Smithsonian Contributions to Astrophysics VOLUME 2, NUMBER 10 ORBITAL DATA AND PRELIMINARY ANALYSES OF SATELLITES 1957 ALPHA AND 1957 BETA Compiled by F. L. WHIPPLE, L. G. BOYD, J. A. HYNEK AND G. F. SCHILLING Ufa ?asfe SMITHSONIAN INSTITUTION Washington, D. C. 1958 UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1958 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1 Foreword The Smithsonian Institution has a long history of supporting and publishing astronomical research. This tradition began in 1848, when, two years after its founding, the Smithsonian published Sears C. Walker's "Researches Relative to the Planet Neptune," which presented an ephemeris for that planet, then newly discovered. Through the years before and after establishment of the Astrophysical Observatory in 1890 there appeared in various Smithsonian publications a succession of articles and monographs by such noted astronomers and physicists as Draper, Michelson, Morley, Shaler, Newcomb, and Angstrom. Of particular significance in the light of current events are two papers by Robert H. Goddard, the "father of modern rocketry," that appeared in Smithsonian Miscellaneous Collections. These two papers?"A Method of Reaching Extreme Altitudes," in 1919, and "Liquid-Propellant Rocket Development," in 1936?describe Smithsonian-supported researches that were basic to the development of modern rockets which made it possible to place the first artificial earth satellites in orbit. It is highly appropriate, therefore, that this first collection of optical observations of the 1957 satellites, and the resulting orbital data, should appear in the Smithsonian Contributions to Astrophysics. LEONARD CARMICHAEL, Secretary, Smithsonian Institution. m Preface Since the first artificial earth satellite was successfully launched by the U. S. S. R. on October 4, 1957, the Astrophysical Observatory of the Smithsonian Institution has had to fill a dual role. To carry out our contract obligations to the U. S. National Committee for the International Geophysical Year, a majority of our staff has taken part in the visual acquisition and optical tracking of these satellites, in rapid analyses of the data to provide orbital predictions, and in precise analyses of the data as they relate to basic research projects. At the same time, we have attempted to discharge our equally important responsibility for communicating these data, as quickly as possible, to the scientific com- munity. During all the weeks and months since the first launching, we have made a concerted effort to share the data we acquired, rapidly and widely. Only 10 days after Satellite 1957 Alpha was in orbit, we had compiled, mimeographed, and distributed our first special report on its orbital characteristics. Since then, we have issued reports at roughly 2-week intervals, and have distributed them to staff members of institutions taking an active part in tracking the satellites, as well as to other scientists who requested these reports for use in various research projects. Our primary object was to collect preliminary orbital data and other relevant information from all possible sources, and to make them avail- able immediately, in a concise form, to our co-workers who were attacking the problems of orbit analysis. The urgency of our primary task? carrying out our contract obligations to track the satellites, analyze the data, and transmit orbital predictions to the observing stations? required that we arrange the contents strictly according to availability and relevance to the immediate problem. While this method did, indeed, meet the basic requirements, the need for haste made it impossible for us to organize the material as logically as we might have wished. In the beginning, we supposed that new developments would make the material obsolete within a very short time, but we were mistaken. We soon realized that we had grossly underestimated both the current and the continuing demand for these reports. We had expected, originally, to have time to extract from these raw data those that we judged to be of permanent value, but because of the pressure of events we see no way to carry out this plan in the near future. The second U. S. S. R. satellite has been joined in its orbiting by the U. S. Explorer, and from now on consecutive launchings of other satellites will undoubtedly continue. Thus for some time to come many members of our staff will devote full time to optical tracking and orbital analyses. Consequently, we are publishing the raw data so that they will be readily available to interested scientists for their various research projects. These data are presented very much as they appeared in the original reports; the spelling of place names has not been changed except for some obvious typographical errors. VI PREFACE Although we realize that this collection of reports can be considered only a stop-gap, to serve until the U. S. S. R. publishes in full the detailed scientific data resulting from its own measurements of Satellites 1957 Alpha and 1957 Beta, we hope, nevertheless, that it will accomplish its chief purpose. Inadequate though the material may be in comparison with the precise results of future treatment, the raw data will now be available to all, as intended by the International Geophysical Year. As the basis for new analyses, new facts, and new concepts, we hope that this collection will demonstrate the incalculable potential value of this new tool of science?the artificial earth satellite?in the study of our planet and the space surrounding it. FRED L. WHIPPLE, Director, Astrophysical Observatory, Smithsonian Institution. Cambridge, Mass., March 15, 1958. Contents Page Introduction: G. F. SCHILLING 189 Preliminary Orbit Information for U. S. S. R. Satellites 1957 al and a2: G. F. Schilling and T. E. Sterne 191 Additional Orbit Information for U. S. S. R. Satellites 1957 al and 01: J. S. Rinehart and G. F. Schilling 199 Some Preliminary Values of Upper Atmosphere Density from Obser- vations of U. S. S. R. Satellites: T. E. Sterne and G. F. Schilling . 207 Glossary of Astronomical Terms for the Description of Satellite Orbits: J. Ashbrook, G. F. Schilling, and T. E. Sterne 211 Soviet Orbit Predictions and Orbital Information for Satellites 1957 a l , a 2 , a n d B e t a : G . F . S c h i l l i n g a n d E . S . F e r g u s s o n . . . . 2 1 9 Visual Observations of Satellite 1957 al Made by Moonwatch Stations: L. Campbell, Jr., and J. A. Hynek 245 An Interim Model Atmosphere Fitted to Preliminary Densities Inferred from U. S. S. R. Satellites: T. E. Sterne, B. M. Folkart, and G. F. Schilling 275 Soviet Orbit Information for Satellites 1957 a2 and 01: G. F. Schilling. 281 Basic Orbital Data for Satellite 1957 01: L. G. Jacchia 285 Processed Observational Data for Satellites 1957 Alpha and 1957 B e t a : R . M . A d a m s , N . M c C u m b e r , a n d M . B r i n k m a n . . . . 2 8 7 Successive Revisions of Orbital Elements for Satellite 1957 Beta: L. G. Jacchia 339 A Chart for Finding a Satellite's Distance and Elevation: J. W. Slowey 343 Recent Orbital Information 345 Bibliography 347 Introduction By G. F. SCHILLING The U. S. National Committee for the Inter- national Geophysical Year of the National Academy of Sciences assigned to the Astrophys- ical Observatory of the Smithsonian Institu- tion the responsibility for carrying out the IGY Optical Satellite Tracking Program. The in- formation contained in this collection of re- ports was obtained, in part, through the activi- ties of this program. The National Science Foundation has given financial support in the form of grants to the Smithsonian Institution. Additional contributions toward the costs of administration and data analysis have been made by the Smithsonian Institution. Dr. Fred L. Whipple, director of the Astro- physical Observatory, acts as project director. Dr. J. Allen Hynek, associate director of the Observatory, is in charge of the operation of the Optical Tracking Program, which includes three major activities: (1) Project Moonwatch, di- rected by Mr. Leon Campbell, Jr., operates and coordinates the activities of some 220 visual observing stations in the United States and abroad. The groups of amateurs who man these stations are volunteers who devote many hours, under sometimes arduous conditions, to the work of acquiring a satellite when it first goes into orbit, and of recording the final stages of its flight. (2) A world-wide network of 12 preci- sion photographic stations set up by Dr. K. G. Henize and his staff is now almost completed. (3) A computations and analysis center, under the direction of Mr. R. M. Adams, receives and analyzes the data transmitted by the visual and photographic stations, and, in turn, sup- plies the stations with orbital predictions. A communications staff supervised by Mr. C. M. Peterson links these three aspects of the pro- gram and provides the vital channels for world- wide transmission of data. In addition to the staff of the tracking pro- gram, senior members of the staff of the Astro- physical Observatory in Cambridge contribute to the scientific aid statistical treatment of the data. Administrative assistance is given by a group at the Smithsonian Institution in Wash- ington under the supervision of Mr. J. J. Love, who is directly responsible to the Assistant Secretary, Dr. J. L. Keddy. The entire optical program, therefore, is an integral part of the research effort of the Smith- sonian Astrophysical Obertvatory. The U. S. National Committee for the IGY, through its Technical Panel on the Earth Satellite Program and its Satellite Program Office, as well as through the Panel's Working Group on Track- ing and Computation, offers advice and guid- ance in the direction of the program, which is closely coordinated with the analogous program of radio tracking and computations carried out at the Naval Research Laboratory. It would be impossible to attempt to list by name the many thousands of scientists, tech- nicians, amateurs, and laymen, in the United States and abroad, who have furnished observa- tional data and in other ways contributed to this collection of reports. Their tireless efforts and enthusiastic cooperation have made pos- sible the compilation of these data. Particular appreciation goes to Mr. Paul H. Oehser and Mr. Ernest Biebighauser, of the Editorial and Publications Division, Smith- sonian Institution, for their invaluable help in the publication of this collection of reports. Notation system for satellites The tentative system of notation, suggested by Whipple, identifies each artificial earth satellite in the following manner: the year of launching is followed by a letter of the Greek alphabet to indicate the order of the satellite's launching within the year, and, when more than one object is observed from one launching, a number is added to indicate relative brightness. When the orbiting rocket assembly or assemblies from one launching are referred to as a whole, or when the components are not distinguished nor considered separately, the Greek letter is spelled out and the succeeding number is omitted. 189 190 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS In these reports the first two Soviet satellites and their component parts are identified as follows: Satellite 1957 al designates the carrier rocket, the brightest component from the first Soviet launching (Sputnik I) on October 4, 1957; Satellite 1957 oQ. refers to the satellite proper, the next brightest component; and Sat- ellite 1957 a3 indicates a third, faint object which may be the nose cone that shielded the satellite during its launching. Satellite 1957 01 designates the instrumented carrier rocket of the second satellite assem- bly (Sputnik II) launched into orbit by the U. S. S. R. on November 3, 1957; Satellite 1957 j82 identifies an unconfirmed rocket component, or possibly the nose shield, also in orbit. There have been isolated reports, unconfirmed, which appear to indicate the existence in orbit of a third component from the 1957 Beta firing, which would be 1957 03. Preliminary Orbit Information for U. S. S. R. Satellites 1957 al and oc2 l By G. F . SCHILLING 2 and T. E. STERNE 3 The preliminary information contained in this report is presented in partial fulfillment of obligations of research contracts of the Astro- physical Observatory of the Smithsonian Insti- tution with the U. S. National Committee for the International Geophysical Year of the National Academy of Sciences, and the National Science Foundation. While all statements and information presented at this time must be considered of an extremely tentative and, in part, even speculative nature, we nevertheless consider it desirable to collect these preliminary data in a concise form to make them rapidly available to the USNC-IGY. It will be understood that current develop- ments can be expected to make this report obsolete within a very short time. General information The U. S. S. R. announced the successful launching of an artificial earth satellite on Oct. 4, 1957. Original information4 included the following basic data: Orbit inclination 65? Periodicity lh 35? Weight 83.6 kg Diameter 58 cm Radio transmission: Output 1 watt High frequency 40.002 Me Low frequency 20.005 Me Passing over Moscow 0146 hours 0642 hours Note that these data on orbit inclination, periodicity, and time passages over Moscow are sufficient to determine, to a first approxi- ' Carried out in part under NSF Grant No. Y/30.10/167; Special Report No. 1, IG Y Project No. 30.10, Smithsonian Astrophysical Observ- atory, Cambridge; originally issued Oct. 14,1957; re-issued Dec. 2, 1957. > Executive Assistant to the Director, Smithsonian Astrophysical Observatory, and Research Associate, Harvard College Observatory. 'Associate Director, Smithsonian Astrophysical Observatory, and Professor of Astrophysics, Harvard College Observatory. ? Telephone, Dr. R. W. Porter, Washington, D. C , to Dr. G. F. Schill- ing, Cambridge, Mass., 21:40 EDT, and 22:10 EDT, Oct. 4,1957. mation, the location in space of the orbital plane. Immediate contact was established between the Office of the Director, Astrophysical Observatory, Smithsonian Institution, and the Control Center of Project Vanguard, Naval Research Laboratory.5 First reports on reception times of radio sig- nals from the satellite were received from: Naval Research Laboratory, 20:45 EDT October Washington, D. C. 4. Radio Corporation of America, 21:00 EDT October New York, N. Y. 4. Stanford University, Stanford, 19:30-19:47 PST Calif. October 4. 20:41-21:20 PST October 4. The first alerts.?Moonwatch stations in the Central and Western States had already been alerted at 19:30 EDT on October 4 by Dr. J. A. Hynek, in charge of the Optical Satellite Tracking Program at the Astrophysical Obser- vatory. Station participation was excellent, but no reliable visual sightings were obtained throughout October 4 and 5. The general alert for Moonwatch stations was terminated on October 5. When subsequent orbit computations predicted areas and periods of possible visual sightings, selected Moonwatch stations in the Eastern States were alerted and given observing instructions. The first con- firmed U. S. Moonwatch sighting was reported from New Haven, Conn., at 5:23 EST on Oct. 10, 1957. The satellite tracking camera under test at Pasadena, Calif., was alerted and ordered on standby operation.' Four Super-Schmidt cameras of the Harvard ? Telephone, Dr. G. F. Schilling, Cambridge, Mass., to Dr. H. E. Newell, Washington, D. C , 20:10 EDT; Dr. Newell to Dr. Schilling, 22:25 EDT, October 4; and subsequently direct operational TWX oon- nrction. ? Telephone, Drs. J. A. Hynek and G. F. Schilling, Cambridge, Mass., to Dr. K. G. Henize, Pasadena, Calif., 1930 EDT, Oct. 4.1957. 191 192 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Meteor Project, located at stations in New Mexico, were alerted and ordered on stand-by operation.7 In addition, the Sacramento Peak Observatory was alerted.8 The Agassiz Station of the Harvard College Observatory at Harvard, Mass., was alerted for radio reception and possible tracking on radio frequencies.9 The first official reports.?At 06:00 EDT, Oct. 5, 1957, the U. S. National Committee for the IGY was informed 10 that analysis of all infor- mation received by this time at the Astrophysi- cal Observatory led to the following conclusions: The orbital plane of the U. S. S. R. satellite was located in space with respect to the sun in such a way that visual and optical observations were not possible at this time from the U. S. main- land. Favorable areas for possible visual sight- ings were Alaska, northwestern Canada, and possibly Antarctica. However, it could be ex- pected that possibly within one week, definitely within two weeks, twilight observations could be made in the United States. The above information was then also trans- mitted by telegrams to Dr. L. Carmichael, Secretary, Smithsonian Institution, and Dr. L. V. Berkner, CSAGI Coordinator for Rocket and Satellite programs. Since analysis of twilight visibility indicated that the first likelihood of optical sightings in the United States would occur along and off the U. S. East Coast, arrangements with the Geophysics Research Directorate, AFCRC, were initiated by Dr. John S. Rinehart, As- sistant Director, Smithsonian Astrophysical Observatory, with Dr. G. R. Miczaika, Geo- physics Research Directorate, to utilize special aerial cameras for this purpose. Subsequently, several good photographs were obtained of the last rocket stage and analyzed and measured by Dr. G. Van Biesbroeck." Soviet orbit predictions Tables 1 to 8 contain information released by Moscow Tass and Moscow Soviet Home Service. 7 Dr. R. E. McCrosky, Cambridge, Mass., to Mr. G. Schwartz, Sac- ramento Peak, N. Mex., 21:00 EDT, October 4. ? Dr. R. E. McCrosky, Cambridge, Mass., to Sacramento Peak, N. Mex., 21:05 EDT October 4. ? Dr. O. F. Schilling, Cambridge, Mass., to Drs T. K. Menon and O. R. Miczaika. ? Telephone, Drs. F. L. Whipple and O. F. Schilling, Cambridge, Mass., to Dr. R. W Porter, Washington, D. C , Oct. 6, 1957. ii Consultant, Smithsonian Astrophysical Observatory. The values are predictions of times of satellite passages over world points. All times are Mos- cow time throughout.12 Optical sightings Harvard Announcement Cards (reproduced in fig. 1.) list confirmed optical sightings out of a wealth of information supplied by stations around the world. In addition, the cards give preliminary information on orbit characteristics. The information contained on these cards does not establish priority nor is the listing complete. Computing and predicting the orbit The computation and analysis center of the Optical Satellite Tracking Program at the Astro- physical Observatory has been in continued operation since Oct. 4, 1957. From incoming data, rapid analysis provided orbit information which was successively released to the partici- pating IGY stations and astronomical observa- tories on a priority basis depending on oper- ational needs. In addition, simplified informa- tion was released to the general public through the news media of press, radio, and television. Earliest precise predictions were made on October 5 for the Minook Meteor Station in Alberta, Canada, with the objective of obtain- ing photographs with a Super-Schmidt camera located at this point. Unfortunately, in- clement weather made this impossible. Apart from specific predictions for selected stations no general orbit predictions were distributed between October 5 and October 10. First sightings in both the southern hemisphere and Alaska reported visual magnitudes brighter than could be reasonably expected from the U. S. S. R. data. In addition, the sightings occurred at times in advance of the predicted satellite passages. After careful analysis, the conclusion was reached by Dr. R. E. McCrosky that the reported optical sightings were of the last rocket stage rather than of the satellite itself. This fact was later confirmed by Soviet statements. Commencing October 10, precise orbit pre- dictions were made for dozens of stations every day, upon request. This service is still continuing. Sample copies of telegrams and TWX mes- 11 Note: OMT plus 3 hours: Moscow time; EST plus 5 hours: OMT; EST plus 1 hour: EDT; Moscow time minus 8 hours: EST. HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1374 Satellite M?a ? Since artificial earth satellite! are ahort-lired astronomical bodies they should, pre- aumably, be handled observationaliy and orbitally u are comets. As a tentative syiitem of notation, pend- ing IAD agreement, we shall identify each one by the year ofito launching, followed by a letter of the Greek alphabet, to indicate successive order of launch- ing. When more than one object is observable from one launching, a number shall follow the Greek letter in inverse sequence of brightness; the brightest com- ponent shall be si, the next brightest ?2, etc. From press and radio accounts. Satellite 1967* was launched by the USSR during the night of October 3-4. Observations of only two components have been reported to the Astrophysical Observatory of the Smithsonian Institution. AU estimates of brightness for ?1 (both visual and photographic) give the second magnitude. Estimates of ?2 range from the 4th to the 6th magnitude. From USSR reports of the satel- lite's dimensions, o3 is probably the radio satellite and i l is the last rocket stage. The following optical observations of Satellite 1957 ?1 and ?2 have been received: Source Date Time Position Type October U.T. of Obi. Geophysics Institute, College (Fairbanks), Alaska 6* 01" 00" ?5# N 180* E vis. Alt. As. Mt. Stromlo, Canberra, Australia 8 9* 37- 31' 13* 37" - ? ? R.A. Dec. Sydney, Australia Wood 8 9* 39- 8? 16* 50-7 -82 '? R. A. Dec. Woomera Range, Australia Lat. 30* W8 8 Xong. 136' ? 'S E 8 ii* i s - ? 25- 3tra N aw \ra Alt. As. New Brook, Alberta, Canada ? ? 19- S8- N L W ST Beak , Ut . ong. UT3 ? 11* 83- 11< 15* 37- N R A 1DST October 11 3 49M pg. . A. Dee. Fus L. Wanna SATELLITES 1957 AND ?2 193 HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1375 j 1*57.1.? Mr. Jack W. Sknrey, Dr. Don A. utman, and Dr. Richard E. McCrosky of the Astro- physical Observatory of the Smithsonian Institution m Cambridge, Massachusetts, have obtained the fol- lowing equatorial elements and perturbations for Satellite 1957.1: a = 1.0890781 Earth Argument Perigee = 91.77894 0 ? 32723388 True Anomaly 206*40725 Instant Osculation 1967 October 9.404M The period appears to be shortening appreciably. October IS, 1967 Ttm L. Wsnnu HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1378 Satellite 1*S7?L ? One of the photographs of the last stage of the rocket obtained by the Physical Labora- tories of Boston University, Boston, Massachusetts, has been reduced. It yields the following data: Time U.T. R.A. (I960) Dec. (IBM) 1967 October 14 10*10-42)06 102*182 4327 104.052 44.60 106.788 40.88 108.785 48 X 110347 Longitude 4*44-25?5 Latitude 42'21'0".o Accuracy: Time =tO?.O6 73201 72.503 71X88 7024s Position ?0*406 The reductions were made by Drs. Hawkins and Aschenbrenner of Boston Univenri October tl, IDS! ty. FBSBL. W n m c FIGURE 1.?Harvard Announcement Cards giving preliminary orbital characteristics for Satellites 1957 a l and al. sages distributing pertinent information are given below. 07 OCT 1957 ALL IOY STATIONS BETWEEN 35 AND 75 DEGREES NORTH AND SOUTH LATITUDE TO IOY WORLD WARNING CENTER SATELLITE OR THIRD STAGE REPORTED SECOND MAGNITUDE. REPORT VISUAL POSITION OBSERVA- TIONS BY THEODOLITE OR SMALL TELESCOPE IN SUN RISE 8KY NORTH OF LATITUDE 35 DEGREES OR SUN SET SKY SOUTH OF 35 DEGREES LATITUDE WITH ACCURATE TIME TO SMITHSONIAN ASTROPHYSICAL OBSERVATORY THROUGH IGY WORLD WARNING CENTER, FT. BELVOIR. (SMITHSONIAN ASTROPHYSI- CAL OBSERVATORY). 5:30 PM EST 7 OCTOBER 1957 A8TRONOMICAL OBSERVATORIES IN THE NORTHERN HEMISPHERE SATELLITE OR THIRD STAGE REPORTED SECOND MAGNITUDE STOP PLEASE REPORT COLLECT VISUAL FIELD THEODOLITE OR SMALL TELESCOPE POSITION OBSERVATIONS SUNRISE (SUNSET IN TELE- GRAMS TO SOUTHERN HEMISPHERE) SKY ACCURATE TIME TO SATELLITE CAMBRIDGE VIA DR WHIPPLE. OCT 7, 1957 DR RICHARD PORTER COPY TO MR REID ACCORDING USSR INFO THIRD STAGE TRAILED BY 600 MILES. WE BELIEVE RADIO TRACKS SATELLITE BUT VISUAL SIGHTINGS ARE THIRD STAGE. HAVE ALERTED IGY WORLD WARNING CENTER FOR IGY 8TATIONS 35" TO 65? LATITUDES NORTH SUNRISE AND SOUTH SUNSET TO OBSERVE SECOND MAGNITUDE OBJECT. OUR COMPUTATION CENTER IN FULL OPERATION. SCHILLING OCT 8. 1957 1800EDT DR BUTLER ROYAL OBSERVATORY EDINBURGH SCOTLAND CROSSING NORTH 40 LATITUDE DIRECTION TIME UT LONGITUDE OCT 8 SWNE 2355 04 EAST OCT 9 SWNE 0031 20 WEST SWNE 0207 45 WEST NWSE 0542 23 EAST NWSE 0718 02 WEST 8WNE 2258 02 FAST SHIFT LONGITUDE 3 DEGREES WEST PER DAY AND TIME 3 MINUTES LATER SIGNED GAU8TAN SATELLITE CAMB MASS. OCT 8, 1057 1715EDT DR ERICH P HEILMAIER DIRECTOR DEL INSTITUTO DE FISICA Y ASTRONOMI CA DE LA UNIVERSIDAD CATOLICA DE CHILE. SANTIAGO, CHILE. FREDERICO RUTTLANT DIRECTOR DEL OBSERVATORIO ASTRONOMICO DE LA UNIVERSIDAD DE CHILE SANTIAGO, CHILE RUS8IAN SATELLITE PREDICTED POSITIONS EASTERN STANDARD TIME AT 40 DEGREES NORTH LATITUDE. October 9th 0530 0707 0843 1820 1956 2132 0644 0820 0957 1934 2110 2246 50 degrees west long NW to SE 74 98 116 92 68 170 East Long SW to NE 146 122 23 West Long 48 72 SIGNED HYNEK OCT 9, 1957 1214 EDT FROM SATELLITE CAMBRIDGE MASS SMITHSONIAN ASTROPHYSICAL OBS TO BYRD STATION VIA AOIWARN BUSTAN FT. BELVOIR VA. 194 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS AOIWARN BUSTAN FT. BELVOIR VA. PLEASE PASS TO B Y R D 8TA X SATELLITE PO8ITION8 OF OCT 10TH. 1714 UT 108 DEO SO MINS WEST 51 DEO 55 MIN8 SOUTH. 1717 UT 80 DEO 33 MINS WE8T 59 DEO 18 MINS SOUTH. 1722 UT 52 DEO 01 MINS WE8T 65 DEO 07 MINS SOUTH. 1727 UT 14 DEO M MINS WEST 50 DEO 14 MINS SOUTH. 96m2 MINS REGRES- SION 3 DEO. PER DAY M A G N I T U D E E8TIMATE 8ECOND E N D . T D B CAMBRIDGE MASS OCTOBER 101957 C 8 BEAL8 DOMINION OBSERVATORY OTTAWA ONT N E X T FAVORABLE PASSAOE OF 8ATELLITE AT 1019 UT AZIMUTH FIFTY DEQREES A L T I T U D E THIRTY TWO DEGREES APPRECIATE DATA A N D PHOTO SMITHSONIAN ABTROPHYSICAL OBSERVATORY T D B CAMBRIDGE MAS8 OCT 10, 208AME DR GORDON LITTLE OEOPHY8ICAL INSTITUTE COLLEGE ALASKA SATELLITE PREDICTIONS OCTOBER T E N T H . 1323 UT 163 DEGREES. 07 MINUTES WEST 64 DEGREES 52 MINUTES NORTH. 1325 UT 147 DEOREE8 13 MINUTES WEST 62 DE- GREES 54 MINUTES NORTH. 1327 U T 134 DEGREES. 08 MINUTES WEST 59 DEGREES 19 M I N U T E 8 NORTH. PERIOD 96.2 MINUTES. INCLINATION 65 DEOREES. RE- GRESSION 3 DEOREES PER DAY. ANOTHER PASSAGE 1501 UT 171 DEOREES 30 MINUTES WEST 62 DEQREES 54 MINUTES NORTH. SHIFT PATH ACCORDINGLY. APPRE- CIATE ACCURATE OBSERVATION WHIPPLE SMITHSONIAN A8TROPHYSICAL OBSERVA- TORY PLEASE PASS FOLLOWING MSO TO U S NATIONAL COM- MITTEE IOY WASHINGTON D C A T T N MR R U T T E N B E R O PHONE EXECUTIVE 3-8100 E X T 402 A N D ALSO DIRECT TO WILKE8 STATION ANTARCTICA X SATELLITE ORBITAL PLANE HAS MOST SOUTHERN POINT SLIGHTLY NORTH OF WILKE8 L A N D ANTARCTICA AT ABOUT 0610Z CLOSEST APPROACH X SINCE THIS COR- RESPONDS TO A LOCAL SOLAR ANGLE OF ONE HOUR THIRTY FIVE MINUTES OR ABOUT N I N E T Y M I N U T E 8 AFTER LOCAL NOON THERE, SATELLITE A N D VERY LIKELY THIRD STAGE ALSO, WILL REMAIN INVISIBLE IN NOON SKY FOR SOME TIME X SATELLITE REPORTED FOURTH TO FIFTH MAGNITUDE X THIRD STAGE RE- PORTED SECOND MAGNITUDE X ADDITIONAL ORBIT POINTS A N D SOLAR ANGLES FOLLOW 03S3Z 22H23M 0434Z OH 00 M 0S10Z 01. 35 M 0746Z 03H 11 M VISIBILITY PROBLEMS FOR OTHER US ANTARCTIC STA- TIONS NOW ON COMPUTER X WILL ADVISE OF POSITIVE RESULTS IF ANY X SCHILLING. OCT 11,1957 Moonwatch The immediate alert on October 4 of all U. S. (and selected foreign) Moonwatch stations was abrogated beef use of the fact that in the United States Satellites a\ and a2 could not be ex- pected to be observed in the morning twilight period for the next several mornings. The following operational policy was then adopted: Since Moonwatch teams represent entirely volunteer efforts, it was decided to alert a limited number, about a dozen stations each morning, so as to distribute the work load as evenly as possible. The stations alerted were chosen on the basis of greatest likelihood of visibility of ol ; weather predictions were taken into account in the selection process. Operational tests earlier in the year had determined that, in the United States, com- munication by telephone was the best method, leading most directly to positive alerts. In addition, telegrams were used for confirmation and for the dissemination of general information to groups of stations. Sample telegrams are given below: ME8SAGE FOLLOWED BY 12 ADDRESSES PCS R PD LO OCTOBER 10 OCTOBER 1957 OBSERVE MORNING TWILIGHT 11 OCTOBER NW TO SE PASSAGE E X P E C T E D 0524 EST PLUS OR MINUS 5 MIN- UTES X IMPORTANT TO OBSERVE BOTH BRIGHT OBJECT A N D FAINT SATELLITE FOLLOWING ABOUT TWO MINUTES SIGNED A R M A N D SPITZ SATELLITE CAMBRIDGE MASS N E W YORK MOONWATCH COMMITTEE CARE OF ROBERT S WHITE NATIONAL B D T N O COMPANY ROOM 582 EXTENSION 2241 NEW YORK CITY X FOLLOWING DAYLITE CROSSINGS IN U. S. OCT 12 57 EST LONG WEST OF GREENWICH NO LAT 0521 AUGUSTA ME OVERHEAD 0521 66 40 0523 62 35 0525 59 30 0655 GREAT FORKS N D OVERHEAD 0658 90 40 0659 87 35 0701 NASHVILLE A N D MIAMI OVRHD ?0835 111 35 0701 83 30 0834 BOI8E IDAHO OVRHD 0835 114 40 ?0837 108 30 1010 138 40 1011 135 35 1013 132 30 SIGNED J ALLEN HYNEK Current information It must be emphasized that the information presented below is rather speculative at this time. With more and more reports of precise visual and photographic observations becoming available, the computation and analysis center is concentrating on calculating and refining the precise orbit characteristics as data come in. However, these tentative conclusions may be helpful in assisting stations to calculate approxi- mate parameters for individual needs on the basis of general predictions issued. The U. S. S. R. satellite (o2) has been reported as ranging from the brightness of a fourth magnitude to that of a sixth magnitude star. SATELLITES 1957 a l AND ?2 195 Fourth magnitude corresponds approximately to the brightness of the three fainter stars in the handle of the Little Dipper (Ursa Minor). Sixth magnitude is just visible to the naked eye under extremely favorable conditions. The last rocket stage (al) has been reported as an object of magnitude ?2 (about the same as Jupiter) to +2 (Polaris). It is observed in advance of the satellite proper in approximately the same orbital plane. It can be easily photo- graphed. Unconfirmed observations report a third, faint object which may be a rocket component which shielded the satellite during the launching phase. All two?or possible three?objects are re- ported to be in elliptical orbits with inclinations of about 65? to the earth's equator. Projected on the celestial sphere, the orbital planes (on October 12) could be visualized as passing near Cassiopeia, Castor and Pollux in Gemini, and the Southern Cross. The nodal period of Satellite al was 95.75 minutes on October 13, and appears to be decreasing at a rate of about 4 seconds per day. The approximate apogee and perigee distances on this day were about 450 miles and 130 miles, respectively. It can be expected that the U. S. S. R. satel- lite proper (a2) will stay in its orbit for at least several months. The orbital elements of the last rocket stage (al) are changing rapidly. From the change in period, it can be inferred that its apogee distance is decreasing at a rate of about 4 miles per day, if the perigee distance is constant. It is expected that the last rocket stage may stay u*"? until some time in December. 196 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Predictions received Oct. 5, 1957 Table 3.?Predictions received Oct. 8, 1957 Satellite 1957 Alpha October 5 October 6 Place Time Place Time Magadan Calcutta Ulan Bator Karachi Alma-Ata Baghdad Halifax Detroit Washington 1552 1916 1923 2054 2058 2322 1452 1630 1633 Yakutsk Prague Riga Moscow Oslo Rangoon Bandung Leningrad Moscow Bombay Damascus Manchester Paris Rome 0025 0149 0151 0152 0327 0528 0535 (0549?) 