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Evolutionary biologists have developed an excellent 
understanding of the selective factors that shape the way in which 
a given organism allocates resources to male and female 
offspring•a process called sex allocation (1_). Studies of sex 
allocation have provided explanations for a wide range of 
phenomena•for example, the variation among animals in the 
proportion of offspring that are male (sex ratio), pollen-ovule 
ratios in plants, and the age of sexual transition in organisms such 
as certain coral reef fish that change sex during their lifetime (1, 
2). The strength of empirical support for the existence of sex 
allocation and the selective factors that shape it allows studies of 
sex allocation to address more detailed questions about natural 
selection. Furthermore, sex allocation theory can be used to 
elucidate the population structure and epidemiology of medically 
important pathogens such as the protozoan parasites that cause 
malaria. 
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Precision of Adaptation 
At a time when school boards in the United States are debating whether to include the theory of 
evolution by natural selection as part of the curriculum, studies of sex allocation are providing some of 
the best support for this theory (2). There are several reasons for this: (i) sex allocation can often have a 
clear, immediate, and direct effect on fitness; (ii) theoretical models are based on relatively simple 
trade-offs that often rely on only a small number of key variables; and (iii) the important variables are 
usually easy to measure. Moreover, relative to most other traits, sex allocation has the advantage that 
predictions of optimal allocation patterns can be derived from first principles that are directly linked to 
the most basic elements of evolutionary theory. 

For example, extreme sex ratio adjustments in fig-pollinating wasps confirm many of the tenets of 
evolutionary theory (3-5). There are many species of fig-pollinating wasps, and in each case, female 
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wasps pollinate and lay eggs in the enclosed fruit of their own host fig species. Mating occurs between 
the wasps that develop in the same fruit, before the females disperse. Typically, if only a single female 
lays eggs in a fruit, she produces an extremely female-biased sex ratio (only 5 to 10% of the offspring 
are males). As the number of females laying eggs in a fruit increases, the sex ratios in the broods 
become less biased (see the figures, immediately below). Although there are deviations between 
observed sex ratios and those predicted by theory (6), the fit is often very close. 
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A fig of one's own. Precision of adaptation and the sex ratios of fig-pollinating wasps. Shown are the 
observed sex ratios (circles) and theoretical optima (curved lines) for different numbers of female 
fig-pollinating wasps (from three species of the genus Pegoscapus) laying eggs in a fruit. The numbers 
next to the circles show the relative frequency with which that number of females lays eggs in a fruit in 
nature•that is, in the fig species pollinated by P. herrei, 0.96 of fruit have only one female enter 
(pollinate and lay eggs), 0.03 have two females enter, and 0.01 have three enter. The observed sex ratios 
of progeny are closest to theoretical situations (number of females laying eggs in a fruit) that are 
encountered most frequently (4). The observed shifts in sex ratio are greatest in species where the 
number of females laying eggs in a fruit is more variable. 

Broody female wasps. The variation (observed/binomial) in sex ratios of offspring when only one 
female lays eggs in a fig fruit (the dashed line represents binomial variance). The more frequently only 
one female lays eggs in a fig fruit, the less variation there is in the sex ratio of the progeny. [Adapted 
from (5)] 
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The observed deviations from the predicted optimal sex ratio are not random. When different 
fig-pollinating wasp species are compared, the mean sex ratio of offspring produced by a given number 
of females laying eggs in a fruit is closest to theoretical predictions for the situations (number of females 
laying eggs in a fruit) that are encountered most frequently in that species (4). Furthermore, females 
show a greater ability to alter their brood sex ratios (in response to variations in the number of females 
laying eggs in the same fruit) in those species where the number of females entering a fruit is more 
variable (4) (see the figure, below). Finally, females show less variation in the sex ratio of their broods 
in the situations (number of females laying eggs in a fruit) that they encounter most frequently (5). 
Although these data provide strong evidence for adaptive sex allocation, they also suggest that 
organisms vary in the degree to which their behavior fits theoretical optima. 

More daughters for inbreeders. (Left) Sex ratios of progeny can be used to estimate the rate of 
inbreeding in protozoan blood parasites such as those causing malaria. The predicted sex ratio 
(proportion of gametocytes that are male) is plotted against the inbreeding rate (14). When the rate of 
inbreeding is high, the sex ratio is constrained by the need to produce enough male gametes to fertilize 
female gametes. This constraint is determined by c, the mean number of viable gametes released by a 
male gametocyte (c is equivalent to the maximum number of times that a male could mate). (Right) Sex 
ratios can be used to estimate the rate of inbreeding in the malaria parasite Plasmodium and in the 
intestinal parasite Toxoplasma. Sex ratios of progeny in malaria (and other blood parasites) are 
extremely variable, suggesting that the inbreeding rate also varies enormously. This is not unexpected 
given that the degree of inbreeding is likely to depend on infection rates: The greater the number of 
parasites infecting a host, the lower will be the rate of inbreeding (14). In contrast, the greater female 
bias in the sex ratios of the progeny of intestinal parasites such as Toxoplasma suggests higher rates of 
inbreeding. 

