpus Fabaceae- 
dentatus multlflorus longlfolium Papilionoideae 
Stigmaphyllon Malpighiaceae Dloclea Fabaceae- Carapa Meliaceae 
hypargyreum wilsonii Papilionoideae guianensis 
Passiflora Passifloraceae Tontelea Hippocrateaceae Brosimum utile Moraceae 
vitifolia ovallfolia 
Gouania Rhamnaceae Unknown sp. Hippocrateaceae Ficus nymphaelfolla Moraceae 
lupuloides of liana 
Serjania sp.^ Sapindaceae Virola surinamensis Myristicaceae 
Vitis tiliifolia Vitaceae Tocoyena pittlerl 

Matayba apétala 
Manilkara bidentata 
Simarouba amara 

Rubiaceae 
Sapindaceae 
Sapotaceae 
Simaroubaceae 

' In some cases it was possible to identify lianas to genus but not to species. 
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Lianas contribute significantly to the biodiversity of this 
area. There are numerous pockets within the jib radius 
where hanas have prohferated and, in some cases, cover 
portions of or entire tree crowns. Avalos and Mulkey (1999) 
sampled canopy transects from this location under dry and 
wet season conditions (1994-1995), and found 20 liana 
species. During the dry season, at which time only 13 of the 
liana species maintained foliage, they estimated that of the 
canopy surface beneath the crane, 14.0% was occupied by 
lianas and 50.7% was occupied by the supporting trees. 
During the wet season, however, these figures changed to 
30.9% and 43.8%, respectively. 

2.1.2. Fort Sherman 
The second STRI canopy crane is located on the Carib- 

bean coast near Colón, Panama, in a tropical wet forest that 
receives an annual precipitation of approximately 3300 mm. 
The crane at this site has a height of 56 m and a boom length 
of 54 m. 

Species diversity at Fort Sherman (FTS) is greater than 
that at PNM. There are about 180 species of trees and lianas 
within the crane radius. Tree species include Tapirira 
guianensis (Anacardiaceae), Aspidosperma cruenta (Apoc- 
ynaceae), Cordia bicolor (Boraginaceae), several Inga sp. 
(Fabaceae-Mimosoideae), Carapa guianensis (Meliaceae), 
Brosimum utile (Moraceae), several Virola sp. (Myristica- 
ceae), Manilkara bidentata (Sapotaceae), Simarouba amara 
(Simaroubaceae), and Vochysia ferruginea (Vochysiaceae), 
among others. 

Lianas appear to be an important component of the 
biodiversity at FTS as well, although not to as great an 
extent as at PNM. When sampling was undertaken (March 
2003), numerous medium-sized and smaller trees were 
supporting lianas, whereas the tallest canopy trees were 
not. Lianas were particularly noticeable in the few cases 
where the supporting tree was in a partial to complete leaf- 
off condition. 

2.2. Sample collection 

From the gondola of each canopy crane, leaves of liana 
and tree species (Table 1) were collected March 5-14, 2003, 

Table 3 
Percentage of variance contained within first two eigenvectors/values in 
PCAl and PCA2 

Dataset 

Raw smoothed data First derivative Second derivative 

PCAl 
PNM 97.61 94.08 95.40 
FTS 98.89 97.25 96.80 

PCA2 
PNM lianas 98.69 94.01 94.02 
PNM trees 91.57 91.03 95.21 
FTS lianas 99.79 99.33 99.16 
FTS trees 97.78 94.34 93.63 

near the end of the dry season. Ten leaves were collected per 
species. Leaves were immediately placed in scalable plastic 
bags containing moistened paper towels. These bags were 
placed in a cooler containing ice, brought promptly to 
ground level to extract samples for chlorophyll analyses, 
and taken to a makeshift laboratory for spectral reflectance 
measurements. 

2.3. Measurements of chlorophyll content 

For five of the ten leaves, samples were cored from one 
side of the leaf midrib and placed in small plastic vials that 
were covered in tinfoil and frozen (the remaining five 
leaves were retained for other analyses). The first three 
leaves were, in most cases, the same leaves used later for 
spectral reflectance measurements, which were taken on 
the remainder of the leaf. In the case of small leaves, 
different leaves were used for chlorophyll content and for 
spectral reflectance measurements. The corer had a diam- 
eter of 1.6 cm. Chlorophyll a and chlorophyll b content 
per core were determined using the dimethyl sulphoxide 
(DMSO) extraction technique described in Hiscox and 
Israelstam (1979). A standard two-sample i-test was used 
to determine if there were significant differences between 
the means of liana and tree chlorophyll contents at the two 
sites. Where the assumption of equal variances was not 
met, a Welch modified two-sample i-test was used instead 
(Ott, 1993). 