0649 0560 0^34 1005 1006 1009 Table 2.?Predictions received Oct. 7, 1957 Satellite 1957 Alpha October 7 Place Zomba Wellington Apia Honolulu Coral Harbor (Kanerallk?) Canary Isles Accra Capetown Sydney Selkrlk Battle Harbor Cape Verde Isles Aleutian Islands Dawson Quebec Boston Bermuda Isles Belem San Salvador Kemp Land Onslow Tokyo Shelton, Alaska Dawson Minneapolis Saint Louis Jacksonville Havana Montevideo Southern Sandwich Isle (Kergelen Isles?) Bangkok Hanoi Perlng Okhotsk Sltka Vancouver Mexico Puerto Decardo South Orkneys Madras Hyderabad Time 1026 1100 1108 1118 1134 1138 1148 1156 1209 1239 1306 1317 1328 1439 1445 1455 1456 1500 1510 1514 1538 1555 1610 1622 1624 1633 1634 1637 1639 1658 1607 1722 1741 1743 1749 1754 1804 1807 1816 I838 1843 1917 1919 Place Satellite 1957 Alpha October 8 October 9 Time Place Time Oakland 1104 Honolulu 1120 Coral Harbor 1136 Melbourne 1238 Newfoundland 1321 Kemp Land 1402 Marianas Islands 1432 Ottawa 1457 New York 1459 Rio de Janeiro 1518 Jakarta 1601 Manila 1607 Hiroshima 1612 Yuzhno Sakhalinsk 1616 Panama 1645 Rangoon 1744 Lanchow 1749 Okhotsk 1756 San Francisco I8l2 Bombay 1920 Delhi 1924 Irkutsk 1930 Vllsk 1933 Graham Land 2024 Ashkhabad 2102 Barabinsk 2107 Cairo 2235 Krasknodar 2239 Stalingrad 2240 Kuibyshev 2241 Sverdlovsk 2243 Vilyulsk 2251 South Shetland Islands 2342 Tunis Rome Budapest Minsk Moscow Kotlas Khabarovsk Tokyo London Ooeteborg Archangel Yeniseisk Ulan Bator Peking Sydney Santiago Shetland Islands Archangel Omsk Borneo Panama Newfoundland Reykjavik Petrozavodsk Gorky Aralsk Stalinabad Kabul Delhi Detroit Oslo Vilnyus Moscow Kiev Kerch Batumi Baghdad Los Angeles Winnipeg Dortmund Venice Madagascar 0013 OO15 0016 0018 0019 0021 OO33 0037 0154 0156 OI59 0205 0209 0212 0235 O3O5 0333 O338 0343 0401 0453 0505 0511 0517 0518 0522 0525 0526 0528 0639 06 51 0659 O656 0657 O658 0659 0702 O812 0818 0833 0835 0855 Table 4.?Predictions received Oct. 9, 1957 Satellite 1957 Alpha October 9 October 10 Place Addis Ababa Madrid Algiers Fiji Islands Canary Islands Melbourne Newfoundland Cherbourg Ottawa New York Jakarta Manila Nagasaki Vladivostok New Orleans Rangoon 0845 1012 1014 1111 1153 1242 1322 1448 1459 1620 1600 1613 1615 1640 1745 Time Place Time Rome Budapest Minsk Moscow Oslo Khabarovsk Tokyo Rio de Janeiro London Goteborg Archangel Enlseisk Irkutsk Ulan Bator Peking Sydney 0017 0018 0019 0021 0022 003S OO38 0134 0155 0157 0201 0207 0210 0211 0214 0237 SATELLITES 1957 al AND o2 197 Table 4.?Predictions received Oct. 9,(continued) 1957 Place Satellite 1957 Alpha October 9 October 10 Time Place Time San Francisco Los Angeles Bombay Delhi Bratsk Johannesburg Ashkhabad Honolulu Krashnodar Saratov Perm Yakutsk Samoan Islands 1814 1815 1922 1925 1932 2045 2104 2131 2241 2243 2245 2254 2318 Table 5.?Predictions Santiago Archangel Omsk Semlpalatinsk Hanoi Panama Petrozavodsk Vologda Kuibyshev Stalinabad Kabul Madras Mexico Detroit Oslo Vilnyus Minsk Kiev Kerch Baghdad Los Angeles Winnipeg Glasgow Brussels Munich Madagascar received Oct. 10, 0307 0339 0343 0346 0355 0454 0518 0519 0521 O526 0527 0533 0634 0641 0655 0657 O658 0659 0700 0704 0814 0819 O832 0834 0835 - O856 1957 Satellite 1957 Alpha October 10 October 11 Place Time Place Cordoba Fiji Coral Harbor Adelaide, Australia Port Harrison Kemp Land (Name Indistinct) Australia The Comodores Fairbanks Detroit Washington Haiti Bandung Shanghai Vladivostok Sakhalin Maryland Denver Santiago Chita Ugolnaya San Francisco Tierra del Fuego Madagascar Karachi Addis Ababa Teheran Aralsk Omsk Ust-Kamchatsk Graham Land Ankara Kerch Perm Turukhansk Ayan The Kuriles Samoan Islands 1010 1108 1136 1239 1316 1403 1422 1441 1447 1457 1459 1504 1600 1610 1614 1617 1623 1635 1658 1753 1801 1812 1842 1908 1922 2053 2100 2103 2106 2117 2203 2237 2239 2243 Algiers Genoa Vienna Warsaw Leningrad Vladivostok Tokyo Montevideo Rio de Janeiro Manchester Oslo Archangel Ulan Bator Canberra Archangel Nizhnly Tagil Bangkok Bandung Newfoundland Reykjavik Leningrad Moscow Ashkhabad Bombay Chicago Reykjavik Oslo Kalingrad Odessa Baghdad Los Angeles London Paris Rome Madagascar 2247 2253 2257 2315 Time 0012 0015 0016 0017 0019 0035 OO36 0128 0132 0154 0156 0200 0209 0236 O338 0341 0355 0401 0504 0512 0516 0517 0524 O638 0648 O651 06 54 0659 0701 0812 0832 0833 0835 0854 Table 6.?Predictions received Oct. 11, 1957 Satellite 1957 Alpha October 11 October 12 Place Time Place Vancouver Coral Harbor Prederikshbab, Greenland Lisbon Casablanca Port Elizabeth, Africa Portville Careross Coral Harbor Green Cape Islands Adelaide Towns vllle, Australia Dlllingham Daws on Halifax Joa Pesoa Kemp Land Augusta The Kuriles Fairbanks Port Arthur, Canada Detroit Georgetown Caracas Cuyritiba, So. America Singapore Canton Hangchow Pyongyang Khabarovsk Magadan Waylen Denver San Antonia Santiago Calcutta Ulan Bator Chita Ugolnaya Graham Land Madagascar Island Karachi Alma-Ata Krasnoyarsk Vilyuisk Dutch Harbor, Alaska Graham Land Capetown Baghdad Krasnovodsk Omsk Magadan Ust-Kamshatsk Graham Land Batw Istanbul Sebastopol Kharkov Perm Okha, Sakhalin The Kurlles 0950 0957 1000 1009 1011 1032 1107 1129 1135 1152 1839 1243 1305 I3O8 1319 1335 1401 1414 1436 1455 1454 145S 1458 1505 1517 1600 1606 1608 1610 1614 1617 1621 1633 I636 1656 1742 1749 1750 1758 1843 1905 1919 1924 1923 1932 1940 1022 2038 2057 2059 2104 2113 2115 2201 2224 2235 2236 2238 2241 2252 2254 Freetown Marseilles Munich Riga Leningrad Kharbin Osaka Wellington Buenos Aires Liverpool Oslo Archangel Kizyl Hangkow Melbourne Lapaz, So. America Bridgetown Belomor Nizhniy Tagil Karaganda Lhasa Rangoon Bandung Albany, Australia San Jose Newfoundland Reykjavik Leningrad Moscow Guryev Ashkhabad Karachi Bombay Guadalajara Oklahoma Chicago Reykjavik Bergen Goeteborg Warsaw Odessa Los Angeles Port Nelson London Paris Zomba Time 0002 0012 0013 0015 0016 0030 ??33 OO58 0125 0150 0153 OI56 0204 0210 0230 0307 0306 0334 0338 0341 0347 0351 0358 0407 0405 0502 0507 0513 0514 0517 0519 0524 0526 0528 0633 0635 0646 0648 0649 O652 0654 0808 O815 0828 0829 0848 460132 O?58 2 198 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL.2 Table 7.?Predictions received Oct. 12, 1957 Table 8.? Predictions received Oct. 13, 1957 Place Satel l i te 1957 Alpha October 13 October 14 Time Place Time Satellite 1957 Alpha October 14 October 15 Place Time Place Wellington, New Zealand Samoa Islands Honolulu Fort Nelson Coral Harbor Kogador Accra Capetown Sydney Cannacks, Canada Kemp Coast Pegane Aleutian Islands Dawson Quebec Bel em Rio de Janeiro Kemp Land Onslow Tokyo Petropavlovsk- Kamchatsky Ugolnaya Dawson Winnipeg Saint Louis Jacksonville Precisely F. Montevideo Bangkok Peking Okhotsk Anadyr Vancouver, Canada Mexico Puerto Deseado, South America Madras Irkutsk Yakutsk Ugolnaya Graham Land Maskat Stallnabad Barnaul Vilyuisk Aleutian Islands Graham Land Windhoek, Africa Damascus Erevan Astrakhan Chelyabinsk Okhotsk Petropavlovsk- Kamchatsky Accra Tripoli Sofia Kiev Moscow Yuzhno Sakhalin 0925 0932 0942 0953 O958 1013 1020 1033 1103 1130 1223 1240 1303 1308 1319 1333 1340 1402 1418 1434 1440 1443 1447 1454 1457 1600 1620 1604 1612 1617 1621 1630 1640 1701 1740 1751 1754 18OO 1845 1919 1924 1928 1932 1940 2023 2042 2057 2059 2101 2103 2114 2117 2226 2233 2235 2238 2239.5 2254 Mogador Madrid Paris Copenhagen Leningrad Archangel Chita Mukden Moresby Hamilton, New Zealand Rosario Azore Islands Orkney Island Archangel Chungking Penang Lima Caracas Petrozavodsk Frunze Calcutta Guatemala Washington Montreal Reykjavik Tallinln Moscow Baku Denver Duluth Reykjavik Berlin Sofia Cairo Spokane Barcelona 0009 0011 0013.5 0015 0017 0019 0028 0032 0047 0100 0126 0146 0153 OI58 0212 0231 0309 0315 0335 0343 0350 0452 0459 0500 0509 0513 0515 0519 06 34 O636 0647 06 52 O656 0659 0812 O831 Auckland, New Zealand Honolulu Port Nelson Abijan, Africa Melbourne Newfoundland Kemp Land Berden, Australia Fairbanks Ottawa New York Bele JL Rio de Janeiro Manila Osaka Yuzhno-Sakhalinsk Ugolnaya Fairbanks Kansas City Hcana Panama Buenos Aires Banrkok Chunghsien Taiwan Okhotsk Anadyr Cordova, Alaska Vancouver Guadalajara Tierra del Fuego Bombay Yakutsk Ugolnay Graham Land Johannesburg Tashkent Novosibirsk Aleutians Honolulu Graham Land Cairo Damascus Tbilisi Kuibyshev Sver S Erdlopsk Vilyuisk Okhotsk Petropavlovsk- Kamchatsky Accra Tripoli Naples Belgrade Kiev Moscow movement from SW to NE Syktyvkar Khabarovsk Sapporo Tierra del Fuego Rio de Janeiro 0925 0942 0954 1019 1100 1141 1223 1243 1308 1319 1320 1333 1340 1428 1434 1437 114443 1446 1457 1502 1506 1520 1604 1608 1610 1617 1621 1625 I630 1638 1702 1741 1751 1759 1843 1903 1923 1927 1940 1950 2023 055 057 2059 2102 2103 2110 2113 2116 2225 2232 2234 2236 2238 2239 2241 2252 2254 2342 2352 Time Lisbon London Stockholm Archangel Ulan London Stockholm Archangel Ulan-Ude Peking Brisbane Santiago Hebrides Archangel Novosibirsk Chengtu Derby, Australia Quito Petrozavodsk Tashkent Delhi Knoxvllle Cleveland Ottawa Reykjavik Stockholm Riga Minsk Moscow movement from NW to SE Kharkov Tbilisi Muscat Phoenix Denver Port Harrison Reykjavik Berlin Athens Cairo Addis Ababa Madagascar 0009 0013 0016 OO19 0013 00016 001Q. 0028 0031 OO53 0125 0151 0157 0202 0210 0225 0310 0335 0343 0346 0456 0457 0459 0507 0512 0513 0514 0515 0516 0518 0524 0631 0633 0639 0645 O651 0655 O658 0705 0711 Additional Orbit Information for U. S. S. R. Satellites 1957 a l and |3l' By J. S. RINEHART a and G. F . SCHILLING Preliminary orbital information on Satellite 1957 Alpha was presented in the preceding report. The present report expands and brings up to date the material which we judged to be of immediate interest to co-workers involved in problems of orbit analysis. The tentative system of notation identifies each satellite by the year of its launching, fol- lowed by a letter of the Greek alphabet to indicate successive order of launching. A num- ber follows the Greek letter in inverse sequence of brightness; the brightest component shall be al, the next brightest a2, etc. Satellite 1957 al , therefore, designates the rocket stage of the first satellite launched, and Satellite 1957 oQ. designates the satellite proper. Unconfirmed observations report a third, faint object which may be a rocket component which shielded the first satellite during the launching phase. Satellite 1957 /31 designates the U. S. S. R. carrier rocket launched into orbit on Nov. 3, 1957. Again we realize that the information is of an extremely tentative and, in part, even spec- ulative nature. Furthermore, current develop- ments can be expected to make this report obsolete within a very short time. Launching information for Satellite 1957/81 The U. S. S. R. announced the successful launching of a second artificial earth satellite on Nov. 3, 1957. Original information con- tained the following basic data: Orbit inclination Approx. 65? Periodicity 102 to 104 min Weight of instrumentation. 508.3 kg Satellite configuration Last rocket stage Radio transmission output: High frequency 40.002 Me Low frequency 20.005 Me 1 Carried out in part under NSF Grant No. Y/30.10/167: Special Re- port No. 2, IOY Project No. 30.10, Smithsonian Astrophysical Observa- tory, Cambridge; first issued Nov. 5,1967. 1 Assistant Director, Smithsonian Astrophysical Observatory, and Research Associate, Harvard College Observatory. Apogee distance In excess of 1500 km Passing over Moscow 0330 Nov. 3 0905 Nov. 3 Instrumentation Solar radiation (UV and X-ray) Cosmic rays Internal temperature and pressure Female dog in air-condi- tioned capsule with food supply Biophysical parameters [More detailed information was released later and excerpts can be found on page 219 of this publication. Photographs of some of the instru- mentation as well as a schematic diagram were made available by the U. S. S. R. Embassy, Washington, D. C , and have been widely printed in journals and magazines. Refer, e. g., to "Satellite Talk," Sky and Telescope, vol. 17, p. 129,1958; and a critical analysis by Friedman (1958), listed in the bibliography.] On Nov. 5, 1957, Drs. C. A. Whitney, L. G. Jacchia, and G. Veis derived the following or- bital elements for Satellite 1957 Beta, from U. S. S. R. announcements and three optical sightings: Epoch and time of osculation Nov. 4.3952 UT (at ascending node). Inclination t=63?.8dbl? Period P=103.6?0.05 min Right ascension of node a a = lll?.0?0.?l Eccentricity e=0.105 Semi-major axis (in equatorial a=1.1463 radii). Argument cf perigee ?=44? + 0.?6/day Orbital characteristics Preliminary information on orbital characteris- tics for Satellites 1957 al , a2, and Beta was distributed on Harvard Announcement Cards shown in figures 1 and 2. Earlier satellite information was released on Cards 1374, 1375, and 1376 3 (see p. 193). > Cards 1377 through 1370 did not refer to artificial satellites. 199 200 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1380 riill lTlli IMTaZ.? Dr. Paul Herget, Dr. Gerald M . Clemenoe, and Dr. Raynor L. Duncombe of the Nava l Research Laboratory in Washington, D C . have re- ported the following ephemeris for Satellite 1957.2: Satellite a t ascending node October 25.1007 a t longi- tude ISS.'S W with period 95.44". Dai ly variation of Time Oil 4JD 8JO no16-0 20 JO MJO MJO noMJO 40 JO 444 ma noMJO 60JO MJO MJO no no maMJO MJO MJO no -J040-. Westward n "16 per period. E r a n Long. 1S3JW 147.4W 1402W 130.1W 113.8W MAW J0.1W 23SW 8?W OiE 7.1E 12 SE 17.4E 22 6E 28 7E 36.9E 492E 69 IE USB 1289E 1493E 161.9E 170.4E 177.1E 177SE November 1,1)67 lotion of equatorial cross Kara Lat. 00 14.9N 29.7N 43 AN 56.1N 64.1N HJN55JN 44.5N 32.0N 19.1N 6.1N 6.68 192S 313S 43.0S 5318 S1J8 66.18 61.48 52.4S 40.58 2738 13JOS 1.7N Yam Height (Kilometen) 280 240 220 230 240 310 380 460 540 630 700 770 830 870 M0 890 870 830 760 690 600 510 420 340 280 L.WHJWL. HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1381 Satellite l*57al. ? Dr. Charles A. Whitney, Dr. Rich- ard E. MeCrosky, and Dr. Luigi G. Jacchia, of the Astrophysics! Observatory of the Smithsonion Insti- tution in Cambridge, Massachusetts, have obtained the following two search ephemerides for operational use for Satellite 1957.1: Nomenclature: Zero points of the two ephemerides below are determined in the following Rocket at ascending equatorial node October 292I2KT.) U.T. at longitude 151."9 (A.) east with period 94.68 minutes. T. = time of nth succeeding nodal passage A = terrestrial longitude (east from Green- wich) of ascending node. T. = T. + 00557520 n -1.1172 X KT* n1 - 7.747 X 10"" n* A = A. -364.07 ?''(T - Oct. 295121) Scales of the ephemerides are the following: Period is divided into 24 equal time intervals Longitudes measured east from the ascending node and are computed for a rotating earth. Heights are above geoid EPHEUEKU (1) Period = 94" Time Long. Lat. Height (Kilometers) 000 392 7.83 11.75 1567 19.58 23 JO 27.42 3133 3525 39.17 0.0 5.9 12.9 22.4 37.6 63.5 98.7 126.7 143.0 152.9 159.9 00 271 (To bee November 1,1967 14.5N 29.0N 42.9N 55.1 N 63.5N 64.4N 57.4N 46.4N 33.9N 21.0N m H-A.C. 1382 FBJED L. WHITPLJ) 217 387 449. 513 Satellite 1M7?1. ? (Continued from Time ?? 43.08 47 00 50.92 54.83 58.75 6267 6658 7050 74.42 7833 8225 86.17 90.08 94.00 Time ? 0 388 7.75 11.62 15 50 1938 2325 27.12 31.00 34-88 38.75 42.62 46.50 5038 5425 58.12 62.00 6558 68.75 73.62 77.50 8138 8525 89.12 93.00 Long. ? 1654 1705 1757 181-8 189.9 201.9 221.5 2512 281.6 302 4 3152 3238 330.4 3362 E P H I M B Period = Long. 0.0 59 127 22.0 366 61.4 96.0 124.6 141.6 151.9 159.1 164.8 169.9 175.1 181.1 189.1 200.9 2203 2500 2812 302.4 315.4 324.1 330.7 336.5 November 1.1967 Lat. ? 7.9N SOS 1788 30.2S 42.18 52.9S 615S 65.1S 61.7S 52.9S 413S 28 2S 14.4S 0.0 is (2) 93- Lat. o 0.0 14 4N 28.7N 42.4N 54.5N 63.2N 647N 58.3N 47.7N 35.4N 22.6N 9.5N 35S 16.4S 29 OS 41.18 52 2S 61.1S 65.1S 61.9S 53.08 4138 2828 1438 0.0 HJLC. 1381) Height (Kilometen) 830 677 712 734 740 729 702 658 802 535 463 391 325 271 Height (Kilometen) 244 220 214 224 248 285 330 379 431 481 528 569 603 627 639 638 624 597 558 508 451 391 333 282 244 Fim L. T f m n u FIGURE 1.?Harvard Announcement Cards giving preliminary information on orbital characteristics for Satellites 1957 a l and al (for No. 1381, note that from additional observations, Dr. C. A. Whitney obtained on Nov. 2, 1957, a refined value for the coefficient of the cubic term, i. e., 1.162X10"* instead of 7.747X10-??). HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1383 New Supernova. ? A letter from Dr. I. 8. Bowen, Di- rector of Mount Wilson and Palomar Observatorirs, reports: "Mr. H. S. Gates, on an 18-inch Schmidt film of October 19, found a supernova in a spiral arm of NGS 1365. Location of the supernova is 99 seconds of arc northwest of nucleus. Discovery confirmed by Carpenter and Luvten at Steward Observatory and Hare at Tonaniintla. A film taken on October 2 did not show the star." Position of NGC 1365 follows: R.A. (1950) Dec. 3*31-8 -36'IS- Satellite ltS7al.?Dr. F. Dow Smith reports simul- taneous photographs from two stations obtained by the Physical Research Laboratories of Boston Univer- sity in Boston, Massachusetts. The parsllactic angle was 1*6 and a reduction of the plates yields the fol- lowing heights and positions for the rocket: U.T. Height above October 17, Subsatellite Point Sea Level 1957 Longitude Latitude (Statute miles) 9* 53- 21-0 74* 49" 15" W 40* 13' 28" N 332.7 23.0 74 44 55 40 08 48 3342 24.0 74 40 22 40 02 10 333.4 Accuracy: Time ?0.1 seconds Height ? 1.5 miles Longitude ? 1'7 Latitude ? Y3 The reduction was made by Drs. Aschenbrenner and Hawkins of Boston University. Errata In announcement card 1376 the longitude and latitude of Boston University Observatory was given instead of the position of the Physical Laboratories. This position is: Longitude 71*06' 19"4 W Latitude 42 20 56. 8 N November 6, 1967 Fats L. W H U T L I HARVARD COLLEGE OBSERVATORY A N N O U N C E M E N T CARD 1384 ifi. ? The second artificial earth satel- lite was launched, according to Radio Moscow, by the USSR on November 3, 4* 4 0 - U.T. in a highly inclined orbit. _ Dr. Leland E. Cunningham, of the Leuschner Ob- servatory University of California, Berkeley, has computed, for the Astrophysics! Observatory of the Smithsonian Institution in Cambridge, Massachusetts, the following equatorial elements and perturbation! for Satellite 1957/5: a m 1.1483 Earth e ? 0.106 Argument of Perigee = 44* ? 0.6 (per day) Mean Anomaly at Epoch = 151* Epoch and Osculation 1967 November 4JO U.T. Right Ascension of Ascending Node o n Equator = 118* - 3*1 (per day) A cable from Dr. J. Hopmann at Vienna has reported the following positions for Satellite 19570 as observed by Purgathofer and Jackson: Time (Nov. 5 U.T.) Altitude Aaimuth 4* 4 1 - 9?3 16*7 8 58.5 E 4 42 58 12.9 S 83.9 E T h e Moonwatch Station of Los Altos, California, Latitude +37*399 N ; Longitude 122* .124 W, has reported the following position for Satellite 1967?: November 5, 13* 15- ? U.T. Right Ascension Declination 170* - 2 0 * November 7, 1967 FBJBL. W I FIGURE 2.?Harvard Announcement Cards giving preliminary information on orbital character- istics for Satellites 1957 a l and 1957 Beta. SATELLITES 1957 al AND 02 201 ', apparent angle of equatorial crossing; Ve, mean linear velocity of rotation of the earth's surface at the equator (approximately 0.465 km/sec); V., satellite velocity projected on a stationary earth; V., ap- parent satellite velocity for an observer on the earth's surface. lite 1957 al, ?' is approximately 67.7? for cross- ings of the equator in both directions. For an elliptic orbit, the two angles may differ slightly depending upon the positions of apogee and perigee. Satellite camera Plate 1 is a photograph of Satellite 1957 al obtained with a Smithsonian Satellite Track- ing Camera on Oct. 23, 1957, at Pasadena, Calif. A detailed description of the camera and its complex operational use has been pub- lished by Dr. K. G. Henize (1957). Only a simplified account is given below. The camera (F/l, 20-inch apochromatic, triple-element correcting system, 31-inch spher- ical mirror, 35-micron images with luminous flux density intensification of 3 X 108) has a field of 5 by 30 degrees, which is photographed on a strip of 55-mm film. The time presenta- tion is photographed on this film and readable to 1/10,000 second. The camera operates in a cyclic manner so that it alternately tracks at the satellite rate and at the rate of sidereal motion parallel to the satellite orbit. In this way, exposures of the satellite and of the star background, in- cluding the fainter stars, can be made on a single film. The satellite position and motion can then be determined relative to nearby star images by measuring the relative positions between the "star-exposure" images and the "satellite-exposure" images of these same stars. Sharp breaks in the trail, produced by a rotat- ing barrel shutter, provide precise time reference points for measurement. In plate 1 the rocket (al) appears as a trail (indicated by arrow), interrupted several times by the camera shutter. Its movement against the star background can be seen. The initial camera settings were: azimuth 309?, altitude 037?.3; the final settings were: azimuth, 304?, altitude 047?.5; 20 photographs were obtained between 17:48 and 17:49.5, Pacific Standard Time. Estimate of size In order to make precise predictions for artifi- cial satellites in elliptical orbits relatively close to the earth's surface, the effect of atmospheric drag has to be taken into account. For accu- rate computations, a knowledge of the mass- area ratio, the exact shape of the rocket, and its orientation, including rates of tumbling and spin, would be necessary (Rinehart, 1952). None of these quantities are really known to date. Since drag effects can be expected to influence most severely the orbit characteristics of Satel- lites 1957 al and 01, attempts were made to arrive at rough estimates, even if based on necessarily speculative information. On the basis of visual and photographic ob- servations of al and a2, including both low and high frequency variations in brightness, ratios of relative luminous intensities were derived, depending on estimated altitudes. If we as- sume that the cross-sectional area of a2 is known (sphere of diameter 58 cm), the corre- sponding area for al should then be roughly 26 m2. This figure would apply rather well to the U. S. S. R. single stage, liquid-propel- lant rocket T-l (M-101), in case a forward section (a3?) of the rocket shell was blown away to free the satellite proper. The T-l is an improved version of the old German A4 (V-2), the shape of which can be assumed to SATELLITES 1957 a l AND #2 RINEHART AND SCHILLING 203 PLATE I Trail of Satellite 1957 al photographed on Oct. 23, 1957, at Pasadena, Calif.; trail indicated by arrow. 204 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TOL.S be known within limits of reasonable accuracy (Kaplan, Schilling, and Kallmann, 1955). Before considering this shape and a corre- sponding empty weight as the most likely ones to use for preliminary drag calculations, we also checked the degree of realism of such an assumption by applying known technical pa- rameters of rocket propulsion and operating procedures. These considerations were checked and corroborated by Mr. Maurice Dubin.8 Without discussing the details here, which in- cluded calculations of the necessary thrust and impulse values for the whole system, we feel confident in assuming?for our purpose?al to have the approximate shape and empty weight indicated above, and to be spinning around its long axis. On the basis of preliminary sightings of 01, we would further assume 01 to be of almost identical shape and size, with the com- plete shell intact. However, we want to emphasize the rather speculative aspects involved, and one major fact which would throw doubt on our con- clusions. If al has the approximate shape? and size?of a T-l , it would appear unlikely that it was not fitted with a radio transmitter of its own. [Since the appearance of the above estimates of size and weight of the Soviet satellite rockets, a number of detailed articles on this subject have been published in the technical literature; see Bibliography, Koelle (1957), and Summer- field, (1957). The principal conclusions reached by most authors indicate a much lower weight and size than the estimates given above.] Orbit predictions The computation and analysis center of the Optical Satellite Tracking Program at the Astrophysical Observatory is continuing the operations described in the preceding report. The senior scientists participating are Drs. Luigi G. Jacchia, R. E. McCrosky, C. A. Whit- ney, D. A. Lautman, and J. W. Slowey. Search ephemerides are transmitted for national and international distribution to the IGY World Warning Center of the National Bureau of Standards at Fort Belvoir, Va. ? Chief, Meteor Physics Section, Geophysics Research Directorate, Air Force Cambridge Research Center, AROC, Bedford, Mass. Release is made by the USNC?IGY in accord- ance with Resolution No. 8 of the 1957 Comit6 Special de l'Anne"e Geophysique Internationale (CSAGI) Conference on Rockets and Satellites in Washington, D. C. Upon release, the ephem- erides are printed on Harvard Announcement Cards and distributed by the Harvard College Observatory to regular subscribers as well as to the IGY Data Coordination Office at the National Academy of Sciences for distribution to the IGY World Data Centers. Specific orbit predictions and precise sighting data are computed for certain stations selected on a basis of operational needs. Predictions are sent to alerted Moonwatch stations, with due allowance for probable weather conditions. In addition, a routine program computes pre- dicted crossings of latitude 40? N. approxi- mately four days in advance. This information is sent to the Secretariat of the USNC-IGY and is also made available locally. Prediction tables for al for Oct. 23, 1957, and Nov. 4, 1957, are given in tables 1 and 2. This simplified form enables a rough and rapid determination of the approximate time positions of a satellite on the day given without any further computations by assuming an orbit inclination of 65?. On a world-wide basis, the use of a Mercator projection chart will be found advisable. For local use, gnomonic projection charts are preferable. All exact determinations of orbital elements are carried out with the help of IBM electronic computers. Dr. D. A. Lautman is Mathe- matician in Charge, and Dr. L. Cunningham is Senior Consultant. References HARVARD COLLEGE OBSERVATORY 1957. Satellite 1957 al. Harvard Announcement Card 1381. HENIZE, K. G. 1957. The Baker-Nunn satellite-tracking camera. Sky and Telescope, vol. 15, pp. 4-7. KAPLAN, J.; SCHILLING, G. F.; AND KALLMANN, H. K. 1955. Methods and results of upper atmosphere research. Geophys. Res. Paper No. 43, Geophys. Res. Directorate, AFCRC. RINEHABT, J. S. 1952. Geschosse fliegen mit Hoechstgeschwindig- keiten von 2500 bis 6000 m/sec. Umschau, Wissenschaft und Technik, vol. 22, pp. 685-687. SATELLITES 1957 a l AND 02 Table 1.?Satellite 1957 al, 40th parallel crossings, Oct. 23, 1957 205 Northwest to southeast Southwest to northeast EST 0039 0214 0350 0530 0700 0821 1011 1146 1322 1457 1632 1808 1943 2118 2254 Longitude 37W 61W 85W 109W 133W 157W 179E 155E 130E 106E 82E 58E 34E 10E 14W Nearest place North Atlantic South of Nova Scotia Cincinnati Roosevelt, Utah West of San Francisco North Pacific North Pacific North Pacific Sea of Japan Slam Caspian Sea Aral Sea Black Sea Corsica West of Portugal EST 0151 0326 0502 0637 0812 0933 1122 1258 1434 1609 1744 1920 2055 2230 2406 Longitude 121E 147E 123E 99E 75E 51E 26E 02E 22W 46W 70W 94W 118W 142V 167W Nearest place North Pacific East of Japan Korea Inner Mongolis North India Caspian Sea Bucharest Barcelona Azores Southeast of Newfoundland East of New York City Des Moines Lovlock, Nevada Pacific Pacific Boston crossing, A. M. Rocket not illuminated Satellite difficult Time, EDT 6:40 6:44 6:48 Boston crossing, P.M. Altitude Azimuth 0? 40? 0? 180? South 120? SE 100 Miles 45? NE Table 2.?Satellite 1957 al, 40th parallel crossings, Nov. 4, 1957 North to south South to north EST ono 0304 0438 0613 0747 0921 IO56 1230 1404 1538 XZf31847 2021 2155 2330 Longitude 95W 119W 143W I67W 170E 146E 122E 98E 74E 51E 21E 3E 21W 45W 69W Nearest place Kansas City Reno Pacific Pacific Pacific Pacific China China Russian Chinese Bound Baku Turkey Balearic Island Atlantic Atlantic East of Boston EST 0107 0242 0416 0550 0724 O859 1033 1207 1342 1516 I65O 1825 1959 2133 2307 Longitude 141E 117E 93E 69E 45E 21E 3W 26V 50W 74V 98W 122V 145V 169V I67E Nearest place Japan Peking China U.S.S.R. Armenia Greece Madrid East Azores Atlantic New York Grand Island, Nebraska Sacramento Pacific Pacific Pacific Some Preliminary Values of Upper Atmosphere Density from Observations of U. S. S. R. Satellites ' By T. E. STERNE and G. F . SCHILLING Some of the major scientific results which can be expected from ground-based observa- tions of artificial earth satellites will consist of extensive data on atmospheric density at high altitudes. To date, our numerical esti- mates for density values above an altitude of about 150 km are based on indirect methods of computation rather than on direct measure- ments. On the other hand, the orbital move- ments of satellites under the influence of atmos- pheric drag will, for the first time, resemble much more closely a direct means of probing the earth's atmosphere with an artificially created tool. At the time of this writing, only preliminary data on the orbital characteristics of Satellites 1957 ol, a2, and 0 are available. However, making precise orbit predictions for these satellites requires that the effect of atmospheric drag be taken into account. Furthermore, any a priori prediction of expected lifetimes is based on derived values of atmospheric density. The present report was prepared with these operational necessities in mind. We do not claim any degree of accuracy or reliability of the results beyond the limitations explicitly described throughout the text. Conventional techniques The method of calculating densities from orbital elements is described on p. 208. The importance of this new and easily applied technique can best be illustrated through a comparison with what we may call conventional techniques. It will be worthwhile to review, in brief, the principal methods of investigations which have been utilized heretofore to estimate values of upper atmospheric densities (Kaplan, Schilling, and Kallmann, 1955). i Carried out in part under NSF Grant No. Y/30.10/167; Special Report No. 3. IGY Project No. 30.10, Smithsonian Astrophysical Observatory. Cambridge; first issued Nov. 15,1957. Rocket methods.?The high-altitude research rocket permits the direct measurement of atmos- pheric pressure by means of special pressure gauges located at various points at the surface of the rocket. The ambient atmospheric pres- sure, i. e., the true pressure in the absence of the moving rocket, can be measured at selected openings in the tail section. In addition, the ram pressure, measured at an opening in the nose of the rocket, and surface pressures (Pitot tubes) in the nose section can be used to compute the ambient pressure. Direct values have also been obtained from sampling bottles which were opened at predetermined altitudes, exposed, and resealed again. How- ever, this sampling technique is open to criti- cism, such as that ram pressure influences the results, or that bottles leak. The fundamental relation between the atmos- pheric parameters is essentially that given by the ideal gas law and the barometric equation. By use of the latter, ambient air densities can be calculated directly from the measured pres- sure-altitude curve. This method does not require a knowledge of the molecular weight, but the differentiation required is a possible source of large errors. Other methods make use of nonambient pressure measurements by applying either the Rayleigh equation (Newell, 1953) or a kinetic theory formula derived by Havens, Koll, and LaGow (1952). Meteor observations.?While various means of investigation, notably the searchlight tech- nique, lead to derived values of atmospheric density, meteor observations have in the past represented the major data source. The results are based on physical theories of meteor phe- nomena and involve assumptions about the density of meteoritic material, luminous efli- ciency, and shape factors. For radar observa- 207 208 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS tions, ionizing efficiency must also be estimated. It should be noted that comparison with rocket data shows fair agreement between the results obtained at lower altitudes; at higher altitudes the densities obtained from meteor data are higher. Model atmospheres.?A number of authors have conducted theoretical studies which have resulted in model atmospheres and numerical listings of the altitude variations of atmos- pheric parameters. Models have been published by Warfield (1947), Grimminger (1948), the Rocket Panel (1952), Kallmann (1952), Minz- ner and Ripley (1956), Sterne (1958), and others. Values for higher altitudes are extra- polated upward by making reasonable physical assumptions and using indirect evidence from, e. g., observations of aurorae, ionospheric meas- urements, and related studies. It might be mentioned that, when complete numerical tables are given, the numerical calculations of atmos- pheric parameters are based essentially on the hydrostatic equation in combination with measured or assumed values of pressure and composition. Method of calculation The basic method followed here, to derive density values from satellite observations, has been described in detail by one of us (Sterne, 1958). The procedure calculates initially the expected daily change in the mean orbital dis- tance, a, for a standard model atmosphere. For this purpose, the ARDC Model Atmos- phere (Minzner and Ripley, 1956), as extended by Sterne (1958), was used. If this change per day is d, and if P is the period, then it follows from Kepler's third law that P/P=M/2a so that the expected change in period per day is Pt=3dP/2a. If p, (z) is the standard model density of the atmosphere at altitude z, and if the observed change in period per day is Po, then an atmos- pheric structure whose density is (P0/Pe)p, (z) would lead to the observed change of period. Thus one can infer from the observed change of period, Po, that the density near the altitude of perigee is (P0/Pe) p, {z') where z' is the alti- tude of perigee. It is predominantly the alti- tude of perigee at which the density determines the change in period, since other parts of the orbit contribute but slightly to the definite integral whose value determines d. The equations used to find d are A?