Sex allocation offers excellent opportunities for examining the constraints and limits on adaptation. 
Unfortunately, the best understood constraints on adaptation tend to be striking developmental or 
phylogenetic examples that are of limited general application. Very little is known about factors limiting 
adaptation that could be applied to most organisms (7), such as mutation, antagonistic pleiotropy (genes 
that improve one aspect of adaptation while reducing another), and processing of information from the 
environment. 

The most striking sex ratio patterns have been found in insects, especially the Hymenoptera (ants, bees, 
wasps). The haplodiploid genetic system of these insects allows females to control the sex of offspring 
by regulating whether eggs are fertilized or not•males are haploid (single set of chromosomes) and 
develop from unfertilized eggs, whereas females are diploid (double set of chromosomes) and develop 
from fertilized eggs. In contrast, vertebrates rarely exhibit extreme skews in sex ratio, which may reflect 
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a constraint imposed by chromosomal sex determination (j_). However, recent studies of mammals and 
particularly birds (for example the Seychelles warbler) have shown some striking shifts in the sex ratio 
of offspring (8), suggesting that, contrary to popular assumptions, genetic sex determination is not an 
all-powerful constraint on sex allocation. 

There are alternative explanations for why fewer cases of extreme sex ratio skews exist in vertebrates. A 
fig wasp may be able to assess the number of females currently laying eggs in the same fruit more easily 
than a mammal can assess factors influencing sex allocation, such as the amount of lactation that she 
will be able to provide or the genetic quality of her mate (9). Extreme shifts in vertebrate sex ratios may 
represent cases where variables can be assessed reliably. For example, among Seychelles warblers the 
variable is the quality of territory, which is determined by the availability of their food source (insects). 
The daughters of warbler offspring help their parents rear subsequent progeny, whereas the sons 
disperse. In high-quality territory, having a helper is advantageous and so predominantly daughters are 
produced, whereas in low-quality territory the increased competition for food means that a helper is a 
disadvantage and so mainly sons are produced. Another complication for vertebrates is that the 
combination of factors influencing sex ratio can be complex. This complexity decreases the selective 
advantage of shifting the sex ratio in response to any single factor. In most wasps, the selective 
consequences of any particular brood sex ratio are immediately realized. By contrast, adult life-spans in 
most vertebrates are relatively long, resulting in complications that arise from overlapping generations 
(10) or interactions between siblings (6). 

Using Sex Allocation to Infer 
Characteristics of a Population 
Sex allocation provides an easy way to estimate population characteristics that are technically difficult 
or expensive to measure directly (1J_). One example, with potentially important benefits, is the use of 
sex allocation patterns in malaria (Plasmodium) and other protozoan parasites to infer the amount of 
inbreeding (also called the selfing rate, which is defined as the proportion of a female's daughters that 
are fertilized by her sons). Because the rate of inbreeding in these parasitic species can influence the 
evolution of resistance to vaccines and drugs, inbreeding estimates are important for designing effective 
control and treatment programs (12). Direct measures of the inbreeding rate using molecular genetics 
can be difficult to obtain, and past estimates have been extremely controversial (12). Sex allocation 
theory allows the inbreeding rate to be estimated more readily because the occurrence of inbreeding 
skews the sex ratio of offspring in favor of females, analogous to the situation in fig wasps (13, 14). The 
higher the level of inbreeding, the greater is the predicted female bias of the sex ratio. The amount of 
inbreeding (F) can be predicted from the observed sex ratio (r) by the refreshingly simple equation F = 
1 - 2r. Consequently, if we assume that the sex ratio theory is correct, then the inbreeding rate can be 
estimated from sex ratio data. An advantage of this method is that sex ratio data can be collected 
relatively easily from a number of populations and species, allowing generalizations to be made (see the 
figure, above). In cases where both indirect sex ratio data and direct genetic estimates of the inbreeding 
rate are available, they are in quantitative agreement, supporting the use of this approach (14). 

More generally, sex allocation theory applied to protozoan parasites provides support for the application 
of evolutionary optimization models to infectious disease research (14). Despite having to assume 
equilibrium states (not an obvious feature of microparasite populations), simple theory is able to explain 
variation in a life-history trait (sex ratio) across a taxonomically diverse range of protozoan parasites 
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(14, 15). In particular, it provides a clear demonstration of the importance of population structure in 
determining natural selection in parasitic protozoans. Theory suggests that the virulence of parasites 
should respond to the same changes in population structure (16). 

Applying sex allocation to the prediction of characteristics of a population or species has great potential 
because inferences can be made about any factor that influences the optimal pattern of sex allocation 
(11). For example, it can be very difficult to determine whether animals recognize kin and, if they do, 
the cues that are involved. In social insects•ants, bees, and wasps•workers adjust the sex ratios of 
offspring in response to their relatedness to the males and females that they are raising, indicating that 
workers have a mechanism for accurately recognizing kin (17). To what extent nonsocial insects 
recognize kin, and whether kin recognition has facilitated the evolution of social behavior is less well 
established. Local mate competition (LMC) theory allows us to test for kin recognition in solitary wasps 
and bees: Discriminating females should produce a more female-biased sex ratio if they mate with a 
sibling rather than outbreeding with unrelated males (3, 18). 

Initially driven by attempts to explain the sex ratios of seemingly obscure insect species, sex allocation 
studies are now yielding valuable evidence in support of the theory of evolution by natural selection, 
and are also proving important for elucidating the biology of protozoan parasites. 
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