Table 2 
Supervised classifiers used in this study (source; Duin, 2000) 

Code Classifier Description 

logic Logistic linear classifier 

qdc Normal densities based quadratic classifier (Bayes' rule) 
udc Uncorrelated normal densities based quadratic classifier 

Imnc Train feed forward neural network by Levenberg- 
Marquardt rule 

treec Binary decision tree classifier 
knnc ¿-nearest neighbor classifier 

Linear classifier computed by maximizing the likelihood criterion using the logistic 
(sigmoid) fiincfion. 
Quadratic classifier using the assumption of normal densities. 
Quadratic classifier using the assumption of normal densities with uncorrelated 
(independent) features. 
A neural network based on the backpropagation algorithm and Levenberg- 
Marquardt gradient descent. 
Decision tree classifier using information gain as a binary splitting criterion. 
Classifier for which the class labels of the k most similar neighbors are used to 
predict the class of the new object. The distance metric used in this case is 
the Euclidean distance. 
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2.4. Measurements of spectral reflectance 

Spectral reflectance measurements were taken using a 
UniSpec Spectral Analysis System (PP Systems, Ames- 
bury, MA, USA). The UniSpec VIS/NIR incorporates a 
256-element photodiode array, which covers a spectral 
range of 306-1138 nm at a sampling interval of 3.3 nm. 
It has a built-in light source (7.0 W halogen lamp) and 
may be fitted with a leaf clip that holds the foreoptic at 
60° and prevents entry of ambient light. The measuring 
diameter of the standard foreoptic used in this study is 
2.3 mm. 

The following sequence was used to perform spectral 
reflectance measurements of liana and tree leaves with the 
UniSpec spectrometer: (1) integration time was adjusted 
automatically with a white reference standard in the leaf 
clip, (2) number of scans per measurement was set to 10, (3) 
a dark scan was performed, (4) a reference scan was 
acquired, again with the white reference standard in the leaf 
clip, and (5) a sample was scanned. 

Of the 10 leaves collected per species, spectral measure- 
ments were taken for the first three healthy, mature leaves also 
used for analyses of chlorophyll content, with the exception 
of small-leaved species, for which different leaves were used 

Table 4 
Training and testing error (in percentage) for dataset-classifier combinations used in this study 

Parque Metropolitano 

Classifier Raw smoothed data 

PC Al PCA2 PCA2 (+chl) 

Training error Training error Testing error Training error Testing error Testing error 

logic 19.23 20.00 3.85 20.00 0 16.00 
qdc 15.38 20.00 7.69 4.00 100.00 100.00 
udc 11.54 16.00 15.38 16.00 3.85 16.00 
treec 0 20.00 0 24.00 0 12.00 
Imnc (neurons= =3) 3.85 16.00 3.85 16.00 0 8.00 
knnc (k=2) 0 16.00 0 12.00 0 12.00 

Classifier First derivative 

PC Al PCA2 PCA2 (+ 

Training 

chl) 

error Training error Testing error Training error Testing error Testing error 

logic 11.54 16.00 11.54 16.00 0 12.00 
qdc 7.69 16.00 7.69 4.00 0 8.00 
udc 7.69 16.00 15.38 12.00 3.85 16.00 
treec 0 20.00 0 24.00 0 8.00 
Imnc (neurons= =3) 0 12.00 0 16.00 0 4.00 
knnc (k=l) 0 20.00 0 16.00 0 12.00 

Fort Sherman 

Classifier Raw smoothed data 

PC Al PCA2 PCA2 (+chl) 

Training error Training error Testing error Training error Testing error Testing error 

logic 26.32 35.14 23.68 32.43 33.33 36.67 
qdc 23.68 40.54 13.16 29.73 50.00 50.00 
udc 23.68 40.54 23.68 37.84 20.00 43.33 
treec 0 21.62 0 21.62 0 43.33 
Imnc (neurons= =3) 15.79 27.03 0 24.32 6.67 36.67 
knnc (k=l) 0 16.22 0 21.62 0 26.67 

Classifier First derivative 

PC Al PCA2 PCA2 (+chl) 

Training error Training error Testing error Training error Testing error Testing error 

logic 26.32 45.95 23.68 37.84 30.00 43.33 
qdc 28.95 40.54 18.42 24.32 10.00 40.00 
udc 23.68 37.84 26.32 45.95 20.00 40.00 
treec 0 24.32 0 27.03 0 40.00 
Imnc (neurons= =3) 15.79 32.43 10.53 24.32 3.33 36.67 
knnc {k=2) 0 24.32 0 27.03 0 46.67 

Analyses based on first two spectral dimensions of the PCA only. 
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for the two types of measurements. Single-leaf reflectance 
spectra were obtained for only 3 of the total 10 leaves due to 
time constraints; however, the main purpose for collecting all 

10 leaves was for leaf stack measurements, which are not 
analyzed in this paper. Six reflectance spectra were recorded 
per leaf, avoiding the midrib, and later averaged. 
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Fig. 1. Classification of PNM liana and tree first derivative spectra using PCA method 1 and six classifiers: logistic linear (logic, top), quadratic (qdc, second 
from top), uncorrelated normal densities based quadratic (udc, third irom top), decision tree (treec, fourth fi'om top), neural network (Imnc, fifth from top), and 
¿-nearest neighbor (knnc, bottom). Points correspond to individual leaves (three per species). The large filled circle represents the overall PNM liana mean; 
smaller filled circles are ± 1 standard deviation from the mean. The large filled square indicates the overall PNM tree mean; smaller filled squares are ± 1 
standard deviation from the mean. 
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2.5. Spectral analysis 