=-ca?2 f i. ' +Jo Po 1?ecos.fi;)1'2 where c is the dimensionless quantity c=CDA po ae/m . In these equations a is the mean distance in units of the earth's equatorial radius, Aa is the change in a per period, p is the standard air density, po is the air density at sea level, e is the orbital eccentricity, Eis the eccentric anom- aly, CD is the aerodynamic drag coefficient, A is the average cross section of the satellite as projected on a plane normal to the direction of motion, ae is the earth's equatorial radius, and m is the mass of the satellite. The integral has been evaluated by Simpson's rule. CD has been assigned the value 2, which it is expected to have for spherical satellites when the mean free path of the air molecules is very large compared to the diameter, regard- less of whether the molecules are perfectly re- flected or are captured. For shapes other than spheres, the cross section A is obtained by esti- mating the total superficial area and dividing by 4, on the assumption of random orientations during flight of the nonspherical satellites. It can be proved generally that the value of A, averaged over all orientations, of any convex body is exactly one-fourth of the total super- ficial area. The value of CD is expected to be 2 for sticking molecules, and all shapes; for perfectly reflected molecules and nonspherical shapes the value need not be 2, but calculations have indicated that for typical rocket-like shapes the average value over all orientations of CDA is close to the figure 2(^4total)/4. Thus the value of CD has been taken to be 2 in all cases. Observational data The data used for numerical solutions were taken from the two preceding reports as well as from precisely timed local observations made by one of us (Sterne). UPPER ATMOSPHERE DENSITY 209 For Satellite 1957 a2, the data on Harvard Announcement Card 1380 (1957b), as derived by Herget, Clemence, and Duncombe, gave: a= 1.086 e=0.0482 P=?2*A per day Altitude at perigee=220 km. The mass of the satellite was taken as 83.6 kg and the diameter as 58 cm. The value of 6.378 X 108 cm was used for ae, and po, the density at sea-level, was taken as 1.225X10"3 gm/cm3. With allowance for antennas, an average cross- sectional area of 3470 cm2 was used. For Satellite 1957 ol, the last rocket stage of the first U. S. S. R. satellite, the observations of one of us (Sterne) indicated a period change of ? 48.0 per day, when a was 1.089 and e was 0.051; compare the values obtained by Slowey, Lautman and McCrosky, Harvard Announce- ment Card 1375 (1957a). This orbit was so close to that of Satellite 1957 a2 that the same definite integral could be used, with a different c. A value of 3.4X106 gm was used for the mass of the rocket, and A was taken as 1.86X105 cm2, a fourth of the estimated total area of the rocket. These last two values are based on speculative assumptions and estimates de- scribed in the preceding report and must be considered of low reliability and accuracy. For Satellite 1957 01, again of rocket shape, Dr. Whitney's determination of ? 1B.44 per day for P, his a of 1.146 and his e of 0.0965 were used (private communication). On the basis of the previously mentioned considerations, the same c was used as for Satellite 1957 a l . Preliminary results Using the observational data given above, we obtained approximate correction factors (shown below) for the ARDC model atmos- phere for air density near the altitudes of perigee: Altitude of Correction Absolute Object perigee, z' factor p(z')/ density, p(z') P.(z') 1957 a2 220 km 8.7 4.5X10-?gm/ cm3 1957 al 220 km 11 5.7X 10-"gm/ cm1 1957 0 233 km 6.7 2.2xlO-?gm/ cm3. While little reliability can be claimed for the densities inferred from Satellites 1957 al and /8, since the shape and size of these rockets are matters of speculation, the result based on observations of a2 is believed to be reliable. The numerical values are considerably higher than those given by most model atmospheres, although they are smaller than the densities computed by Grimminger (1948) predominantly on the basis of the available information from meteor observations. We shall also want to note that, during the last few years, ideas about high altitude density have been influenced greatly by an isolated measurement of density at an altitude of 219 km, obtained during the Viking flight of Aug. 7, 1951, at White Sands, N. Mex. This flight gave a value of 1 X10~13- gm/cm3 at 219 km. Conclusions We have shown that available information on orbital characteristics for Satellites 1957 ol, a2, and 0 implies that the values of atmospheric density at altitudes of 220 km and 233 km are higher than are expected on the basis of the ARDC Model Atmosphere (Minzner and Rip- ley, 1956). The orbital data stem from ground- based satellite observations made by radio, visual, and photographic means. Although the calculations involve speculative assump- tions, the numerical results are reasonably con- sistent among themselves. We expect that future period changes and orbital data will permit the inference of atmos- pheric density over a range of altitudes, and the devising of an improved atmospheric model. Acknowledgments We wish to stress that our study has made use of the efforts and data contributed by a large number of people. The many scientists, tech- nicians, amateur astronomers and laymen who furnished observational data are certainly too numerous to mention by name. The brunt of the work of calculating orbital elements and ephemerides was performed by Drs. R. E. McCrosky and C. A. Whitney with their com- puter staff. Dr. F. L. Whipple has contributed valuable suggestions on selecting most reason- able basic data as well as on taking antenna drag effects into account. Our acknowledgment and appreciation must 210 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL. 2 go to all our co-workers in this task of observing satellites, computing orbital data, and attempt- ing to derive scientific results. References GRIMMINGER, G. 1948. Analysis of temperature, pressure, and density of the atmosphere extending to extreme altitudes. RAND Report, No. R-105. HARVARD COLLEGE OBSERVATORY 1957a. Satellite 1957 ?1. Harvard Announce- ment Card 1375. 1957b. Satellite 1957 <*2. Harvard Announce- ment Card 1380. HAVENS, R. J.; KOLL, R. T.; AND LAGOW, H. E. 1952. Journ. Geophys. Res., vol. 57, p. 59. KALLMANN, H. K. 1952. Physical properties of the upper atmos- phere. RAND Report No. RM-841. KAPLAN, J.; SCHILLING, G. F.; AND KALLMANN, H. K. 1955. Methods and results of upper atmosphere research. Geophys. Res. Paper No. 43, Geophys. Res. Directorate, AFCRC, ARDC. MlNZNER, R. A., AND RlPLET, W. S. 1956. The ARDC model atmosphere, 1956. Air Force Surveys in Geophysics, No. 86, Geophys. Res. Directorate, AFCRC, ARDC. NEWELL, H. E. 1953. High altitude rocket research. Academic Press Inc., New York. ROCKET PANEL 1952. Pressures, densities and temperature in the upper atmosphere. Phys. Rev., vol. 88, p. 1027. STERNE, T. E. 1958. An atmospheric model, and some remarks on the inference of density from the orbit of a close earth satellite. Astron. Journ., in press. WARFIELD, C. N. 1947. Tentative tables for the properties of the upper atmosphere. NACA Tech. Note No. 1200. Abstract On the basis of available orbital data for the U. S. S. R. Satellites 1957 ?1, a2, and /SI, preliminary values of atmospheric density have been calculated for the respective perigee altitudes. The computations necessarily involve a number of speculative assumptions with regard to mass-area ratios, but the results show a reasonable consistency in numerical values derived from the three satellites independently. It would appear that the atmospheric density at altitudes between 220 km and 230 km is higher than has often been assumed. While the values derived here must be considered as being of an extremely tentative nature, it is expected that similar methods of calculation will in future permit the inference of atmospheric density over a wide range of altitudes from orbital data. Glossary of Astronomical Terms for the Description of Satellite Orbits1 By J. ASHBROOK,2 G. F. SCHILLING, and T. E. STERNE The present report contains simple explana- tions of some astronomical terms, notations, and symbols frequently used to describe the orbital motions of artificial earth satellites. This terminology seems little known to non- astronomical researchers, but the advent of artificial satellites has brought these terms to our daily attention. In addition we include the reprint of a recent article by Sterne, discussing various aspects of the celestial mechanics of artificial satellites. It is hoped that the report will be found useful for reference purposes. List of Terms Referred to in Para- Term graph No. anomaly, eccentric (E) 23 anomaly, mean (Af) 22 anomaly, true (r,to) 21 apogee 20 argument of perigee (?) 14 ascending node 13 ascending node, right ascension of(O) 13 celestial equator 3 celestial pole, north 3 celestial sphere 2 coordinates, geocentric 9 coordinates, topocentric 9 declination (8) 7 distance, mean (a) 12 ecliptic 4 elements, equatorial 18 elements, ecliptic 18 elements, orbital 11 elements, osculating 26 inclination (i) 13 Kepler's equation _ _ 23 Kepler's Third Law 17 mean distance (a) 12 mean motion (n, n) 17 1 Carried oat in part under N S F Orant No. Y/30.10/1R7; Special Report N'o. 4, IOY Project No. 30.10, Smithsonian Astrophysical Observatory. Cambridge; first issued Nov. 30.1987. 1 Research associate. Harvard College Observatory. Term node. Referred to in Para- graph No. .... 13 osculating elements 26 osculating orbit 26 osculation, epoch of 26 parallax, topocentric 10 perigee 20 perigee, argument of (?) .. 14 perigee, epoch of (T) 15 period (P) 16 period, anomalistic 27 period, nodical 27 period, sidereal 27 perturbations . 24 perturbations, periodic 25 perturbations, secular 25 precession of the equinoxes 19 radius vector (r) . 20 right ascension (a) 8 Universal Time (UT) 1 vernal equinox (T) 5 Index of Symbols Referred to in Para- Symbol Meaning graph No. a semi-major axis (mean distance) 12 b semi-minor axis T_. 11 C center of orbit 11 E eccentric anomaly 23 e eccentricity of orbit 12 F focus of orbit 11 O gravitational constant 17 ? inclination of orbit 13 M mean anomaly 22 m mass of earth 17 n mean motion 17 P period. 16 r radius vector 20 T epoch of perigee 15 t time 22 UT Universal Time 1 v true anomaly 21 to true anomaly 21 a right ascension 8 S declination 7 n mean motion 17 ?J right ascension of ascending node 13 a argument of perigee 14 211 212 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Glossary Time.?1. In astronomical usage, time is or- dinarily expressed as Universal Time (UT). This is identical with Greenwich civil time, and is counted from 0 to 24 hours, beginning with Greenwich midnight. Very frequently the astronomer uses a decimal subdivision of the day, instead of hours, minutes, and seconds. Thus, November 30. 75 U T = November 30* 18h 00" U T = November 301800 Z = November 30, 1:00 p. m. EST. Celestial sphere.?2. The celestial sphere may be regarded as a sphere of infinite radius whose center is the center of the earth, and upon which appear projected the stars and other astronom- ical bodies. This sphere is fixed in space, and thus, because of the earth's rotation, appears to rotate from east to west. 3. The celestial equator is the great circle on the celestial sphere formed by its intersection with the plane of the earth's equator. The north celestial pole is the point of intersection of the earth's axis of rotation with the celestial sphere. 4. The ecliptic is the great circle on the celestial sphere formed by its intersection with the plane of the earth's orbit. The ecliptic is hence the apparent annual path of the sun among the stars. 5. The vernal equinox is the point of intersec- tion of the celestial equator with the ecliptic through which the sun passes the equator from south to north. Roughly speaking, it is the position of the sun about March 21 of each year. Coordinates on the celestial sphere.?6. Polar coordinates are useful for specifying the loca- tion of a star (or other heavenly body) on the celestial sphere. 7. The declination (&) of a star is its angular distance north or south of the celestial equator. 8. The right ascension (a) of a star is the an- gular arc measured eastward along the celestial equator from the vernal equinox to the great circle passing through the north celestial pole and the star. Right ascension is often ex- pressed not in degrees but in hours, minutes, and seconds (lh=15?), because clocks are used in the fundamental measurement of a star's right ascension. 9. For an artificial satellite, or other rela- tively nearby heavenly body, we must distin- guish between geocentric coordinates, as would be seen from the center of the earth, and topo- centric coordinates, as seen from a position on the earth's surface. A directly observed posi- tion of a satellite is topocentric. 10. The difference between the geocentric and topocentric positions of a satellite in the sky is called the topocentric parallax of the satellite. Orbital elements of a satellite.?11. The ellip- tical orbit of a satellite attracted by an exactly central inverse-square force can be unambigu- ously specified by a set of 7 parameters known as the elements of the orbit. Let the lengths of the longest and shortest diameters of the ellipse be 2a and 26, respectively; call the center of the ellipse C, and let F be the focus occupied by the earth, which for the time being we shall regard as a point mass. 12. Two elements specify the size and shape of the ellipse?the semi-major axis, a, often called the mean distance, and the eccentricity, e. The semi-major axis of an earth satellite orbit is usually expressed in units of the equatorial radius of the earth (about 6378 km). The eccentricity is numerically equal to FC/a or to (a2?b2)1/2/a. For a circular orbit ?=0; for an elliptical orbit 0^-e^ l ; for a parabola e would be unity. 13. Two elements specify the orientation in space of the orbital plane of the satellite?the inclination, i, and the right ascension of the ascending node, Q>. The inclination is the angle between the orbital plane and the earth's equatorial plane (or celestial equator). The two intersection points of the orbit plane and the celestial equator are the nodes of the satel- lite orbit; the ascending node is that intersection at which the satellite passes the equator from south to north. Hence Q> is the arc, measured eastward along the celestial equator, from the vernal equinox to the ascending node. 14. A fifth orbital element, the argument of the perigee, w, is the angle, as seen from the focus F of the ellipse, from the ascending node to the perigee point (closest approach of satel- lite to focus). The angle ? lies in the orbital GLOSSARY OP ASTRONOMICAL TERMS 213 plane, and is measured in the direction of the satellite's motion. 15. A sixth element, T, is the time of passage through perigee, or epoch oj perigee. 16. Lastly, P is the orbital period. If the orbit is ideal and unchanging, the period is simply the interval between successive passages through any fixed point of the orbit. However, if the orbit is not ideal, we must specify which point (see below, p. 216). 17. Instead of the period, we may use for the seventh element the mean motion, n=2x/P. It is sometimes designated by n. The mean mo- tion is related to a by Kepler's Third Law, which for a satellite of negligible mass is n2 ai=mG. Here m is the mass of the earth, and G the gravitational constant. 18. Two comments on the elements Q>, i, and &> should be made. First, the plane of reference by which these have been defined is the earth's equator; i. e., we use equatorial ele- ments. However, the same symbols are habitu- ally used in celestial mechanics textbooks for ecliptic elements, defined in terms of the ecliptic as the reference plane. 19. Second, the vernal equinox is shifting about 50" eastward along the equator per year (precession oj the equinoxes). Hence, to specify Q>, i, and a> unambiguously, a published set of orbital elements will attach a date (e. g., 1957.0) to these elements for identifying the location of the equinox. Relation between place in orbit and time.?20. The radius vector, r, of the satellite is its dis- tance, at a specified time, from the center of the earth. The minimum value of r is the perigee distance, a{\?e); its maximum value is the apogee distance, a(l-\-e). 21. The satellite's position in its orbit at any time, t, is specified by the polar coordinates r and v. The latter is the angle at the focus between the perigee point and the satellite, and is known as the true anomaly of the satellite. It is also often called w. Radius vector and true anomaly are related: r=a( l? e2)/{l+e cos v). 22. To find the true anomaly at time t we may first compute the mean anomaly, M. M=n{t-T) 460132 O?58 3 23. Next, the co-called eccentric anomaly, E, is computed by Kepler's equation: M=E?e sin E From E, we get the true anomaly by tan I ?=(l+e)1/l(l-e)-1/2 tan ? E. (For a systematic explanation of these mat- ters, consult F. R. Moulton, "An Introduction to Celestial Mechanics," 2nd edition, pp. 158- 172.) Perturbations oj a Satellite Orbit.?24. Be- cause of noncentral forces arising from the non- sphericity of the earth and from atmospheric drag, the motion of a close earth satellite will deviate from an ellipse. These deviations are called perturbations. 25. It is often convenient to consider the orbital motion to be in an ellipse whose ele- ments are changing with the time. These changes, or perturbations, can be secular or periodic. The effect of the earth's oblateness on the satellite's ascending node is, primarily, to cause it to move irregularly westward, so that ft is decreasing. The steady part of this motion is an example of a secular perturbation. There are also periodic perturbations of SI that can be expressed analytically by the sum of trigometric terms in which time is the inde- pendent variable. The effect of air resistance on Q> is to cause small periodic perturbations. 26. If we regard the satellite at any date as occupying a position in some ellipse changing continually in size, shape, and orientation, then the ellipse most commonly considered is one called the osculating orbit for the date, or epoch oj osculation, t. The osculating orbit is defined as the ellipse that the satellite would follow after t, if all forces other than central inverse- square forces ceased to act from time / on. The osculating orbit can be specified by a set of 7 parameters, the osculating elements. 27. In the absence of perturbations, the period, P, defined as the interval between suc- cessive passages of the satellite through the same point in its orbit would be the same no matter which point was chosen. But if there are non-central or non-inverse square forces, the orbit is perturbed, and the numerical value 214 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS of the period will depend on the reference point selected. Three different periods are of prac- tical importance. The anomalistic period is the interval between successive perigee passages. The nodical period is measured from one return of the satellite through its ascending node to the next. The sidereal period is the interval which elapses between two successive returns of the satellite to the same geocentric right ascension. Celestial Mechanics of Artificial Satellites An article by T. E. Sterne entitled "Celestial Mechanics of Artificial Satellites" (Sky and Telescope, vol. 17, p. 66, 1957) is reprinted here with the permission of Sky Publishing Company: Vast numbers of people have been following the careers of the new astronomical bodies launched into space on October 4, 1957. The motions of the faint satellite and its associated bright rocket have provided excellent illustrations of celestial mechanics, and have aroused a widening interest in that astronomical specialty. Were Isaac Newton still alive today, he would ap- preciate this practical application of the conclusions he reached nearly 300 years ago, concerning the precise dependence of the orbit of a projectile on its launching conditions. He would have welcomed the physical realization of some of the drawings in his Principia Mathematica, in one of which a satellite is launched from a cannon on a mountain-top. Doubtless his re- markable geometrical insight would have enabled him to make some very early predictions by ruler, compass, and pencil, without reliance on a digital electronic computer. A basic concept of celestial mechanics is that the path of a lightweight body or satellite around a massive particle is a conic section with the massive particle at its focus, if the light body is attracted by a gravita- tional force varying as the inverse square of the dis- tance and directed toward the massive particle. MOTION IN AN ELLIPTICAL OBBIT Unless the launching velocity is too great, the orbit is an ellipse, such as that diagrammed here [Fig. la], with the semimajor axis BC denoted by a. The dis- tance from the center, C, to the focus, F, is ae, where e, a number less than one for an ellipse, is called the eccentricity of the orbit. The length of the semiminor axis, CD, is then a (1 ? e*)}i. The end A of the major axis that is closer to the focus is called the pericenter, and the other end B is the apocenter; for an earth satellite we may use the more specific names perigee and apogee. When the satellite is at any point, P', in its orbit, the angle AFP' is called the true anomaly, measured in the direction of motion and often denoted by w. As the satellite moves, the area AFP' (bounded by two straight lines and an elliptical arc) increases uniformly with the time?an illustration of Kepler's second law. The complete time, P, for one revolution is called the period, and 2x/P is the mean motion, n; it is the aver- age angular motion, here expressed in radians, of the satellite during the unit of time. Kepler's third law gives us a simple relation between the mean motion and the length of the semimajor axis of the orbit. n 1 a t =mG. (1) Here m is the mass of the massive particle and G is the constant of gravitation. If the particle has the earth's mass, if we express distance in units of the earth's equatorial radius (6,378,388 meters), and if time is put into units of 806.83 seconds, then the numerical value of mG is unity. The distance, FP', of the satellite from the center of the earth, is called the radius vector, r. It is related to w, a, and e by the equation, r=a( l ? cos w). (2) If T is the time of the satellite's perigee passage and t is any other moment of time, the product n{f,? T) is called the mean anomaly, M. We may visualize it as an angle that is zero at perigee and increases uniformly at a rate of 360 degrees per orbital period. Forecasts of w and r can now be made for any instant t by means of the three formulae M=E-e sin E, tan lw=(l + e)l(l-e)-H tan r=a(l ? e cos E). (3) (4) (5) The angle E, which is calculated as an intermediate step by Equation 3, known as Kepler's equation, is called the eccentric anomaly. THE ORBIT IN SPACE So far we have discussed only motion in the orbital plane. The next step is the description of the orienta- tion of the orbit in space. For an earth satellite, the most convenient reference system is the set of rectan- gular axes in the above figure [Fig. 16]. The origin, O, is the center of the earth; XOY is the plane of the earth's equator; OX points to the vernal equinox and OZ toward the north celestial pole. The satellite's orbit plane intersects the equatorial plane in the line of nodes, ON, and if N is where the satellite crosses the equator from south to north it is called the ascending node. The angle XON is the right ascension of the ascending node, and is denoted by O. Furthermore, if OZ' is the pole of the orbit, in which the satellite's motion appears clockwise to someone sighting upward along OZ', then the angle ZOZ' is the inclina- tion, i, of the orbit. Thus, the two angles, fi and i, specify the orientation of the orbital plane in space. The angle NOA, measured in the direction of the orbital motion, defines the position of the perigee, A, and is called w. The elements of the satellite orbit are GLOSSARY OF ASTRONOMICAL TERMS 215 O p1 Orbit Pole QUATOIIIAL PLANI a FIGURE 1.?Satellite orbits, a: The elliptical orbit of a particle P' around mass point F is the simplest model of an artificial satellite's motion, b: The arc NAP' is a portion of the satellite's orbit, specified by the orbital elements defined in the text. The angle AOP' is the true anomaly, corresponding to AFP' in the diagram of figure la. c: The plane of the satellite orbit remains fixed in space (except for the effects of perturbations) while the earth turns on its axis within the orbit. These diagrams, based on releases from Moscow, show every third circuit of the first artificial satellite over Russia, western Africa, United States, and the eastern Pacific Ocean, d: Our globe's spheroidal shape causes the satellite's orbital plane to turn slowly westward around the earth's axis. Thus, if one revolution about a nonrotating earth carries the satellite over the equator at N, on its next circuit it will cross at N'. 216 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL.1 the numbers a, e, T, Q, i, and ?, which describe it completely and unambiguously. An early set of elements determined for the third- stage rocket of the first satellite is reproduced below (Harvard College Observatory Announcement Card 1375). Instead of T, the time of perigee passage, the true anomaly w is given for a time called the instant of osculation, whose significance will be discussed later. These elements are referred to the earth's equator, and thus are equatorial elements; for comets and asteroids the same symbols are used for the corresponding ele- ments referred to the plane of the ecliptic. By con- vention, the elements were given on the card to more digits than observational accuracy demanded. PREDICTING A SATELLITE'S POSITION The six elements are the same in number as the three co-ordinates of position and the three components of velocity required to specify the launching conditions completely. Newton showed how the elements could be inferred from the circumstances of launching. Conversely, once the elements are known, the right ascension a, the declination 8, and the radius vector r of the satellite can be predicted for any time. We have already seen the equations for calculating* w and r. Next, the right ascension and declination of the satellite are given by a?=J2+arc tan [cos * tan (?+t?)], (6) sin 5=sin i sin (?+w). (7) It should be emphasized that the two formulae just given apply only for an observer at the center of the earth, or to one directly beneath the satellite. But we wish to predict its position at any particular time for an observer at any selected place on the earth's surface. To do this we must find the x, y, z co-ordinates of the satellite and subtract them from the x', y', z' co-ordinates of the observer in the same equatorial system of co- ordinates. From the differences of these quantities, we can obtain the apparent right ascension and declination of the satellite. HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CAHD 1375 Satellite 1957al.?Mr. Jack W. Slowey, Dr. Don A. Lautman, and Dr. Richard E. McCrosky of the Astro-ghysical Observatory of the Smithsonian Institution inCambridge, Massachusetts, have obtained the follow- ing equatorial elements and perturbations for Satellite 1957*1: a = 1.0890751 Earth e=0.0510696 i=64?26012 Argument Perigee=61?77894 O = 327?33288 True Anomaly 266?40725 Instant Osculation 1957 October 9.40466 The period appears to be shortening appreciably. October 15, 1957 FRED L. WHIPPLE The equatorial co-ordinates of the observer on the surface of a spherical earth of unit radius are z' = cos0cos0, (8) y'=cos?Min0, (9) z'=sin*, (10) where is his latitude and 8 is his local sidereal time. The co-ordinates of the satellite are x?r cos S cos a, (11) y=r cos 5 sin a, (12) z=r sin 5. (13) Then the apparent right ascension a', apparent de- clination 6', and the distance p of the satellite from the observer are computed from x?x'=p cos 8' cos a', (14) y?y'=p cos 5' sin a', (15) z?z'=t> sin ?'. (16) These formulae do not allow for the earth's flattening or the observer's elevation above sea level, but these considerations merely make his co-ordinates slightly harder to calculate. PERTURBATIONS OF A SATELLITE In our discussion of Equation 1, we assumed the massive particle at the center of attraction to have the earth's mass. The application of the formulae would not be changed by the earth's finite size, if the earth were spherical. In reality, however, the earth is not a sphere, and its equatorial radius exceeds its polar radius by about one part in 297. Consequently, the satellite is attracted to the earth by a net force that does not vary exactly as the inverse square of the distance from the earth's center, and the force is not directed exactly toward the center of the planet. Therefore, it is only as a first approximation that the satellite is attracted as if our planet were replaced by a particle at its center with the same mass as the earth. For an improved, second approximation, we must allow for the attraction by the extra matter near the earth's equator and for the missing matter near the poles. Qualitatively speaking, the extra material at- tracts the satellite toward the equator, trying to rotate the orbit in the sense of decreasing the inclination about the line of nodes. As with a gyroscope, however, the resultant effect is not to decrease the inclination, but to cause the axis of the orbit to revolve slowly about the earth's polar axis. In consequence, the right ascension of the node, Q, gradually decreases. Refer to the diagram [Fig. Id] above, where during the course of one revolution of the satellite the node has shifted from N westward to N'. Another effect of the earth's oblateness is to cause the perigee point to move along the orbit, so that ? is not constant. Consequently, the satellite has three different periods instead of one, yet none of these periods corresponds to what would be predicted from the value of a given by Equation 1. 1. Radial or anomalistic period, from one perigee passage to the next, 95.98492 minutes for the orbital elements cited above. 2. Nodical period, between successive passages of GLOSSARY OF ASTRONOMICAL TERMS 217 the satellite through the ascending node, 95.98863 minutes. 3. Sidereal period, of a complete revolution in right ascension, 96.04659 minutes. Astronomers have in general two ways of studying the effects of disturbing forces on planet and satellite motions: special and absolute perturbations. In special perturbations, the exact equations of motion are inte- grated step by step by numerical methods, perhaps with large electronic digital computing machines that make the work much less tedious. For an artificial satellite, rapid calculation is necessary to keep up with the changing characteristics of the orbit. Without disturbing forces, the orbital elements would be true constants, but when such forces are act- ing the elements vary with time. If, at a moment to be called the instant of osculation, all disturbing forces were removed, the satellite would travel in an elliptical orbit described by osculating elements. The elements of Harvard Announcement Card 1375 are of this sort. In reality, the continued action of the disturbing forces causes the osculating elements to fail to represent the actual motion, but the theory of absolute perturba- tions allows the calculation of the changes of the ele- ments with time. Thus, the position of the satellite can be computed by the usual formulae for a later time, using the changed values of the elements. Some of these changes in the elements are periodic, others gradual. For the third-stage rocket of the first satellite, the predicted change in fi is ?3.25 degrees per day, calculated on the assumption that the earth's flattening is 1/297. A discrepancy between the ob- served and predicted behavior would mean that this value for the flattening could be improved. There is no convincing evidence of this yet. Air resistance or drag can have marked effects on the motion of a satellite near the earth's surface, as obser- vations of the first rocket show. Paradoxically, air resistance speeds up a satellite, by forcing it to fall into a smaller orbit, where the decreased value of a requires the period to be shorter. Thus, the nodical period of the Soviet rocket had been decreasing by roughly four seconds per day during the month of October. For an atmosphere like the earth's whose density decreases markedly with elevation, the apogee distance, a(l + c), will decrease much more rapidly than the perigee distance a(l?c). The mean distance a de- creases with time, the eccentricity e also decreases, but the position of the perigee is subjected by air drag to small periodic perturbations only. Near the end of October, the apogee height of the third-stage rocket was about 500 miles, the perigee about 130, and the mean height about 315. There has not been a good separation of apogee rate from perigee rate, but the rate of change of the mean distance is well determined from the decreasing period. If the time decrease of the perigee distance was very much slower than that of apogee, as theory indicates it should be, then the apogee was falling at a rate of nearly four miles a day. Calculations showed that the apogee would continue to descend faster and faster, until the orbit was nearly circular. Thereafter, perigee and apogee should descend at nearly equal rates, and the end of the rocket's celestial career would be near. The details of these progressive changes in the orbital elements caused by drag may yield valuable information about atmos- pheric densities at great heights, when analyzed by those who know the size and shape of the rockets. Soviet Orbit Predictions and Orbital Information For Satellites 1957 al9 a2, and Beta * By G. F. SCHILLING and E. S. FERGUSSON 2 This report continues the collection and pres- entation of orbital information released by the U. S. S. R. Consecutive tables list Soviet pre- dictions of satellite passages over or near world points, as received at the Astrophysical Observ- atory. Pertinent data on orbital characteristics are summarized in tabular form, classified for different parameters. In addition, a few ex- cerpts from general technical information are collected separately. It will be understood that our principal pur- pose is to make available raw data which may be considered of lasting significance with respect to orbit evaluation. It should be emphasized, however, that the information listed must not be considered a complete compilation. Soviet orbit predictions Tables 1 to 39 contain information released by Moscow radio and newspaper services. The values are predictions of satellite passages over or near world points. All times and dates are Moscow time throughout (GMT plus 3 hours). Orbital information from U. S. S. R. Number of revolutions and distance travelled.? On October 13 the U. S. S. R. started releasing information about the number of revolutions, the distance between a\ and o2, and the dis- tances travelled; in general the values are stated as approximate (see table 40). On November 5 the U. S. S. R. started releasing similar infor- mation on satellite 1957 Beta (see table 41). In the tables, the available data are posted against the date and approximate time for which the statement or prediction is made, and not against the release date. The explicit methods of analysis and computations applied by Soviet 1 Can-ted out in part under NSF Grant No. Y/30.10/167; Special Report No. 5, IQY Project No. 30.10, Smithsonian Astrophvsieal Observatory, Cambridge; first issued Dec. 4, 1957. 1 Executive Officer, Optical Satellite Tracking Program, Smithsonian Astrophysical Observatory (now Project Engineer, Harvard Radio Meteor Project, Harvard College Observatory). scientists to prepare this information are not known to us. Satellite periods.?On October 20 the first of a series of occasional releases on the periods of the various satellites appeared (see table 42). No numerical information has been given about period changes. Zones of visibility.?On October 28 the U. S. S. R. started what later became a series of daily releases giving the latitude zones for twilight passages, first for a l , and later also for Beta (see table 43). The tabular listing of all data is not neces- sarily complete since it is based on information available at the present time. In order to con- serve the full nature of the raw data, typograph- ical errors have not been corrected, except where the nature of the error was such that correction could be made with complete assurance. Information released by U. S. S. R. Since the launching of the first artificial earth satellite, the U. S. S. R. has issued numerous press releases containing material of interest to the general reader. Excerpts from some of these are given here because they contain technical comments and information relating to orbit characteristics. Pravda articles On Oct. 9, 1957, the Moscow newspaper "Pravda" published a long article of general interest on the first artificial earth satellite, 1957 Alpha; it included limited orbital infor- mation and general descriptive material on the satellite, radio and optical tracking programs, and the various experiments undertaken. On Nov. 13, 1957, "Pravda" published a long article on the second artificial earth satellite, 1957 Beta, which also contained a number of references to the first satellite. This article specified that the second satellite was launched 219 220 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS" "in accordance with the plan of scientific work carried out under the IGY program." According to this article: . . . it became possible to make and place into an orbit a satellite with a useful weight of 508.3 kg, six times heavier than the first satellite. Moreover, the second satellite was launched into an orbit considerably further removed from the surface of the earth than the orbit of the first. The apogee distance is given as some 1700 km, almost twice that of the first satellite, and the initial period as 103.7 minutes. From data gathered by Nov. 10, 1957, the period of al (carrier rocket) was approximately 74 seconds less than that of a2 (the satellite) and its apogee lower by over 100 km. An alti- tude of 100 km is given as the approximate height for the death of these bodies. A life of three months?until the end of 1957?is pre- dicted for the satellite, with a substantially shorter life predicted for the carrier rocket. It is further predicted, on the basis of the longer initial period and smaller resistance effects be- cause of a different mass-area relationship, that 1957 Beta will have a considerably longer life than a2. It is stated that study of orbital data will yield important information about upper atmosphere densities. As a result of optical observations, it has emerged that the carrier rocket changes in brightness. This is due to the changes of its orientation in space. The shortest recorded visual period of change in brightness amounts to approximately 20 seconds. It is stated that 66 "Soviet Optical Observa- tion Stations," all Soviet astronomical observa- tories, and some 30 foreign observatories " . . . are systematically taking part in the optical observations . . ." of al , a2, and Beta. The brightness of al and Beta permits the use of balloon theodolites as aerological stations. Photo tracking by Soviet and foreign observa- tories is also being used. In addition, there is extensive radio tracking. Scientific apparatus of Satellite 1957 Beta.? The satellite has a "useful weight of 508.3 kg, six times heavier than the first satellite." I t is equipped with apparatus to study: Cosmic rays Ultraviolet and x-ray part of solar radiation Hermetically sealed cabin containing an experi- mental animal ?a dog Radio telemetrical apparatus Radio transmitting equipment Necessary sources of electrical power. Additional information stated: The total weight of the equipment of the experimen- tal animal and of the sources of electric power supply on the second artificial satellite represents 508.3 kg. In the front, it has a special frame with instruments to study the sun's radiation in the ultraviolet and Roentgen bands of the spectrum, a spherical container with transmitter and other equipment, and a pressurized cabin containing an experimental animal. The instru- ments for studying cosmic rays are mounted on the rocket's body. The instrument and container mounted on the frame were protected from aerodynamic and thermal influence by a special protective cone which was jettisoned. The transmitters were placed in a spherical container. The electric pile for it, the system of thermal controls, as well as the sensitive elements registering the fluc- tuations of temperature and other parameters were also enclosed there. The design of the spherical con- tainer resembles the first Sputnik. A description of the animal container was as follows: The pressurized cabin containing the experimental animal is cylindrical in form. It contained food and an air-conditioning system consisting of a regenerative installation and a temperature control device. The cabin also contained instruments for registering pulse, respiration, blood pressure, equipment for taking elec- trocardiograms, and sensitive elements for measuring several parameters characterising the condition in the cabin. The systems of temperature control mounted in the spherical container and the animal's cabin maintained the temperature within them at a set level through forced circulation of gas. The temperature on the outer surface, and within the animal's cabin, as well as the tem- perature of the instruments and the parts of the Sputnik was determined with special tem- perature recorders mounted on them. Three special photoelectronic multipliers placed at an angle of 120 degrees to each other serve as radiation receivers. The electrical signals given by the photomultiplier trained on the sun were amplified by radio circuits and transmitted to earth. To economize electricity, the devices were switched on only when the sun came into the field of vision of one of the three light receivers. Launching sequence.?Editorial comments in Pravda contained the following statements with regard to the placement of the satellites SOVIET PREDICTIONS AND INFORMATION 221 into orbits: The rocket was launched vertically upward for the first 1 to 2 km, then gradually inclining toward the horizon. When speed reached 5 km/sec, the rocket was flying almost horizontally. Only after reaching the set height, did it develop a speed in the range of 8 km/sec. The second satellite was launched by multi- stage rocket. Speed imparted to the last stage exceeded that necessary for the satellite's movement along a circular orbit at a constant altitude corresponding to that at which it was placed into the orbit. Therefore, the satellite moves in an elliptical orbit. Rocket bodies.?The body of the first Sputnik was made of aluminum alloys, sufficiently resistant, polished, and subjected to special processing. Heat resisting alloys were used for the lining of the rocket to overcome aero- dynamic over-heating (during launching). Both the animal's cabin and the spherical container of the second Sputnik were made of aluminum alloys. Their outer surfaces were polished and subjected to special treatment intended to give them the necessary coefficients of radiation and absorption of solar rays. Interviews On Nov. 22, 1957, Vitaly Ginsburg stated that the artificial earth satellites present important opportunities for study of relativistic effects; he believes it will be possible to check the following effects and the General Theory of Relativity: 1. Cosmic time lag relative to earth. 2. Displacement of elliptical orbits of heavenly bodies resulting from gravitational disturb- ances. 3. Existence of extragravitational fields resulting from rotation of large bodies on their own axes. 4. Gravitational displacement of the frequency of electromagnetic waves. On Dec. 4, 1957, Professor Stanyukovich as- serted that 1957 Beta was launched at 65 de- grees so " . . . it will be least affected by the earth's gravity. Furthermore . . . this makes it possible to observe it all over the world." He gives a lifetime for 1957 Beta extending at least until February 1958, and possibly much longer. 222 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Predictions Issued Oct. 23, 1957 Satellite 1957 Alpha (?) October 24 Place Time Port Harrison Newfoundland Albany, Australia The Aleutians Ottawa New York Sao Paulo Bandung Manila Hiroshima Kansas City Rosarlo Rangoon Los Angeles Tierra del Puego Bombay Delhi Yakutsk Johannesburg Ashkhabad Novosibirsk The Aleutians Graham Land Cairo Kuibyshev Yakutsk Samoa Islands Harper Budapest Moscow Khabarovsk Tokyo Tierra del Puego Rio de Janeiro Table 2.?Predictions 0909 091 3, 1008 1033 1050 IO51 1111 1153 1159 1204 1227 1250 1335 1404 1432 1511 1514 1524 1633 1651 1655 1709 1752 1825 1831 1840 1905 1953 2005 2007 2021 2025 2110 2120 issued Satellite 1957 a2 October 26 October 27 Place Time Place Kennecott Port Harrison Albany, Australia Fairbanks Washington Bridgetown, S. America Sao Paulo Bandung Shanghai Port Nelson Ulan Bator Los Angeles Delhi Vilyulsk Graham Land Johannesburg Addis Ababa Teheran Cask Aleutian Islands Honolulu Ankara Rostov Perm Samoa Islands Vienna Warsaw Vladivostok Tokyo 0846 0853 0953 1022 1034 1043 1054 1136 1146 1204 1226 1326 1347 1457 1507 1557 1617 1626 1634 I638 1652 1701 1810 1812 181S 1948 1949 2006 2008 Panama Reykjavik Leningrad (Kabul) Madras Mexico City Chicago Reykjavik Oslo Kiev Baghdad Lake Harbor Madagascar Vancouver Coral Harbor Madrid Johannesburg Lake Harbor Dakar Melbourne Time 0023 OO39 0045 0054 0100 0200 0207 0217 0220 0224 0230 0349 0420 0521 0526 0539 0559 0705 0721 0806 Satellite 1957 al October 26 October 27 Place Time Place Time Carcross Adelaide, Australia Dutch Harbor Halifax, Canada Pernambuco Kurile Islands Petropavlovsk- Kamchatsky Cleveland Caracas Saigon Nanking Khabarovsk Anadyr Denver Santiago Calcutta Chita Anadyr San Francisco Alma-Ata Krasnoyarsk Dutch Harbor Capetown Teheran Omsk Magadan Ankara (- ) Kazan Nikolayevsk 0733 0842 0906 0922 0939 1039 1040 IO58 1203 1210 1215 1220 1233 1256 1342 1349 1357 1108 1522 1525 1537 1635 1655 1700 1711 1832 1835 1838 1848 Jose Reykjavik Leningrad Moscow Bombay Mexico City Chicago Oslo Kiev Los Angeles London Paris Lisbon Port Elizabeth Adelaide Aleutian Islands 0042 0057 0103 0104 0116 0219 0225 0238 0242 0357 0416 0417 0555 0618 0822 0848 SOVIET PREDICTIONS AND INFORMATION Table 2.?Predictions Issued Oct. 25, 1957 (continued)~ 223 Satellite 1957 a2 October 26 October 27 Place Time Place Rio de Janeiro London Oslo Ulan Bator Nanking Sydney La Paz Archangel Saigon 2104 2125 2127 2140 2145 2206 2241 2307 2328 Satellite 1957 ? " " " " " ?Probable typo- graphical error; 40-62 seems more reasonable. Visual Observations of Satellite 1957 a l Made by Moonwateh Stations1 By L. CAMPBELL, JR , 2 and J. A. HYNEK 3 The fall of the world's first artificial satellite physical Observatory in the visual observing marks a significant epoch. A report on the program, is as follows: visual observations of the components of this Argentina 4 launching, Satellites 1957 al and a2, is appro- Australia 4 priate at this time. The great majority of Belgian Congo l scientifically valuable visual observations of Chile 3 these objects were furnished by stations in the vjp a n 7j world-wide network of more than 200 Moon- Nrt3^AiitUto."."IIIIIII"I""I"II"" l watch teams. Indeed, without their observa- Peru l tions the existence of al and a2 would have Uruguay l been far less fruitful, scientifically; for instance, Union of South Africa 4 the first attempts to obtain values of air United States J14 densities at satellite heights would hardly have Total 205 been possible without the significant visual ob- servations furnished by these teams. The preparation, training and organization In this report we give a brief review of the of teams have been described in the series of scope and performance of the Moonwateh op- Bulletins for Visual Observers of Satellites eration and a chronological listing of significant issued by the Smithsonian AstrophysicalObserv- Moonwatch observations. During the 8-week atory. Only a brief description, therefore, of life of Satellite 1957 al, 131 teams contributed the organization and performance of a typical a total of 391 observations of a 1 as well as of Moonwateh team will be given here. a2. These were rapidly transmitted by tele- n , *?? . . , , , , . , i t ! Purpose and scope of Moonwateh phone and telegraph to Moonwateh headquar- ters at Cambridge, Mass., where they were Immediately after the launching by any nation analyzed and fed to the Computations and o f a n artificial earth satellite, it is of utmost Analysis Division for orbital computations. importance to obtain a rough determination of (During this period these 131 stations as well as t h e o r b i t ?* quickly as possible so that the satel- others furnished an estimated 50 observations l i t e <*n h*&n i t s ?? f u l l l f e M a scientific ve- of Satellite 1957 Beta and its components.) h i c l e - ^ ^ satellites will be equipped with The distribution, by countries, of Moonwateh ?d ios w h i l e o t h e r s w U l n o t - S i n c e t h e r e a l s o teams associated with the Smithsonian Astro- e x i s t s t h e possibility of initial or early radio failure in the instrumented satellite, precision s^^rSTs^ZZZlT^ZS^ZZ. optical and photographic tracking of earth Cambridge; first issued Dec. 17,1957. satellites may not be possible until a preliminary * Director, Project Moonwateh, Optical Satellite Tracking Program, , . . , - , Smithsonian Astrophyslcal Observatory. Or bit IS determined. 1 Associate Director, Smithsonian Astrophysical Observatory; In While the present report Hst8 primarily Vteit tn * Lecturer ' Harvard observations of the satellite rocket carrier, 245 460132 O?58 5 246 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 1957 al , it should be pointed out that with very few exceptions the only scientifically valuable visual observations of the satellite proper, 1957 a2, were obtained by Moon watch teams. The primary objective of Moon watch is to provide early systematic observations to an accuracy of better than a degree of arc and a second of time. To effect this, there have been organized more than 200 teams of volunteer observers, drawn largely from the ranks of amateur astonomers and other scientifically inclined laymen who are giving freely of their time and who, for the most part, have fabricated or furnished their own observing equipment, including small telescopes, radio receiving sets, tape recorders, and other instruments. The investment represented by a typical Moon- watch station is estimated to be about $2,000, exclusive of special equipment and expenses incidental to the operation of the station. It should be emphasized that no salaries are given to Moonwatch teams anywhere. Each team comprises from 20 to 100 or more members. To allow for fatigue of individuals during an often long and tedious observing period, teams must have more observers than actually serve during any one satellite crossing. Observing techniques A Moonwatch team constitutues an optical fence, or gauntlet, across which a satellite must pass when its orbit intersects the twilight zone at a given station. When a satellite is first launched, all teams must be alerted until enough data have been collected to show that certain regions of the earth will not be produc- tive of observations. Each observer on a team is assigned a rela- tively small portion of the sky along the chosen observation line, and patrols his sector during the entire observation period. Although only one or two members will see the satellite at any one passage, the entire team must observe to make sure that the satellite is acquired as it crosses the chosen observation line. When an observer sees the satellite entering his field, he records this by voice on tape, by buzzer, or other recording aid, along with the WWV time signals which are recorded con- tinuously during the entire observing period. When played back, such a recording permits the accurate determination of the time when the satellite entered the field, its crossing of the meridional marker, and its exit from the field. Its position on the celestial sphere is deter- mined from the pre-set orientation of the ob- server's telescope or from the satellite's passage through a recognizable field of stars. Angular rate and magnitude are noted. Primary Uses of Observations.?Moonwatch observations received at the Smithsonian Astro- physical Observatory are used primarily for the construction of search or location ephemerides, to be used at precision photographic stations and other scientific stations, including astro- nomical observatories. Such ephemerides also are requested by scientists interested in per- forming special experiments, such as infrared observations. Currently, more than 350 pre- dictions for as many geographical localities are requested daily from Smithsonian Astrophysical Observatory. Also, large groups of amateur and professional photographers organized under the Society of Photographic Scientists and Engi- neers and the Civil Air Patrol, as well as other groups and agencies, request satellite search data. The second stage of the Moonwatch program occurs during the last phase of the existence of any particular satellite. Observations made of a satellite's earthward plunge are of obvious value, both for possible recovery and to record the luminescence and other physical factors of re-entry. Members of Moonwatch teams also perform important work in disseminating and interpret- ing the satellite data, as well as information about the whole IGY program, to their own communities. A Moonwatch team becomes in itself a center of considerable local interest and its members are constantly called upon to in- terpret the satellite program to the community, particularly to school groups, as well as to church and other adult groups. Thus, they have a unique opportunity to encourage partici- pation and interest in the total IGY program, and particularly to stimulate interest in science among the young people. History of Moonwatch teams It is estimated that there are more than 5,000 amateur astronomers in the United States alone, MOONWATCH OBSERVATIONS 247 many of whom are organized through the Astro- nomical League. Shortly after the Smithsonian Astrophysical Observatory was given the re- sponsibility for the optical tracking of the IGY satellites, it was determined to call upon these groups in this and other countries to serve as nuclei of visual observation teams. Dr. Armand N. Spitz, long noted for his work with these groups, the American Astronomical League, and the Association of Western Amateurs, was asked to assist in the organization. A National Advisory Committee composed of nominees from these two organizations, under the guidance of Dr. Spitz, studied the problems of organization, techniques, and instruments. The Moonwatch telescope was devised as a result of the research by this committee under the chairmanship of G. R. Wright of Silver Spring, Maryland. A basic consideration in devising instruments and techniques was that there was no budget provision for the operation of Moonwatch teams and that all activities had, therefore, to be on a volunteer basis. Since individual team members were to be asked to purchase or fabricate their own tele- scopes, the Committee set about to devise a low-cost optical instrument consistent with the observing techniques desired. The resulting Moonwatch telescope is now so familiar, and has been so adequately described in the popular literature, that further description is not neces- sary here. It is appropriate, however, to point out that the Russian visual observation effort was closely patterned after the U. S. IGY Moonwatch operation. Plans of instruments, techniques and organization were published in Sky and Telescope, an internationally distrib- uted magazine devoted largely to amateur astronomy. The Moonwatch Operation was from the outset intended to be complementary to the Precision Photographic Tracking Program. However, the coming of the sputniks before all precision tracking cameras were ready placed an added responsibility on the Moonwatch teams: to serve as interim tracking teams. As has already been mentioned, after the cessation of radio signals from the sputniks, the Moon- watch teams became one of the primary means of day-to-day tracking. The coming of the Russian satellites in their highly inclined orbits forced an alteration in some of the observing techniques of Moonwatch teams. For instance, it became necessary to establish an east-west optical fence, instead of the north-south, meridional fence first planned. In many cases this required additional expense of funds, time, and effort on the part of the teams to reorganize their station layouts. It is appropriate to mention, likewise, the very great cooperation and enthusiasm shown by the vast majority of Moonwatch teams. Many teams have felt the pressure of the financial burden, since most amateur astronomy groups operate on very limited budgets, but have been helped by local sponsors from civic groups, commercial organizations, and educa- tional institutions. The organization and training of many sta- tions and teams was assisted by the efforts of Col. Owen Clarke, USAF, who directed the system of "fly-bys," airplanes trailing a small light to simulate the passage of a satellite. Many Moonwatch teams in this and other countries deserve special mention, either for exemplary operation or for the development of special and ingenious techniques of observation. Indeed, the policy of the Smithsonian Astro- physical Observatory has been at all times to encourage the initiative and inventiveness of the individual teams. It would be beyond the scope of the present report to detail the many innovations and special operations contributed by such teams. A chronological listing of all significant obser- vations of a\ and a2 made by Moonwatch teams through Nov. 30, 1957, is given in table 1. 248 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS TOL.I Table 1.--Observations of S a t e l l i t e s 1957 al and a2 by Moonwateh teams through Dec. 1, 1957 Direc- Angular Magnitude tlon velocity and oolor +2 +2 +2 O.35*/s +1 +2 +2 0.35% +1 O.375'/s +2.5 +2 Date (D.T.) Station name Code number October 8 Australia 602 124 331 October 9 Sydney, Australia602 124 331 Santiago, Chile 805 124 071 Perth, Australia 601 122 296 October 10 Santiago, Chile 8O5 124 071 Sydney, Australia 602 124 331 New Haven, Conn. O87 072 042 Nllgata, Japan 238 038 319 October 11 Station coordinates 151 33 151 33 70 33 115 32 70 33 151 33 It 139 37 ?3 it 41 33 51 00 41 33 it 56 19 00 54 '41 43 41 43 12 42 10 07 12 42 41 43 50 58 39 26 "E S E S V S E S W S E S wN E N Satel- lite 1957 al a l a l a l al al al a l a l a l a2 a2 a l Time observed 09h36m348 09 09 09 09 09 09 09 09 09 09 00 00 00 00 11 11 00 00 00 09 09 09 09 10 19 338 39 $ 40 40 41 41 40 05 05 06 17 18 03 05 07 3 41 41 23 58 31 28 52 08.0n 43.5 42.2f 25.5 30.5 40 17 54 54 14 15 48 45 01 31 15.5 I8.5 30.5 04 Right as- cension or azimuth 12* 13 15 16 15 20 21 20 ) 20 18 18 19 20 21 21 101' 66 17 21 20 a 18 18 l38" 37 25 45 50. 10 41 15 IS 30 35 04 16 02 52 '20 56 11 57. 18 30 11 35 45*A (65? A 113 07 . s .7 16 00 ?A A .0 .9 16 13.500 Declin- ation or altitude -60* ' " - 6 5 -69 -69 -62.8 ~_H 7 -28i5 -28.5 -10*40' - 9*00' -37!4 -13.5 +07.6 +27.9 36*08'A 20*26'25"A -23*24' +04.5 +42*15' +44.8 -10 +14*46? - 9 40A 08.SA 1 24*49 ) Perth, Australia 115 51 10 E 601 122 296 32 00 07 S Adelaide, Australia 138 36 14 E 600 125 319 34 55 14 S October 12 Nllgata, Japan 139 00 39 E 238 038 319 37 54 26 N Suwa, Japan 248 036 318 Perth, Australia 601 122 296 11 16 30 11 16 45.8 11 16 55 11 16 59.5 11 17 16.8 19*33<00"A 21*15'00"A 21*29'40"A 21"52'00"A 22*13'00"A 09 39 12.5 20 18 36 19 53 39 65"A 48*19'29"A 40*09'52"A 36*02'41 ||A 28*3b'l4"A -14 55 07 17.5A 138 36 115 32 07 00 51 00 43 13 10 07 E N E S 19 19 11 11 11 11 11 11 n 11 12 a 15 16 54 00 50.5 39.5 27.3 43.5 57 12.7 45*A 45*A 231*35 245*52 293?10 350*46 05*52 07*36 '00 "A '00 "A ?20 "A '20"A '00 "A ?10 "A 1 1 . 1 6 . 30? 43? 52? 33? 16* 13? 5A 5A 05 310 23 47 '20 "A '59 "A ?16 "A ?31 "A ?25 "A ?49 "A Paint Bright +3 +5, Red-orange Bright +2 +4 +4 MOONWATCH OBSERVATIONS 249 Table 1.?Observations of Satellites through Dec. 1,1 r al and q2 by Moonwatch teams (continued) Date (U.T.) Station Satel- Station name, coordinates l i t e Code number 1957 October 13 New York, N. Y. 046 041 074 Cambridge, Mass. 099 042 071 Millbrook, N. Y. 045 043 079 Baltimore, Md. 088 039 077 Osaka Yoadru, Japan 241 O35 316 Perth, Australia 601 122 296 Suwa, Japan 248 036 318 Sendal, Japan 246 O38 321 Musaahlno, Japan 233 O36 320 Takada, Japan 250 O37 318 Osaka, Japan 240 O35 316 Chunichi, Japan 204 O35 317 Nagoya, Japan 236 O35 317 Antofagaata, n Chile 804 114 070 October 14 73? 40 71 42 II3 76 39 115 32 138 36 140 38 139 35 138 37 IS 136 35 136 35 70 23 sr 07 22 37 51 it it 51 00 07 00 51 15 g 15 06 i 54 10 68 25 39 451 30 46 48 27 30 2528 30 51 10 07 43 13 56 22 3 22 38 01 36 14 23 11 57 07 11 'W N W N V N W N E N E S E N E N E N E N E N E N E N W S al a2 al a2 al Woomera, Australia 136 46 59 E 6O3 121 216 31 06 13 S North Canton, Ohio 8l 27 19 W 053 041 081 40 55 55 N Time Right as- observed censlon or azimuth 22h00m 10 14 01 15 32.5 10 14 26 14 '00 10 14 51 12 42.5 10 14 39.6 23*A 10 14 59.4 40* A 10 15 04.6 43?A 10 15 10.0 50*A 10 15 00 10 54 10 17 28 10 54 10 16 42 11 44 10 20 23 11 43 19 47 28 18 19 11 08 08.8 235?44'20"A 11 09 21.6 2550iK>(OO"A 11 09 59 274?54'30"A 11 10 57.8 310?35'40"A 11 11 25.8 324*44'00"A 19 48 15 16 23 19 48 57 15 02 19 50 02 13 30 19 50 03.5 13 37 19 50 19 12 05 19 50 06 49CA 19 49 51 51*A 19 49 57 40.6?A 23 59 04.3 16 57 09 32 29 346#10'44"A 09 33 17 352*14'58"A Declin- ation or altitude +58? +71 +65 +57 47A 53A 52.5A 51.5A 31*26' 31*26- +15.5 +15.5 +68 1?*18'16"A 28*25'53 "A 30*39'22"A 31*41'46"A 27*44'1O"A +62 +65 +51 +38 12A 17A 12.8A 09.2 19?42'26"A 15*19'36"A Dlrec- Angular Magnitude tlon velocity and color 0 to 4.5 Faint +2 varying +5 +3 +2 +3 +2 4 to 1.5 +4 +3 +3 +4 10 07 47 (Meridian +60"l6' \p?A 11*12'A (Above corrected for refraction) 16.5'/S 4 to 3 250 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL.* Table 1.?Observations of Sate l l i tes IS through Dec. 1, 19^ f r al and a2 by Moonwatch teams(continued; Data (U.T.) Station Station nane coordinates Code number October 14 (continued) Greensboro, M.C. 79?52' "W 049 036 080 36 04 N (Not at Station - 2 ?lies SW) Cambridge, Mass. 099 042 071 Satel- lite 1957 Time observed 71 07 46 V 42 22 48 N Ft. Monnouth, N.J. 040 040 074 New Haven, Conn. O87 041 072 Bristol, Tenn. 097 037 082 State College, Pa. 060 041 O78 Perth, Australia 601 122 296 74 05 w 40 17 40 N 72 56 50 w 41 19 58 N 82 09 29 W 36 35 03 N 40 W.O N 115 51 10 E 32 00 07 s Akita, Japan 200 040 320 Sapporo, Japan 245 043 321 Otaru, Japan 243 043 321 Sendal, Japan 246 038 321 Toyama, Japan 254 037 317 Kanazawa, Japan 221 037 317 Kuruae Machi, Japan 227 036 320 Shlzuoka, Japan 247 O35 318 Takaoka, Japan 270 037 317 140 07 02 E 39 41 42 N 141 22 13 E 43 04 49 N 141 00 23 E 43 11 27 N 140 51 56 E 38 15 22 N 137 11 07 E 36 42 13 N 136 41 01 E 36 32 45 N 139 31 48 E 35 45 18 N 138 23 34 58 25 N al 10 11 Right as- cension or azimuth 15*25* 12 45 10 10 57.5 22.5*A 10 11 01.1 24*A 10 11 O3.5 27?A 10 11 10 11 11 10 11 15 10 11 08 10 11 20 31.5*A 31.5?A 45#A 6?.5*A 78A 10 11 08 46*A 10 11.25 60?A 10 11 24 40?A 10 13 07 90?A al 10 10 25 12 52 a2 10 18 12 12 17 11 06 25 292*01'OC"A 11 06 29.5 293oO3'40"A 11 07 03.4 307*44'00"A 11 07 46.2 323*33'00"A 11 08 01.3 328*03'40"A 19 45 14 11 40 19 44 53 09 21 19 45 30 63.5*A 137 01 39 E 36 44 23 N al 19 45 28 12 09 a2 19 56 43 13 11 19 45 36 5O.3?A 19 45 43 12 40 19 45 47 45.5?A 19 45 59 13 12 19 46 04 54.5*A Declin- ation or altitude +59" ' +39 67.5A 71A 71A 72A 71.5A 72A 72.5A 70.5A 42.5A 60A 18A +56.25 +57 23*04'44"A 23*06'04"A 21*16'52"A 17*19'11"A 15?33'45"A +74 +56 +52 51. 6A +58 +55 21.5A +47 27A 54 22A Dlrec- Angular Magnitude tlon velocity and color +3 +3 Faint Bright +2 +2 +1 +1.5 +2 +4 +2 +2 +3 +2 +2 MOONWATCH OBSERVATIONS 251 Table l.?Observations of Sate l l i tes through Dec. I ,~ l9 1957 cd and qg by Moonwatch teams 957 [continued) Date (U.T.) Station Satel- Statton name coordinates l i t e Code number 1957 October 14(continued) Musashlno, Japan 139*34'35"E al 233 036 320 35 42 58 N a3 Time observed 19 48 19 52 13 13. 04. Right as- cension or azimuth 54.1*A 00.0?A 00.0?A Declin- ation or altitude 27T4A' 13.2A 10.7A Dlrec- Angular tlon velocity Magnitude and color +6 +7 Nagoya, Japan 236 035 317 136 35 11 E 57 N 19 47 49 90?A 16.7A +3 October 15 State College, Pa. 060 041 078 Harrisburg, Pa. 057 040 077 Greensboro, 049 036 080 Washington, D. C. 014 039 077 New Haven, Conn. 087 041 072 Cambridge, Mass. 099 042 071 Mlllbrook, N. y. 045 042 074 Harrlacnburg, Va. 072 O38 079 Los Alamos, N. Hex. 043 O36 106 Oakland. Calif. 066 038 122 Portland, Oreg. 076 045 123 Takada, Japan 250 O37 318 122 12.0 V 37 46 00 1, 122 37 33 V 45 29 19 N 138 15 22 E 37 06 38 N Takaoka, Japan 137 01 39 E 270 037 320 39 4l 42 N Kanazawa, Japan 136 41 01 E 221 037 317 36 32 45 N al al a2 77 53.4 W 40 44.0 N 76 54 40 W 40 15 42 N (79 52 02 W) (36 04 39 N) 77 12 30 V 38 45 37 N 72 56 50 v 41 19 58 N 71 07 46 W 42 22 48 N 73 37 27 W 41 51 30 N 7? 5f W38 28 20 N 106 19 20 W al 35 52 30 N al al a l a3 10 04 10 18 27 +72?25? 10 05 41 11 27 +5*.5 10 26 11 27 +54.5 10 05 40A (10 s under Polaris and to the SE) 10 05 5* 13 20 +55 (Not at Station but 3 miles SW) 10 06 09 11 46 10 06 14 66?30?A 10 06 16.4 237*A 10 06 18.8 225.5?A 10 06 22.8 221 ?A 10 10 04 09 1212 09 12 10 07 18 13 17 55 13 18 05 13 18 22 13 19 to 13 20 19 38 50 19 39 59 19 40 25 19 40 45 19 43 45 11 19 10 11 05 11 30(approx.) 10 16 0?A 16 00 12 15 11 45 11 19 10 10 19 39 43 125-5* 19 39 48 19 41 42 12 45 11 10 +53?28' 72A I5*85.5A 85A +10 +02*30' +20*50' +62 +55 +42.5 70-75A +74 23. OA +57 +16*20' NW-SE To SE 3-5 +2 +4.5 -1 +2 +3 ??3 +6 +2 +2 +2 252 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites through Dec. 1,~19 1957 57 Date (U.T.) Station name Code number October 15(continued) Japan 246 038 321 Musashino, Japan 233 036 320 Kurune Machi, Japan 227 036 320 October 16 Ft. Belvolr, Va. 077 039 077 Station coordinates 14O#51'56"E 38 15 22 N 139 34 35 E 35 42 58 N 139 31 48 E 35 45 18 N 77 11.3 * 38 45.5 N Sate l - l i t e 1957 a2 al Time observed 19h4OB09? 19 40 53.5 i.9 48 57 09 59 Right a s - cension or azimuth I6h5im S 53.9A 45. OA 0?A Decl in- at ion or altitude ?K30? 1 " 36. OA 34A 32? A al and a2 by Moonwatch teams (continued; New Haven, Conn. 72 56 50 W O87 041 072 41 19 58 N Cambridge, al 10 00 01 Zenith Mass. 099 042 071 Dover, N. J. 039 041 075 Bris to l , Tenn. 097 O37 082 Bryn Athyn, Pa. O55 040 075 Red Bank, M. J. 040 040 074 Mlllbrook, N. Y. 045 042 074 Lincoln, Nebr. O38 041 097 Sacramento, Calif . 007 039 121 Las Cruces, N. Mex. 042 032 107 71 42 52 82 36 75 40 74 40 73 41 96 40 121 38 106 32 07 22 31 57 09 35 04 08 05 17 37 51 39 50 16 38 50 19 46 V 48 N 45 w 30 N 29 V 03 N W N V 40 N 27 W 30 N .2 V . 3 N .59 V .43 N 50 w 42 N al al a2 al a l al a l al a l a2 a l 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 13 13 11 59 00 00 00 00 00 00 00 00 00 00 08 00 01 14 00 00 00 36 13 27 38 50.2 00.2 23.4 24.8 28.6 29.2 35.6 37.6 42.8 50.2 08 .if 00 47 17 16 02 45 25.4 02.9 27 14 275 A 266? A 227 ?A 226? A 221 ?A 222 "A 208?A 205.5?A 201 ?A 199?A 10 30 0-A 45?A 90 ?A l80*A 51 ?A 02 03 07 22 07 01 08 42.5 07 25.5 11 40 59.5A 62.5A 64.5A 64.5A 63.5A 64. OA 60.5A 58.5A 57.5A 59.5A +49.75 82A 27A 29A 80A 75.5A +64?35 +28 50 +20.6 +6.7 +0.91 +18 Direc- Angular tion velocity Magnitude and color +2 +2 NW-SE +2 t o +3 +6 N-SE 0 . 3 ? / s +2 max. MOONWATCH OBSERVATIONS 253 Table 1.?Observations of Satellites al and a2 by Moonwatch teams Date (U.T.) Station Station name coordinates Code number October 17 Cambridge, Mass. 099 042 071 71*07'46"W 42 22 48 N Washington, D. C. 77 12 30 W 014 039 077 38 45 37 N Satel- lite 1957 a l a2 a l through Time observed 09h 09 09 09 09 09 09 10 10 10 09 1 m s52 51.2 52 55.6 53 O5.8 53 10.8 53 18.4 53 38.6 53 48.8 22 20.5 22 30 23 39 52 Dec. 1, 1957 Right a s - cension or azimuth 268? A 264.5?A 243.5?A 241 ?A 235?A 213.5?A 207? A 268?A 269.5?A 202*A 45A (continued; Declin- ation or alti tude 47A* ' " 47.5A 5OA 50A 51A 50.5A 48A 48A 48A 38A 65A (approx.) Dlrec- Angular Magnitude tlon velocity and color Bright Paint Schenectady, N. y. 081 043 074 (Not at Station) Wichita, Kans. 028 038 097 Las Cruces, N. Mex. 042 032 107 Lincoln, Nebr. 038 041 097 Manhattan, Kans. 027 039 096 73 56.5 W 42 54.6 N 97 14 41 W 37 41 44 N 106 50 50 W 32 19 42 N 96 39.2 W 40 50.3 N 96 28.85 W 39 09.75 N Oakland, Calif . 