2.5.1. Spectral smoothing and differentiation 
Raw spectral reflectance data were smoothed with the 

Savitsky-Golay least squares filter using a quadratic 
polynomial and a 25-point window. This filter was chosen 
because it smoothed the spectral data well with minimal 
efiiect on the position, shape and depth of spectral features 

(Press et al., 1996). First and second derivatives of the 
raw smoothed data were also computed using finite 
central differences from adjacent wavebands. Resulting 
datasets, therefore, were (1) raw smoothed data, (2) first 
derivative of raw smoothed data, and (3) second deriva- 
tive of raw smoothed data. The wavelength range retained 
for analysis was 450-950 nm in the case of datasets (1) 
and (2) and 500-800 nm in the case of dataset (3). These 
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regions were shortened as such due to noise on either end 
of the spectrum. 

2.5.2. Principal components analysis 
Principal components analysis (PCA) was used to reduce 

data dimensionality by isolating a small number of orthog- 
onal (uncorrelated) spectral attributes that constitute the 
maximum variations in the dataset (Femández-Cáceres et 

al., 2001). This approach involved computing the eigenvec- 
tors and eigenvalues of covariance matrices computed using 
two different sampling schemes. 

In PCA method 1 (PCAl), the smoothed data array 
containing all liana and tree spectra for the particular site 
was split in half, by taking every other spectrum, into 
training and testing sets. The PCA was then performed on 
the training data, after which all sample spectra (training and 
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Fig. 2. Classification of FTS liana and tree raw smoothed spectra by a ¿-nearest neighbor (knnc, k=2) classifier using PCA method 1. Points correspond to 
individual leaves (3 per species). The large filled circle indicates the overall FTS liana mean; smaller filled circles are ± 1 standard deviation from the mean. 
The large filled square indicates the overall FTS tree mean; smaller filled squares are ± 1 standard deviation from the mean. 

testing data) were projected into the eigenspace formed by 
the first two to four eigenvectors. 

In PCA method 2 (PCA2), the smoothed data array 
containing all liana and tree spectra for a particular site was 
split twice, first into separate liana and tree arrays, and then, 
within each, into training and testing sets corresponding to 
even and odd samples, respectively. PCA was performed 
twice, first for the liana training data, and then for the tree 
training data. The first two to four eigenvectors from each, 
weighted by their eigenvalues, were used to form a multi- 
dimensional subspace in which both the liana and tree spectra 
were projected for later training and classification. 

The methods described above were applied to the raw 
smoothed, first derivative, and second derivative datasets for 
the two locations. 

2.5.3. Pattern recognition techniques 
To test the hypothesis that tree and liana leaf spectra are 

separable, classification of spectra was attempted using a 
selection of supervised parametric (logistic linear classifier 
(logic), normal densities based quadratic classifier (qdc), and 
uncorrelated normal densities based quadratic classifier 
(udc)) and nonparametric (neural network (Imnc), decision 
tree (treec), and ¿-nearest neighbor (knnc)) classifiers (Table 
2). The parametric classifiers incorporate assumptions about 
population distributions, i.e. that classes are normally dis- 
tributed, whereas the nonparametric classifiers are relatively 
free of assumptions about population parameters. The six 
classifiers included in this study are representative of cur- 
rently used classifiers and were used to avoid possible biases 
due to the nature of the classifier, per se. The classifiers are 

Table 5 
Results of chlorophyll analyses for liana and tree leaves at PNM and FTS 

PNM FTS 

Lianas Trees 

p-value 

Lianas Trees p-value 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

Chl a 
Chlè 
Total chl 

0.0150 
0.0035 
0.0184 

0.1694 
0.0523 
0.2217 

0.0748 
0.0219 
0.0967 

0.0885 
0.0178 
0.1128 

0.1451 
0.0761 
0.1828 

0.1113 
0.0356 
0.1468 

<0.001 
<0.001 
<0.001 

0.0148 
0.0036 
0.0184 

0.1802 
0.0443 
0.2233 

0.0846 
0.0242 
0.1088 

0.0184 
0.0040 
0.0224 

0.1518 
0.0719 
0.2236 

0.0867 
0.0289 
0.1158 

0.734=' 
0.095 
0.458" 

All minimum, maximum, and mean values expressed in units of mg/sample. 
Chl=chlorophyll. All others tested with a Welch modified two-sample ¿-test due to unequal variances. 

'^ Tested using a standard two-sample ¿-test. All others tested with a Welch modified two-sample i-test due to unequal variances. 
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described in PRTools (Duin, 2000) and have the following 
characteristics when trained using supervised learning: 

1) Linear classifiers generate linear decision boundaries; 
they use estimates of the probability density functions to 
minimize the expected classification error. 

2) Quadratic classifiers fit gaussian models to data clusters 
that maximally discriminate between training samples. 

3) Uncorrelated normal densities quadratic classifiers are 
quadratic classifiers that make the assumption of 
independent features (a valid assumption when using 
PCA). 

4) Decision trees generate classification rules based on the 
selection of greatest to least important attributes and 
their ranges. 