122 12.0 w 006 038 122 37 46 00 N Sacramento, Calif . 121 16.59 W 007 039 121 38 38.43 N Whlttier, Calif. 012 034 118 118 01 35 w 33 58 40 N Osaka-Yomluri, Japan 135 30 30 E 41 51 N241 O35 316 35 135 15 10 E Kanaya, Japan 220 034 315 Kiryu, Japan 223 O36 319 Kashiwara, Japan 222 034 316 Yokkalchl, Japan 34 03 46 N 139 1? 54 E 36 24 22 N 135 48 15 E 34 30 24 N 136 39 00 E al al a l San Francisco, Calif . 122 27 53 W a l 008 038 122 37 46 10 N a l al a2 a l 09 53 02 05 35 +21?00' 09 53 18 06 02 +13 11 26 13 04 37 13 05 05 13 24 48 13 07 59 06 40 11 28 15 23?A al al a l 11 11 11 11 11 11 29 29 29 30 30 31 8: 34 11 20 55 5 2 06 06 05 07 s ? 56 01 15 16 0?A 13 04 40 06 37 +40 12A +07.5 +02.0 +21*40' +04?05' +00*40' -23*20' 58* +54*45' 06 43.S +27.1 07 07.8 -21 .3(Meridian passage) 06 53 258 035 317 35 00 15 K 19 24 08 18 28 19 24 21 18 12 19 25 15 06 32 3.9 26 06 27 "A 19 26 39 37.5A +19 +70 +69 +88 29A 38.3A NW-SE 2.5 2 or 3 +1 +1 +1 +3 NW-SE +6 +1 +4 +2 +2 +2 +2 254 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites 1< through Dec. 1, 19: Sat* (U.T.) Station name Code number October 17 (continued) Nagoya, Japan 236 035 317 Hlgashlm, Japan 210 036 319 Hofu, Japan 213 034 312 October 18 Milwaukee, Wis. 074 043 088 Manhattan, Kans. 027 039 096 Tulsa, Okla. 054 036 096 Wichita, Kans. 028 038 097 Bryan, Tex. O65 031 096 Lincoln, Nebr. 038 041 097 Yankton, S. Dak. 061 043 097 Pt. Worth, Tex. 069 044 097 San Antonio, Tex. O89 024 098 New Orleans, La. 031 030 090 Edinburg, Tex. 066. 026 098 Portland, Oreg. 076 045 123 Oakland, Calif. 006 038 122 Los Altos, Calif. 005 037 122 Station coordinates 136' 35 139 36 34 88 42 96 39 95 36 97 37 96 30 96 40 97 32 98 29 90 29 98 26 122 45 122 37 122 37 68 23 02 33 03 08 58 28 09 57 03 14 41 20 38 39 50 23 52 22 42 29 27 3 10 18 37 29 12 46 07 23 '11 "E 57 N 22 56 E 13 N 54 W 08 N .85 w .75 N W N 41 W 44 N 01 W 15 N .2 W .3 N 26 w 42 N 09 w 42 N 11 W 25 N W N .35 w .34 N 33 W 19 N .0 W 00 N 26 W 56 N Satel- lite 1957 al a2 al al al al al al al al al al a3 al al al al al al a2 al al al Time observed 19' 19 19 09 10 11 11 11 11 11 11 11 29 29 45 04 20 21 22 21 22 22 22 11 22 11 23 11 23 11 24 11 40 ("Last 11 11 11 11 11 11 11 12 12 12 22 22 tt2 22 23 23 23 56 57 57 03 15 46.5 53.5 3Z 38 45 04.5 42.5 52.5 06 Right as- cension or azimuth 90' ?? 12 09 09 03 8 02 04 05 06 'A *24?9 8 47 47 47 56 i! 20 58 21 39 51 27.5 06 04 19 07 13 22 07 19 53 08 O8.5 03 54 object possibly a 23 31.1 45 52 22 42 45 30 08.9 11 06 06 07 07 09 04 45' 06 06 180' 38 35 47 50 33 35 42 "A 23 37 ?A Declin- ation or altitude 41! -08 +15 -03 +54 +39 +10 -14 +56 +09 +68 +09 +79 nose -16 -17 +33 +29 +41 +24 44A -17 +18 73? 9A. ? ?20' 00 ?12' ?4 2, "00 ? ?20' 0 3 0 \,xcone ) .7 .5 .5 ?42' ?20' A al and q2 by Hoonwatch teams (continued) Dlrec- Angular Magnitude tion velocity and color +2 +2 + 3 +2 +5 +2 +2 Varying 0 +1 +1.5 +2 +2 +2 +2 Paint +3.5 +2 Bright as Sir!us +4 MOONWATCH OBSERVATIONS 255 Table 1.?Observations of S a t e l l i t e s 1957 cd and g2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station name Code number October l8(continued) Sacramento, Calif . 007 039 121 Saga, Japan 244 033 310 Hiroshima, Japan 211 034 312 Takaoka, Japan 270 037 317 Kashlwara, Japan 222 034 316 Konko, Japan 224 035 314 Asahigawa, Japan 201 044 322 Nagano, Japan 234 036 318 Tadotsu, Japan 249 034 314 Mt. Fuji, Japan 232 636 319 Manazuru, Japan 228 O35 319 Nagoya, Japan 236 035 317 Kanagawa, Japan 219 O35 319 Kurume MachV Japan 227 036 320 Mlyazakl, Japan 230 032 311 October 19 Albuquerque, N. Mex. 041 035 107 Greensboro, N. C. 049 036 080 Pt. Belvolr, Va. 077 039 077 Station Sate l - coordlnates l i t e 1957 Time observed 121?16!59"W 38 38.43 N al a2 130 17 59 E 33 14 35 N Right a s - cension or azimuth 5 7 3 3 5 7 13 21 33.6 06 40.5 19 15 00 34O?OA 139 31 48 E a3 35 45 18 N 131 31 106 35 3 5 25 55 38 05 52 04 11 45 24 23 36 03 02 39 .3 .5 E N W N V N V N a l al a2 al 19 28 41.9 270?A 19 34 44 65?A 09 11 50 09 36 32 09 58 00 09 37 10 25 00 40 Declln- Direc- Angular Magnitude ation or tion velocity and color altitude -03? -31 22. OA 132 34 137 36 135 34 133 34 142 43 137 35 13334 138 35 139 35 136 35 139 35 28 22 01 44 48 30 37 32 21 46 50 30 45 16 48 31 08 09 % 21 26 10 08 39 23 15 24 40 31 50 27 44 50 16 20 50 20 46 23 11 57 16 34 E N a 2 E N E N E N E N E N E N ?3 E .8 N E N E N E N 19 19 19 19 19 19 19 19 19 19 19 19 19 16 40 16 16 16 17 16 17 17 17 18 19 21 17 23 20 33 11 42 05 09 23.3 15.7 06 00 17 54 06 18 90?A 18 04 15 00 11 25 225.0?A J2 00 11 33 04 15 09 20 90? A 215? A +66 +81 36.8A +78 +73.5 +55.0 4 2 . OA +04 +61 +85 +53.3 47A 45A 81.5A 25A +40.5 +48 +79 Meridian 84A +6.5 +3 +2 +3 +3 +2 +2 +2 +2 +2 +3 +4 +6 +8 2 to 2.5 +1 +6 +2 256 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites 1957 al and a2 by Moonwatch teams through Dec. 1, 1957 (continued)52 '57 Date (U.T.) Station Station name coordinates Code number October 19 (continued) Chattanooga, Tenn. 062 035 085 Arlington, Va. 071 039 077 Edlnburg, Tex. 066 026 098 Sunnyvale, Calf. 078 037 122 Yokkalchl, Japan 258 035 317 Otsu, Japan 269 035 316 Kashiwara, Japan 222 034 316 Oaaka-?omluru, Japan 241 035 316 Milwaukee, Wis. 074 043 088 85*15'37 "w 35 01 02 N 61 30 W 51 30 N 98 10.35 26 18.34 122 30 W 37 22.45 N 136 39 00 E 35 00 15 N 135 52 08 E 35 00 24 N 135 48 15 E 34 30 24 N 135 30 30 E 34 41 51 N 88 08 54 W 42 58 08 N Manhattan, Kans. 96 28.85 w 027 O39 096 39 09.75 N Tulsa, Okla. 054 036 096 Kansas City, Mo. 036 039 095 Lincoln, Nebr. 038 041 097 Peorla, 111. 023 041 090 Bryan, Tex. O65 031 096 Ft. Worth, Tex. 068 033 097 95 57 V 36 03 N 94 34 52 W 39 02 02 N 96 39.2 W 40 50.3 N 89 35 51 W 40 45 19 N Satel- lite 1957 al al al al al a2 a2 al a2 al al al al al a2 al al al al al al a2 al al al al Time observed h ,n 10 14 Right as- cension or azimuth al 10 36 00 11 14 38.2 11 14 39.2 11 14 41.2 11 14 44.0 11 25 35.2 11 25 40 12 48 08 13 01 47 19 07 33 19 08 25-3 19 08 35 19 08 56 11 12 45 11 12 58 11 13 30 11 14 49 11 17 08 11 35 11 12 O3.5 11 12 21.3 11 13 03.5 11 12 12 11 13 09 11 14 44 11 14 58 11 45 39 11 12 43 06 18 45?A 45?A 45?A 45?A 45?A 45? A 05 55 06 44 42 39.8?A 37?A 27?A 06 05 03 54 03 56 03 40 04 16 05 38 03 59 04 12 04 48 05 42 03 05 15 05 25 05 43 07 04 _ 07 35+Kr 04 34 11 12 30 05 25 11 12 53 05 42 11 12 52 23O?A 96 20 01 W al 11 13 05 47 Declin- ation or altitude +49! 5 +34 55A 53.5A 55A 53A 79A 79A +08 +27 57.4A 53A 55A +88 Dlrec- Angular Magnitude tlon velocity and color -14 -17 -13 -20 -27 -00? +14? +04? +10. +28 +07? -00? -26? -37 20' 40' 15' 05 20' 20' 30- to -41 -02?30' -09.0 -14.8 22.5A +48?06' NW-SE N-S N-S N-S N-S N-S N-S 97 22 10 W al 32 44 40 N 11 13 38 (06 30 ( 0?A +1 +1 +1 +1 + 6 +6 +1 Very faint +2 + 2 + 2 +2 + 1 + 2 + 1 + 2 +3 +5 t o +6 +1.5 +1.5 +1 +1 +2.5 +3 +5 +2 +3 to +6 +1.5 max. +2 +2 MOONWATCH OBSERVATIONS 257 Table 1.?Observations of Satellites 1957 al and a2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station name Code number October 19 (continued) Ft. Worth, Tex. 069 033 097 New Orleans, La. 030 030 090 New Orleans (Tulane) 031 030 090 San Antonio, Tax. O89 029 098 Akita, Japan 200 040 320 Kanayamachi, Japan 220 034 315 Sendai, Japan 246 038 321 October 20 Cambridge, Mass. 099 042 071 Station coordinates 97? 32 90 29 90 29 98 29 140 39 135 34 140 38 71 42 21' 42 01 57 07 56 29 27 07 41 15 03 51 51 07 22 45' 27 W N W N 11 25 02 42 10 46 56 22 46 48 'W N w N E N E N E N W N Satel lite 1957 al al al al New Haven, Conn. O87 041 072 St. Louis, Mo. 080 039 090 Chattanooga, Tenn. 062 035 O85 Peoria, 111. 023 041 090 Bryan, Tex. 06 5 031 096 Ft. Worth, Tex. 069 033 097 72 56 50 w 41 19 58 N 90 11 50 w 38 37 59 N 85 15 37 W 35 01 02 N 89 35 51 W 40 45 19 N 96 20 01 W 30 38 15 N 97 21 45 W 32 42 27 N al al al al al Time Right as- observed cension or azimuth llh12m19S O6nl4m 3 11 12 27 06 25 11 13 42 270?A 11 14 18 / 0 4 40|270A 11 14 08 08 12 19 09 10 06 17 19 09 35 85.8?A 19 10 11 06 57 09 26 53.6 09 50 07.2 09 54 31.8 10 24 20.5 10 24 37.5 09 27 13 09 28 41 09 31 56 11 05 19 10 26 211 "A 236?A 232.5?A 278 ?A 272.5?A l8O?A 05 44 10 23.0 05 32.0 01 20 Manhattan, Kans. 96 28.85 W al 027 039 096 39 09.75 N al al 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 02 02 03 03 03 04 05 05 05 02 02 03 03 03 03 04 42 41.2 12.3 36 37 19.4 07.8 54.7 55.3 52.5 58 02.5 03 04 22 31 230' 04 04 05 05 06 07 07 07 04 05 05 05 05 05 06 'A 30 31 51 49 01 02 35 44 50 09 09 0 8 33 47 40 Declin- ation or altitude +35? ' +3O?3O> 60A +19.' 42A +38.5 -02 44.1A -14 24A 12A 30A 20A 20A 60A -35 ??33.7 -35.1 +46 20A Dlrec- Angular Magnitude tion velocity and color +64? +65? +37? +37? -14? -15 -26? -28? +32? +28 +28 +28 -17 -22 -32? 12 18 36 54 24 12 54 45 15 15 45 50 NW-SE NW-SE +1 to 2 + 2 +2 +1 + 2 +2 Bright Faint +4, White +2, White +4.5 +3 varying + 2 +2 + 2 +2 +4 +3, Reddish 2.5 3 3.5 258 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites 1957 ol and a2 through Dec. 1, 1957 (continued; qg by Moonwatch teams Date (U.T.) Station Station name coordinates Code number October 20 (continued) Kansas City, Ho. 94?34'52"W 036 039 095 39 02 02 N Satel- Time Right as- Declln- llte observed censlon atlon or 1957 or azimuth altitude New Orleans, La. 030 030 090 Pt. Worth, Tex. 068 033 097 New Orleans, La. 031 030 090 Dayton, Ohio 062 040 084 EdInburg, Tex. 066 026 098 Tulsa, Okla. 054 036 096 Des Molnes, Iowa 026 042 094 Waco, Tex. 093 032 097 Albuquerque, N. Mex. 041 035 107 90 01 W 29 57 N 97 22 10 W 32 44 40 N 90 07 w 29 56 N 84 15 w 39 50 N 98 10.35 W 26 18.34 N 95 57 W 36 03 N ?3 41 30 w %2 0 0 N 97 O5.5 W 31 38.5 N 106 38 36 W 35 05 03 N 01 l l h 03 m 20 s O3n26m3Os al 11 06 26 06 38 02 11 44 26 07 10 11 03 46 270"A al 11 03 53 06 39 a2 11 30 19 06 59 al 11 03 56 /270?A 04 19 al 11 04 240?A al 11 04 28.8 225?A al 11 04 35 06 32 al 11 05 04 06 45 al 11 07 16 180"A a3 11 24 27 180"A al 12 40 33 295?A -07? ' -43?20' +41 35A fi 20A 66A -26?25' -32?40' 04.5A 28?3l'3O' 20A Dlrec- Angular Magnitude tlon velocity and color NW-S 2 to 4 2 to 4 7 to 8 Varying 0.5?/s 2 to 2.5 4.5 to 7 +6 2 to 3 October 21 Nagano, Japan 234 036 318 Honjo, Japan 212 036 319 Mltake, Japan 229 O36 320 Musashlno, Japan 233 O36 320 Cambridge, Mass. 099 042 071 Philadelphia, Pa. 058 040 O75 137 50 44 E 35 30 50 N 139 11 05 E 36 14 25 N 139 32 31 E 35 40 20 N 139 35 34 35 E 8 5 N 71 07 46 W 42 22 48 N 75 00 42 W 39 57 28 N 08 48 29 1 5 5 ^ 08 48 34 144?A 08 48 57 23 20 08 48 58 137.7?A 11 06 35.8 12O?A 11 06 54.4 114?A al 23 22 00 0?A 09. OA 14A -11 13.7A 18A 18A 40A + 2 +1.5,Reddish October 22 Manhattan, Kans. 96 28.85 W 027 039 096 39 09.75 N Las Cruces, N. Mex. 106 50 50 W 042 032 107 32 19 42 N al 00 43 04 22 48 30 -14 14 a2 01 20 56 122?A 70A +1 1.3?/s +5 or +6 MOONWATCH OBSERVATIONS 259 Table 1.?Observations of Satel l i tes 1957 al and a2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station Station name coordinates Code number Satel- Time l i t e observed 1957 Right as- cension or azimuth Declin- ation or al t i tude Dlrec- Angular tlon velocity October 22 (continued) Toyama, Japan 254 037 317 Higashlm, Japan 210 036 319 Musashlno, Japan 233 036 320 Manazuru, Japan 228 035 319 Toyohashi, Japan 255 035 317 Takada, Japan 250 037 318 Suwa, Japan 248 036 318 Sapporo, Japan 245 043 321 Kurume Machi, Japan 227 036 220 Cambridge, Mass. 099 042 071 137? 36 139 36 139 35 139 35 137 34 138 37 138 36 141 43 139 35 71 42 42 23 02 34 42 08 09 24 45 15 06 07 00 22 04 31 45 07 22 13 54 22 15 46 23 37 09 22 38 43 13 13 49 48 18 46 48 'E N E N E N E N E N E N E N E N E N W N a2 a2 08 08 08 09 09 08 08 08 08 08 08 08 09 11 11 I IT 36 36 36 36 23 29 36 37 37 37 37 37 24 36 36 1 s 15 29 38. 50 51. 20. 40 52. 53. 08 23 38 52 21. 10 42 7 7 6 4 1 8 90. 22h 135? 120. 315? 315? iS: 75? 90? 23 01 22 14 306c 302' 0?A 33- A 5?A A A 5?A 5?A A A 15 34 38 07 'A 'A Silver Spring, Md. 77 00 23 W 032 039 077 39 05 50 N Dover, N. J . O39 041 075 74 31 45 w 40 57 30 N al a2 a2 a l 22 54 23 50 02.5 23 50 54 22 53 52 Millbrook, N. Y. 73 37 27 W 045 072 074 41 51 30 N al 22 54 05 22 54 34 New Haven, Conn. O87 04l 072 Bryn Athyn, Pa. O55 040 075 73 W 41 N (Observed 40 08 N 75 04 W 79 56 W 37 19 N al 22 55 a2 23 17 by 4 people at home al a3 a3 a3 22 55 o23 29 48 23 30 09 23 30 53 Roanoke, Va. 073 037 080 Washington, D. C. 77 11 34 W 014 039 077 38 53 18 N (Not at station) a2 23 29 10 a2 23 48 45 95?A 90?A 00 35 00 07 23 03 00 02 120? A 120?A of R. Brown, 135 "A 18 30 0?A 01 30 21 25 Zenith -2k 21.4A 22.5A 22.5A 27A 21A 21?40'A 15A 16A -25 +10.5 -27.9 +55.9 40A 56A 20A 80A +55 15 -10 -17?20 ' -07?50' E-N SE-NE 35A S-NE 37-38A S-NE Team Leader in Milford, Conn.) 20A +45 71A +58 r48 90A SE-NE SW-NE SW-NE SW-NE Magnitude and color +3 +1 +1 +7 to +8 +3 to +4 +1 +1 +1 +3.5 +6 +4 to +5 +2, Yellow- orange +1 43 or +4 +1 or +2 +4 +4 +4 260 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Sa t e l l i t e s 1957 al and a2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station name Code number October 23 Santa Barbara, Calif. 009 034 120 Los Angeles, Calif. 100 034 118 Nagano, Japan 234 036 318 Mltake, Japan 229 036 320 Kurume Machi, Japan 227 036 320 Station Satel- Time Right as- Declln- coordinates lite observed cension atlon or 1957 or azimuth altitude Dlrec- Angular Magnitude tion velocity and color Sendai, Japan 246 038 321 Waco, Tex. 070 032 097 119*41'3O"W a l 0 2 h 0 3 m l l s 19 h 43 m 38 s +45?01 '30" SW-NE 34 24 30 N ( Z e n i t h t o h o r i z o n j n lm 4 4 s . Haze and c l o u d s . ) 118 14 17 W 33 59 41 N 137 50 44 E 35 30 50 N 139 32 31 E 35 40 20 N 139 31 48 E 35 45 18 N 140 51 56 E 38 15 ld2 N 97 07 W 31 34 N a l a l a2 a3 al a2 02 03 50 08 23 15 08 23 26 08 23 34 09 13 15 09 24 25 08 24 49 (Temporary location) 23 14 00 00 08 00 0?A 112?A 105?A 98.1?A 315?A 315?A 01 36 18 25 18 25 45A 23A 22A 23.9A 21A 17A +22 (Oct. 24 U.T.) +38 +38 SW-NE Bright +1 to +2 +2 -1 +1 +1 +1.5 October 24 San Antonio, Tex. 089 029 098 Ft . Worth, Tex. 069 033 097 St . Louis, Mo. 080 039 090 Whittier, Calif. 012 034 118 Los Angeles, Calif. 100 034 118 Asahlgawa, Japan 201 044 322 Hofu, Japan 213 034 312 Roanoke, Va. O73 037 080 98 29 11 w 29 27 25 N al a3 00 12 12 00 57 00 18 45 16 45 +28?34' +10?50' 3?/s 97 21 45 W al 00 12 49 200?A 35A 32 42 27 N al 00 13 00 f 19 49 +19"? (l80?A 76AJ (Second observation a meridian transit, altitude 76? S.) 90 11 50 w 38 37 59 N 118 01 35 w 33 58 40 N 118 14 17 W 33 59 41 N 142 21 50 E 43 46 27 N 131 33 56 E 34 03 13 N 79 56 W 37 19 N a l al al al al a2 a2 a2 00 13 59 01 49 02 01 49 07 01 49 08 01 49 22 03 01 31 09 07 02 09 44 43 23 19 16 34.5 15 33 14 55 0?A 275?A 314.5?A 20 45 -10.4 +77.5 +77.75 +78.5 29A Zenith 2 6 . OA 09.2A 78A W-N SW-NE + 2 Very faint -3 +1 +2.5, Yellow 0 to +1(Varying) +1 to +4 +3 +h +7 October 25 Whittier, Calif. 118 01 012 034 118 33 5840 N cd 01 30 36 15 46 +21.5 280?A 40A (fade out pos i t ion) SW-N +2 MOONWATCH OBSERVATIONS 261 Table 1.?Observations of Satellites 1957 ol and g2 by Moonwatch teama 2llthrough Dec. Y7i95T (continued; Date (U.T.) Station name Code number October 25 (continued) Cambridge, Mass. 099 042 071 Milwaukee, Wis. 074 043 088 Los Angeles, Calif. 100 034 118 October 28 Struthers, Ohio 075 041 081 October 29 Adelaide, Australia 600 125 319 Perth, Australia 601 122 296 October 31 Perth, Australia 601 122 296 Station coordinates 71' 42 88 42 118 33 80, 41 138 34 115 32 115 32 ?07 '46' 22 48 08 58 14 59 .5 07. 36 55 51 00 51 00 54 08 17 41 'V N W N W N W .5 N 14 14 10 07 10 07 E S E S E S Satel- lite 1957 cxl od al al al al Time observed 10* 23 23 01 22 04 19 19 19 19 19 19 19 l08" S 33 55 15 % 59 09 09 10 15 l44S 57 55 42 16.5 05 11 25 09 40 18.5 51 Right as- cension or azimuth 214' Y 22 05 0?* l80c 54' 46' 91 120 63' 77 93 140 A V 10 1 "A "A '15 05 04 '58 51 36 13 1 s 'A A A 'A A A A Declin- ation or altitude 13A? ' +88" ? +57 27A 30A 48A 51 "17'A 51 01 A 36 57 A 37 24A 37 50A 34 43A 02 4 8 A Direc- Angular tlon velocity Magnitude and color NE-S +2 +7, White +2 to +1 November 9 Ft. Worth, Tex. 068 033 097 97 22 10 W 32 44 40 N Chattanooga, Tenn. 85 15 37 W 062 035 O85 35 01 02 N Sydney, Australia 151 05 4l W 602 124 331 33 54 43 S a l 09 33 35 06 55 10 39 01 03 05 15 18 17 02 08 42 01 58.3 +67 +51 19.8 -13*38' SSW-NNE SW-NE or +8 November 12 Sydney, Austral ia 151 05 41 W 602 124 331 33 54 43 S a l 15 26 13 17 10 -67 November 23 Sydney, Austral ia 151 05 41 E 602 124 331 33 54 43 S al 11 00 19 08 30 -62.5 November 24 Columbus, Ohio O51 040 O83 Sacramento, Calif. 007 039 121 83 01 15 w 39 58 45 N 121 OO.36 W 38 41.33 N al a l 00 00 00 01 01 01 16 16 16 45 47 47 40 s 23 19 19 .6 .1 .9 17 18 18 10 03 03 54 3 12 42 39 .3 .1 .9 +19 +19 +16 +65.24 +47.46 +47.56 Over +3 460132 O? 5S 262 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites al and a2 by Moonwatch teams through pec. 1, 1957 (continued) Date (U.T.) Station Station name coordinates Code number November 24 (continued) Portland, Oreg. 122*37'33"W 076 045 123 45 29 19 N Boise, Idaho 116 27 30 W 018 044 116 43 36 30 N Phoenix, Satel- Time Right as- Declln- llte observed censlon atlon or 1957 or azimuth altitude al 01h45m538 01h22m598 +60!01' " (Occulted Delta Cassiopeia) +60 01 46 13 01 22 30 Direc- Angular Magnitude tion velocity and color 0 to +1 al 01 46 25 Zenith Ariz. 022 O33 Oakland Calif 006 038 Hofu, Japan 213 O34 112 t 122 312 Hiroshima, Japan 211 034 312 Mltake, Japan 229 036 Himeji, Japan 262 O35 Otsu, Japan 269 O35 320 315 316 Musashino, Japan 233 O36 320 Kanayamachi, Japan 220 034 315 Yokkaichi, Japan 258 035 317 Nilgata, Japan 238 038 Miyazak] Japan 230 032 Takada, Japan 250 037 Kochi, Japan 264 034 3endai, Japan 246 033 319 311 318 314 321 112 33 122 37 131 34 132 34 139 35 134 34 135 35 139 35 135 34 M O0 00 VJ l O S 139 37 131 31 138 37 133 140 38 04 27 12 46 33 03 28 22 3 2 40 41 50 52 00 34 42 15 03 39 00 00 54 25 25 SI 30 51 15 V N .0 00 56 13 10 08 31 20 24 25 08 24 ? 10 46 00 15 3?26 24 53 22 38 35 56 22 W N E N E N E N E N E N E N E N E N E N E N E N E E N Ol al al al al al al al al al al al al al al 01 01 01 01 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 48 48 49 48 23 23 24 24 26 24 24 24 24 24 24 24 25 25 25 m m m CM CM CM 27 57 12 56 25 33 22 43 04 23 32 32.7 41 52 52 56 32 06 09 04 19 34 13 17 00 03 0?; 22 18 19 21 16 253 270' 20 20 240' 02 02 20 00 20 208. 21 15 00 15 16 \ 20 35 00 24 10 .7?A 'A 55 37 'A 24 06 41 09 10 8?A 00 90A +68 +85 +61 +25?30' 34A +77 +21.5 +12.48 -23.00 +62 58.2A 32A +47 +15 30A +50 + 23 - 1 0 +29 -14 23.3?A -32 NW-SE +2 +3, Dull red +1 + 2 + 2 +6 +1 +2 +2 +1 +2 +1 + 1 + 3 + 2 +1 +1 + 1 + 2 M O O N W A T C H OBSERVATIONS Table 1.?Observations of Satellites 1957 al and a2 by Hoonwatch teams through Dec. 1, (continuedJ 263 Date (U.T.) Stat ion Satel- Statlcn name coordinates l i t e Code number 1957 November 24(continued) Perth, Australia 115?51 '10"E 602 124 042 32 00 07 S Time observed Cambridge, Mass. 099 042 071 71 07 46 W 42 22 48 N North Canton, Ohio 81 27 19 W 053 041 081 40 55 55 N Bryn Athyn, Pa. 055 040 075 Ft. Belvoir, Va. 077 039 077 Columbus, Ohio 051 040 O83 Washington, D. C. 014 039 077 U 7i 83 39 77 38 04 08 11 45 01 58 06 58 w N . 3 W . 5 N 15 * 45 N ,5 W . 5 N (These three observations not at station) Silver Spring, Md. 032 039 077 Arlington, Va. 071 039 077 New Haven, Conn. O87 041 072 a l a2 a2 al a l a l a l a l Right a s - cension or azimuth 14 1837?O 246*43'A 14 19 00.7 24l*l6'A 14 20 30.1 219 35 A 339?A 312*A 197?A 176?A 174.5?A 22 48 07.2 22 48 11.0 23 03 13 23 04 23.4 23 04 32.8 23 01 31 23 01 36 23 02 39 23 04 30 23 05 17 al 23 01 45 l80?A al 23 01 49 02 12 al 23 01 55 2* (NW of Delta Cephei) Declin- ation or altitude 07?20'A" 08 20 A 07 45 A 85.5A 88A 23A 12A 11A +35.5 Direc- Angular Magnitude tion velocity and color 19 3522 24 l6l*A 116*A +44 -01 15A 09A 51A +22 NW-SE Faint Bright +1 -1 +1 3 11 39 3 72 41 06 49 03. 54. 00 05 61 51 56 19 VI N 2 W 2 N 23 w 50 N 30 w 30 N 50 w 58 N a l a l a l a l a l 23 23 23 23 23 23 23 23 02 02 02 02 02 02 02 03 02 21 11. 3 2 ? 43. 16 39 3 1 . 5 5 5 5 60*A 23 40 90?A 00 07 00 36 308*52.6' 358*20' 176?A 80A +28 87A +25 +30 +36 +14 21A . 5 .7 ?25' .75 NW-SE NNW-SSE NW-SE +1 varyln) +1 - 2 +1 t o +2 1 varying Yellow- orange November 25 Idaho F a l l s , Idaho 112 03 25 W 019 043 112 42 30 01 N Milwaukee, wis. 074 043 088 Denver, Colo. 87 58 45 w 42 59 25 N 013 040 105 r 39 44 52 N) Lemont, 111. 022 042 088 87 59 41 W 41 41 48 N al 00 31 58 90*A (Not a t s ta t ion) al 00 36 28 19 30 (Not a t s t a t ion ) (104 56 36 w) a l 00 3 t 39 44 52 ) 00 4' a l 125?A 90* A 25 t o 30A -18 (One mi le south of s t a t i o n ) 15.5A 30A 00 33 40 00 34 09 19 02 19 44 -09.8 -17.5 NW-SE NW-SE N-S 264 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Sate l l i tes IS through Dec. 1, J9: r al and a2 by Moonwatch teams (continued; Sate (U.T.) Station Satel- Statlfln name coordinates lite Code number 1957 Time Right as- Declln- observed censlon atlon or or azimuth altitude Dlrec- Angular Magnitude tlon velocity and color November 25 (continued) North Canton Ohio 053 041 081 Tucson, Ariz. 003 032 111 Oakland, Calif. 006 038 122 Sacramento, Calif. 007 O39 121 Whittier, Calif. 012 034 118 8l?27'19"W 40 55 55 N 110 56 09 w 32 13 59 N (These are three separate objects) 122 12.0 W 37 46 00 N 121 16 59 W 38 38 43 N 118 01 35 w 33 58 40 N ol a2 al al al al 00h2lm17S 00 21 41 00 35 24 00 35 43.5 00 43 45 00 44 42 01 50 22 01 51 00 01 51 56 02 07 04 02 08 59 02 03 15 02 03 54.4 02 04 27.8 02 03 50 02 04 36.3 02 05 19.2 02 05 54 19h27B 20 41 19 32 19 52 314?A 90?A 290?A 316?A 04?A 44BA 22 19 22 10 07 23 35 20 40.6 22 51.7 23 40.8 22 48 8 -22T4 ' " -17.8 -21.8 -27.9 Zenith 36A 40A 43A 26A 28A NNW-SSE 58?O5' NW-SE 62 (Meridian observation) 28?25> +50.17 +08.88 -14.80 +O8.3 NW-SE 3, Orange 3, Yellow 5 1 1, Orange 0 0 -1 0 0 Walnut Creek, Calif. 122 04 30 W Oil 038 122 37 55 30 N Asahigawa, Japan al 02 04 17 142 21 50 E al 201 044 322 43 46 27 N 08 05 34 08 06 25 Sendal, Japan 246 O38 321 38 15 22 N 140 51 56 E al 08 05 46 Kurume Machi, Japan 227 O36 320 Mitake, Japan 229 O36 320 Takada, Japan 250 O37 318 Otsu, Japan 269 O35 316 Sydney, Australia 602 124 331 Perth, Australia 601 122 296 139 31 48 E 35 45 18 N 139 32 31 E 35 40 20 N 138 15 22 E 37 06 38 N 135 52 08 E 35 00 24 N 151 05 41 E 32 00 07 N a3 al 08 07 17 08 08 38 08 09 06 0" 41 15 08 06 59 al 08 07 47 22 32 20 52 22 53 O6.7?A 76.0?A 116.7*A 01 34 19 40 45.0?A 03 10 al 09 39 03 17 38 al 09 40 32 258?A al 09 59 22 04 03 Rantoul, 111. 092 040 088 115 51 10 E 32 00 07 S 88 09 04 W 40 17 51 N ol 13 01 32.O 202?17'/ 48.4 197 3813 01 . 13 01 51.6 13 04 42.1 196 01 165 38 23 14 O6.5 02 05 +38 +48 +13 24.6A 35.9A 19.6A -13 -26 2 4 . OA +28 +14 18A - 1 3 33?14'A 31 53 31 15 06 26 44.8 NNW-SSE 1, Yellow- white NW-SE +1 max. 1 or 2 MOONWATCH OBSERVATIONS 265 Table 1.?Observations of S a t e l l i t e s 1957 al and o2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station name Code number November 25(continued) Evansvllle, Ind. 094 038 088 Las Cruoes, N. Mex. 042 032 107 Danville, 111. 021 040 088 Wllmore, Ky. 029 038 O85 St. Louis, Mo. 080 039 090 Terre Haute, Ind. 025 039 O87 Cincinnati, Ohio 050 039 O85 Sliver Spring, Md. 032 039 077 Bris to l , Tenn. 097 037 082 Washington, D. C. 014 039 077(Not at station) Greensboro, N C 049*036 080 Roanoke, Va. 073 037 080 Sylacauga, Ala. 001 033 086 W. Balm Beach, Pla. 016 027 080 Ft. Belvoir, Va. O77 039 077 Amarillo, Tex. 064 035 102 Station Sate l - Time Right a s - Declin- coordinates l i t e observed cension ation or 1957 or azimuth altitude 87? 31' 51" W 37 58 15 N 106 50 50 W 32 19 42 N 87 37 34 W 40 08 57 N 84 39 54 w 37 51 36 N 90 11 50 w 38 37 59 N 87 23 50 w 39 31 38 N 84 42 35 W 39 11 30 N 77 00 23 W 39 05 50 N 82 09 29 w 36 35 03 N 77 03.2 w 38 54.2 N al 22n15m008 90?A 1.5? (Below Alpha Andromedae) a l 77 11.3 W 38 45.5 N 22 46 33 22 47 03 23 14 10 02h50m 01 52 908A +41? +20 49A al 23 14 30 0"A 85A (See November 26 for second observation) al 23 13 41 02 56 a2 23 42 1 4 90?A a3 23 42 22 90?A al 23 14 26 908A a2 23 49 28 2708A +49.3 57A 59.3A Dlrec- Angular tlon velocity NNW-SSE N-S NW-SE NW-SE NW-SE 43?28'A NNW-SSE I . l 6 ? / s 77A 1.05?/s al 23 14 27 NNW-SSE (3? down from center of Square of Pegasus, on E-W l i n e ) al 23 14 28 2708A a l 23 15 23 23 18 00 270?A 149 A al 23 15 36 2458A 79 52 02 W al 23 15 10 l80?A 36 04 39 N 79 56 W al 23 16 22 00 37 19 N 86 15 13 W a2 23 16 14 90'A 33 09 45 N 80 04 40 W al 23 16 17 90?A 26 39 30 N . al 23 18 50 l80?A 26A 87A 17A 35A 46A +27*51' NW-SE NW-SE l " / s NNW-SSE NNW-SSE 25?51'A N-SE 12*/9s 101 50 W al 23 46 13.5 270?A 35 13 30 N 35A 15A 61.5A NW-SE NW-SE To SSE Magnitude and c o l o r 1. varying 1 , Yellow 1 , White 2 , Red- orange 1 . 5 , White to yellow 4, Deep yellowish 4 - 1 , Yellow- red 0 to +1 1, Blue- white - 1 , White +2, White +1 - 1 , Orange +1, Yellow- white +1 November 26 tag Spring, Tex. 083 032 101 101 26 33 W al 00 32 43 59?A 32 15 11 N 00 47 07 2708A 70A 85A 1, Reddish 0 266 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS 'Table 1.?Observations of Satellites 1957 al and a2 by Moonwatch teams through Dec. 1, 1957 (continued) Date (U.T.) Station Station name coordinates Code number November 26 (continued) Satel- Time Right as- Declin- Direc- Angular Magnitude lite observed cension ation or tion velocity and color 1957 or azimuth altitude Spokane, Wash. 086 048 118 San Angelo, Tex. 105 031 100 Idaho F a l l s , Idaho 019 043 112 Wilmore, Ky. 029 038 O85 Denver, Colo. 013 040 105 Manhattan, Kans. 027 039 096 Yankton, S . Dak. 061 043 097 Lawton, Okla. 110 035 098 117' 47 100 31 112 43 84 37 104 39 96 39 8 98 34 37 27 27 03 30 39 51 8 28 09 23 52 24 39 ?O1"W 3 7 N 4 7 W 1 9 N 3 5 W 0 1 N 54 w 36 N 36 w 52 N .85 w .75 N 26 w 4 2 N 1 2 W 4 5 N a l a l a l a l a l a l a l a l 00W 00 42 00 48 00 43 00 43 00 44 00 44 00 46 00 47 00 44 00 44 02 50 37 30 15 19 13 29 58 3"E of Polaris 20h40m 3 00 05 00 90?A 225?A 18 35 16 32 18 57 32 16 33 17 48 Meridian +31? -29. 80? 20A +40 +22 -08? +20 +06 20A 27119" 5 t o 85?A 0 2 ' NW-SE 0.6% NW-SE NNE-SSW NW-SE . 0 . 7 1 % - 1 0 +1 - 1 +2 +2 +2 +1 to +2, White .3 , Orange , Red- orange , White to 2.5, White .3 Kansas City, Mo. 94 34 52 W 036 039 O95 39 02 02 N al 00 45 07 17 25 +10 Albuquerque, N. Mex. 041 035 107 New Orleans, La. 030 030 090 Tulsa, Okla. 054 036 096 Los Alamos, N. Hex. 043 036 106 Waco, Tex. 070 032 097 Wichita, Kans. 028 038 097 San Antonio, Tex. O89 029 098 F t . Worth, Tex. 068 033 097 106 38 36 W 35 05 03 N 90 01 w 29 57 N a l 00 45 46 00 4 6 . 1 +57?33 ' NNW-SSE O . l 9 ? / s NW-SE +2 to +5, Yellow- orange +1 al 00 46 270?A 57 W 03 N 106 19 20 W 35 52 30 N 97 13 W 31 37 N 97 14 41 W 37 41 44 N 98 29 11 w 29 27 25 N 97 22 10 W 32 44 40 N al al a2 00 46 14 00 49 54 00 46 16 01 25 01 al 00 47 44 18 06 22 22 00 30 21 14 21 05 20A +9?3O' -45 40 +20 +10.8 09.3 NW-SE al 00 47 42.8 Tangent to bottom of Moon NW-SE al 00 47 55 20 12 25?30' al 00 47 54 20 12 -17 NW-SE NW-SE 0.8 3, Orange +1 1 to 2 NNW-SSE NNW-SSE NW-SE NW-SE 0 2 % 8 + 2 , +3 +2 +1 +6 White ? t o +6 MOONWATCH OBSERVATIONS 267 Table 1.?Observations of Satellites ic through Dec. 1, 19f 57 otl and a2 by Moonwatch teams 7 (continued) Date (U.T.) Statloi name Code number November 26 (continued) Edlnburg, Tex. 066 026 098 Bryan, Tex. 065 031 096 Sacramento, Calif. 007 039 121 Oakland, Calif. 006 O38 122 Station Satel- coordlnates lite 1957 Time Right a s - observed censlon or azimuth 98"10 J135 'V 26 18.34 96 20 01 W 30 38 15 N 122 04 30 W 37 46 00 N San Francisco, Cal i f . 122 27 53 W 008 O38 122 37 46 10 N Whlttler, Calif. 012 034 118 118 01 35 W 33 58 40 N Walnut Creek, Calif. 122 04 30 W Oil 038 122 37 55 30 N al al al a2 a l 121 16.59 W al 38 38.43 N a2 a l a l a l a l OOh48m57S 00 48 57 00 50 39 01 28 39 00 49 42 00 47 59.5 02 15 46.2 02 16 06.1 02 17 11.7 03 05 06 02 16 53 02 17 22.5 02 17 14 02 17 19 02 17 24 45?A 45?A 339.5?A 45 A h, m s 21 42 00 19 34 17 32 3^ 18 05 10 20 35 10 21 15 28 19 18 00 20 22 20 21 20 21 18 19 02 17 25.5 20 22 Declin- ation or altitude 80A? 78A 23A 40A .33.32. +07.4 +16.54 +09.66 -25.16 -32.42 -17 30 -13 -15 +10.3 -17?3O' Dlrec- Angular Magnitude tion velocity and color NNW-SSE 2 2 1 . 8 ? / s +6 , White NW-SE 0 t o 1 , Red Red White To SW +8 NW-SE 1 and 2, White White NW-SE 0 max.,White 2 to 6, Reddish NW-SE 1 to 2, Yellow- white China Lake, CaBf. 098 036 118 117 38 19 w 35 " 3 3 S al 02 17 44.54 265!276A 19"7O6A al 02 17 45 240?A 25A117 36 35 40 43 N (Not at station but at coordinates shown. First observation, Los Angeles, Calif. 100 034 118 Santa Barbara, Calif. 009 034 120 Asahigawa, Japan 201 044 322 Kumamoto, Japan 225 033 311 Kagoshlma, Japan 218 032 311 Sydney, Australia 602 124 331 Perth, Australia 601 122 296 Red Bank, N. J . 040 040 074 118 14 17 W 33 59 41 N 119 41 30 W 34 24 30 N 142 21 50 E 43 46 27 N 130 44 34 E 32 46 57 N 130 31 47 E 31 31 34 N 151 05 41 E 33 54 43 S 115 51 10 E 32 00 07 s 74 05 w 40 17 40 N a l a l a l a l a l 02 18 59 02 20 18 08 17 57 08 20 00 09 52 05 09 52 18 10 10 01 19 04 l80?A 20 14 22 45 19 34 19 35 20 15 11 38 09.2 63'02'A 11 38 17.8 67 06 A 11 38 44.0 78 11 A 21 50 16 43?A -05 14.5A -16 -34 -24 -23 -48 20?01'A 20 16 A 20 00 A 33.5A NW-SE Askania d a t a . ) NW-SE 1 to 3 NW-SE +2, White- yellow +1 max. NW-SE 268 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Satellites 1957 at and ct2 by Moonwatch teams through Dec. 1, 1957 (continued; Date (O.T.) Station Station name coordinates Code number November 26 (continued) Cambridge, Mass. 71?O7'46"W 099 042 071 42 22 48 N Baltimore, Md. 088 039 077 Cleveland, Ohio 052 042 082 Harrisonburg, Va. 072 038 079 Terre Haute, Ind. 025 039 O87 North Canton, Ohio 053 041 08l Danville, 111. 021 040 088 Lemont, 111. 022 042 088 Dayton, Ohio O82 040 084 Bristol, Tenn. 097 037 082 Roanoke, Va. 073 037 080 Evansville, Ind. 094 038 088 76 35 25 W 39 24 28 N 81 47 44 W 41 29 46 N 77 11.3 W 38 45.5 N 87 23 50 w 39 31 38 N 81 27 19 W 50 55 55 N 87 37 34 W 40 08 57 N 87 59 41 W 41 41 48 N 84 15 50 W 39 50 52 N 82 09 29 w 36 35 03 N 79 56 W 37 19 N 87 31 51 W 37 58 15 N Satel- Time Right as- Declin- llte observed cension atlon or 1957 or azimuth altitude 21 50 18 34.2? A 73.?5A 21 50 39.2 100A 72A 23 09 45 267A 10A 23 13 32.8 220.5A 07A al 22 28 00 .5? directly below Pomalhaut To SSE Direc- Angular Magnitude tion velocity and color St. Louis, Mo. 90 11 50 W 080 039 090 38 37 59 N Athens, Oa. O79 034 O83 Wllmore, 029 O38 O85 Hapeville, Ga. 017 034 084 Greensboro, N. C. 049 036 080 Sylacauga, Ala. 001 003 086 83 19 25 w 33 57 06 N 84 39 54 w 37 51 36 N 84 17 03 w 33 47 27 N 79 52 02 W 36 04 39 N 86 15 20 W 33 10 20 N Bright Faint od 23 23 23 18 37 30 oa 23 23 30 19 32 30 al 23 24 18 225?A 22A 51A 47A 44?28'A -17?50' +08 al 23 05 20 270?A 23 15 52 27O?A ca 23 21 40 270? A oa 23 22 55 l80?A ca 23 22 59 19h23m ca 23 22 03 19 55 ca 23 22 20 270"A ca 23 22 18 282?A 23 22 40 270?A 23 23 44 214 A ca 23 22 07 19 28 23 22 16 270?A ca 23 22 03 22 13 23 56 50 18 22 al 23 23+30 270?A al 23 23 25 214?O6'A 34?53'A +38?45' +27 30 17A SW-N 1 / 3 % 4, Reddish NNW-SSE 7 or 8 NNW-SSE 10V7.4s 1, White l l 8 ? / NNW-SSE WNW-SSE l ? / s 0 t o 2 54A 03A 26A 27A +24? 62A +37.4 +21.9 45A NW-SE NW-SE NNW-SSE NNW-SSE NW-SE NW-SE NW-SW -1 or -2, Reddish 3 1, Reddish 2 1 to 5, Yellow- white 0, White 4, Red- orange +2 or +3, White +3, Orange white NW-SE NNW-SSE a l 23 24 31 90?A 81?33'54"A NW-SE +1 to +4 +1 to +2 +1 to +3 NO. 10 MOONWATCH OBSERVATIONS 269 Table 1.--Obaervatlons of Satellites 1957 al and o2 by Moonwatch teams "Ehrough Dec. 1. 1957 (continued) Date (U.T.) Station Station name coordinates Code number November 26 (continued) W. Palm Beach, Fla. 016 027 080 26 39 30 N Satel- Time Right as- Declin- llte observed censlon atlon or 1957 or azimuth altitude 80"04?40"W al 23h25m303 270?A Arlington, Va. 77 61 30 w 071 039 077 38 51 30 N Schenectady, N. Y. 73 52.6 W 081 043 074 42 49.8 N Rantoul, 111. 092 040 088 88 09 04 W 40 17 51 N Peorla, 111. 89 35 51 W 023 041 090 40 45 19 N 23 35 05 23 50 53 00 29 (Not a t s t a t ion ) al 23 21 32.5 17.55 al 23 22 28 270?A 71A? +12?23' +13 +40.3 63.5A .Dlrec- Angular tion velocity NNW-SSE NNW-SSE NW-SE l?/s Magnitude and color +1 to -1, White- orange +4 to +6, Orange -2 +1 or +2 +1 to +2, ELue-whlte November 27 Ft. Worth, Tex. 97 22 10 W 068 033 097 32 44 40 N Spokane, Wash. 117 21 01 W 086 048 118 47 37 37 N Los Alamos, N. Mex. 106 19 20 W 043 O36 106 35 52 30 N Denver, Colo. 104 56 36 W 013 040 105 39 44 52 N Manhattan, Kans. 96 28.85 W 027 O39 096 39 09.75 N Phoenix, Ariz. 112 04 W 022 O33 112 33 27 N Albuquerque, N. Mex. 106 38 36 W 041 035 107 35 05 03 N Lawton, Okla. 98 24 12 W 110 O35 198 34 39 45 N Yankton, S. Dak. 97 23 26 W 061 043 O97 42 52 42 N Waco, Tex. 97 05.5 W 093 032 097 31 38.5 N Amarillo, Tex. 101 50 W 064 O35 102 35 13 30 N Walnut Creek, Calif. 122 04 30 W Oil 038 122 35 55 30 N al 00 49 17 22 40 +30?25' a l a l a l 00 00 00 00 00 49 50 49 53 52 43 13 57 51 270? 19 22 19 258. 48.3 54 53 5?A 60-65'A +8?43 ' +37 - 0 3 20.5A NW-SE NW-SE NNW-S 4?/s 2?/8 0 to +2 +4, Wh'te +1 to +6, White +3 to +6, Yellow- white al 00 53 06 17 31 al 00 53 16 88?A al 00 55 37.5 22 28 a2 01 23 49.5 2708A al 00 55 02 237?09'A al 01 03 27 02 25 al 00 51 42 00 42 a2 00 51 11 270?A al 02 22 43.5 16 56 +01?571 40.5' -32.6 25A +14?27'A +20 ? 57 .6 62A +10.7 NW-SE N-S NW-SE NW-SE NW-SE + 3 +1, Reddish +1 NW-SW 0 . 3 ' / s +2 +3 +1.8 +3 +3, Yellow 270 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Observations of Sate l l i tes 1957 al and o2 by Moonwa.tch teams through Dec. 1. 1957 (continued) Sate (U.T.) Station Station name coordinates Code number November 27(continued) Sacramento, Calif. 