5) Neural networks generate classification rules in terms of 
linear discriminate functions, over the attributes space, 
determined by non-linear perceptrons. 

6) Ä:-nearest neighbor classifiers classify unlabeled samples 
based on their similarity with k samples in the training set, 
where similarity is determined using a distance metric. 

Classification involved training and testing stages, which 
were identical regardless of the classifier used. In the first 
stage, the scalar products of the training data generated from 
the PCA were labeled 1 or 2, where l=liana and 2=tree, and 
used to train the various classifiers. Error estimation was 
generated for the training data. In the second stage, the 
projections of the testing data were classified based on the 
trained classifiers, and error estimation was performed again, 
this time for the testing set. In the case of PCAl, figures were 
plotted to show the projections of the liana and tree spectra in 
the eigenspace formed by the first two eigenvectors as well as 
the decision functions generated by each classifier. Figures 
were not plotted for PCA2 due to higher dimensionality. The 
above steps were repeated for each PCA output and each of 
the classifiers described in Table 2. 

In addition to these analyses, a variation of PCA2 was 
included in which four additional features (chlorophyll a, 
chlorophyll b, total chlorophyll, chlorophyll a/b ratio) were 
used as ancillary data in the classification. In this case, a total 
of eight features were used in both training and classification, 
four from PCA2 (the first two eiegenvectors each from the 
liana and tree PCA) and the additional four based on 
chlorophyll analyses. Although this study is primarily aimed 
at remote sensing applications, the chlorophyll data was used 
to explore the nature of possible differences in tree and liana 
leaves, since chlorophyll content is the dominant factor 
influencing reflectance in the visible region. 

2.5.4. Evaluation 
Evaluation was made at three levels in this study. The 

first was to determine the effectiveness of PCAl versus 
PCA2 for the separation of liana and tree spectra. The 
second was to assess the usefulness of the raw versus the 
first or second derivative data in the classification. The last 

was to compare the performance of the six classifiers used to 
distinguish between lianas and trees. 

At all three levels, performance was evaluated in 
terms of classification errors for both training and testing 
datasets. 

2.5.5. Software 
All calculations were performed using MATLAB Version 

No. 12 (The Mathworks). Classification of spectra was 
performed using the pattern recognition toolbox, PRTOOLS 
Version 3.0 (Duin, 2000), developed for use within Matlab. 

3. Results 

3.1. PCA approach 

The use of eigenvectors beyond the first and second was 
ineffective or detrimental to classification accuracy in many. 

Table 6 
Influence of number of spectral dimensions on classification accuracy (in 
percentage) using parametric classifiers 

PCAl Classifier 

logic qdc 

Training 
error 

Testing 
error 

udc 

Training 
error 

Testing 
error 

Training 
error 

Testing 
error 

PNM raw smoothed 
2 eig       19.23 20.00 
4 eig 7.69 20.00 

PNM first derivative 
2 eig       11.54 16.00 
4 eig       11.54 16.00 

FTS raw smoothed 
2 eig       26.32 35.14 
4 eig       23.68 37.84 

FTS first derivative 
2 eig       26.32 45.95 
4 eig       23.68 35.14 

PCA2 

15.38 
7.69 

7.69 
11.54 

23.68 
21.05 

28.95 
21.05 

20.00 
16.00 

16.00 
8.00 

40.54 
27.03 

11.54 
7.69 

7.69 
7.69 

23.68 
15.79 

40.54        23.68 
29.73        21.05 

16.00 
8.00 

16.00 
12.00 

40.54 
24.32 

37.84 
32.43 

PNM raw smoothed 
2 eig         3.85 20.00 7.69 4.00 15.38 16.00 
4 eig         0.00 24.00 0.00 16.00 11.54 16.00 

PNM first derivative 
2 eig        11.54 16.00 7.69 4.00 15.38 12.00 
4 eig         0.00 20.00 3.85 16.00 15.38 8.00 

FTS raw smoothed 
2 eig       23.68 32.43 13.16 29.73 23.68 37.84 
4 eig       18.42 40.54 2.63 18.92 18.42 24.32 

FTS first derivative 
2 eig       23.68 37.84 18.42 24.32 26.32 45.95 
4 eig       15.79 40.54 2.63 21.62 18.42 29.73 

eig=eigenvectors. 
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but not all cases (exceptions are noted below). As a result, 
the majority of the results shown are based on analyses 
involving the first two eigenvectors, which contained more 
than 90% of the data variance (Table 3). 

Over both sites, neither PC Al nor PCA2 provided 
consistently better separation of lianas and trees although 
PCA2 resulted in better classification accuracy than PC Al 
with overhalf of the classifiers used (Table 4). Classification 
accuracy of the PNM data was improved with the addition 
of chlorophyll ancillary data (PCA2+chl), for which the 
lowest error estimation was obtained using the first deriv- 
ative and neural network classifier in combination (Imnc, 
0% training error, 4% testing error). Under similar condi- 
tions, but using the raw smoothed data, the quadratic 
classifier (qdc) broke down likely due to overfitting (Table 
4). Fig. 1 presents the PNM tree and liana first derivative 

spectra projected into the eigenspace generated by PC Al 
along with decision functions generated by the six classi- 
fiers (due to higher dimensionality it was not possible to plot 
the results of PCA2). Whereas most of the highest classifi- 
cation accuracies were obtained using PCA2 with chloro- 
phyll ancillary data for PNM, the opposite occurred for the 
FTS data, for which the worst classification accuracies 
resulted from the PCA2 variation using chlorophyll data, 
although the two groups were not very distinct overall at this 
site. For the FTS data, the best classification resulted from 
the combination of the raw smoothed data and the Â:-nearest 
neighbor classifier (knnc), analyzed using PC Al (0% train- 
ing error and 16.22% testing error) (Fig. 2). 

The addition of chlorophyll ancillary data was clearly 
usefiil for discrimination between liana and tree leaf 
spectra at PNM, but not so for FTS. Indeed, analysis of 

• Eigenvector! 

Wavelength (nm) 

• Eigenvector!      Eigenvectors     •      Eigenvector4 

" Eigenvector! 

Wave!engt!i (nm) 

• Eigenvector! Eigenvectors        Eigenvector4 

Fig. 3. Principal component loadings in the spectral bands for PNM PCA! raw smoothed data (top), PNM PCA! first derivative data (second fi'om top), FTS 
PCA! raw smoothed data (3rd irom top), and FTS PCA! first derivative data (bottom). 
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Fig. 3 (continued). 

chlorophyll content showed highly significant differences 
in chlorophyll a, chlorophyll b, and total chlorophyll 
content between lianas and trees at the PNM site, whereas 
there were no significant differences at the FTS site 
(Table 5). 

Although not beneficial for nonparametric classifiers, the 
use of principal component dimensions beyond the second 
led to significant improvements in classification by the 
parametric classifiers, particularly qdc and udc (Table 6). 
Training errors were reduced in the majority of instances. 
Testing error was also reduced in many cases, and most 
notably by over 10% for a number of the FTS data 
classifications. 

Regardless of PCA method or site, the first principal 
component extracted fi^om the raw smoothed data generally 
followed the shape of the leaf reflectance spectrum (Fig. 

3). In other words, since reflectance was highest in the 
near-infrared, the highest loadings were also in this region. 
The second principal component stressed the green peak 
region (550 nm) as well as the red edge ( • 710 nm). The 
PNM and FTS sites have similar principal component 
loadings; they are simply mirror images of each other. In 
the first principal component of the first derivative data, 
the areas just beyond ( ~ 730 nm) and before the red edge 
(the chlorophyll absorption well, •685 nm) are stressed, 
followed in importance by the slopes before and after the 
green peak. The second principal component of the first 
derivative data has the greatest weightings in the red edge 
region ( • 710 nm) as well as the slope leading up to the 
green peak (•525 nm). These findings were fairly con- 
sistent for the PNM and FTS data as well as for the two 
PCA methods. 
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3.2. Dataset evaluation 

When comparing average raw smoothed spectra of the 
hana group vs. the tree group at the two sites (Figs. 4 and 
5), the average tree leaf reflectance is lower than the 
average liana leaf reflectance in the visible region, and 
the opposite occurs in the near-infrared. The trend in the 
visible region is more evident for the PNM site than the 
FTS site. For both sites, although similar phenomena 
occur in the near-infrared when averaged over all spectra 
(higher reflectance for trees than for lianas), near-infrared 
reflectance was extremely variable between species of the 
same structural group. Despite this, it was noted above 
that in the PCA, the near-infrared bands were consistently 
highly weighted in the first principle component of the 
raw smoothed data. 

Besides amplitude differences in the reflectance spectra 
of lianas and frees, shape differences are also confirmed by 
the first derivative spectra, such as in the immediate vicinity 
of the red edge at approximately 715 nm (Fig. 4). As well, 
the slope is greater for lianas in the region approaching the 
green peak. 

For the PNM dataset, there appears to be an advantage to 
using the first derivative of the dataset instead of the raw 
smoothed dataset in many cases, particularly when com- 
bined with PCAl or the PCA2 variation involving chloro- 
phyll data (Table 4). For example, there is a consistent 
improvement in the error of estimation for the training data 
when comparing, within the PNM data and PCAl, the raw 
and first derivative datasets. The opposite was true for the 
FTS dataset, for which classification was superior using the 
raw smoothed data rather than the first derivative. Classifi- 
cation results using the second derivatives were inferior to 
those involving either the raw or first derivative data, and 
were excluded from Table 4. This may have been related to 
noisiness as well as the fact that a reduced range of spectral 
reflectance data was used for the analysis (500-800 nm 
only). 

3.3. Classifier evaluation 

Evidently, classifier performance is highly dependent on 
the PCA method (PCAl, PCA2) as well as whether the data 
were in the raw or 1st derivative form (Table 4). 