12116.'59" W 007 039 121 38 38.43 N Mlzusawa, Japan 141 07 45 E 267 039 321 39 08 03 N Takamatsu, Japan 134 02 13 E 251 034 314 3* 20 28 N Satel- Time lite observed 1957 Right as- cension or azimuth Mltake, Japan 139 229 036 320 35 31 E 20 N Hiroshima, Japan 132 28 10 E 211 034 312 34 22 08 N Manazuru, Japan 139 08 46 E 228 035 319 35 09 23 N Sendal, Japan 246 038 321 Musashino, Japan 233 036 320 Shizuoka, Japan 247 035 318 Kanayamachl, Japan 220 034 315 Kyoto, Japan 259 035 316 Manazuru, Japan 228 035 319 140 51 56 E 38 15 22 N 139 34 35 E 35 42 58 N 138 23 18 E 34 58 25 N 135 15 10 E 34 03 46 N 135 42 24 E 35 01 01 N 139 08 46 E 35 09 23 N Himeji, Japan 134 41 24 E 262 035 315 34 50 25 N Nagoya, Japan 136 59 11 E 236 035 317 35 08 57 N Hon jo, Japan 139 11 05 E 212 036 319 36 14 25 N Otsu, Japan 135 52 08 E 269 035 316 35 00 24 N Toyohaahl, Japan 135 24 37 E 255 035 317 34 45 09 N al 02 25 02.2 19 21*2 02 25 O7.5 19 25.6 02 25 11.7 19 27.9 al 08 23 31 267.2A al 08 25 26 202.1A al 08 25 56 194.2A al 08 26 11 190.6A al 08 23 57 006.5A al 08 23 52 08 24 05 08 24 08 al 08 23 23 09 38 al 08 24 30 18 47 08 24 54 19 45 08 26 11 22 05 al 08 24 00 254.7A 08 25 21 205.3A al 08 24 17 270A 08 24 57.4 225.OA al 08 24 29 270A al 08 24 19 21 39 al 08 24 26 21 52 al 08 24 30 18 47 08 24 54 19 45 08 26 11 22 05 al 08 25 24 141.1A al 08 25 22 180.0?A al 08 25 50 196.5? al 08 25 00 162.0* al 08 25 26 22 15 Declin- ation or altitude -25!88' -27.49 -28.32 21.6A 16.4A 13. OA 11.3A 45.8A Dlrec- Angular Magnitude tlon velocity and color 17 17 17 05 37 50 +31 +27 +26 +83 +22 +05 -32 25.6A 20. OA 38.OA 41. OA 43. OA +63 +33 +22 +05 -32 36.1 A 41. OA 31.5A 40. OA -13 wsw-ssw +1 +2 +3 0 +5 +1 +1 +1 +3 0 +5 +1 +1 +2 +1 NO. 10 MOONWATCH OBSERVATIONS 271 Table 1.?Observations of S a t e l l i t e s 1957 ol and H 20 21 22 23 24 26 28 31 Jan. 4 56 I9 10 11 12 1115 17 18 19 20 21 22 li If27 2o 29 30 31 Northern Degree Latitude 42-60 40-59 35-56 30-5225-50 20-45 17-42 15-41 10-40 5-37 0-18 0-35 0-20 0-30 5-22 0-28 8-26 0-25 10-30 0-24 15-32 0-21 20-28 0-15 24-41 27-45 32-47 42-55 48-66 55-64 56-64 56-65 59-65 60-65 61-65 63-65 63-65 62-65 6O-65 59-65 57-65 50-65 46-65 37-65 20-65 O-65 0-64O-63 O-58 O-51 0-42 0-40 0-30 - _ Hemisphere Time Before sunrise " After sunset Before sunrise After sunset Before sunset (?) After sunset Before sunrise After sunset Before sunrise After sunset Before sunrise Before sunset Before sunset (?) After sunset Before sunrise After sunset " " 11 " " " " " " " " " " " " M H 1 1 ' 1 , 1 ' 1 ' ' 1 1 1 1 ' 1 ! " " Before sunrise(Unfavorable) Southern Hemisphere Degrees Latitude 15-40 IO-38 7-35 0-300-25 0-20 0-17 0-15 0-10 0- 5 - - 0- 7 0-10 0-15 0-20 0-22 0-24 0-30 7-42 13-46 23-53 24-54(?) 24-55 25-56 25-57 25-57 30-59 30-60 29-60 29-61 28-61 28-62 26-62 24-63 23-63 20-63 O-63 O-630-63 O-63 O-63 0-63 O-63 0-57 _ Time After sunset 11 n 1 11 (Unfavorable) " Before sunrise it n n 11 Before sunset(?) Before sunrise 1 1 1 1 > ? 1 ' 1 1 1 1 1 1 1 1 1 1 1 1 ? " After sunset(Unfavorable) .1 Basic Orbital Data for Satellite 1957 By L. G. JACCHIA * The data in table 1 summarize the results of an analysis of approximately 1100 optical and radio observations of Satellite 1957 fil re- ceived at the Smithsonian Astrophysical Ob- servatory. Sub-satellite points were computed for each observation by use of the following basic elements: Epoch and osculation:. 1957 December 17.16575 UT Semi-major axis a = 1.1311 Eccentricity e=0.0868 Argument of perigee. - ? = 42?.8 Inclination i . t=65?.3 It was assumed that the precession in a was 0.152 times the precession in aa, the right as- cension of the ascending node, i. e., the theo- retical value corresponding to i=65?3. For the epoch of the elements this gives and du/dt=? 0?418/day d2w/dr3= -0?00054/day2. The instantaneous value of the major axis was computed from the sidereal period, which in turn was derived from the observed nodal pe- riod. The instantaneous value of the eccen- tricity was obtained by changing the perigee distance q in function of the apogee distance according to Sterne's (1958) equations, using the Smithsonian Interim Atmosphere (see p. 275). The resulting values are tabulated below (n=number of revolutions, a=semi- major axis in earth's equatorial radii, and ?=perigee distance in earth's equatorial radii): n 0 200 400 600 1 800 1 1000 1 1200 1 1400 1 a 1. 1467 1. 1416 I. 1364 . 1311 . 1250 . 1179 . 1109 . 1037 q 1. 0337 1. 0335 1. 0334 1. 0332 1.0330 1.0328 1. 0326 1. 0323 The individual columns in table 1 give, respectively: 1. The number of revolutions (n) elapsed since the first ascending-node crossing given in the table (not the first crossing after the launch- ing). 2. The time of the ascending-node crossing. 3. The instantaneous value of the nodal period Pa, obtained by numerical differentiation of column 2. i 4. The rate of change of anomalistic period (Pr) in seconds per day. 5. The right ascension of the ascending node. 6. The nodal precession, in degrees per day. An interesting feature of this table is the er- ratic fluctuation in the orbital acceleration. The data of column (4) are plotted in figure 1. 3 .< a ?**.!? DM.1 tee. 15.1957 J w , l , l FIGURE 1.?Rate of change of the anomalistic period at a function of time. A simple explanation of these changes may lie in a systematic variation of the effective presen- tation area of the satellite, although day-to-day variations in the density of the upper atmos- phere cannot be discounted as a possible cause. ' Carried out In part under XBF Orant No. Y/J0.10/1W; Special Re- port No. ?, IOY Project No. 10.10, Smithsonian AntrophyMml Oboer- vstory, Cambridge; first tasufd Feb. 21,19S8. ?Physicist, Smithsonian Astrophysical Observatory; Research Asso- ciate, Harvard Colkfe Observatory. 285 286 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS A similar study of a spherical satellite could decide between the two hypotheses; unfor- tunately the observational material at hand for Satellite 1957 o2 is too scanty to yield any reliable results. The present tabulation supersedes the one in Harvard Announcement Card 1391 (1958) which was obtained by using older orbital data. References HARVARD COLLEGE OBSERVATORY 1958. Satellite 19570. Harvard Announcement Cards 1391, 1392. STERNE, T. E. 1958. An atmospheric model, and some remarks on the inference of density from the orbit of a close earth satellite. Astron. Journ., in press. Table 1.?Analysis of optical and radio observations of Satell i te 1957 PI (1) n 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1957 1957 1958 1958 Nov Dec Jan Feb (2) . 4.39470 7.99208Hi . 58344] P.5.I6891I p.0.748541 P22 322241 25'.88994 29.45149 . 3.00682 6.55585 10.09864 13.63525 17.16577 20.68995 24.20735 27.71756 31.22012 . 3.71447 7.20078 10.67902 14.14898 17.61052 21.06346 24.50809 27.94485 31.37399 . 3.79531 7.20853 IO.613OI (3) (0d072009) .071887[.071768] f. 071651][.071534][.071414] .071293 .071169 .071044 .070918 .070794 .070672 .070548 .070417 .070278 .070129 .069970 .O698O7 .069646 .069483 .069316 .069145 .O68974 .O68813 .068659 .068505 .O68347 .O68179 .067999 (4) dP^/dt [-2*84] C-2.83][-2.86] C-2.91] -2.97 -3.03 -3.05 -3.04 -3.01 -3.00 -3.11 -3.32 -3.54 -3.79 -3.98 -4.01 -4.02 -4.11 -4.21 -4.26 -4.17 -3.97 -3.87 -3.94 -4.12 -4.41 -4.65 (5) 112?4 102.9 [93.41 [83.9] C74.4] r_64.9] 55.3 45.7 36.1 26.4 16.8 7 .2 357.5347.8 338.1 328.4 318.6 308.8 298.9 289.I 279.2 269.3 259.3 249.3 239.3 229.3 219.3 209.2 199.1 da(6it -2:65 -2.67 -2.69 -2.71 -2.73 -2.75 -2.77 -2.80 -2.83 -2.86 -2.89 -2.91 -2.94 -2.98 When tabulated values are uncertain because of scarcity of observations, they are enclosed In brackets. A parenthesis denotes a quantity which Is somewhat more uncertain than the average due to computational causes. Processed Observational Data for U. S. S. R. Satellites 1957 Alpha and 1957 Beta ' By R. M. ADAMS,3 N . MCCUMBER, 1 and M. BRINKMAN 4 This report presents a collection of observa- Naval Research Laboratory and Project Space tional data, received and processed by the Track of the Geophysics Research Directorate Smithsonian Astrophysical Observatory, for the at the Air Force Cambridge Research Center, Soviet artificial earth satellites launched on ARDC, as well as by interested amateurs and Oct. 4, 1957, and Nov. 3, 1957. The data cover private individuals, the total lifetime of the components ol, a2, and Processing the data probably ?3 from the Satellite 1957 Alpha ^ o b 8 e r v a t i o n a l d f t t o ^ received, they are launching. For the second Soviet satellite, 1957 8 i f t e d p r o c e 8 8 e d > a n d p u t m t o f o r m f o r ^ m Beta, the data extend from the day of launching I B M 7 Q 4 p r o g r a m s . T h e limited 8taff makes it to the middle of February 1958. At the time of impossible to p r o c e 8 8 aU observations received. this report, 1957 Beta is still in orbit and is A major portion of the usable observations have expected to stay in orbit until mid-April 1958. b e e n proce88ed, however, and it is planned to Sources of data process others as time permits. Since the first Soviet satellites were launched As of this date approximately 4500 visual and before all precision optical tracking stations photographic observations of the Russian earth were activated, the task of providing the obser- satellites have been received at the Smithsonian vations, necessary to compute ephemerides and Astrophysical Observatory. About 2980 of predictions, has fallen to a large extent on the these have been processed for use in the IBM Moonwatch network and other observing agen- computer programs. cies such as astronomical observatories, radar The unprocessed observations fall into two stations, and various other organizations and groups: (a) those that will be processed as soon individuals. as time permits; (6) those that are not accurate Observations are received by the Smithsonian enough to be used. The unprocessed observa- Astrophysical Observatory in a number of ways. tions in group (a) are, in general, additional Moonwatch observations made in the United sightings on days for which a large number of States are normally telephoned in and then con- observations have already been processed. To firmed by letter. Observations made in foreign be usable, an observation must be accurate to countries are sent by the IGY communications at least one second of time and the position system (AGIWARN), if possible. When this is given must be exact to one degree of arc. not possible, the observations are sent by air The following is a breakdown of all obser- mail. Observations made by civilian, indus- vations: trial, and military research institutions are re- 1W7 j l?ad"% g^j[ ceived through teletype channels as well. A Processed 1320 ?50 1610 considerable number- of observations are also Unprocessed: furnished through Project Vanguard of the Usable 470 0 500 Not usable 800 240 1 Carried oat in part under N8F Ormnt No. Y/30.10/187; Special Report . N'o. 10, IOY Project No. 30.10,8mlthsonian Astrophysleal Observatory, _ nnan lux o**n Cambridge; flrst iamed Mar. 1,1988. T o U L 2 0 9 0 M 2 8 W 1 Chief, Computations and Analysis Section, Optical Satellite Tracking ? ? ? ? Program, Smithsonian Astropnysical Observatory. *14 of the observations were rejected alter processing. 1 Mathematician, Computations and Analysis Section, Optical Satel- lite Tracking Program, 8mithsonian Astrophysical Observatory. T w e l v e r e p o r t s of f a l l ing o b j e c t s Seen b e t w e e n 4 Computer, Computations and Analysis Section, Optical Satellite , *I j r % ^ . U . H . ^ J O A _MWW*- Tracking Program, Smithsonian Astrophysical Observatory. N o v e m b e r 3 0 and D e c e m b e r 11 and 26 report* 287 288 SMITHSONIAN CONTRIBUTIONS TO ASTTROPHYSICS of similar objects seen between December 20 and January 8 have been received. These have been investigated as possible obser- vations of burnouts of al and a2, but analysis makes it highly unlikely that any of these observations could have been of the demise of al or a2. No attempt has been made to process radio and radar sightings unless they were made during a period when there were no visual sightings. In the tabular material that follows, all radar and radio observations are labeled as such. The observations of 1957 a2 have been an- alyzed by Dr. Luigi Jacchia and published on Harvard Announcement Card 1402. The re- sults of this analysis have been noted in the column preceding the observation number in table 2 of this report. Observations labeled 1957 00980 Terre Haute 00981 Terre Haute 00102 00103 00112 00481 00482 00483 Boulder-Radio Mt. Stromlo Melbourne Mt. Stromlo Mt, Stromlo Mt. Stromlo 0025 0025 8035 2600 0604 2600 2600 2600 OOs5O:46 01:46:00 October 7, 1957 15:11:05 09:39:27 09:34 09:38:21.5 09:38:49.2 09:38:53 23 40 00 00 23 40 23 40 -37 -55 -37 -37 180 180 232 90 47 40 44 85 2.0 October 8, 1957 00105 00106 00107 00108 00109 00110 00111 00113 00114 00115 00116 00117 00135 00136 00137 00B58 00484 00485 00569 Sydney Sydney Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt, Stromlo Mt. Stromlo Melbourne Melbourne Melbourne Melbourne Melbourne Port Churchill Mt. Stromlo Woomera Sydney Mt. Stromlo Mt. Stromlo Mt. Stromlo 0602 0602 2600 2600 2600 2600 2600 O6O4 0604 O6O4 0604 0604 3450 2600 3601 09:39:08 09:40:43 09:36:34 09:38:28 09:38s52 09:39:43 09:40sl4 09; 38: 09:39: 09:40? 09:41: 09:45:15+: 10:15 ~ 09:37s31 11:15:25 15 50 42 20 15 12 38 15 25 16 45 20 10 21 40 13 45 52 13 37 0602 09:40:42.25 2600 09:36:32 2600 09:36:37 2600 09:37:31 -62 48+0?3 -28 30+0?5 -60 ~ -69 -69 -16 42 49 31 -65 30 20 15 12 41 12 35 13 36 54 -28 30 -58 10 -61 -64 53 1&J106 53 30 43 139 226 17 52 48 68 45 I561 25 30 56 2 October 9, 1957 00120 00121 00122 00123 00124 00125 00126 00127 00129 00130 00132 00259 00260 00486 00487 00488 00489 00586 00587 01009 00128 00204 00205 00206 00207 00208 00209 00588 00589 00590 00591 01120 Mt, Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Sydney Sydney Sydney New Brook Dominion Obs. Mt. Stromlo Mt. Stromlo Mt. Stromlo Mt. Stromlo Perth Perth Edinburgh, Scot New Haven Ft. Churchill Ft, Churchill Churchill Churchill Ft. Churchill Ft. Churchill Perth Perth Perth Perth Skalnate Pleoo Ft. Ft. 2600 2600 2600 2600 2600 2600 2600 2600 0602 0602 0602 5451 2450 2600 260c 2600 2600 0601 0601 2653 0087 3450 3450 3450 3450 3450 3450 0601 0601 0601 0601 2711 09:39 09:40 09 s 40 09 s 40 09:40 09:41 09s 41 09:42 09:41 09:41 09:41 11:52 10:21 09:40 09; 41 09; 41 09142 11:17 11s 18 05:30 54 08 13 41 47 33 38 23 25.5 30.5 18.52 \1 51 :16 35 44 06 :14 15 ;28 16 50 17 21 17 26 18 24 18 28 19 50 19 57 20 45 18 30 16 18 35 18 11 13.4 15 37 17 25 20 00 19 i>4 20 31 -41 -38 -36 -24 -22 6 5 22 -10 40 - 9 00 -14 46 17 49 06 -36 4 5 17 30 October 10, 1957 10:23 11:33: 11:53: 11:54: 11:54: 11:54: 11:54: 11:17: 11:17: 11:17: 11:19: 03:55: 21 40 01 23 31 56 24.8 30.5 53.5 16 32 3 50 101 20 00 *36 08 00 66 56 00 ?20 26 25 91 #39 45 258 234 214 201 185 171 50 20 00 00 00 00 40 44 48 50 50 42 35 00 00 00 00 40 00 66 03 40 ?44 00 20 63 53 40 ?43 49 19 55 35 00 *35 20 00 4i 30 50 ?15 59 00 59 06 24 24 SATELLITES 1 9 5 7 ALPHA AND BETA 291 Table 1.?Processed optical observations of Satellite 1957 ai (continued) OBS. NO. STA. STATION NO. U . T . ah m s MAG. October 11, 1957 u0202 00203 0021] 00220 00221 00222 00223 00224 00225 00226 00227 00230 00243 00244 00245 00246 00247 00248 00326 00327 00328 00490 00677 OO678 00679 00680 00681 00682 01121 Armagh Armagh Woomera Dominion Obs. Pic du Midi Woomera Woom* ra VAenna Vienna Vienna Woomera Woomera Perth Perth Perth Perth Perth Adelaide Mt, Stromlo Mt, Stromlo Mt. Stromlo Mt. Stromlo Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Skalnate Pleso 00200 00201 00228 00229 00234 00236 00237 00259 00309 00469 00470 OO556 OO582 OO592 00593 00594 00683 00684 00685 00687 00688 OO689 00690 OO691 OO692 OO693 OO694 OO695 OO696 OO697 OO698 OO699 00726 01010 01122 01123 01124 Herstmonceux Cordoba Utrecht Armagh Niigata Perth Perth Perth Cordoba Pic du Midi Pic du Midi Bratislava Armagh Perth Perth Perth Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Salisbury Sydney Edinburgh, Scot Skalnate Pleso Skalnate Pleso Skalnate Pleso 2651 2651 3601 2450 2705 3601 3601 2700 2700 2700 3601 3601 0601 O6oi 0601 0601 0601 0600 2600 2600 2600 2600 3602 3602 3602 3602 3602 3602 2711 2650 2800 2707 2651 0238 0601 0601 0601 2800 2705 2705 2701 2651 0601 0601 0601 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602 0602 2653 2711 2711 2711 05- 0 -14 12 22 24 - 7 -29 -17 -14 -22 -18 -17 October 12, 1957 . 1 ,5 .5 ,7 .2 .8 .3 .5 .0 ? 5 .0 ? 9 .6 .1 .2 ? 5 .2 .1 .2 .2 .2 .4 .6 .5 8 15 16 55 38 14 30 32 9 52 22 27 36.347 58 16 55 38 13 21 34 22 48 30 18 28 18 33 18 36 18 16 18 19 18 21 18 24 18 28 18 31 20 05 20 07 20 07 20 08 20 10 20 11 20 14 17 10 9 55 65 - 4 -33 - 1 - 8 -17 - 7 - 5 - 4 - 3 26 27 27 27 28 28 29 -67 54 30 30 32 11 11 46 49 43 26 00 11 26 13 47 33 03 55 37 54 10 55 44 49 48 26 26 41 16 31 17 9 116 25 190 24 24 356 27 86 23 24 19 21 21 21 22 55-6 (I958. 41 26 59-08 65 231 240 7 26 7 61 48 293 350 5 146 1 16 46 48 18 12 28 19 00 45 20 36 12 00 04 02 57 26 33 00 15 00 29 40 52 00 13 00 49 18 26 06 10 16 52 18 33 11 04 23 34 36 12 36 21 24 16 00 53 19 08 13 40 16 ?48 19 29 ?40 09 52 ?36 02 41 ?34 15 15 ?28 38 14 0 position) 36 35 00 52 00 36 10 54 30 10 20 46 20 52 00 30 06 42 12 33 42 17 30 ?30 05 20 ?43 45 59 ?13 47 49 24 30 33 5* ?52 54 16 ?33 10 31 ?16 23 25 ? 24 08 33 54 40 36 47 18 0 0 1 tc 2 2 2 3 3 3 2,5 2 0 2 2.5 292 OBS. NO. SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1. Processed optical observations or Sate l l i t e 1957 ctl (continued) e z h STATION STA. NO. U.T. a h m s October 13, 1957 MAG 00210 00233 00240 00255 00304 00305 00312 00313 00314 00315 00316 00329 00330 00331 00365 00366 00367 00557 00558 00598 00252 00253 00254 00300 00301 00302 00306 00307 00308 00310 00311 00319 00320 00321 00324 00332 00334 00335 00336 00337 00459 00460 00461 00471 0054a 00543 00544 00545 00546 00554 00555 00559 OO56O ? 00561 00570 00571 00575 00576 00577 00595 00730 00731 OHO6 01107 01108 01109 OHIO Swarthmore Dominion Obs. Woomera Naval Obs. Helsinki B Helsinki B Perth Perth Perth Perth Perth Takada Takada Osaka Yomiuri U. of Michigan U. of Michigan U, of Michigan Bratislava Bratislava Jockls Princeton Princeton Princeton, Washington, DC Washington, DC Washington, DC Washington, D.C Agasslz Agassiz Woomera Woomera Perth Perth Perth Naval Obs. Musashlno Shlzuoka Nagoya Otaru Toyama Takaoka Akita Akita Pic du Midi Bedford Bedford Bedford Bedford Bedford Ondre.lov Ondrejov Bratislava Bratislava Bratislava Perth Perth Stockholm Stockholm Stockholm Perth North Canton State College Boston U. Boston U. Boston U. Boston U. Boston U. 2038 2450 3601 2011 6701 6701 0601 0601 0601 0601 0601 0250 0250 0241 2020 2020 2020 2701 2701 6700 2025 2025 2025 .8032 .8032 .8032 ,6001 2052 2052 3601 3601 0601 0601 0601 2011 0233 0247 0236 0243 0254 0270 0200 0200 2705 3002 3002 3002 3002 3002 2702 2702 2701 2701 2701 0601 0601 2708 2708 2708 0601 0053 0060 2054 2054 2054 2054 2054 10:15:50 10:13:51.0 09:34:03.73 10:17 ' 02:10:42 02:^.1:47 ' ll;O8sO8.8 Hi 09--21.6 11:09:59-0 11:10:57.811:11:25,8 19:50:03.5 19? 50fll. 9 19;47t28 10i15:28. 5 10-15:39.4 10?16;32.5 03:49:30,9 03:52:40.5 03;48:l8 1 1 8 8 13 1 2 18 1 2 1 1 11 13 1 0 4 1 32 38 37 05 19 14 49 35 11 28 '36.5 04 07 October 14, 1957 1Q:10I10.9 10;11:05?9 10;l6:00.7 10:10:55+1 10:11:09+1 10:11:39" 10:09:00 10:07:58+3 10:11:46+3 09:32:29 09:33:17 11:07:03.47 11:07:46.2 11:08:01.3 10:11:25-6 19:46:13 19:45:49 19:47:49 19:45:30 19:45:36 19:46:04 19:44:18 19:45:14 05:26:08 10:09:17-9 10:09:38.1 10:10:33-6 10:06:40.1 10:07:40.4 03:46:36 03:52:42 03:45:07.4 03:45:59-7 03:47:15.2 11:06:25.0 11:06:29.5 03:44:32 03:44:40 03:44:54' 11:06:29.5 10:07:47 10:10:25 10:10:42.05 10:10:43.27 10:10:44.50 10:10:46.88 10:10:48.26 14 1 1 1 2 15 13 1 1 17 2 2 9 13 14 1 1 2 2 23 6 7 8 I 15 1 0 9 4 4 5 1 2 6 6 7 7 7 4 2 34 1 0 48+ 7 00+ 4 18+ 4 1 0 44 30 12 58 40 40 08 31 26 24 52 07 42 42 55 32 47 1 2 3 56 03 15 21 48 48 54 30 06 30 0 0 30 36 0 2 48 06 36 44 13 04 08 23 58 42 15 51 38 68 24 14 4 67 - 3 75 1? 39 18 4 2 0 9 18 12 54 35 39 30 0 0 70+1 56+1 20+1 65 - 7 54 74 56 b 4 70 75 23 ? 4 19 88 85 72 21 50 4 1 56 73 73 72 71 70 54 1 0 11 16 54 41 47 1 2 19 40 17 15 32 1 0 51 08 03 15 53 1 2 30 14 0 0 06 0 0 48 30 42 24 04 1 1 17 46 74 (1950 255 17 90+1 235 44 255 40 274 54 310 35 324 44 4l 00 (Epoch (Epoch (Epoch 346 10 352 14 307 44 323 33 328 03 56 36 54 06 90 63 30 50 18 54 30 133 T2 292 01 293 09 293 08 0 25 position) 58 2 0 0 0 30 4 0 0 0 1950. 1950. 1950. 44 58 0 0 0 0 40 40 49 17 17+1 ? 1 9 ? 2 8 ? 30 ? 3 1 ? 2 7 2 4 ,01 , 0 0 ) 19 15 ? 2 1 ? 1 7 ? 1 5 29 27 16 51 2 1 2 2 25 23 23 ?23 * T 1XX 18 25 39 41 44 42 42 19 16 19 33 27 24 42 36 30 24 05 06 06 1 OXC 24 16 53 22 46 1 0 36 26 36 52 11 45 24 0 4 2 4 3 1 1 1 2 2 2 2 3 3 2 1 .5 2 3 1-5 2 2 2 SATELLITES 1 9 5 7 ALPHA AND BETA 293 Table 1.?Processed optical observations of Satellite 195? ctl (continued) OBS. NO. 00317 00322 00338 00339 00340 00361 00362 00368 00369 00370 00373 00374 00375 00376 00378 00379 00404 00406 00407 0040Q 00409 00472 00473 00474 00475 00476 00527 00528 00529 00578 00579 00580 00581 00700 00701 00732 00733 00734 00735 00736 00737 01008 01125 01126 01127 01128 00341 00342 00343 00344 00347 00364 00371 00372 00380 00381 00382 00383 00384 00385 00386 00387 00388 00389 STATION Meanook Naval Obit. Washington, D.C. Washington, D.C. Washington, D.C. Lick Obs. Lick Obs. Athens Obs. Athens Obs. Musashlno Takaoka Takada Takada Takada Kanazawa Kanazawa Colgate U. Mlllbrook Cambridge Washington, D.C. Harrlsonburg Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du'Midi State College State College Schenectady Stockholm Stockholm Stockholm Stockholm Bratislava Bratislava NYC B NYC B NYC B NYC B NYC B NYC B Hastings Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Colgate U. Princeton Obs. Princeton Obs. Princeton Obs. Dominion Obs. Dover Naval Obs. Fort Monmouth Lincoln Cambridge Cambridge Cambridge Cambridge Bedford Bedford Bedford Bedford Bedford STA. NO. 5450 2011 8032 8032 8032 2005 2005 2706 2706 0233 0270 0250 0250 0250 0221 0221 2044 0045 0099 0014 0703 2705 2705 2705 2705 2705 0060 0060 0081 2708 2708 2708 2708 2701 2701* 8510 8510 8510 8510 8510 8510 6011 2711 2711 2711 2711 2044 2053 2053 2053 2450 0039 2011 3006 0038 0099 0099 0099 0099 3002 3002 3002 3002 3002 U.T 11: 10: 10: 10: 10: 13: 13: 03: 03: 19: 19: 19: 19: 19: 19: 19: 10: 10: 10: 10: 10: 05: 05: 05; 05: 05: 10: 10: 10: 03'. 03: 03: 03: 03: 03; 1.0: 10: 10: 10: 10: 10 10: 02; 03: 03: 03: 10: 09 09 09 09 10 10 10 11 09 10 38: 07: 06: 06. 07: 19: si < h 1 October 00 43+178 04+18 55+1 31+1 04.3+0?5 09.2+0?5 31 "" 45t24 40: 39: 38: 39: 40: 39: 41: 03: 08: 06: 06: 07: 16: 17: 17: 18: 18: 04: 05: :05: :39: :39: :40: :40: :4l: ;42: :04: :05: ;07 ;08 ;08 ;08 :06 53-5 43 50 59 25 48 42 53 12 47 09 18 35 ;23 ;50 :22 ;24 :ie ;4l ;59 :37 :50 :05 :18 :16.3 :42.8 :38 = 36 :34 :16 :40 :47 :10.5 :05s12.8 :4l ;4l :42 ;58 :59 ;00 ?01 :58 :00 :00 :00 :36 :59 ?00 10:00 10 09 09 10 10 10 :00 :57 :58 .01 :03 :05 :06.4 :34.4 :44.5 8 11 10 10 10 10 10 9 16 12 11 12 11 9 11 11 18 11 8 3 4 4 4 6 8 23 4 9 9 9 9 11 2 5 7 1 n s 15, 1957 34 45+5 46+5 40+5 12 35.3 11 56.6 02 58 00 15 44 45 10 12 46 19 10 27 27 11 51 24 11 36 07 00 58 00 47 06 56 00 00 08 33 34 38 37 22 00 58 36 02 00 37 18 0 32 6 1 36 58+1/4 33+1/2 21+1/2 24" 22 43 22 74 57 48 57 16 2 53 20 72 54 43 4 1 - 1 - 3 78 12 65 87 23 - 1 - 8 -10 17 53 44 5 October 16, 1957 :40 :O8.5 :46.3 s29.6 :59-5 :O8.4 :52+58 :18 :25-4 :50.2 :23.4 :35.6 :37.6 :44 :55 ;32 :23 ;00 1 1 8 8 5 10 7 59 48?17472 20 28 '52 55 41.4 30 01 79 31 6 42 49 20 29 08 30 30 00 14 00 22 20 30 28 50 15 3?06 03 48 03 30 05 04 36 42 39 00 18 00 11 45 22 30 13 30 18 12 37 45 36 0 0 0 27 19 12 30 10'.' 57 00 z 1 90 54 (1950.0) (1950.0) (1950.0) 53 54 125 30 0 159 00 328 06 328 36 328 48 329 48 329 54 32 09 37 51+5 275 227 208 205 30 312 21 267 50 173 40 161 10 158 h MA( 1 ? 37 57 18 1 1 1 36 2 23 45 06 2 63 24 17 18 27 42 38 36 52 06 53 48 36 48 75 30+30- 59 30 64 30 60 30 58 30 32 45 60 38 39 57 17 47 8 22 1 1 1 3 to 1 3 or 2 460132 O?51 294 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Processed optical observations of Satellite 1957 al (continued) OBS. NO. 00390 00391 00392 00393 00394 00395 00396 00397 00399 00400 00401 00402 00403 00477 00478 00479 00480 00494 00495 00496 0049V 00498 00499 00500 00501 00502 00540 00541 005^7 00548 00710 01129 01130 01131 01132 00351 00352 QO353 00354 00355 00356 00357 00358 00363 00466 00467 00468 00503 00504 00505 00506 00507 OO506 60509 00510 00511 00512 00513 00514 00515 00516 00517 00518 00519 00520 00521 STATION Cambridge Milton Milton Mil ton Milton Milton Milton Mil ton Mllbrook Milbrook Schenectady Sacramento Red Bank Lick Lick Lick Lick Pic du Midi Pic du Midi Pio du Midi Pia du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Mansfield Mansfield Bedford Bedford Athens Obs. Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Westover Westover Westover Westover Westover Westover Westover Westover Pasac&l Las Graces Lincoln Lincoln Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi STA. NO. 0099 6003 6003 6003 6003 6003 6003 6003 00^5 0045 8038 0007 0040 2005 2005 2005 2005 2705 2705 2705 2705 2705 2705' 2705 2705 2705 8034 8034 3002 3002 2706 2711 2711 2711 2711 3011 3011 3011 3011 3011 3011 3011 3011 8008 0042 0038 0038 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 U.T. October 09:59:30 O9r59:O7 09s59:48 10;00:05 10<00;45 10;01s29 10:02:31 10?03;09 10?00,02 10;00:45 09^59:46 13:13:02,9 10f00:l8 13;12s46.7 13;12;50.7 13:12:52.7 13'. 12: 56.7 05:11:03 05'. 12; 27 05:13:08 05". 13:17 05:14;20 O5:15sl3 05:15:31 05:15:59 05s17:24 O9s59:19 09i59:5910;00:24,4 10:05:35.8 03:40:58 03:35:06.6 03:35:25-6 O3:36;28.1 03;39:20.1 a h m s 16, 1957 1 5 20 2 28 3 01 4 51 6 20 7 21 8 05 8 21 2 03 7 22 5 47 8 42 30 9 01 54. 9 03 22, 9 03 59. 9 05 20. 2 39 5 08 5 46 36 6 08 42 9 19 2 01 36 2 59 00 5 50 36 8 12 00 < [cont' 27 48 40 33 13 - 5 - 2 0 -25 o 4 28 37 6 0 25 8 23 3 s 22 4 19 56 43 21 15 - 1 1 4 1 37 1 2 - 2 3 October 17, 1957 09.51:12 09;51:18 09:51;22 09:51:30 09:54:48 O9;54;49 09:54:57 09:55:11 13-05:57.550 11:28:15 11:29.34.511:29:46.2 O5iO4:47 O5;O5JO8 05;05:36 05:05^51 05:06:14 05:06:35 05:06:41 05:06:57 05:07:14 05:07:24 05:07:28 05:07:50 05:08:18 05:08:47 05:08:53 05:08:56 05:09:02 05s09:08 05:09:26 5 45 48 6 30 00 6 42 4 2 7 2 0 1 d . ) 00+30 54 54 06 0 0 0 0 0 0 0 0 35 50 12 42 32 52 09 01 08 42 52 35 36 18 33 29 24 22 44 42 57 26 30 0 0 51 313 303 2(51 2 4 2 175 160 160 158 156 312 i l l 310 ^08 160 165 164 1 0 ' 23 305 288 278 2^5 233 228 2 1 0 198 192 191 1 8 1 1 7 5 1 7 0 1 7 0 1 7 0 1 6 9 168 ^67 Z 1 0 24 3 0 42 06 54 54 12 2 4 36 13 49 24 13 Ob 32 48 43 12 42 06 54 42 12 30 42 48 12 48 48 06 30 12 0 0 06 18 18 75 35 53 69 71 53 353?26 15 29 31 32 35 ?to :-9 ?7 25 1 ? 2( ^3 U2 47 ?53J ~J 5454 50 46 43 43 36 29 *- J 2423 2 3 c- ~> 21 2 0 18 h 30 0 0 36 12 2 4 18 18 12 36 18 33 15 2') 4 0 0 8 IP. 48 0 0 54 54 24 24 S4 24 06 54 48 24 06 0 6 24 18 24 24 36 24 MAO. 2-5 SATELLITES 1957 ALPHA AND BETA 2 9 5 OBS. NO. 00522 00523 00524 00525 00526 00530 00531 00532 OQ533 00534 00535 00536 00537 00538 00539 00549 00550 00551 00563 00564 00565 00566 00702 00703 00711 00712 00713 00714 00715 01133 OH'34 01135 01136 01137 01138 01139 01140 01141 01142 00491 00492 00552 00573 00583 00584 OO615 OO616 00617 OO618 OO619 00620 00621 00622 00623 00624 00625 00626 00627 00628 00629 00630 00631 OO632 00633 00634 00635 OO636 OO637 00638 00639 STATION Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Manhattan Manhattan Manhattan Manabattan Milton Milton Schenectady Sacramento A Cambridge Bedford Bedford Bedford Bedford Hlgashlmatsuyama Osaka Yomluri Hofu Klryu Bratislava Bratislava Athens Obs. Athens Obs. Athens Obs. Athens Obs. Athens Obs. Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso Skalnate Pleso U. of Kansas Portland Milwaukee Manhattan Manazuru Kanagawa Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic. du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi STA. NO. 2705 2705 2705 2705 2705 0027 0027 0027 0027 6003 6003 8511 0007 0099 3002 3002 3002 3002 0210 0241 0213 0223 2701 2701 2706 2706 2706 2706 2706 2711 2711 2711 2711 2711 2711 2711 2711 2711 2711 8037 0076 0074 0027 0228 0219 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 U.T. h October 17, 05:09:36 05:09;56 05:10:33 05s11:02 05slls43 11:29:34 11? 30;ll 11:30:20 11:31:55 09:52:55 09^55:11 09:53:02 13^05:05.0 09:52:51.2 09:51:25.8 09s52:40.0 09:52:55.6 09:54:45 19:29:03 19:34:08 19:29:15 19:25:15 03:28:36.1 03:29:56.0 03:30:22 03:30:49 03:31:55 03:33:26 03:33:54 03:28:39-6 03:28:49-6 03:29:09.6 03:29:19.6 03:29:29.6 03:29:39-6 03:29:49.6 03:30:09.6 03:31:29.6 03:31:49.6 11:21:16.5 12:56:30 09:45:46.5 11:20:37 19:18:15-7 19:21:00 03:22:33 03:22:55 03:23:14 03:23:28 03:23:40 03:23:50 03:23:55 03:24:05 03:24:12 03:24:20 03:24:33 03:24:50 03:25:05 03:25:26 03:25:37 03:25:55 03:26:95. 03:26:15 04:57:14 04:57:36 04:57:50 04:57:54 04:58:05 04:58:07 04:58:19 5 7 7 8 3 6 5 6 3 4 6 9 18 12 6 3 6 00 3 5 6 7 2 3 3 4 4 5 5 5 7 7 a m 8 1957 56 01 15 16 39 57 35 43 30 43 18 26 06 50 24 24 54 28 47 32 10 04 43 55 50 15 28 50 54 47 06 14 48 59 06 22 36 43 54 02 42 21 00 50 00 08 12 20 54 October 18, 4 6 9 3 9 26 11 23 47 56 20 O (cont'd 21 4 00 -23 27 -18 21 27 26 19 -16 - 8 70 15 88 47 8 68 67 48 9 -12 27 24 1110 6 3 - 2 -19 -21 1957 19 -17 - 3 39 53 6 1 " . ) 40 05 40 20 36 48 00 06 52 04 38 34 50 54 39 12 30 00 36 36 30 41 25 21 20 38 57 15 53 07 39 05 18 42 20 12 18 0 166 164 162 161 160 268 301 215 86 89 92 $ 97 99 100 100 102 103 104' 106 108 109 110 101 112 292 283 275 275 266 265 256 Z 1 ? 06 18 30 18 06 24 30 30 42 00 48 30 00 24 36 12 30 30 42 3?24 42 12 30 18 06 36 06 48 48 24 * 17 14 10 8 5 47 31 45 12 11 10 8 8 7 6 6 5 5 4 3 2 1 1 00 29 343I38 42 40 42 h 1 1 06 42 54 54 54 37 30 30 30 30 30 06 00 00 48 30 30 00 00 IS 24 30 00 30 06 24 30 00 36 54 42 MAG. 296 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Processed o p t i c a l observat ions of S a t e l l i t e 1957 cti (cont inued) OBS. NO. STATION STA. MO. U . T . MAO. October 18, 1957 (cont'd.) 00640 00641 00642 00643 00644 00645 00646 00647 00648 00649 00650 00651 00652 00653 00654 OO655 OO656 OO657 006 58 OO659 00660 00661 00662 OO663 00664 30665 20666 JO667 00668 OO669 00670 00671 00672 00673 00674 00675 00676 00707 00982 00983 00984 00985 00986 00987 00988 00989 00990 00991 00992 00993 00994 00995 00996 00997 Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Midi Midi Midi Nidi Midi Midi Midi Mini Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Pic du Midi Pic du Midi Pic du Midi PiC du Midi Pic du Midi Pic du Midi Pic du Midi Port Worth White Sands B White Sands B White Sands B White Sands B White Sands B White Sands B White Sands B White Sands B White Sands B White Sands B White Sand3 B White Sands B White Sands' B White Sands B White Sands B White Sands B 00427 Lick 00428 Lj.ck 00429 Lick 00430 .Lick 00431 Lick 00462 Bryan 00463 Bryan 00464 Bryan 00465 Bryan 00533 Kansas City 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 OO69 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 5011 04:58:39 04:58:48 04:58:57 04:59:09 04:59:19 04:59:33 04:59:35 04:59:59 05:00:22 05s00;22 05:00:33 05:00:37 05:00:42 05:00:55 05:00:59 05:01:11 05:01:21 05:01:23 05s01:31 05s01:36 05:01:45 05:01:55 05s01:57 05s02s07 05:02:13 05s02s20 05s02:33 05:02s38 05s02:46 05:02:52 05:03:11 05:03:16 05:03:27 O5:P3:4l 05:04:26 05:05:02 05:05:18 11:22|45 11:21:46 11:22:02 11:22:18 11:22:28 11:22:40 11:22:54 11:23:12 11:23:32 11:23:34 11:23:46 11:23:58 11:24:10 11:24:22 11:24:36 04:24:48 11:25:16 7 47 33 30 240 06 234 42 226 12, 216 42 211 18 204 48 202 42 193 18 186 48 187 00 184 30 184 06 182 30 178 12 179 24 177 42 176 18 175 24 175 00 173 54 173 42 173 24 171 5^ 171 30 170 36 170 36 169 06 168 42 168 12 167 48 167 18 166 5^ 166 18 165 42 163 54 163 00 162 54 243 03 250 35 257 32 261 38 266 13 271 13 276 43 281 56 282 24 285 11 287 40 289 58 292 05 294 17 295 55 299 23 44 18 40 24 43 24 41 48 40 42 37 54 37 06 32 54 28 24 28 36 26 42 25 24 25 06 21 54 22 24 20 42 19 36 18 54 18 00 17 24 16 36 15 24 15 06 14 24 13 24 13 00 11 48 11 24 11 00 8 06 8 12 8 24 7 30 6 24 3 54 1 54 0 54 04 *6p 13 *60 53 *6l 42 ?62 26 ?63 08 *64 37 ?66 24 ?68 5k ?68 31 *69 30 ?7l 01 ?72 28 ?73 10 ?74 16 ?75 02 ?78 23 06 48 40 40 44 22 12 25 34 45 11 31 30 38 38 51 07 59 38 11 28 23 35 31 05 49 05 53 42 10 37 October 19, 1957 2005 2005 2005 2005 2005 MOTE: 0065 OO65 OO65 OO65 0036 12:48:01.99 12:48:05-41 12:48:08.14 12:48:16.16 12:48:19-75 5 34 34V88 5 39 50 66 5 43 44 88 5 55 06 55 5 59 22 94 10 40 25.8 8 57 52.9 7 38 18.4 3 52 29.I 2 14 57.6 Estimated uncertainties in above Lick Observations are 0.1 in time and 10" of arc in each coordinate. 11:13:20 11:14:10 11:15:10 11:16:30 11:12:43 5 49 7 03 7 40 8 25 4 34 42 08 18 09 - 0 48 -22 09 - 2 30 SATELLITES 195 7 ALPHA AND BETA 2 9 7 Table 1.?Processed o p t i c a l observat ions of S a t e l l i t e 1957 a l (continued) OBS. NO. 00567 00574 00704 00705 00706 00708 00716 00717 00718 00719 00720 01003 01004 01005 01006 01007 00562 00568 00709 00437 00439 00440 00445 00572 00721 00414 00415 00417 00418 00420 00421 00422 00423 00424 00425 00426 00441 00442 00443 00444 00722 00723 00724 OO725 00448 00449 00450 -OO456 00729 STATION Yokkaichi Lincoln Brat is lava Brat is lava Brat is lava Fort Worth Athens Obs. Athens Obs. Athens Obs. Athens Obs. Athens Obs. C. Canaveral D C. Canaveral D C. Canaveral D C. Canaveral D C, Canaveral D Conally AFB Tulsa Fort Worth Musashlno Nagano Honjo Philadelphia Weston Athens Obs. Musashlno Musashinp Toyahashi Suwa Toyama Manazuru Manazuru Manazuru Takada Higashimatsuyama Sapporo Millbrook Millbrook Dover Mai hat tan Atl'^v.s Obs. Athens Obs. Athens Obs. Athens Obs. Kururae Machi Mltaka Nagano Sendai Kurume Machl STA. NO. 0258 0038 2701 2701 2701 OO69 2706 2706 2706 2706 2706 8017 8017 8017 8017 8017 0093 0054 OO69 0233 0234 0212 0058 6004 2706 0233 0233 0255 0248 0254 0228 0228 0228 0250 0210 0245 0045 0045 0039 0027 2706 ?2706 2706 2706 0227 0229 0234 0246 0227 U.T. h a m October 19, 1957 19:07:38 11:12:53 03:15:19- 03:15:20. O3:15s5O. 11:12:27 03:14:02 03:14:43 03:15:16 O3sl5:45 03:16:58 09:37:54. 09s38s00, O9s38s58. 09:39:08. 09:39:14. 