450 500 550 600 800 850 650 700 750 

Wavelength (nm) 

- PNM average liana spectrum    PNM average tree spectrum 

FTS average liana spectrum      FTS average tree spectrum 

900 950 

0.04 

" 0.03 

'S 0.02 

•è 0.01 

-0.01 

Wavelength (nm) 

PNM average liana spectrum     PNM average tree spectrum 

FTS average liana spectrum      FTS average tree spectrum 

Fig. 4. Comparison of PNM and FTS average liana and tree spectra (top) and first derivative spectra (bottom) over the range 450-950 nm. 
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• FTS average liana spectrum      FTS average tree spectrum 

0.01 

-0.01 

Wavelength (nm) 

 PNM average liana spectrum   PNM average tree spectrum 

 FTS average liana spectrum    FTS average tree spectrum 

Fig. 5. Comparison of PNM and FTS average liana and tree spectra (top) and first derivative spectra (bottom) over the visible region (450-675 nm) of the 
electromagnetic spectrum. 

The parametric classifiers (logic, qdc, udc) provided a 
consistent classification in most instances; however, their 
performance was generally surpassed by the nonparametric 
classifiers (treec, Imnc, knnc), predominantly with regard to 
training accuracy. One noteworthy exception was the com- 
bination of PCA2 with either the raw or first derivative PNM 
data, and the qdc classifier for which training error was 7.69% 
and testing error was 4.00%. With respect to each other, the 
three parametric classifiers gave fairly similar classification 
results within a particular PCA method and dataset (raw or 
first derivative) combination. Uncorrelated normal densities 
(udc) was an appropriate assumption for PCAl since the two 
eigenvectors retained fi-om the PCA are by definition inde- 
pendent; however, that was not the case when the chlorophyll 
ancillary data was included (chlorophyll a, chlorophyll b, 
total chlorophyll, and chlorophyll a/b ratio). 

The three nonparametric classifiers (treec, Imnc, knnc) 
produced higher overall classification accuracy than the 

parametric classifiers; however, no one was consistently 
superior to the other two. For instance, for the PNM data 
(PCAl), the neural network classifier (Imnc) had the lowest 
training and testing errors (Table 4). For the FTS data 
(PCA2), the lowest training and testing errors were obtained 
using the Â:-nearest neighbor classifier (knnc) (Table 4). It is 
important to remember that each classifier has its own 
advantages and disadvantages, however. For instance, each 
time the neural network was used to classify the same 
dataset, the output was slightly different. This lack of 
reproducibility, which was a problem for this dataset, may 
become negligible for a larger dataset, however. Decision 
trees perform best when each attribute takes on a small 
number of disjoint possible values (Mitchell, 1997), which 
is not the case for this dataset. Performance on training data 
is excellent for decision trees while performance on testing 
data may be mediocre to poor, ¿-nearest neighbor classifiers 
have the disadvantage of long search times for classification 
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of the test data. For neural networks, choice of number of 
neurons, and for Â:-nearest neighbor classifiers, choice of k, 
also have an important influence on classification results 
and must be chosen carefully after initial experimentation. 
For decision trees, optimal pruning also requires additional 
tuning. Overall, it appears usefiil to test several classifiers 
for any classification, since their output is related to a 
number of factors, including the manner in which PCA is 
executed, the dataset used (raw, first or second derivative), 
as well as the amount of training and testing data available. 
The use of ancillary data, such as chlorophyll content in this 
case, was valuable for improving the classification of the 
PNM leaf spectra. A summary of results is presented in 
Table 7, which ranks each combination used in the analysis. 

3.4. Within-leaf and within-species variability 

Thus far, results have been shown for lianas and trees 
as  two   separate   structural  groups.   Initially,   this  was 

Table 7 
Ranking of methods used in tliis study for the two sites, PNM and FTS, 
based on overall percent classification error calculated from Table 4 
(l=lowest percentage error) 

PCA method Dataset Classifier PNM FTS 

PCA2 (chl) first derivative Imnc 1 7 
PCA2 (chl) raw Imnc 2 11 
PCA2 (chl) first derivative qdc 2 14 
PCA2 (chl) first derivative treec 2 7 
PCA2 raw qdc 3 10 
PCA2 first derivative qdc 3 8 
PCA2 raw knnc 4 2 
PCA2 (chl) raw treec 4 11 
PCA2 (chl) raw knnc 4 4 
PCAl first derivative Imnc 4 13 
PCA2 (chl) first derivative logic 4 24 
PCA2 (chl) first derivative knnc 4 12 
PCAl raw knnc 5 1 
PCA2 (chl) raw logic 5 22 
PCA2 first derivative Imnc 5 6 
PCA2 first derivative knnc 5 5 
PCAl raw Imnc 6 9 
PCA2 raw Imnc 6 3 
PCA2 (chl) raw udc 6 19 
PCA2 (chl) first derivative udc 6 16 
PCAl raw treec 7 2 

PCAl first derivative treec 7 3 
PCAl first derivative knnc 7 3 
PCAl first derivative qdc 8 21 
PCAl first derivative udc 8 18 
PCA2 raw logic 9 15 
PCA2 raw treec 10 2 
PCA2 first derivative treec 10 5 
PCA2 first derivative udc 11 23 
PCAl raw udc 12 20 
PCAl first derivative logic 12 23 
PCA2 first derivative logic 12 18 
PCA2 raw udc 13 18 
PCAl raw qdc 14 20 
PCAl raw logic 15 17 
PCA2 (chl) raw qdc 16 25 

justified using the argument that species-level analyses 
would be impractical at the remote sensing level, since 
multiple liana species were found on single tree crowns at 
both sites, and their percentage abundances on the crowns 
are unknown and changing. This approach leaves a 
number of unanswered questions regarding the variability 
present within the species studied, as well as within and 
between the two groups. In addition, which liana species 
are most indistinguishable from the tree species, and vice 
versa? If the hard-to-distinguish species are the most 
abundant at the site, potential classification could become 
even more difficult. 

Answering these questions requires a comprehensive 
discussion, which we aim to cover thoroughly in a future 
article, along with data to be acquired at PNM during the 
wet season. At this time, however, a number of preliminary 
observations may be made. First of all, within-leaf variabil- 
ity (based on six measurements per leaf) appears to be fairly 
low, as does between-leaf variability (based on three leaf 
samples per species) for a particular species (an example is 
given in Fig. 6). However, this depends highly on the 
condition of the leaves collected; in this case, uniform, 
healthy, mature leaves were collected. Leaves of the same 
species, but of different ages or health, will vary widely in 
their spectral reflectance properties. Within the PCA eigen- 
space, leaf samples from the same species in many cases 
clustered more tightly than with samples from other species 
within the same group, but there were exceptions. There 
were, therefore, species that exhibited greater within-leaf 
and within-species variability than others. Furthermore, 
three leaves per species is not a large enough sample size 
to make conclusive arguments on within-species variability 
in spectral reflectance. Within each group (lianas and trees), 
a large degree of variability was observed in the spectra, 
especially in the near-infrared region. Between the two 
groups, evidently some species are situated closer to deci- 
sion boundaries than others, and are thus more easily 
confused (Fig. 1). Within the lianas group, the main species 
that were confused with trees were: Arrabidaea candicans, 
Doliocarpus dentatus, and Mikania leiostachya. The tree 
species that was most often confused with the lianas was A. 
excelsum, the dominant canopy tree species within the reach 
of the crane. Although the difficulty rendered by this species 
appears to preclude classification of lianas and trees at 
PNM, it should be mentioned that the dominance of A. 
excelsum is particularly evident within the small PNM crane 
radius; beyond this radius, greater heterogeneity in the tree 
species composition is observed. 

4. Discussion and conclusion 

We have shown that lianas and trees at the tropical dry 
forest site of Parque Natural Metropolitano are separable 
based on their spectral reflectance at the leaf level and the 
use of pattern recognition techniques. Classification errors 
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on the PNM test data were low (4-16% in most cases) 
regardless of the PCA method, use of raw or 1 st derivative, 
or classifier, indicating that the two structural groups were 
clearly separable at that site (Fig. 1). The chlorophyll 
ancillary data, therefore, led to improvements on what 

was already a reasonably accurate classification. This dis- 
tinction, however, is much less clear at the tropical wet 
forest site of Fort Sherman, where the lowest classification 
error on the test data was 16% (Table 4), but in most cases 
varied between 20% and 40%. 

450 500 550 600 650    700 
Wavelength (nm) 

750 800 850 900 

450 500 550 600 650    700 
Wavelength (nm) 

750 800 850 900 

Fig. 6. An illustration of within-leaf and within-species variability for two species. The three top graphs show reflectance spectra (six/leaf) measured for each of 
three leaves of the liana species Tontolea ovalifolia. The fourth through sixth graphs (trom the top) show reflectance spectra (six/leaf) gathered for each of three 
leaves of the tree species Simarouba amara. In the bottom graph, average leaf spectra (three/species) are plotted for both species. 
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Fig. 6 (continued). 
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PCA2 may have been advantageous over PCAlin the 
case of the PNM data because it projected the test data into 
both hana and tree eigensubspaces and then combined the 
two subspaces to form a 4-D feature space for classification 
(in contrast to a simpler 2-D feature space for PCAl). In this 
4-D space, liana test spectra, if they are distinct fi^om tree 
spectra, would be expected to cluster closer to the liana 
training spectra than the tree training spectra. As mentioned 

previously, this was not the case for the FTS data, for which 
distinctions were not clear regardless of the combination of 
method and classifier used. 

The general effectiveness of both raw and first derivative 
datasets in these analyses indicates that both amplitude and 
shape differences between liana and tree spectra played a 
role in the classifications, although poor classifications 
resulted from the use of the second derivative. Particularly 
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Fig. 6 (continued). 
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notable, more so at the tropical dry forest site but also for the 
wet forest site, is a higher reflectance of liana leaves in the 
visible region as compared to trees, which was consistent 
with chlorophyll analyses that indicated lower chlorophyll 
a, chlorophyll b, and total chlorophyll content in lianas than 
in trees at PNM (not significant at FTS). 

Overall, nonparametric classifiers (Imnc, knnc, treec) 
performed better than parametric classifiers in the analyses 

(Tables 4 and 7). This is most probably due to the fact that 
parametric classifiers, besides assumptions about population 
normality, need a significant amount of training data to fit 
the decision functions. In particular, training error estima- 
tions tended to be lower for the nonparametric classifiers 
than for the parametric classifiers. 