11:02:30 11:04:35 11:03:03 08s43:58 08:48:29 08:48:34 23;22:00 23: 27130- 16:45? 04" 08?36s38. 08:36 50 08:3ls 08 08;37;38 O8?36:15 08:36:40 08s 36:52, 08:37^53. 08:37:23 08:36:29 08:37s52 22:54:05 22:54:34 22:53:52 00:43:04 16:33:00 16:33:34 16:33:44 16:34:09 09:24:25 08:23:26 08:23:15 08:24:49 08:23:34 5 8 7 9 7 4 7 6 1 3 3 5 6 170 690 180 175 180 42 04 05 18 25 28 00 47 21 32 6 s ? " (cont'd.) -14 48 48 -23 49 00 38 -24 00 00 42 -26 44 12 30 30 46 00 35 54 27 42 5 42 -15 12 October 20, 1957 5 08 28 45 October 21, 1957 hlm 22 20 55 40 -29 45 -32 October 22, 1957 7 1 ,4 1 23 22 22 23 0 0 0 22 21 23 00 1 October 1 34 15 33 38 03 02 07 48 42 39 08 30 23 36 10 30 -25 00 -24 -27 54 -17 20 - 7 50 -10 BO -14 14 -13 48 14 42 21 27 00 , 1957 22 ? 39 48 51 7S 83 86 180 180 137 155 144 0 135 120 90 90 123 108 75 315 105 112 98 Z 1 48 38 38 52 54 16 42 30 0 0 30 30 06 " 24 55 27 44 05 57 29 30 29 28 28 28 28 12 14 40 21 22 16 12 21 21 15 17 22 23 23 h 1 24 52 13 30 47 17 31 30 42 24 30 30 40 54 29 31 i?59 30 MAO. 2 1 1.5 1 1 1 1 3 1 0 3 .5 2 0 1 n 1 2 1 1 298 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Processed optical observations of S a t e l l i t e 1957 al (continued) OBS. NO. 00410 00441 00412 00413 00432 00433 00434 00435 00436 00453 00458 STATION Whlttler Whlttler Whlttier St. Louis Pasacal Pasacal Pasacal Pasacal Pasacal San Antonio Hofu 00452 Whlttler 01143 Skalnate Pleso 5TA. NO. 0012 0012 0012 0080 8008 8008 8008 8008 8008 0089 0213 0012 2711 U.T. h h MAG. 01:49:02 01:49:07 01:49:08 00:13:59 01:48:13. 01:48:23. 01:49:23. 01:49:27. 01:49:31. 00:12:12 01:30:; 17:25:' October 24, 1957 15 33 15 03 14 55 16 34 30 16 45 12 16 44 12 7 20 6 33 6 08 18 45 343 352 392 395 396 77 30 77 45 78 30 -10 24 7 18 19 00 85 07 82 50 80 36 28 34 October 25, 1957 15 46 21 30 314 30 272 9 12 19 01144 Skalnate Pleso October 26 , 1957 2711 17:09:26 11 01 06 62 00 01145 Slcalnate Pleso 00597 00740 00741 01111 01012 01011 00861 00862 OO863 01112 00614 00742 00743 00864 OO865 00866 00867 01063 01064 OIO65 October 27 , 1957 2711 16:49:49 13 45 48 49 48 Woomera Armagh. B Armagh B Slcalnate Pleso Edinburgh, Scot. Edinburgh, Scot, Perth Perth Perth Skalnate Pleso Boyden Obs. Armagh Armagh 3601 8036 8036 2711 2653 2653 0601 0601 0601 2711 2400 8036 8036 Perth Perth Perth Perth Mt'. atomolo Mt. Stromlo Mt. Stromlo 00599 00601 00602 00727 00728 00744 OO745 01066 OIO67 01068 J o d r e l l , Radar Woomera Woomera DunsInk DunsInk Armagh, B Armagh, B Mt. Stromlo Mt. Stroralo Mt. Stroralo 0601 0601 0601 0601 2600 2600 2600 4650 3601 3601 2652 2652 8036 8036 2600 2600 2600 October 28 , 1957 18:46:26 18:04:48.2 18:04:43.6 16:29:24.4 18:05:40 18:04:58 19:57:05 19:58:11 19:59:25 16:09:35 13 54 12 50 40 5 32 October 31, 1957 46 01:54:42 18:30:37.8 18:31:57.6 19:09:09 19:09:40 19:10:18,5 19:15:51 17:36:21 17:37:18 17:39:47 12 30 00 -67 48 6 43 8 02 12 36 November 1, 18:06:35 18:43:16.6 18:44:52.3 18:04:47 18:05:47 18:05:46.7 18:06:28.4 1957 17:09:55 17:10:41 17:11:42 9 29 5 18 -22 42 -40 12 01069 Mt. Stromlo 01070 Mt. Stromlo 01071 Mt. Stromlo 2600 16:43:15 2600 16:45:15 2600 18:20:04 November 2 , 1957 8 27 10 13 0 24 -18 00 -41 54 -42 36 118 59 34 111 36 118 30 90 45 171 55 46 15 91 05 120 04 33 11 40 47 06 48 00 *44 20 *49 20 ?51 17 ? 51 01#36 57 -16 36 -39 54 -58 06 279 340 63 77 140 180 279 242 310 349 350 11 8 58 51 36 13 01 00 57 28 12 30 12 06 11 19 ?37 ?37 ?34 ? 2 15 18 24 50 43 48 12 18 29 51 29 38 07 12 17 54 17 06 21 30 16 18 SATELLITES 195 7 ALPHA AND BETA 299 Table 1.?Processed optical observations of Satellite 1957 al (continued) OBS. STA. NO. STATION NO. 00600 J o d r e l l , Radar 4650 01013 Edinburgh , S c o t . 2653 01014 Edinburgh, S c o t . 2653 01015 Edinburgh , S c o t . 2653 U.T. o h m s November 3, 1957 18:45:55 17:10:27 November 4, 1958 18:14:58 Movember 6, 1958 17:07:58 MAO. 164 30 56 ?14 56 348 51 #13 56 335 35 ?17 57 01072 Mt. Stromlo 01073 "t. Strbmlo 01074 Mt. Stromlo 00755 J o d r e l l , Ftadar 01113 Skalnate Pleso OO756 J o d r e l l , Radar 00778 Armagh 00779 Armagh 01114 Skalnat* Pleso 00780 Armagh 00781 Armagh 00782 Armagh 01115 Skalnate Pleao 01116 Skalnate Pleso November 7, 1957 2600 17:15:18 21 5^ -55 12 2600 2600 4650 2711 4650 2651 2651 2711 2651 2651 2651 2711 2711 00809 00810 01096 01097 01098 01099 01100 01101 01117 01118 00785 01017 01018 01019 01020 01021 01022 01093 01102 01103 01104 01105 01119 Armagh Armagh Dunslnk B DunsInk B Dunslnk B Dunslnk B Dunslnk Dunslnk Skalnate Pleso Skalnate Pleso Sydney Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Bratlslava-Koliba Dunsink Dunslnk Dunsink Dunslnk Skalnate Pleso 2651 2651 2654 2654 2654 2654 2652 2652 2711 2711 0602 2705 2705 2705 2705 2705 2705 2701 2652 2652 2652 2652 2711 November 9, 1957 15:58:16 20 45 -75 18 16:00:27 15 41 -64 42 November 18, 1957 19:04:17 15:53:00 6 11 42 42 42 November 19, 1957 11:44:59 17:56:44.1 17:56:58.4 16:26:32 7 59 18 56 37 November 21, 1957 18:55:03-5 18:55:48.1 18:56:35-3 15:51:10 15:22:17 8 17 00 5 10 00 54 48 46 36 November 22, 1957 17:45:58.0 17:46:25-1 17:46:38.5 17:46:45.5 17:48:00 17:48:17 17:48:45 19:20:50 16:16:15 16:18:17 13 44 14 QO 0 24 30 0 30 0 42 18 57 11 32 36 1 28 42 67 30 72 1532 ?618 42 1 36 - 5 18 69 36 15 48 November 23, 1957 00 (1855 position) 00 346 06 351 30 (1855 position) 283 24 264 54 234 36 320 48 323 ^ 2 11:00: 18:08: 18:09: 18:10: 18:11: 18:12: 18:12: 16:39: 18:07: 18:08: 18:09: 18:11: 16:39: 8 30 -62 30 29 36 39.8 34 23 16 19 21 23 21 39 25 07 16 38 23 48 18 - 1 29 16 - 3 -26 1 46 42 24 36 06 54 00 323 319 314 291 167 162 00 45 59 35 29 00 90 9 0 ? 19 5* 22 36 17 28 23 42 28 54 27 1& 40 12 11 45 21 33 35 15 62 27 45 15 36 09 300 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL. 2 Table 1.?Processed optical observations of Sate l l i t e 1957 cd (continued) MAO. +3 OBS. HO. 00746 00747 00748 00749 00750 00751 00752 00753 00754 OO76O OO76I 00762 00763 00764 00766 00773 00774 00775 00776 007B6 00787 00788 OO789 00790 00791 00792 00793 00827 OO828 00829 OO96O 00961 00962 OO963 OO96A 00965 00966 00971 OO972 00973 00974 OO97B 01023 01024 01025 01026 01027 01028 01029 01030 01031 OIO32 01033 01034 01094 00757 OO758 00759 00765 OO767 00768 OO769 00770 00771 00772 00777 00783 00784 STATION Columbus Colunbus Columbus Portland Boise Phoenix Phoenix Phoenix Oakland Arlington Arlington Bryn Athyn Bryn Athyn Springfield, Va. Silver Spring Sacramento B Sacramento B Sacramento^B North Canton Portland Perth Perth Washington Washington Utrecht B Utrecht B Utrecht A Cambridge Cambridge Cambridge Nltaka Yolckalchl Hiroshima Kanayamachl Talcada Sendai Mlyazaki Musashino Nllgata Hofu Sendai Columbus Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pio du Midi Plo du Midi Pio du Midi Pio du Midi Pic du Midi Pic du Midi Bratlslava-Koliba Sacramento A Sacramento A Sacramento A Milwaukee B Lemont Oakland Oakland Oakland Whittier Walnut Creek Tucson North Canton North Canton STA. NO. 0051 0051 0051 0076 0018 0002 0002 0002 0006 0071 0071 0055 0055 8509 0032 85OO 85OO 85OO 0053 0076 0601 0601 6001 6001 8002 8002 2707 0099 0099 0099 0229 0258 0211 0220 0250 0246 0230 0233 0238 0213 0246 0051 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2701 0007 0007 0007 0198 0022 0006 0006 0006 0012 0011 0003 0053 0053 U.T. a n m s November 24, 1957 00:16:40 00:16:43 00:16:48 01:46:13 01:46:25 01:48:27 01:48:57 01:49:12 01:48:56 23:02:16 23:02:39 23:01:36 23:02:39 23:02:21 23:02:43.5 01:45:23.6 01:47:19.1 01:47:19.9 23:01:31 01:45:53 14:1B:37 14:19:00 23:02:48 23:03:47 16:54:23 16:56:40 16:54:30 23:03:13 23:04:23.4 23:04:32.8 09:24:22 09:84:52 09:23:33 09:24:41 09:25:06 09:23:04 09:24:56 09:24:32.7 09:24:52 09:23.: 25 09:25:19 23:01:49 18:26:54 18:27:35 18:28:13 18:28:54 18:29:43 18:30:12 18:30:43 18:31:12 18:31:43 18:32:15 18:32:40 18:32:53 16:57:48.6 17 54 18 05 18 08 1 22 30 13 15 17 00 0 15 3 16 20 35 30 23 5? 18 19 35 22 24 23 40 00 36 10 12 18 3 42 06 3 39 54 1 12 1 23 03 23 20 0 50 19 11 20 53 20 09 18 35 20 37 22 26 20 55 20 41 20 10 2 24 2 12 21 14 12 November 25, 02:03:50 02:04:36.3 02:05:19.2 00:36:28 00:34:09 02:03*15 02:03:54.4 02:04:27.8 02:05:54 02:04:17 00:44:42 00:35:24 00:21:17 20 40 36 22 51 42 23 40 48 19 30 19 44 22 19 22 10 07 23 3522 48 22 32 19 32 19 27 e 19 19 16 60 68 85 61 25 30 36 25 14 45 44 - 1 28 30 30 42 65 14 24 47 27 36 47 33 36 35 30 60 01 04 28 00 17 00 42 12 30 36 37 30 21 30 15 00 77 00 47 00 - 10 00 - 14 00 50 00 22 -20 Hg 12 , 1957 50 10 12 8 53 -14 48 -18 -17 30 58 05 62 28 25 8 18 38 -21 48 -22 24 Z 270 90 (1958.0 position) 246 43 00 241 16 00 197 176 174 30 270 OQ 240 00 0 208 48 298 47 288 53 275 23 254 52 228 35 215 16 204 17 196 49 190 26 185 29 182 41 181 26 314 7 8 23 12 11 32 30 34 23 10 14 18 2? 21 19 16 13 10 8 6 5 36 h 20 00 20 00 00 00 00 18 15 39 57 33 39 39 27 27 45 15 11 SATELLITES 195 7 ALPHA AND BETA Table 1.?Processed optical observations of Satellite 1957 al (".ontlnued) 301 OBS. NO. 00794 00798 00802 00806 00812 00820 00824 00825 00826 00831 00832 00833 00834 00835 00836 00837 00838 00923 00967 00958 00969 00970 00975 00977 01035 01036 OIO37 OIO38 01039 01040 01041 01042 01043 01044 01045 01075 OIO76 00795 00796 00797 00799 00800 00801 00803 00804 008Q5 00807 00808 00811 OO813 00814 OO815 00816 OO817 OO818 OO819 00821 00822 OO823 OO83O OO839 00840 00844 00845 00848 00849 STATION College Sunnyvale B Bristol Greensboro A Danville Springfield, Va. St. Louis Rantoul Terre Haute Sydney Washington, D. C. Washington, D. C. C. Canaveral F C. Canaveral F C. Canaveral F C. Canaveral F C. Canaveral F Woomera Mitaka Asahlgawa Sendai Takada KuruneBachi Akron-Canton Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Plo du Midi Pic du Midi Pic du Midi Canberra Canberra Walnut CreeK College Sunnyvale Waco Los Alamos Los Angeles Fort Worth Big Spring Yankton Whlttier Santa Barbara Kansas City Bryan Bryan Oakland Oakland San Angelo San Angelo Tulsa Sacramento A Sacramento A Manhattan Organ Pass Peoria Redbank Sylacauga B Rantoul Arlington St# Louis STA. NO. 6450 85O8 0097 0049 0021 8509 0080 0092 0025 0602 6001 6001 8020 8020 8020 8020 8020 3601 0229 0201 0246 0250 0227 0053 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 7000 7000 0011 6450 OO78 0093 0043 0100 0069 0083 0061 0012 0009 0036 0065 0065 0006 0006 0105 0105 0054 0007 0007 0027 9001 0023 0040 8506 0092 0071 0080 U.T. h November 01:57:20 02:04:15 23:15:23 23:15:10 23:14:10 23:15:12 23:13:ftl 23:14:06. 23:14:26 09:59:22 23:15:10 23:l6t35 23:17:51 23:17:55 23:18:02 23:18:07 23:18:10 11:30:32. 08:07:47 0?;05J34 08:09s06 09:39:03 08:06:59 00:35:2ft 17:09;29 17:10:03 17:10:28 17:11:03 17:11:29 17:11:55 17:12:28 17:12:5ft 17:13:25 17:13:ft8 17:14:17 09:59:59. 10:00:50 02:17:25- 02:10:12 02:11:30 00:47:44 00:46:16 02:18:59 00:47:54 00:32:43 00:44:29 02:17:2ft 02:20:18 00:45:07 00:49:42 00:47:59 02:16:53 02:17^22 00:42:29 OOs48s5O 00:46:14 02:15:46 02:17:11 00:46:13 00:46:27 23:22:28 21:50:16 23:24:31 23:21:32 23:35:05 23:22:03 5 8 7 0 19 2 2 4 17 20 3 20 1 17 19 5 6 a m 25, 30 15 56 05 03 13 15 10 52 38 32 26 18 November 5 ,5 .5 .2 .7 .5 20 22 21 0 19 20 17 18 17 21 19 19 20 20 0 18 17 20 18 2 17 17 22 22 22 05 3p04 12 48 19 25 42 3o18 22 40 05 06 32 35 57 06 55 52 13 ? e e 1 " 1957 (ctont'd) 26, 27 00 00 00 00 00 00 00 34 10 32 00 30 62 1 49 44 -13 25 -13 28 48 18 48 06 00 00 00 -13 00 14 -21 -20 -30 1957 -17 37 9 20 - 5 -17 6 10 10 -33 7 - 1 -17 31 -29 9 16 -25 - 8 42 40 12 37 00 48 48 00 30 22 48 18 18 32 24 15 30 27 19 30 30 32 24 09 36 02 18 . Q lo 23 24 ? 180 270 180 90 90 101 105 110 H3 11ft 192 ft5 14 ft7 77 104 115 121 126 129 131 133 13ft 180 59 180 270 1, -,43 90 Z 1 44 46 11 01 S 00 27 ft5 43 27 15 33 30 28 54 15 41 49 12 56 3ft 26 44 ? 22 87 46 49 h 1 ? 43 28 ?39 48 04 ?38 28 4l ?36 ?3? 37 2ft 35 ft3 41 31 24 19 14 10 7 5 3 12 70 14 ? ?33 81 09 14 31 3ft 34 05 48 52 00 38 2 26 32 14 08 08 38 s 38 on 30 33 zr MAO. 302 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1 . Processed opt ica l observations of S a t e l l i t e 1957 a l (concluded) OBS. HO. STATION STA. NO. U . T . MAQ. November 26, 1957 (cont'd) 00850 OO852 00853 00654 00855 OO856 00859 00860 00881 OO883 00887 00888 OO889 00890 OO891 00892 00924 00925 00926 00956 00976 00979 01001 01046 0i047 01048 01049 01050 01051 01052 01053 01054 01055 01062 01077 01078 01079 01095 00596 00841 00842 00843 00846 OO851 00857 OO858 00868 00869 OO872 OO873 OO874 OO875 OO876 OO877 OO878 00884 OO885 00886 00899 00900 00902 00903 00904 00905 00906 00907 OO9O8 Terre Haute Wllmore Harrisonburg Roanoke Evansville Cleveland Organ Pass San Antonio Sydney Adelaide Amarillo AFB C. Canaveral 0 C. Canaveral 0 C. Canaveral 0 C. Canaveral 0 C. Canaveral 0 Big Spring Kumamoto Kagoshlma Nea? Adelaide Asahlkawa 0". of 111. Albuquerque Pic du Midi Plo du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi College, Alaska Mt. Stromlo Mt. Stromlo Mt. Stromlo Bratislava 0025 0029 0072 0073 0094 0052 9001 OO89 0602 0600 0064 8039 8039 8039 8039 8039 OO83 0225 0218 8507 0201 2014 0041 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 6450 2600 2600 2600 2701 Mt. Stromlo Sacramento A Waco Lawton Manhattan Walnut Creek Los Alamos Phoenix Organ Pass Organ Pass Univ. of Illinois Univ. of Illinois Cambridge Cambridge Cambridge I.G3 Alamos Sylacauga Woomera Woomera Woomera Terre Haute Jodrell, Radar Milwaukee Peoria Greensboro A Red Bank New Haven Bryn Athyn New Haven 2600 0007 0093 0110 0027 0011 0043 0002 9001 9001 2014 2014 0099 0099 0099 0043 0001 3601 3601 3601 0025 4650 0074 0023 0049 0040 0087 00S5 0087 23:22: 23:23: 23:15: 23:22: 23:22: 23:05: 00:46: 00:47: 10:10: 11:42: 00:46: 23:29: 23:29: 23:29: 23:30: 23:30: 00:47: 09:52: 09:52: 11:43: 08:17: 23:23 00:45 17:18 17:18 17:19 17:20 17:20 17:21:12 17:21:41 17:22:10 17:22:36 17:23:13 02:10:10 10:09:19 10:09:29 10:05:37 15:47:14.2 55 25 52 07 16 20 36:277 55 01 5 7 a07.8 44 49 56 04 19 07 OS 18 18 18.0 46 11 4< 19 28 1 51 48 20 12 20 15 6 20 19 34 19 35 20 14 0 43 21 8 20 49 20 15 43 3 13 3 45 4,16 18 57 40 November 27, 1957 17:29:38.2 02:25:02.2 00:51:42 00:55:02 00:53:06 02:22:43.5 00:53:51 00:53:16 10 10 30 19 21 12 00 42 17 31 16 56 19 53 00:53:56.043 18 55 00:54:20.04l 20 13 23:23:43.2 23:25:25.0 21:53:06.8 21:53:49.8 21:54:13.6 22:56:12 19 04 23:25:32 10:11:50.4 10:13:55-3 1O:1*:33.7 23:23*36.2 14:15:22 23:23:20 23:24:30 22:58:10 21:53:56 21:52:10 21:58:38 21:52:45 24 41 30 -66 30 180 214 06 270 270 270 Epoch I855 270 213 29 28 208 17 28 201 46 12 195 44 49 I87 30 40 270 -24 -23 191 06 40 -16 00 169 46 57 33 30 (1950.0 position) ? 315 42 308 52 217 20 171 53 163 20 159 44 157 07 155 41 155 03 154 09 -12 40 36 - 9 00 -23 24 -33 54 50 43 42 28 34 53 51 62 22 61 30 ?47 49 37 ?45 56 38 ?42 59 17 ?39 34 08 ?33 35 24 85 14 32 20 24 29 24 36 64 41 28 22 16 12 9 6 18 48 48 48 48 18 18 18 18 00 15 -25 52 48 57 36 1 10 - 3 37 50 19 24 -21 30 237 09 00 14 27 00 40 30 Slant Range: 1150 km 17 35 12 256 198 244 203 176 270 26 105 119 270 17 270 0 38 305 60 280 16 27 30 30 00 21 38 38 00 30 00 46 59 56 ?24 ?16 44 36 28 49 25 26 19 24 9 24 63 77 50 53 75 04 29 09 34 17 32 00 14 02 01 54 SATELLITES 195 7 ALPHA AND BETA Table 1.?Processed optical observations of Satellite 1957 al (continued) 303 OBS. NO. STATION STA. NO. U.T. MAO. November 27, 1957 (cont'd) 00927 00928 00929 00930 00931 00932 00933 00934 00935 00936 00937 OO938 00939 00940 00941 00942 00943 00944 00945 00946 00947 00948 00949 00950 00951 00952 00957 00959 01080 01081 OIO82 OIO83 OO87O OOB71 00879 00880 00894 00895 OO896 00897 00898 00909 00910 00911 00912 00913 00914 00915 00916 00917 00916 00919 00920 00921 00922 00954 00955 01084 01085 01086 OIO87 01088 01069 01090 01091 01092 Mltaka Mitaka Mltaka ToyohaBhi Hiroshima Kanayamachl Takada Kyoto Hlgashlmatsuyama Hanazuru Manazuru Manazuru Sendal Sendal Musashino Musashino Nagoya Takamatsu Shlzuoka Honjo Otsu Hlraejl Mlzusawa Mlzusawa Mlzusawa Mlzusawa Adelaide Adelaide Pic du Midi Pic du Midi Pic du Midi Pic du Midi Adelaide Adelaide Sacramento A San Angelo Albuquerque Phoenix Tucson New Orleans El Paao Mitaka Suwa Shlzuoka Manazuru Manazuru Manazuru Manazuru HIgashlmatsuyama Hlmejl Musashipo Musashino Konko Klryu Mlzukaldo Organ Pass Organ Pass Pi- du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi 0B29 0229 0229 0255 0211 0220 0250 0259 0210 0228 0228 0228 0246 0246 0233 0233 0236 0251 0247 0212 0269 0262 0267 0267 0267 0267 8507 8507 2705 2705 2705 2705 0600 0600 0007 0105 0041 0002 0003 0030 0104 0229 02" R 0247 0228 0228 0228 0228 0210 0262 0233 0233 0224 0223 0231 9001 9001 2705 2705 2705 2705 2705 2705 2705 2705 2705 : 2 5 :24 08:23: 08:24: 08:24: 08:25: 08:23: 08:24: 08:2 08 08:25: 08:25: 08:24 08:26 08:24 08:25 08:24: 08:24 08:25 08:23: 08:24 08:25 08:25 08:25 08:23 08:25 08:25 08:26 10:12 10:14 17:22 17:24 17:24 17:25 52 05 08 26 23 1 9 54 26 06 30 54 11 00 21 17 57-4 22 57 29 50 00 24 31 26 56 11 07 50 53 18 30 52 10: 10: 00: 00: 00: 00: 00: 00: 00: 08: 08: 08: 08 08: 08: 08: 08 08 08 08 17 05 17 37 17 50 22 15 9 38 21 39 22 24 21 52 20 17 18 47 19 ^5 22 05 31 27 26 II 63 -36 33 -12 22 5 -32 November 28, 1957 13:09 15:00 53:38.: 59:00 57:39 55:03 56:39 18:02 41:15 25:38 23:55 23:46 25:01 25:10 25:24 25:30 25:20 23:54 23:42 25:05 23:56 23:54 23:58 56:41. 55:57 18:55 19:08 19:20 19:34 20:50 21:07 21:26 22:44 :23:O2 6 22 00 58 13 -52 40 24 24 19 30 00 20 30 19 55 17 42 17 15 18 59 19 12 19 38 19 44 19 30 19 10 946 19 22 48 969 18 12 18 -32 4 12 -19 -21 -25 -27 -28 25. -21 26 - 0 49 254 205 270 225 180 6 270 196 162 141 267 202 194 190 10 99 261 202 196 177 42 18 30 30 06 12 06 12 36 26 00 13 00 26 56 11 44 25 20 38 41 41 45 43 31 40 36 21 16 13 11 17 27 25 20 16 8 36 48 30 06 36 24 18 45 40 29 50 18 48 18 18 60 15 205 56 30 270 1 270 0 62 6 13 45 57 33 61 48 270 00 225 270 270 270 00 (Epoch 1875) (Epoch I855) 289 16 284 51 281 15 276 13 239 35 231 29 222 34 296 01 193 19 17 20 55 23 20 9 10 11 12 16 15 14 8 2 10 30 00 DO 12 18 00 r? 4212 00 304 OBS. NO. 00901 00953 01060 01061 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Processed o p t i c a l observat ions of S a t e l l i t e 1957 a l (concluded) STATION J o d r e l l , Radar Adelalte Plo du Midi Mt. Stronlo STA. NO. 46 90 0600 2705 2600 00998 Jodrell, Radar 4650 00999 Hacclesfield,Ra.dar465O 01000 Mao?le?field, Radar 4650 U.T. a 6 h m 8 o 1 n .November 29, 1957 12:35:30 Slant Range: 1300 km 10:06:55 >:2417:12 10:07:20 18 31 -35 54 155 30 211 46 .November 30, 1957 09:11:26 13:46:57 15:17;36 Slant Range: Slant Range: Slant Range: 540 km ? 30 321 900 km + 50 29 240 km 180 3 30 30 7 48 19 9 40 MAO. SATELLITES 1957 ALPHA AND BETA Table 2.?Processed optical observations or Satellites 1957 ct2 and a3 305 OBS. NO. STATION STA. NO. U.T. HAG. a2 00149 Sydney MW ao? 00119 Sendal a2 00127 State College ct2? 00103 U.S. Naval ObB. a3? 00105 Takada Sacramento A a3 a2 a2? o2? a2 a3 a3 o3 00104 Westover 00114 Sacramento A a2 00112 Sacramento A a2 00116 Milwaukee A a3 00124 Kurume Machl a2 00125 Hiroshima a2? 00117 Greensboro o3 00118 Waco (Conally APB) 00106 00107 00120 00121. 00122 00123 Musashino Kurume Machl Las Crucea Bryn Athyn Bryn Athyn Bryn Athyn a2 00109 Kurume Machi a3 00102 San Antonio a2 001II Aahigawa a2 00130 Cambridge a2 00131 Cambridge 0602 0246 0060 2011 0250 0007 3011 0007 0007 0074 0227 0211 0049 0093 0233 0227 0042 OO55 0055 0055 0227 OO89 0201 0099 0099 a2 00144 Skalnate Pleso 2711 October 9, 1957 09:39:31 15 18 October 14, 1957 19:56:43 10:l8tl2 13 11 12 17 -44 48 55 57 -16 0 54 36 October 15, 1957 10:20:40 19:43:45 10 10 October 16, 1957 13:27:27 7 25 30 October 17, 1957 09:55:18 13:24:48 7 07 48 -21 18 October 18, 1957 13:21:33.6 6 40 30 10:04:i53.5 9 47 19:28:41.9 19:40:23 6 18 111 October 19, 1957 09:58:00 8 40 October 20, 1957 11:24:27 October 22, 1957 09:23:51.7 >:24:21.809 01:20: 23i30i09 23:30:53 1* 07 18 30 1 30 October 23, 1957 09:13:15 October 24, 1957 00:57:00 09:07:02 22:48:07.2 22:48:11 16 45 a2 00145 Skalnate Pleso a2 00146 Skalnate Pleso 2711 2711 October 25, 1957 16:57:03 October 26, 1957 16:47:33.6 17 37 18 16:47:53.4 81 79 55 5* 45 58 10 50 270 180 315 122 0 315 275 399 312 41 308 13 35 40 81 30 22 30 70 71 21 26 85 30 55 17 II 90 52 42 Paint 6.5 5 28 31 30 6 3 0 6 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 2.?Processed optical observations of Satellites 1957 a2 and! a3 (concluded) a2 o2? o2? o2 o2 .6 21 15 20 52 06 4 21 07.2 23 45 23 35 21 22 7 28 00 04 6 J.0 11 40 19 30 5 13 12 09 73 78 59 59 85 52 50 81 December 25, 1957 -5:35. 08:06:47 08:08:52 01:22:52.3 01:23:07.3 08:07:34 08:06:35 08:07:00 08:06:17 21 S00 I 4546 5425 48 22 45 23 34 21 39 14 24 27 11 09 19 31 12 -32 35 -13 December 26, 1957 07:44:21 07:44:32 07:44:32 22:51:59 22:56:00+1 22:54:00 01:41:37 01:43:49.2 01:44:05 4 28 5 06 18 10 4 43 13 03 13 55 18 22 36 30 23 00 14 12 - 8 30 201 12 90 142 132 64 06 -11 39 -S 32 30 22 38 24 40 30 229 294 342 0 315 0 06 06 12 0 59 270 64 48 315 80 90 87 48 54 54 16 23 30 25 30 253 270 300 270 11 130 36 48 17 22 28 22 47 25 30 30 30 30 13 30 41 12 33 06 23 36 41 18 60 42 30 51 48 36 30 48 36 79 30 6O+5 30 09 36 316 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL. 2 Table 3.?Proceaaed opt ica l observations of S a t e l l i t e 1957 Beta (continued) OBS. NO. STATION STA. NO. U . T . MAG. December 27, 1957 00472 00473- 00479 00480 00482 00483 00484 00485 00571 00572 00481 00486 00487 00488 OO576 00489 00490 00494 00573 00574 00577 OO578 00002 00003 00004 00022 00021 00023 00024 Denver Manhattan, Kan, Paterson Bryn Athyn Cambridge Cambridge Cambridge Cambridge Johannesburg Pretoria Manhattan, Kan. Cambridge Cambridge Cambridge Santiago Obs. Sapporo Sapporo Otaru Johannesburg Johannesburg Santiago Obs. Santiago Obs. OO575 Johannesburg OO579 Santiago Obs. 00001 Armagh 00019 Johannesburg 00032 Santiago Obs. 00033 Santiago Obs. 00020 Johannesburg 00034 Santiago Oba. 00035 Santiago Oba. Armagh Armagh Armagh Johanne sburg Johannesburg Johannesburg Johannesburg 00014 Johannesburg 00015 Johannesburg 00036 Santiago Obs. 00037 Santiago Obs. 0013 0027 0108 0055 0099 0099 0099 0099 2401 0404 0027 0099 0099 0099 2801 0245 0245 0243 2401 2401 2801 2801 2401 2801 2651 2401 2801 2801 2401 2801 2801 2651 2651 2651 2401 2401 2401 2401 2401 2401 2801 2801 00:34: 00:35; 22:20: 22:29 22:29 22:29 22; 29 22:29: 01:19: 01:22: 00 19 10 48 30.4 44.8 46.0 54.2 22.5 33.4 17 00 16 43 11 00 14 0J- 15 It II 62 24 -10 18 -30 30 December 28, 1957 00:08:55 22:01:41.8 22:01:50.5 22:01:50.5 07:39:15 16 52 13 58 33 - 9 18 December 29, 1957 08:07:16 08:07:33 17 25 17 1^ 24 33 December 30, 1957 07:39:43 01:39:26 01:23:20 08:25:15 08:28:07.5 11 05 14 03 11 16 52.3 13 43 58.7 -18 -57 12 -21 05 39 -52 01 10 December 31, 1957 01:11:14 07:57:40 12 00 12 53 54 -22 30 -34 34 12 January 1, 1958 I8:28i55.1 02:25:37.4 07:29:17 07:30:10 6 37 14 19 36 14 55 25 -53 30 -39 31 -42 56 January 2, 1958 01:52:59.4 06:56:29 08:33:39 7 15 -37 00 13 16 36 -22 51 7 18 17.0 6 19 57 January 3, 1958 17:24:10.6 17:24:51.1 17:25:37.6 01:21:38 01:21:07.4 01:24:36 01:26:27 8 10 30 8 00 36 10 25 17 00 -47 11 -59 48 -80 30 -80 January 4, 1958 00:47:38 8 47 -28 30 January 5, 1958 02:00:42 07:00:08 08:44:07 4 12 -62 30 12 06 18 -50 22 4 23 -63 30 313 45 23 346 351 349 353 15 45 30 15 16 15 15 45 45 15 326 332 327 25 22 23 30 330 23 30y 24 19 12 287 12 325 54 6 26 29 36 35 18 27 53 NO. 10 SATELLITES 195 7 ALPHA AND BETA 317 Table 3.?Processed optical observations of Satellite 1957 Beta (continued) OBS. NO. STATION STA. NO. U. T. MAO. January 6, 1958 00038 Santiago Obs. 2801 08:06:15 5 50 20 -41 07 00 January 7, 1958 00039 ooo4o Santiago Obs. Santiago Obs. 00016 Johannesburg 00017 Johannesburg 00041 Santiago Obs. 00018 Johannesburg 00005 00006 College,Alaska College, Alaska 00007 College, Alaska 00008 College, Alaska 00009 College, Alaska 00010 College, Alaska 00011 College, Alaska 00012 College, Alaska 2801 2801 2401 2401 2801 2401 6450 6450 6450 6450 6450 6450 6450 6450 05:48:34.8 07:29:11.8 12 08 29.1 23 19 26 6 21 12 -29 5^ January 8, 1958 00:10:36 23:34:51 06:54:32.8 8 48 -50 12 10 25 -67 7 56 34.5 -63 09 41 January 9, 1958 01:15:10.5 4 29 -34 18 January 12, 1958 01:57:36 03:40:12 January 13, 1958 01:15:35 02:58:20 04:40:25 January 14, 1958 02:IS:32 03:58:21 01:31:42 January 16, 1958 00013 College, Alaska 6450 04:13:02 00071 Armagh 00042 OOO55 OOO56 00025 00026 00027 00028 00029 00030 00031 00043 00044 00046 OO516 OO517 OO518 OO519 Sacramento D College, Alaska College, Alaska Cambridge Cambridge Cambridge Cambridge Cambridge Washington, D.C Washington, D.C Sacramento B Sacramento B Sacramento B Pic du Midi Pic du Midi Pic du Midi Pic du Midi January 17, 1958 2651 18:24:43.6 January 18, 1958 8 36 378005 02:43:31-2 6450 02:39:04 6450 04:22:00 January 19, 1958 0099 0099 0099 0099 0099 6001 6001 85OO 85OO 85OO 2705 2705 2705 2705 23:28:38 23:29:30.2 23:30s49 23:30:44 23:31:06 23:31:04 23:31:22 03:37:50-2 03=37:56.1 01:57:56.6 18:31:43 18:32:40 18:32:53 18:33:10 11 00 10 20 16 55 53.* 16 52 12 10 13 06 52 00 53 08 65 07 48 66 44 12 180 0 180 0 0 0 180 180 180 39 06 0 180 347 5 12 30 12 17 30 January 20, 1958 00045 Sacramento B 00049 Cambridge 00057 College, Alaska 00058 College, Alaska 85OO 02:50:50-2 0099 22:421*9 6450 02:44:17 6450 04i27:33 11 23 60 42 9 36 26 06 29 00 33 24 45 180 180 60 80 90 87 86 84 70 29 57 90 50 09 17 30 23 30 21 30 25 17 48 21 06 21 48 22 18 20 82 31 318 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS VOL. 2 Table 3 . Processed optical observations of Sate l l i te 1957 Beta (continued) WO. STATIOW STA. MO. U . T . MAO. January 21, 1958 00047 00048 00050 00051 OOO52 00053 00054 OOO59 00060 00061 00062 OOO63 00064 OOO65 00066 00067 00068 00069 OOO7O OOO96 00520 00521 00522 OO523 00524 OO525 OO526 OO527 OO528 OO529 OO53O 00531 OO532 00533 00534 OO535 OO536 OO537 00538 00539 00540 00541 99542 00543 OO544 OO545 OO546 OO547 00548 OO549 OO589 00754 00755 OO756 00757 OO758 00759 OO76O OO761 OO762 00763 00764 OO765 OO766 OO767 OO768 OO769 00770 ?0771 00772 00773 00774 Ft. Belvolr Washington, D.C. Cambridge Cambridge Cambridge Cambridge Cambridge Washington, D.C. Milton Sacramento B Sacramento B Sacramento B Sacramento B Sacramento B Sacramento B Sacramento B Washington, D.C. Washington, D.C Washington, D.C. College, Alaska Pic du Midi Plo du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Dunslnk Obs. Dunalnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. Dunslnk Obs. 0077 8009 0099 0099 0099 0099 0099 8006 6003 85OO 85OO 85OO 85OO 85OO 85OO 85OO 6001 6001 6001 6450 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2652 2652 2652 2652 2652 2652 2652 2652 26.52 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 00:23:04 00:23:35 00:21:12 00:23:02.5 00:23:36 00:23:47 00:23:58 00:23:13 00:23:33 02:01:25.2 02:02:34.0 02:03:30.5 03:41:14.5 03:41:52.0 03:43:09.6 03:43:19.8 00:21:43 00:23:13 00:23:33 OV.36:57 18:31:14 1i s 3 l 82I 18:31:48 18:32:00 18:32:14 18:32:24 18:32:34 18:32:49 18:32:58 18:33:09 18:33:2? 18:33:34 18:33:53 18:34:07 18:34:20 18:34:30 18:34:44 18:34:55 18:35:11 18:35:22 18:35:31 18:35:42 18:35:59 18:36:21 18:36:34 18:36:46 18:36:56 18:37:11 18:37:24 18:37?33 18:37:47 18:30:21.9+. 18:30:26.9+. 18:30:31.9+. 18:31:26.9+. 18:31:31.9+. 18:31:36.9+. 18:31:41.9+. 18:31:46.9+. 18:32:01.9+. 18:32:06.9+. 18:32:11.9+. 18:32:16.9+. 18:32:21.9+. 18:32:41.9+. 18:32:46.9+. 18:32:51.9" 18:32:56.9 18:33:01.9 18:33:16.9 18:33:21.9 18:33:26.9 22 57 9 55 24 9 01 56.4 8 33 12 19 26 12 20 02 42.6 00 11 27 1 05 01.2 16 40 15 00 9 30 5 17 1 17 1 17 1 17 1 17 1 18 1 18 1 00 I I 1 4 1 5 1 5 1 5 5 5 5 5 5 5 35 00 36 00 37 00 50 00 52 30 57 00 02 30 12 30 00 00 50 00 40 00 57 30 10 00 23 30 24 30 26 00 27 00 28 00 32 00 32 JO 33 00 0 6 36 328 30 332 30 331 30 329 30 331 0 66 30 48 30 38 49 48 30 01 48 62 26 24 67 43 12 75 *5 74 52 12 65 36 80 00 81 09 180 341 36 342 54 344 06 345 36 347 06 348 24 349 48 352 06 353 24 355 30 357 48 00 54 5 06 8 42 12 48 16 36 21 18 25 24 32 36 36 54 41 06 46 42 54 36 64 06 70 06 74 42 78 18 83 84 87 18 89 42 93 18 53 42 (1950 position 54 54 (1950 position 56 18 (I95O position 74 00 (1950 position 76 06 (1950 position 78 18 (195O position 80 24 195O position 82 42 1950 position 88 42 195P position 87 00 1950 position 84 36 1950 position 81 54 1950 position 79 12 1950 position 68 18 195O position 1950 position 29 33 30 15 30 52 55 31 5 3 62 42 60 00 57 18 49 42 18 42i OBS. NO. 00775 00776 00777 00778 00779 OO78O 00781 00782 OO783 00784 OO785 OO786 OO787 OO788 OO789 00790 00791 00792 00793 00072 00073 00074 00075 OOO76 OOO77 OOO78 00079 00080 00081 00082 OOO83 00084 OOO85 0OO86 OOO87 00088 OOO89 OOO90 OOO91 OOO92 OOO93 0009 u OOO95 OOO97 OOO98 00125 00126 00127 00128 OO138 00139 OOI95 00794 00795 00796 OO797 00099 00100 00101 00102 00103 00104 00105 00106 00107 00108 STATION Dunaink Obfl. Dunsink Obs. Dunsink Obs. Dunsink Oba. Dunsink Obs. Dunsink Obs. Dunaink Obs. Dunaink Oba. Dunsink Obs. Dunsink Obs. Dunsink Obs. Dun8ink Obs. Dunaink Obs. Dunsink Obs. Dunaink Obs. Dunaink Obs, Dunsink Obs. Dunaink Obs. Dunsink Obs. St. Paul Lawton Lawton Lawton Lawton Los Alamos Los Alamos Oakland San Angel0 MItaka Mitaka Mlzukaldo Suwa Mitaka Mlzukaido C. Canaveral C. Canaveral >C. Canaveral C. Canaveral Ct Canaveral C. Canaveral C. Canaveral 0. Canaveral C. Canaveral B B B B B B B B B College, Alaska College, Alaska Sacramento C Sacramento C Sacramento C Sacramento C Sendal Sendai Musashlno Dunaink Obs. Dunsink Obs. Dun3ink Obs. Dunsink Obs. Sac Peak Ft. Belvoir Washington, i Chicago Chicago Aroarlllo St. Louis St. Louis St. Louis Alamagordo D C SATELLITES 195 7 ALPHA AND BETA 3 1 9 Table 3.?Processed op t i c a l observations of S a t e l l i t e 1957 Beta (continued; MAO. STA. NO. 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 0035 0110 0110 0110 0110 0043 0043 0006 0105 0229 0229 0231 0248 0229 0231 8007 8007 8007 8007 8007 8007 8007 8007 8007 6450 6450 85OI 8501 85OI 8501 0246 0246 0233 2652 2652 2652 2652 2O43 OO77 0014 0085 0085 0064 0080 0080 0080 0102 U.T. January 18:33:31.9 18:33:36.9 18:33:56.9 18:34:01.9 18:34:06.9 18:34:11.9 18:34:16.9 18:34:31.9 18:34:36.9 18:34:41.9 18:34:46.9 18:34:51.9 18:35:06.9 18:35:26.9 18:35:36.9 18:35:56.9 20:13:59.9 20:14:04.9 20:14:09.9 January 01:13:42 01:12:25 01:13:39 01:14:27 01:15:17 02:54:27 02:54:44 02:54:37 01:36:15 09:30:37 11:11:01 11:10:23 09:32:22 09:28:43.6 09:31:22 01:14:45 01:14:50 01:14:55 01:15:00 01:15:05 01:15:10 01:15:15 01:15:20 01:15:25 02:45:42 04:29:27 02:51:10.7 02:53:02.7 04:33:29.9 04:34:47.0 09:29:09 09:31:40 09:29:48 19:23:15.0 19:23:20.0 19:23:25.0 19:23:30.0 January 02:06:01.2 00:24:20 00:21:27 00:22:53.5 00:23:05.0 02:05:21 00:21:28 00:22:36.5 02:04:24 02:05-01 h 21, 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 23 23 23 22, 4 00 00 7 8 23 22 7 13 8 23 00 11 1 1 1 1 23, 6 6 6 10 8 1 6 a m s 1958 33 30 34 00 37 00 37 30 37 30 38 00 38 30 39 30 40 00 40 30 41 00 41 30 42 30 43 30 nk 30 46 00 47 00 53 00 58 30 1958 50 05 43 35 28 05 40 32 34 43 14 12 13 30 21 18 38 01 30 09 30 17 30 25 30 1958 35 46 36 57 21 12 02 41 0 (oont' 42 40 32 30 28 26 25 21 19 18 17 15 12 8 7 3 l4 14 41 59 57 33 61 29 31 31 .8 74 59 27 17 82 23 22 21 19 16 48 45 65 52 14 4.1 6 d.) 30 12 12 30 48 54 24 06 42 18 12 54 42 48 00 54 ?12 24 27 40 48 58 12 20 24 42 24 12 48 48 06 54 30 18 ' ? f - z a U 42 57 90 5 45 339 339 339 339 339 339 340 340 340 180 180 72 20 0 333 90 18 30 30 24 14 21 31 40 108 17 32 30 30 h 17 23 25 27 25 21 38 19 19 20 21 21 22 1124 62 23 45 31 76 23 no 68 I 24 06 42 01 43 20 04 47 31 16 05 37 36 30 320 OBS. NO. 001OQ 00110 00111 00112 00113 00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00129 00130 00131 00132 00133 OOI34 00135 OOI36 OOI37 00140 00141 00142 00143 00144 00145 00146 00147 00148 00149 00150 00151 00152 00153 00154 00155 OOI56 OOI57 OOI58 00159 00160 00161 00162 OOI63 00164 OOI65 00166 00167 00168 00177 OOI78 OOI79 00180 00181 00182 OOI83 00184 OOI85 00186 OOI87 OOI88 60189 00190 00191 00192 00193 00194 SMITHSONIAN CONTRIBUTIONS TO Table 3 Processed optical observations STATION Wichita Los Alamos Los Alamos Los Alamos Milwaukee Milwaukee Milwaukee Milwaukee Albuquerque Tucson Tucson Tucson Tucson Albuquerque Albuquerque Albuquerque Sacramento C Sacramento C Sacramento C Sacramento C Sacramento C Sacramento C Sacramento C Sacramento C Sacramento C Washington, D.C. Washington, D.C. Washington, D.C. Washington, D.C. Washington, D.C. Washington, D . C Washington, D.C. Washington, D.C. Higaahimatsuyama Higashimatsuyama Puchu Puchu Kanaya Machi Manazuru Mitaka Mitaka Mitaka Osaka-Yomiurl Osaka-Yomluri Yokkaichi Mitaka Mitaka Mitaka Musashlno Sendai Sendai Sendai Sendai Shizuoka Ik cm a Konko Konko Manazuru Manazuru Manazuru Mlyazaki Mlyazaki Suwa Suwa Suwa Suwa Suwa Suwa Konko Mitaka Mitaka Mitaka STA. NO. 0028 0043 0043 0043 0074 0074 0074 OO74 0041 0003 0O03 0003 0003 0041 0041 0041 85OI 85OI 85OI 85OI 85OI 85OI 85OI 85OI 85OI 6001 6001 6001 6001 6001 6001 6001 6001 0210 0210 0214 0214 0220 0228 0229 0229 O229 0241 0241 0258 0229 0229 0229 0233 0246 0246 0246 0246 0247 0216 0224 0224 0228 0228 0228 0230 0230 0248 0248 0248 0248 0248 0248 0224 0229 0229 0229 U.T. January 23, 02:06:53 02:04:19 02:05:19 02:06:12 00:18:52 00:22:09.1 02:06:55.8 02:04:37.8 02:03:36 02:31:00 04:08:00 04:14:00 04:13:00 02:02:57 02:04:29 02:05:53 02:00:15.3 02:00:59.9 02:01:51.3 02:04:04.2 02:05:39.7 03:41:07.4 03:42:44.1 03:42:57.6 03:46:53.6 00:22:47 00:23:42 00:24:22 00:25:12 00:25:57 00:26:3^ 00:27:22 00:27:50 08:40:38 10:23:03 10:20:45 10:23:17 10:21:02 08:37:15 10:23:49 12:01:13 12:03:09.8 10:19:59 10:22:09 10:22:41 08:37:21.5 10:18:52.4 10:20:21.6 10:21:02.4 08:37:36.6 08:39:13.6 08:40:19.8 08:42:22.2 08:43:05 10:22:09 10:21:22 10:22:41 10:22:02 10:22:23 10:22:28 10:21:23 10:21:44 08:37:47 10:20:24 10:20:37 10:22:19 10:22:35 10:23:44 10:21:22 10:18:47 10:20:30.9 10:22:12.7 h 1958 6 6 6 16 6 2 1 6 14 6 6 9 9 7 7 7 21 00 1 4 22 1 I 4 4 5 5 7 3 4 5 3 10 4 23 00 2 4 4 4 4 5 3 3 3 6 6 9 1 1 3 I AST]KOI??1Y i of Satellite 1957 a m s (cent'd. 22 16 13 50 50 31 00 30 45 40 .31 56 34.2 02 21.6 51 58.2 30 36 16 22.2 47 24 34 07.2 00 18.6 24 21 10 54 19 06 35 54 11 14 49 50 37 33 1110 800 11 28 55 20 14 26 31 13 12 28 37 55 44 58 28 ? ) 22 3 61 60 -19 1 80 75 45 18 57 49 28 15 2 52 44 41 -18 72 U 27 13 - S -13 25 - 9 48 - 1 46 58 -14 3 - 8 64 16 7 16 35 6 16 10 7 45 23 541 6 -00 -14 6 30 30 30 20 50 30 04 52 31 54 58 39 15 04 35 02 07 08 02 08 02 06 02 30 12 10 48 12 48 12 36 48 24 S1US Beta (continued) 165 90 290 240 270 26 316 297 270 31 59 75 96 94 90 317 293 201 Z ? 