Why do liana and tree leaf spectra differ at PNM? 
Differences in chlorophyll content between the two struc- 
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tural groups may provide only part of the answer. Additional 
differences may come to light with examination of acces- 
sory pigments (e.g. carotenoids) as well as internal leaf 
structural characteristics such as the degree of compactness 
of the mesophyll layer. Internal leaf structure is known to 
influence leaf reflectance in the near-infrared region such 
that higher reflectance occurs the greater the number of air- 
cell wall interfaces (Danson, 1995). Water content is another 
important factor determining leaf reflectance in the near- 
infrared (Grant, 1987). The greater the water content, the 
lower the reflectance in the near-infrared, especially around 
water absorption bands at 1.4 and 1.9 i^m. Another closely 
related question that arises is what sort of strategies have 
these two structural groups adopted that lead to differences 
in chlorophyll content and leaf reflectance? The most 
obvious possibility is phenological differences in the two 
groups. It has already been noted that, at PNM, there seems 
to be a greater tendency towards deciduousness in lianas 
than in trees (Avalos & Mulkey, 1999), and although the 
attempt was made to collect mature, healthy leaves, it is 
possible that, given the dry season conditions, some of the 
liana leaves were already progressing toward senescence, 
more so than for the tree leaves sampled, resulting in lower 
chlorophyll contents. A study of chlorophyll and leaf 
reflectance of lianas and trees at regular time intervals over 
the period of a year would elucidate these types of issues. 
Differing levels of water stress, or other stresses, such as 
nutrient stress (e.g. nitrogen), between the two groups, could 
also have induced the differences we observed in leaf 
reflectance between lianas and trees, and/or possibly differ- 

ences in photo synthetic capacity between the two structural 
groups. Avalos et al. (1999) formerly detected higher 
transmittance in tree leaves as compared to liana leaves, 
which was deemed a product of the distinctive crown 
architecture of each group. Lianas, which typically form 
monolayers above tree crowns, favor high light interception 
and low light transmission. Trees, in contrast, which typi- 
cally have many leaf layers, favor greater light transmission 
in order that inferior leaf layers also receive light. 

Drought stress and varying phenologies under the dry 
season conditions at PNM may have played a role in the fact 
that lianas and trees could be distinguished at PNM more 
readily than at FTS, a tropical wet forest. The difference in 
chlorophyll content between lianas and frees was greater at 
PNM than at FTS, which was mirrored in the leaf reflec- 
tance spectra. In addition, there was a notably higher 
chlorophyll a content of tree leaves at PNM as compared 
to tree leaves at FTS. This finding may be linked to the 
suggestion that deciduous dry forest tree leaves have higher 
photosynthetic capacities and nitrogen content than ever- 
green tree leaves (Medina & Klinge, 1983; Murphy & Lugo, 
1986). Alternatively, disparate results between PNM and 
FTS may be due to non-stress related factors, but rather to 
dissimilarities in the spectral characteristics of species 
adapted to two different environments. That the differences 
observed are related to species selection is another possi- 
bility, especially at FTS where only a few of the total 
number of species of lianas and trees were sampled. 

The utility of finding spectral differences between liana 
and tree leaves will be apparent if these differences translate 
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to the canopy level, and are detectable by airborne or 
satellite-borne hyperspectral sensors. If that is the case, it 
would be possible to map the current extent of liana 
communities and track their changes over time. In particu- 
lar, mapping liana communities could have significance for 
biodiversity assessments and carbon budgets, the latter due 
to the fact that carbon sequestration is impeded in areas 
where liana proliferation hinders tree regeneration (Schnit- 
zer & Bongers, 2002). On the other hand, where a tree 
species classification is the desired result, liana abundance 
could be a significant source of confusion. 

Detecting lianas at the canopy scale will not be as 
straightforward as detecting differences in spectral reflec- 
tance between lianas and trees at the leaf level. Parque 
Natural Metropolitano, for example, is considered tropical 
dry forest, and both liana and tree species have varying 
degrees of leaf longevity and deciduousness. Thus, for any 
liana-supporting tree, the proportion of liana leaves to tree 
leaves in the exposed upper crown area will vary throughout 
the year. Staggered leaf flush and leaf senescence between 
tree and liana species could also exaggerate or minimize 
spectral differences between the two groups at different 
times, since leaf age also is known to affect leaf spectral 
reflectance (Carter, 1993; Gausman, 1985). Diurnal changes 
in leaf angle will also affect spectral reflectance, especially 
if those changes are inconsistent between species, which 
appears to be the case. Lastly, helpful ancillary data, such as 
leaf chlorophyll content, may be difficult and expensive to 
acquire. 

We therefore conclude that, at the leaf level, we have 
identified a highly useful combination of principal compo- 
nents analysis and pattern recognition techniques to distin- 
guish between liana and tree species at a tropical dry forest 
site; however, we recognize that further study is required 
to clarify what physiological mechanisms are behind the 
differences between the two groups and if these differences 
are maintained throughout the year. As well, we recognize 
that additional research will be required, from both the 
ecological and remote sensing perspectives, to determine 
whether or not our results are transferable to the canopy 
level. At present it seems that the distinctions observed 
may be restricted to lianas and trees under dry season 
conditions. 
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