30 48 54 24 54 00 24 12 30 06 12 12 h 36 27 36 36 36 15 30 33 30 56 24 65 30 24 48 24 24 22 24 15 12 11 00 72 30 24 57 24 61 06 VOL. 2 MAO. SATELLITES 195 7 ALPHA AND BETA 321 Table 3.?Processed optical observations of Satellite 1957 Beta (continued) MAG. 1 to 9 OBS. NO. 00196 00197 00198 OO2O9 00210 00211 00212 00213 00214 00215 00216 0O217 OO218 00219 00220 00221 00222 00223 00224 00230 00238 00239 00240 00241 00242 00243 00244 00245 00246 00423 00424 00425 00426 00427 00428 00429 00430 00431 00432 00433 00434 00435 00436 00437 OO438 00439 00440 00441 00442 00443 00575 00672 00673 00674 OO675 OO676 00677 OO678 00679 00680 00681 00682 OO683 00684 OO685 00686 OO687 00688 00689 00690 00691 00692 STATION Arlington Cleveland B North Canton Pittsburgh Pittsburgh Dover Dover State College State College State College Bryn Athyn Bryn Athyn Bryn Athyn Bryn Athyn Bryn Athyn Millbrook Mlllbrook Paterson, N. Washington, Milwaukee B New Haven Washington, Washington, Washington, Washington, Washington,. Washington, Washington, Washington, Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge J. D, D. D. D. D. D. D. D. D. C, C. C. C. C. C. C c. c. College, Alaska Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi STA. NO. 0071 85O5 0053 0059 0059 0039 0039 0060 0060 0060 0055 0055 0055 0055 0055 0045 0045 0108 0014 0198 0087 6001 6001 6001 6001 6001 6001 6001 6001 0099 0099 0099 0099 0099 0099 0099 OO99 0099 OO99 0099 0099 0099 0099 0099 0099 0099 0099 0099 OO99 0099 6450 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 U.T. January 23, 23:33:21 23:32:21+4 23:32:59 23:31:33 23:35:45 20:31:29 23:32:24 23:32:30 23:32:45 23:37:06 23:29:34 23:29:52 23:31:33 23:35:18 23:37:00 23:31:56 23:33:41 23:33:13 23:35:12.5 23:30:58 23:25:02 23:29:05 23:31:05 23:32:05 23:33:05 23:33:35 23:34:55 23:35:50 23:37:10 23:30:38 23:30:42 23:30:55 23:31:07 23:31:15 23:31:22 23:31:28 23:31:32 23:31:38 23:31:40 23:31:44 23:32:13 23:32:33 23:33:09 23:33:28 23:33:37 23:33:43 23:33:36 23:33:55 23:35:02 23:35:39 03:36:24 18:28:22 18:28:4S 18:28:58 18:29:13 18:29:25 18:29:41 18:29:50 18:30:00 18:30:09 18:30:19 18:30:25 18:30:42 18:31:09 18:31:19 18:31:27 18:31:37 18:31:52 18:32:03 18:32:13 18:32:23 18:32:36 h a m s 1958 (cont 6 6 7 6 6 16 6 6 5 5 5 7 5 14 8 6 6 6 6 6 6 28 42 16 27 20 06 00 00 04 II 18 23 00 50 00 40 35 32 28 26 21 e 0 , IT ?d.) 18+2.5 l4~30 37 30 19 30 -18 80 - 8 -19 41 10 - 4 00 8 30 29 00 6 19 74 05 69 08 43 04 24 02 16 05 1 05 - 7 04 17 06 O 90 135 45 90 89 0 45 112 338 342 0 0 0 0 355 1 12 10 li56 131 121 130 131 132 133 146 147 144 147 186 332 333332334 334 335 336 336 337 III 339 342 343 344 346 348 351 353 356 1 z1 42 30 30 30 30 30 30 30 30 30 12 00 24 12 36 30 00 36 00 48 48 30 24 30 36 00 30 00 2h24 06 0 37 25 60 8 35 53 24 58 62 % 72 7f76 79 8l 8l 82 74 69n 46 40 31 25 3I6 8 10 11 13 14 15 17 18 20 22 23 28 30 1134 1144 47 51 h 1 30 30 30 30 30 30 30 30 30 ii *?% 42 42 00 30 00 42 48 12 36 00 12 48 48 42 42 48 r. 1,24 16 12 00 00 322 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 3.?Processed optical observations of Sate l l i t e 1957 Beta (continued) OBS. NO. 00693 00694 00695 00696 O0697 00698 00169 00170 00171 00172 00173 00174 00175 00176 00199 00200 00201 00202 00203 00204 00205 00206 00207 00208 00225 00226 00227 00228 00229 00231 00232 00233 00234 00235 00236 OO237 00247 00248 00249 00250 00251 00252 00358 00359 OO36O 00444 00445 00446 00699 00700 00701 00702 00703 00704 OO7O5 00706 00707 OO7O8 00709 00710 00711 00712 00713 00714 00715 00716 00717 00719 STATION Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pasacal Paeacal Pasacal Organ Pass-BN Organ Pass-BN Organ Pass-SS Sac Peak-SS Sac Peak-SS North Canton Lawton Lawton Lawton China Lake Whittler Whittler Whlttier Wichita Wichita Washington, D.C. Columbus Tulsa Tulsa Tulsa Milwaukee Milwaukee Milwaukee Los Alamos Los Alamos Tucson Tucson Washington, D.C. Washington, D.C. Suwa Sendai Sendai Sendai Quebec Quebec Quebec Cambridge Cambridge Cambridge Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi STA. NO. 2705 2705 2705 2705 2705 2705 8008 8008 8008 9001 9001 5001 2043 2043 OO53 0110 0110 0110 0098 0012 0012 0012 0028 0028 0014 OO51 0054 OO54 0054 OO74 0074 0074 0043 0043 0003 0003 6001 6001 0248 0246 0246 0246 8021 8021 8021 0099 0099 0099 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 U.T. January 23, 18:32:48 18:33:00 18:33:12 18:33:30 18:33:44 18:33:59 January 02:50:37-091 02:50:45.092 02:50:53.092 02:54:03.95 02:54:39-95 02:52:25.8 01:10:38.4 02:52:25.2 01:13:47.5 01:08:57 01:11:00 01:12:54 02:51:02 02:54:47 02:55:06 02:55:59 01:09:32.6 01:14:25.8 01:15:23.5 01:11:27 01:11:54 01:13:48 01:15:58 01:11:14 01:13:28.6 01:18:00.0 01:12:01 02:52:04 02:54:38 02:56:31 01:11:05 01:12:50 09:30:27 09:25:14 09:25:59.8 09:26:41.7 22:37:19 22:39:26 22:39:38 01:11:15 01:12:54 01:16:32 17:39:59 17:39:44 17:39:52 17:40:05 17:40:21 17:+0:35 17:40:45 17:40:56 17:41:09 17:41:19 17:44:31 17:41:43 17:41:53 17t42:O9 17:42:19 17:42:30 17:42:43 17:42:55 17:43:04 17:43:26 a h m s 1958 (cont 24, 1958 2 07 48 2 47 00 3 15 54 1 39 12 2 12 54 23 53 9 12 23 45 1 44 19 18 5 43 5 50 5 52 2 52 01.6 5 52 23 20 5 42 7 55 6 00 0 55 3 03 4 37 7 35 0 10 22 52 19 5 32 5 32 5 32 * d.) 80 78 76 17 7 40 57 37 - 2 36 - 1 - 5 -14 89 7 19 45 7 -20 27 5 -30 31 29 27 11 - 2 45 6 - 0 6 1 46 59 56 25 00 27 30 S 24 12 48 18 U 30 50 50 30 30 50 00 00 04 08 ? 45 zII 0 I 5 48 12 48 21 00 35 12 51 12 69 06 (1950 position (.1950 position (1950 position 355 00 68 30 0 221 36 180 164 338 42 343 36 353 18 276 252 229 35 12 39 42 43 24 49 06 54 24 60 24 64 18 68 24 72 30 75 +8 79 24 82 48 85 24 89 06 91 18 93 36 95 54 97 54 9a 24 102 3b h ? < 54 24 57 36 60 30 63 36 64 42 63 36 18 42 44 18 57 30 29 69 39 33 18 45 24 59 12 14 30 18 12 32 42 33 18 33 42 34 00 34 00 33 36 35 18 32 36 31 54 31 06 30 12 29 12 28 24 26 54 26 00 24 54 23 54 22 54 22 00 20 06 MAG. SATELLITES 1957 ALPHA AND BETA 3 2 3 Table 3.?Processed optical observations of Satellite 1957 Beta (continued) OBS. NO. STATION STA. NO. U.T. MAO. 00720 00721 00722 00723 00724 00725 00726 00727 00728 00729 00730 00731 00732 00733 00734 00735 00736 00737 OO736 00739 00740 00741 00742 00743 00744 00745 00746 00747 00748 00749 OO75O 00751 OO752 00753 00253 OO254 OO255 OO256 00257 OO258 OO259 00261 00262 00263 00264 00265 00266 00267 00268 00269 00270 00271 00272 00273 OO274 OO275 00276 OO277 OO278 OO279 OO28O 00281 00282 OO283 00284 OO285 OO286 Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du PIC du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du P.lc du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic d'l Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 ^ 0 5 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 Woomera Woomera Woomera Woomera Woomera Woomera Woomera Woomera Organ Paso BN Organ Paaa BN Organ Pass BN New Orleans New Orleans W. Palm Beach St.Petersburg Denver Denver Spokane B Spokane B Anarlllo Alamagordo Alamagordo Alaaagordo Sacramento C Sacramento C Sacramento C Lawton Lawton lawton Los Alamos Los Alamoa Los Alamoa Edlnburg, Tax. 3601 3601 3601 3601 3601 3601 3601 3601 9001 9001 9001 0030 0030 0016 0121 0013 0013 8502 8502 0064 0102 0102 0102 85OI 85OI 85OI 0110 0110 0110 0043 0043 0043 0066 January 24, 1958 (cont'd.) 17:43:35 17:43:49 17:44:04 17:44:20 17:44:30 17:44:39 17:44:47 17:45:01 19:19:54 19:20:02 19:20:10 19:20:24 19:20:39 19:21:07 19:21:20 19:21:28 19:21:38 19:21:46 19:21:59 19:22:12 19:22:18 19:22:51 19:23:00 19:23:09 19:23:18 19:23:29 19:23:^2 19:23:50 19:24:00 19:24:09 19:2^:44 19:24:53 19:25:02 19:25:21 January 25, 1958 12:14:29.1 12:19:43 12:20:00.7 12:20:30.7 12:20:54.4 12:21:27.4 12:22:07 12:22:55 01:00:46.08, 01:01:50.08 01:03:42.13 00:22:21 00:21:32 00:23:40 00:23:58 01:57:00 02:01:00 01:56:51 01:58:55 01:59:51 01:58:16 01:59:03 02:03:05 01:58:14.7 03:38:10.9 03:38:28.2 02:01:05 02:03:18 02:04:51 01:59:22 02:00:14 02:01:34 02:00:37 4 46 33.8 5 07 31.50 5 33 16.5 7 01 6 12 * 37 5 55 22 50 1 53 5 12 6 55 37.8 0 10 38.4 0 29 00 3 30 4 00 4 42 30 9 15 20 12 16 7 72 70 8 26 19 15 59 55 26 39 30 00 18 16 07 38 43 103 105 107 108 110 110 111 112 292 290 287 284 280 269 265 261 256 253 247 241 238 223 220 216 213 210 206 204 202 200 193 191 100 1?7 318 167 115162 161 159 158 S 06 54 00 42 3032.18 24 48 42 24 48 12 18 54 00 48 36 18 12 18 12 42 00 48 06 00 06 06 30 12 36 36 57 536 19 55 39 00 46 26 06 24 40 10 00 (1950 position) (1950 position) (195O position) 16 61 310 168 270 12 24 12 45 18 ll 17 15 15 14 13 II 29 30 32 38 40 41 41 42 42 42 42 41 40 39 38 37 36 35 33 II 27 26 24 45 47 42 38 33 319 32 90 45 36 71 18 00 00 54 06 30 54 00 18 42 54 54 06 54 06 00 42 18 48 ?*48 18 30 30 36 24 06 12 48 18 48 42 48 54 25 12 50 12 47 30 34 35 30 30 36 30 10 24 24 44 20 32 00 00 2 3 42 22 00 - 3 06 232 06 184 S4 175 48 315 30 5T 06 36 30 23 5* 39 30 324 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 3.?Processed optical observations of Sate l l i t e 1957 Beta (continued) OBS. MD. 00287 00288 00289 00290 00291 00292 00293 00294 O0295 00296 00297 00298 00299 00300 00301 00302 00303 00304 00305 00306 00310 00311 00312 00361 00362 00363 00364 00365 00366 00370 00371 00372 00373 00374 00375 00376 00377 OO378 00379 OO38O 00381 00390 OO576 00647 00648 00649 OO65O OO65I 00657 OO658 OO663 00664 OO665 00666 OO66.7 00668 00669 OO67O 00307 00308 00309 00313 00314 00315 00316 00317 OO318 00319 00320 STATION Edlnburg, Tex. Edlnburg, Tex- Edlnburg, Tex. Edlnburg, Tex. Hlgashlmatsuyama Hlgashimatsuyana Fuchu Kagoshlaa Kanaya Machl Miyazaki Miyazaki Miyazaki Shlzuoka Sendal Sendal Sendal Sendal Mlzusawa Mizuaawa Mlzusawa Cary Cary Cary C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B Col l ege , Alaska C. Canaveral E C. Canaveral E C. Canaveral E C. Canaveral E C. Canaveral E Johannesburg Johannesburg Bonn Observatory Bonn Observatory Bonn Observatory Bonn Observatory Bonn Observatory Bonn Observatory Bonn Observatory Bonn Observatory Hlgashlnatsuyana Mlzukaldo Organ Pass SS Denver Tulsa Tulsa Tulsa San Antonio lawton lawton lawton STA. MO. 0066 0066 0066 0066 0210 0210 0214 0218 0220 0230 0230 0230 0247 0246 0246 0246 0246 0267 0267 0267 0112 0112 0112 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8OO7 8007 8007 8007 8007 8007 8007 6450 8018 8018 8018 8018 8018 2401 2401 2712 2712 2712 2712 2712 2712 2712 2712 0210 0231 5001 0013 0054 0054 0054 0096 0110 0110 0110 U.T. January ; 02:02:49 02:03:53 02:05:03 02:07:33 08:33:51.8 10:20:57 10:16:46 10:19:10 10:16:55 10:17:39.6 10:17:57.6 10:19:39-9 10:16:38 08:32:28.4 08:33:43.2 10:15:04 10:16 t i l . 8 10:15:48 10:16:33 10:17:33 23:27:3* 23:27:41 23:28:03 23:28:38 23:28:48 23:28:58 23:29:08 23:29:18 23:29:28 23:29138 23:29:42 23:29:48 23:3OiOO 23:30:30 23:31:00 23?31:3O 23:32:00 23s33:00 23:34:00 23s35:00 23s36iOO OlsO9:3O 03:32:00 00i22:l6.88 00s22;28.88 00:22:44.88 00:23:08.88 00:23:44.88 I8;49s57 20:34:04 16:45:31 16:46:21 18:23:59 18:25:23 18:25:53 18:27:39 18:29.25 18:28:00 a h m 25, 1958 7 ? 53 47 3 185 ??2 44 4 265 325 04 1 24 6 10 5 52 5 48 5 36 1 00 5 26 5 29 21 11 22 41 23 26 1 04 1 42 0 30 January 26, 09:19:43 09:20:59 02:45:00 01:02:24 01:06:58 01:08:52.5 01:10:26 01:08:03.2 01:07:25 01:07:49 01:08:06 0 48 23 39 3 52 4 38 5 01 5 45 B 8 ? ? ? (cont'd) 41 -38 3 - 9 3 1 - 3 -22 5 44 30 7 12 - 3 30 - 6 24 - 46 42 43 27 24 28 22 18 19 18 - 5 30 - 16 06 4 1958 59 30 20 24 11 45 -14 30 -26 20 25 266 183 168 162 27 62 253 230 234 222 208 74 77 79 82 84 86 89 90 91 93 98 103 107 11] 116 121 124 127 251 l80 51 61 75 93 112 225 35* 12' 12? 133 Z 30 30 48 18 812 36 35 13 47 13 36 54 07 00 08 32 53 1112 56 24 n 23 05 36 39 49 05 5 30 i 24 i 54 ? 30 o 73 68 49 24 34 37 34 34 32 30 26 29 28 28 27 27 26 26 25 25 24 22 20 L8 16 12 9 6 38 u 63 61 54 88 35 53 46 43 h 1 30 30 42 30 54 30 18 07 45 20 51 20 47 11 54 U 46 41 37 3?16 04 07 38 46 22 56 04 08 54 30 MAO. 2 2 3-0 3-0 3-0 3.0 3.0 3-5 SATELLITES 195 7 ALPHA A N D BETA 325 Table 3.?Processed optical observations of Satellite 1957 Beta (continued) OBS. MO. STATION STA. NO. U.T. MAO. 00321 00322 00323 00324 00325 00326 00327 00328 00329 00330 00331 00332 OO382 30383 00384 OO385 OO386 OO387 00388 OO389 00391 00392 00393 00394 00395 OO396 00397 OO398 00399 00400 :o4oi 00402 00577 00659 00660 00847 00848 00849 OO85O OO85I OO852 OO853 00854 OO855 OO856 OO857 OO858 OO859 00860 00861 00862 00863 00864 OO865 00866 OO867 00868 00869 OO87O OO87I 00872 00873 00874 00875 OO876 OO877 OO878 OO879 00880 Denver Anarlllo Amarlllo Anarlllo Edinburg Edinburg Edinburg Edlnburg Alamagordo Alamagordo Tucson Tucson C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B C. Canaveral B College, Alaska Johannesburg Johannesburg Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Midi Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi 0013 0064 0064 0064 0066 0066 0066 0066 0102 0102 0003 0003 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 6450 2401 2401 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 January 26, 1958 (cont'd) 45:3002 01 01 01 01 01: 01 01 01 01 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 17 19 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19: 19:15:55 19:16:07 19:16:17 19:16:26 19:16:33 19:16:45 19:16:54 19:17:05 19:17:18 19:17:26 06:35 07:24 08sl2 07:40 07:35 07:23 07:40 05:50 10:10 44:07 51:24 : 08:00 08:10 08:20 :O8:3O 08:35-2 08:40 08:50 09:00 ;O9:4O :09:50 : 10:00 :11:00 :12:00 :13:0Q :14:00 :15:00 :16:00 :17:00 :17:04 :18:00 :36:20 :53:O4.6 :34:45 :12:22 :12:34 :12:43 :12:55 : 5 2:08 ':28 ^58 >:05 lil 5 38 5 4o 00 5 43 21 12 7 - 2 48 40 54 -16 00 6 25 12 2 05 23 12 -16 42 256 4 5 45 308 180 280 13 277 28 274 35 271 34 270 00 268 25 265 11 261 49 247 50 244 23 240 55 222 17 208 26 198 38 191 47 186 48 I83 05 180 11 179 59 177 46 180 276 42 274 12 271 00 268 18 265 00 262 18 259 36 256 54 254 42 252 48 250 18 247 30 243 24 240 36 237 30 234 18 232 00 229 06 227 12 225 24 223 06 221 24 219 18 217 06 215 36 213 06 211 12 209 36 208 12 206 24 205 00 203 18 201 30 200 24 20 47 B 3 0 46 27 30 22 32 46 II S 35 37 36 01 36 20 37 02 37 38 38 38 35 30 24 19 15 11 7 I45 23 25 25 26 27 27 28 28 28 28 29 29 29 29 ?28 28 27 27 26 26 26 2 5 24 24 23 22 22 21 20 20 19 18 141 31 28 23 $ 16 11 37 22 20 54 00 36 18 06 42 06 s 54 06 12 12 06 00 42 24 00 42 24 54 30 00 24 54 12 24 48 12 24 48 00 12 30 460132 O?58 326 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS- Table 3.?Processed o p t i c a l observations of S a t e l l i t e 1957 Beta (continued) OBS. MO. STATION STA. HO. U.T. MAO. January 26, 1958 (cont'd) 00881 00882 00883 00884 00887 00888 00889 00890 00891 00892 0089! 00897 00333 0033* 00335 00336 O0337 00338 OO339 OO34O 00341 00342 00343 OO344 00345 00346 OO347 00348 00349 00350 00351 00352 00353 0035* 00355 00356 00357 00367 OO368 00369 00403 00404 0040; 00406 00407 00408 00409 00410 00411 00412 00413 00414 30415 00416 00417 00418 00419 00420 00421 00422 00447 00448 00449 00450 Pic du tic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Pic du Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi Midi 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 2705 8705 2705 2705 Blloxl Hew Orleans Mew Orleans V.Pala Beach Arlington Arlington St. Petersburg St. Petersburg St. Petersburg Silver Spring China Lake Anarlllo Edlnburg, Tex. Kdlnburg, Tex. Edlnburg, Tex. Manhattan Lawton Lawton San Antonio San Antonio Phoenix Phoenix Phoenix Alamagbrdo Alaaagordo Washington,D.C. Washington,D.C. Washington,D.C. Higashiaatsuyaaa Fuchu KagoshiM Kanaya Machl Konko Mlzukaldo Yokkalchl Mltaka Mltaka Mitaka Mltaka Mltaka Mitaka Sends1 Sendai Sendai Yanagata Yatsushlro Washington,D.C. Albuquerque C. Canaveral B C. Canaveral B C. Canaveral B C. Canaveral B 0002 0002 0002 0102 0102 6001 6001 6001 0210 0214 0218 0220 0224 0231 0258 0229 0229 0229 0229 0229 0229 0246 0246 0246 0257 0272 6019 0103 8007 8007 8OO7 8007 19:17:35 19:17:47 19:17:54 19:18:02 19:18:23 19:18:35 19:18:50 19:19:01 19:19:10 19:19:22 19:19:31 19:19:42 19:19:51 19:20:53 19^21:09 19:21:18 19:21:32 Tanuary 27, 1958 00:13:22 00:13:41 00:12:28 00:14:33 00:09:51 00:10:44 00:12:25 00:14:25 00:19:58 00:10:08 01:47:19 01:47:57 01:52:26 01:53:36 01:57:30 01:50:00 01:50:20 01:55:08 01:52:39-3 01:52:36 01:50:50 01:52:00 01:55:04 01:49:43 01:51:48 23:12:00 23:15:00 23:18:10 10:08:47.9 10:05:24 10:06:08 10:05:04 10:05:05 0^:27:02 10:06:43 08:27:20.2 10:04:54.4 10:05:44.2 10:06i54.3 10:08:26.9 10:10:16.1 08:24:59 08:25:16 08:26:43 08:25:18 10:03:06 00:09:49 01:56:08 00:08:30 00:09:00 00:09:30 00:10:00 22 41 2 00 3 55 5 25 23 00 21 25 23 02 23 05 23 33 2 S 4 22 5 J1 22 40 2 04 20 20 I 5? 4 15 129 12 23 51 00 56 23 08 23 30 5 38 00 33 22 39 4 25 30 00 65 22 30 -35 30 26 45 14 56 26 06 17 39 35 15 30 -21 45 52 00 23 12 51 06 37 05 - 7 -20 36 19 . 34 28 28 -I? 199 197 197 196 193 193 191 190 189 188 187 186 183 182 182 181 90 90 60 270 18 48 00 06 5^ 00 24 36 00 00 18 36 54 18 24 00 24 17 17 16 16 14 13 12 12 11 11 10 9 9 5 I 3 60 48 48 86 54 12 36 00 42 54 5^ 18 #2 00 24 54 18 54 06 36 54 30 270 295 270 30 189 30 199 30 270 106 36 275 54 263 36 244 12 221 24 203 18 77 42 87 24 115 42 90 315 332 16 332 05 331 52 331 33 36 32 30 ,8II 30 31 30 25 06 44 30 24 24 27 29 25 18 54 1 j6 49 40 10 13 17 21 30 00 48 54 42 42 55 58 26 21 3 - 4 SATELLITES 1957 ALPHA AND BETA 3 2 7 .a.ple 3.?Processed optical observations of Satellite 1957 Beta (continued) OBS. MO. STATION STA. NO. U . T . MAO. 00451 C.Canaveral B 8007 00452 C.Canaveral B 8007 00453 C.Canaveral B 8007 00454 C.Canaveral B 8007 00455 C.Canaveral B 8007 00456 C.Canaveral B 8007 00457 C.Canaveral B 8007 00458 C.Canaveral B 8007 00459 C.Canaveral B 8007 00460 C.Canaveral E 8007 00461 C.Canaveral B 8007 00462 C.Canaveral B 8007 00463 C.Canaveral B 8007 00464 C.Canaveral B 8007 00465 CCanaveral B 8007 00466 C.Canaveral B 8007 00467 C.Canaveral B 8007 00468 C.Canaveral B 8007 00469 C.Canaveral B 8007 00470 C.Canaveral B 8OO7 00471 Pt.Belvolr 0077 00472 Philadelphia OO58 00473 Washington,D.C. 0014 00474 Silver Spring 0032 00491 W.Palm Beach 0016 00492 C.Canaveral B 8007 00495 Washington,D.C. 6001 00496 Washington,D.C. 6001 00497 Washington,D.C 6001 00498 Washington,D.C. 6001 00499 Washington,D.C. 6001 00500 Washington,D.C. 6001 00501 Washington,D.C. 6001 00502 Washington,D.C. 6001 00503 Washington,D.C. 6001 00569 Swarthaore 2038 00570 Swarthaore 2038 00571 D.of Peflna. B 8OI5 OO578 College, Alaska 6450 00652 C.Canaveral D 8017 00653 C.Canaveral D 8017 00654 C.Canaveral D 8017 00655 C.Canaveral D 8017 00656 C.Canaveral D 3017 00661 Johannesburg 2401 00475 00476 00477 00478 OQ479 00480 00481 00482 00483 00484 00485 00486 00487 00488 ?OO489 00490 00493 00494 OO5O7 OO5O8 OO5O9 00510 Biloxl Denver Bdlnburg,Tex. Edinburg,Tex. Edinburg,Tex. Anarlllo Aaarlllo Aaarillo Sylacauga Sylacauga San Antonio Manhattan Manhattan Manhattan San Antonio Whlttier Tucson Tucson HonoluJ.li Honolulu Kanazawa Kanazawa 0090 0013 0066 0066 0066 0064 0064 0064 0001 0001 0089 0027 0027 0027 0096 0012 0003 0003 0114 0114 0221 0221 00:10:30 00:11:00 00:11:30 00:12:00 00:12:30 00:13:00 00:13:30 00:14:00 00:14:30 00:15:00 00:15:30 00:16:00 00:16:30 00:17:00 00:17:30 00:18:00 OO:l8t3O 00:19:00 00:19:30 00:13:55-7 23:16:19 23:16:23 23:14:02 23:14:11 23:19:14 00:14:35.1 00:08:15 00:09:30 00:09:40 00:10:00 00:11:10 00:11:30 00:13:10 00:15:50 00:17:30 23:14:50 23:14:53 23:14:53 03:24:25 00:15:07.31 00:15:11-31 00:15:15.31 00:15:19.31 00:15:29-31 18:30:21.4 January 27, 1958 (cont'd) 0 40 21 20 22 34 22 41 23 04 0 07in 3 02 3 45 1 18 58.8 1 20 29.8 1 18 57.2 3 22 06 9 06 49 39 30 II13 9 11 25 37 32 32 32 07 06 08 05 05 06 07 00 21 12.9 17 16.4 19 15 331 07 330 30 329 38 328 22 326 15 321 58 310 43 2?1 49 183 58 170 13 165 22 162 59 161 35 160 40 160 04 159 35 159 13 158 56 158 43 270 00 180 180 323 42 90 180 00 25 31 37 45 8 1177 67 5 7 49 42 37 32 27 24 21 18 86 54 59 43 75 (1958 Position) (1958 Position) (1958 Position) 58 16 34 04 a 21 49 22 00 37 s 04 08 56 S\l 37 180 16 166 58 67 07 166 16 65 46 165 39 64 28 165 00 63 09 163 59 59 55 January 28, 1958 00:56:52 00:54:22 00:55:37 00:57:03 00:57:51 00:55:10 00:55:26 00:55:35 00:55:14 00:59:24 00:57:04 00:51:39 00:53:58 00:54:27 00:57:02.8 02:34:30 02:38:04 02:39:57 ->:40 L:23 09:00:54 09:09:33 3 43 00 22 47 55 24 30 24 22 27 20 40 45 06 23 29 37 21 0 10 30 29 40 3 34 28 30 270 125 352 18 71 30 12 225 90 268 SI;5601:23 001 1 11 48 15 55 30 11 -51 37 22 219 199 ?* 30 65 30 79 32 13 10 31 61 30 45 21 328 S M I T H S O N I A N C O N T R I B U T I O N S TO A S T R O P H Y S I C S OBS. NO. 00511 00512 00513 00514 00515 00550 00553 OO586 OO587 00606 00607 00608 00609 00618 00619 00620 00621 00622 00623 00624 00625 00626 00627 00628 00629 00630 00631 00632 00633 00634 00635 00636 00637 00638 00639 00640 00641 00642 00643 00644 0064?: 00646 00662 00671 OO55I OO552 OO554 00555 OO556 OO557 OO558 00559 OO56O OO56I OO562 OO563 00564 CO565 00566 00567 00568 00572 00573 00574 OO588 OO59O 00610 00611 STATION Takada Sendal Sendal Sendal Yaaagata Bryn Athyn St.Petersburg Sum Sum C.Canaveral C C.Canaveral C C.Canaveral C C.Canaveral C C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C ..Canaveral B C.Canaveral B C-Canaveral B C.Canaveral B C.Canaveral B CoCanaveral B C.Canaveral B C.Canaveral D C.Canaveral D C.Canaveral D C.Canaveral D WashIngton,D.C. Bonn Obs. Bryn Athyn Decatur St.Petersburg St.Petersburg Spokane A Spokane A Spokane A Manhattan Manhattan Whlttler Alamagordo Alamagordo Amarlllo Edinburg, Tex. Edinburg, Tex. Edinburg, Tex. Edinburg, Tex. Organ Pass-SS Organ Pass-SS Organ Pass-SS McDonald Bryn Athyn C. Canaveral C C. Canaveral C STA. NO. 0250 0246 0246 0246 0257 0055 0121 0248 0248 8016 8016 8016 8016 8OO7 8007 8OO7 800y 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8007 8OO7 8OO7 8007 8007 8007 8007 8007 8007 8OI7 8017 8017 8017 6001 2712 0055 0132 0121 0121 0086 0086 0086 0027 0027 0012 0102 0102 3010 0066 0066 0066 0066 5001 5001 5001 2309 OO55 8016 8016 U.T. January 09:08:51 09:09:00 09:11:00 09:12:3* 09:11:02 23:57:22 23:51:00 09:08:00 09:08:40 23:56:0023:57:00 23:58:00 23:59:0000:53:30 00:54:00 00:54:30 00:55:00 00:55:30 00:56:00 00:56:30 00:57:00 00:57:3000:57:41. 00:58:00 00:58:30 00:59:00 00:59:30 01:00:00 01:00:30 01:01:00 01:01:30 01:02:00 01:02:30 01:03:0001:03:30 01:04:00 01:04:30 01:05:00 00:59:37. OCs59:4l. 01:01:13. 01:01:17. 23:57:00 17:19:42 00:00:47 00:00:00 00:01:42 00:03:00 01:32:0001:33:30 01:36:45 01:38:00 01:41:08 01:37:31 01:37:39 01:39:3301:35:5301:38:45 01:39:46 01:40:42 01:43:1301:36:43 01:39:44 01:40:55 01:45:56 22:59:50 00:00:00 00:01:00 0 86 86 86 86 h 28, 0 5 23 0 22 0 January ; .2 .4 .8 1 0 2 23 0 23 1 21 0 2 3 a ? 1958 (eont 40 42 05 12 42 10 3 05 18 54 SI 21 14 04 13 30 7 49 41 30 14 1958 32 35 17 1 - 2 4 32 21 00 47 6 30 -11 -41 6 1 ? ?d) 02 30 30 18 40 15 48 48 06 12 1.8 ? 252 197 182 192 270 324 321 317 311 308 304 301 297 293 289 284 278 272 270 265 258 244 237 231 225 219 214 210 2O6 203 200 197 195 260 259 236 235 225 320 270 180 60 270 296 284 270 225 270 299 274 Z 18 48 30 30 18 44 40 07 10 25 20 47 46 17 12 29 24 00 43 41 30 23 29 01 S 853 32 33 56 32 31 34 18 28 30 05 46 49 37 27 40 21 9 15 23 32 8 10 13 15 17 19 21 23 24 25 26 26 25 24 23 21 20 18 16 15 13 11 9 25 26 25 25 23 20 60 35 68 30 22 28 32 32 48 44 55 h 1 n 36 06 12 18 41 42 03 32 5 9 49 56 05 18 22 36 34 13 S40 10 07 e 24 54 17 $ 01 16 34 55 53 00 8 30 30 30 12 47 MAO. SATELLITES 195 7 ALPHA AND BETA 329 Table 3.?Processed optical observations of Satellite 1957 Beta (continued OBS. NO. CO612 00613 00614 00615 00616 00617 00822 00834 00591 00592 00593 00594 00595 00596 00597 00598 00599 OO6OO 00601 00602 00603 00604 0060 5 00798 00799 00800 00801 00807 00808 00809 00810 00811 00812 00813 00814 OO815 00816 00817 00818 OO819 00820 00821 00823 00824 00825 OO826 OO827 OO828 OO835 OO836 00802 OO8O3 00804 OO8O5 00806 OO829 OO83O OO831 OO832 00833 OO838 STATION C. Canaveral C C. Canaveral C C. Canaveral C C. Canaveral C C. Canaveral C C. Canaveral C Nagasaki I Johannesburg Lawton Lawton Lawton San Angel0 San Antonio Edlnburg, Tex. Edlnburg, Tex. Edinburg, Tex. Sylacauga Wichita Port Worth Port Worth Port Worth Port Worth Spokane A Laredo Laredo Greensboro A W.Palm Beach C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B C.Canaveral B Kanazawa Yokkaichl Mizukaldo Otsu Washington,D.C. Washington,D.C. Washington,D.C. Washington,D.C Johannesburg Edwards APB Denver Denver San Antonio Albuquerque Albuquerque Cambridge Cambridge Cambridge Cambridge Cambridge Johannesburg STA. NO. 8016 8016 8016 8016 8016 8016 0235 0403 0110 0110 0110 0105 0096 0066 0066 0066 0001 0028 0069 0069 0069 OO69 0086 4009 4009 0049 0016 8007 8007 8007 8OO7 8007 8007 8007 8007 8007 8007 8007 8007 8007 0221 0258 0231 0269 6001 6001 6001 6001 0403 3013 0013 0013 OO89 0041 0041 0099 0099 0099 0099 0099 0403 U.T. January 00:01:07.9 00:02:00 00:03:00 00:04:0C 00:05:00 00:05:01.8 09:53:32 18:28:46 R ' 29, 22 3 a m s 6 1 1958 (cont'd.) 40 21 January 30, 00:39:45 00:41:30 00:44:36 00:41:38 00:42:19.5 00:43:37 00:44:46 00:46:34 00:44:44 00:44:48.2 00:41:07 00:41:09 00:41:09 00:41:30 02:15:45 00:44:05 00:46:47 23:46:00 23:52:07 23:44:06 23:45:06 23:46:06 23:47:06 18:48?O6 23:49:06 23:50:06 23:51:06 23:52:06 23:53:06 23:54:06 23:44:35.7 23:51:34.5 08:54:17 08:54:12 08:55:34 08:54:28 23:42:15 23:43:25 23:44:40 23:46:20 17:27:26.4 02:20:30 1 2 1 1 1 1 I 0 0 2 2 23 0 1 5 January ! 01:19:36.6 01:20:48.6 01:23:18 01:21:27-5 01:27:27-5 22:43:12 22:43:35 22:44:52 22:45:07 22:45:21.2 18:10:47.6 22 24 1 38 50 856 26 05 35 25 03 37 22 34 0 1 08 31, 52 15 28 -62 1958 27 49.2 -32 29 30 27 24 4 -24 17 27 9 - 1 if -26 - 8 1958 09 15 3 5 1 2 -57 &4 30 42 50 20 40 15 24 48 48 36 30 30 ? 2 7 0 234 203 188 1 8 0 1 8 0 294 232 176 2 7 0 2 2 C 170 162 225 280 209 180 280 258 233 213 200 191 185 181 178 176 174 270 180 225 258 245 274 256 236 229 2 1 2 211 207 Z 1 0 0 44 49 22 19 0 0 12 48 36 30 30 07 08 e 2 2 40 45 35 29 04 09 0 0 0 0 r\ It 24 30 30 30 30 30 30 56 58 50 4 0 31 30 46 59 28 80 81 61 36 12 2 0 26 15i 43 38 31 25 19 14 10 7 J41 1 2 42 65 38 22 25 o c 2 8 24 2 3 19 h MAO. t 56 50 44 y 52 24 54 15 30 1 5 ?03 14 3 1 11 25 10 12 34 13 40 30 4 49 19 52 43 1 0 1 - 7 54 30 330 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS) Table 3.?Processed opt ica l observations of S a t e l l i t e 1957 Beta (continued) OBS. MO. 00841 00842 00843 00844 00845 00846 STATION Johannesburg C. Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B Canaveral B OO898 00899 00900 00901 00902 OO9O3 OO9O4 00905 01007 OO9O6 00907 00908 00909 00910 OO911 00912 00913 00914 00915 00916 00917 OO918 00919 00920 00921 00922 00923 00924 00925 00926 00927 00928 00929 00930 00931 00932 00933 OO934 00935 00936 00937 OO938 00939 00940 00941 Canaveral P Canaveral P Canaveral F Canaveral P Canaveral P Canaveral F Canaveral P Canaveral P Pic du Midi Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Canaveral C Grand Bahama, Radar Grand Bahama, Radar Grand Bahama, Radar Grand Bahama, Radar Grand Pf?hn""?, Radar Grand Bahama, Radar Grand Bahama, Radar Grand Bahama, Radar Bloemfonteln Milton Milton Milton Milton W. Palm Beach W. Palm Beach St. Petersburg St. Petersburg St. Petersburg St. Paul B San Angelo San Angelo STA. NO. 0403 8007 8007 8007 8007 8007 8007 8007 U.T. MAO. February 1, 1958 OO837 Stanford, Radar 4008 8020 8020 8020 8020 8020 8020 8020 8020 2705 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 8016 4900 4900 4900 4900 4900 4900 4900 4900 0401 6OO3 6OO3 6OO3 6OO3 0016 0016 0121 0121 0121 0199 0105 0105 02:5300:28:00:28:00:2900:2900:30:00:30:00:31 53 00 30 00 30 00 30 00 20 16 -57 12 Pebruary 2, 1958 15:21 Slant Range: 340 km+10 Pebruary 3, 1958 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06?00 00:08:00 00:02:34.8 18:04:24 Pebruary 4, 1958 11:36:15 11:36:30 11:36:45 11:37:00 11:37:15 11:37:30 11:37:45 11:38:00 11:38:15 11:38:30 11:38:45 11:39:00 11:39:15 11:39:30 11:39:45 11:36:10 11:36:20 11:36:30 11:36:40 11:36:50 11:37:00 11:36:09.2 11:36:09.3 Slant Range: Slant Range: Slant Range: Slant Range: Slant Range: Slant Range: Slant Range: 02:39:50 11:10:42 11:11:22 11:11:56 11:12:47 11:06:03 11:07:39 11:06:32 11:07:21 11:08:30 12:50:28 12:46:27 12:46:4P Slant Range: Pebruary 6, 1958 8 02 06 16 34 19 11 20 12 22 52 728,487' 811,158' 955,998' 1,139,496' 1,345,876' 1,564,774' 725,289' 725,664' -39 53 02 - 7 12 27 18 40 18 42 42 17 40 19 32 21 18 18 52 -21 10 36 35 31 238 234229 226 222 219 216 2300 52 02 20 17 09 13 12 12 11 10 q 8 II06 07 11 05 06 120+1 282 58 274 59 266 19 257 21 248 23 239 47 224 50 270 00 238 24 118 04 99 49 83 40 71 28 62 46 56 21 51 40 48 04 45 16 43 02 41 13 39 42 38 26 37 22 36 27 86 01 52 54 34 48 43 36 36 38 27 07 35 29 38 33 35 17 90 23 53 89 52 26 180 49 180 90 41+1 6 8 10 11 11 10 7 9 10 25 22 18 15 12 10 8 7 I3 2 1 70 54 58 21 11 17 41 g 12 05 34 47 11 40 37 59 49 56 19 54 38 31 30 33 22 01 57 43 19 45 36 25 36 29 17 29 49 19 24 50 53 71 03 04 70 59 06 II 1 to 2 to -2 SATELLITES 1 9 5 7 ALPHA AND BETA 331 Table 3.?Processed optical observations of Satellite 1957 Beta (continued) OBS. NO. 00942 00943 00944 00945 00946 00947 00948 00949 00950 00951 00952 00953 00954 00955 OO966 OO967 00977 00956 00957 OO958 00959 00960 00961 OO962 OO963 00964 OO965 STATION Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Cambridge Amarlllo Quebec Quebec Montevideo Maul Athens Organ Pass U. of Illinois U. of Illinois U. of Illinois Albuquerque Albuquerque Albuquerque Albuquerque Milwaukee B Alamagordo Albuquerque 00969 00970 00971 OO972 00973 00974 00975 00976 OO978 00979 OO98O 00981 00982 00984 OO985 00986 OO987 OO988 OO989 00990 00991 00992 00993 00994 00999 01008 01015 Mltaka Kurume Machi Sendal Mitaka Mltaka Mltaka Mltaka U, of Illinois A Athens Athens Athens Athens Athens Chicago Evansvllle Lemont Terre Haute Terre Haute Los Altos Milwaukee A Milwaukee A Milwaukee A Chicago Chicago Washington, Yerkes Edwards AFB D.C STA. NO. 0099 0099 0099 0099 0099 0099 0099 0099 0099 0099 0099 0064 8021 8021 0808 5010 2706 5001 2014 2014 2014 0041 0041 0041 0041 0198 0102 0103 0229 0227 0246 0229 0229 0229 0229 2014 2706 2706 2706 2706 2706 0020 0094 0022 0025 0025 0005 0074 0074 0074 0085 OO85 6001 2042 3013 U.T. a 6 h m s ? ' February 6, 1958 (cont'd.) MAO. 1 1 : 1 1 : 1 1 : 1 1 : 1 1 i 1 1 : 1 1 : 11: 11: 11: 11: 12: 11: 11: 07 ;04.8 09.6 27.4 :27.6 32.2 :34.4 ;34.8 ;43.8 ;O0.8 :23.0 :15.8 :50.4 :22.2 19 07 16 29 19 47 34.2+05 45 ~ 19 03 43 07 16 30 13 18 -26 50 7 10 56 19 -27 06 13:19 11:43 11:42 11:43 13:19 13:20 13:20 13:21 11:46 13:22 13:21 February 7, 1958 a .6 10 20 21.4+J.20 02 12+6 16 57+1.5 49.7+.1 55.3+.1 50 :22 11 12 15 30 27 11 08 21 08 9 40 65 19 50 8 14 54 69 08 :00+3 :00~ :52 February 8, 1958 20:26:44. 20:24:38.' 20:25:53 20:26:03. 20:27:05. 20:25:50 20:27:07 12:16:00. Note: 04:03:16 04:03:34 04:03:57 04:04:16 04:04:54 12:15:55 12:15:00 12:17:26 12:15:15 12:17:08 13:52:14 12:15:30 12:16:22. 12:18:59 12:15:44. 12:15=51. 10:36:40 12:16:01 13:54:29 4 10 Angles 16 1 7 r18 19 20 23 36 04 54 to 10' 09 05 26 16 12 11 1 11 11 19 12 10 00 42 00 15 30 10 18 26 40 42 18 Tiws to 0?5 -25 12 -15 42 - 0 24 13 18 27 30 12 - 6 30 33 30 52 30 10 07 122 114 06 P 82 81 77 06 76 71 30 48 30 45 48 42 30 47 47 06 42 30 42 12 41 30 40 30 40 06 34 30 15 12 12 00 12 36 27 18+1? 57 42+30' 0 to 5 (1958 position) 131 fo+1.5 *23 16+1.5 68 51+1.5 #19 38+1.5 225 "" 25 -3 315 27 12 25 06 26 54 24 18 26 48(1958 pcBltlon) 270 270 0 270 0 21 79 18 41 42 17 48 8 18 21 24 8 06 5 10 35+5 28 35 - 1 (195C position) 9 47 49 10 41 42 February 9 . 1958 OO983 U. of Illinois 2014 00995 Harrlsonburg 0072 00996 Dayton 0082 00997 Dayton 0082 00998 St. Paul B 03 99 01000 Dunlap Obs, 2451 01001 Washington,D.C. 6001 11:08:41.9 20 36 42 Note: Angles to 51 11:10:11 0 47 11:08:29.84-0.3 20 16+1 ll:O8:45J8T0.3 2O 56+I 12:56:52 11:11:04 23 07 10 11:08:16 10 39 23 58 (1958 position) Time to 0*5 57 42 39 54+0 40 4 2 0 39 54+0,1 40 42+0.2 44 41 25 12 2 0.5 2.5 3.5 3.0 5.0 -3 -1.5 0 1 1 u -1 3 1.5 270 (I958 position) (1950 position) 332 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 3 .?Processed o p t i c a l observat ions of S a t e l l i t e 1957 Be*a (concluded] NO. STATION STA. NO. U.T. MAO. February 9, 1958 (cont'd.) 01002 Washington, D.C. 600- 01003 Washington, D.C. 6001 01004 Washington, D.C. 6001 01005 Wasnington, D.C. 6001 01006 Washington, D.C. 6001 01012 Athens 2706 01009 Dayton 0082 01010 Stanford, Radar 4008 11:08:51 11:09:00 11:09:33 11:10:01 11:10:18 04:36:21 28 50 30 56 8 49 51 04 12 61 00 71 24 63 30 59 24 47 42 February 10, 1958 11:40:23.8+0.5 13:14:35 ~ 01011 St. Paul B 0199 11:39:44.5 Slant Range: 360 km 20 45 33 30 February 11, 1958 01024 College, Alaska 6450 17:07:00 01013 Stanford, Radar 4008 01016 Landstraat 8031 01014 Stanford, Radar 4008 01017 Landstraat 8031 01018 Blarlcum 8023 01019 Netherlands, 812 8029 01020 Utrecht A 2707 01021 Utrecht A 2707 O1O22 01023 01025 Steenwljk Steenwljk College, Alaska 8004 8004 6450 OIO33 College, Alaska 6450 01026 01027 01028 01O29 01030 01031 01032 01034 01035 OIO36 Steenwijk Qnmen Sneek Sneek Bramen Sneek Steenwljk College, Alaska Laredo, Radar Laredo, Radar 8004 8025 8028 8028 802S 8028 8004 6450 4009 4009 February 12, 1953 12:31:44 06:07:39.8 Slant Range: 535 2 05 63 36 February 13, 1958 12:58:28 04:54:37.8 04:54:03.7 04:54:02.7 04:54:03.0 04:54:20.0 Slant Range: 43O km 20 31 19 01 36 19 12 19 25 18 20 21 48 29 12 32 18 31 06 28 36 32 00 0+0!3 120~ ].8O 120 300 48 35 25 32 9 45+18 0 February 14, 1958 05:19:36.8 11 11 36 62 05:20:35.0 10 35 24 79 16:46:30 February 16, 1958 15:54:15.2 February 17, 1958 180 180 55 41 04:52:17.4 04:52:37.6 04:52:30.8 04:52:52.6 1 54 1 30 1 08 1 39 42 63 18 57 12 36 60 12 56 54 February 18, 1958 05:14:29.2 05:13:56.7 05:13:36.9 16:37:33.2 03 10 3 46 54 4 53 30 31 00 55 18 63 18 February 19, 1958 10:16:43.2 10:16:57.8 Slant Range: 800 N Miles Slant Range: 805 N Miles 180 311 21 316 21 88 30 2 36 4 54 -1 3.5 0.3 1.5 1.5 -3.0 SATELLITES 195 7 ALPHA AND BETA 333 g o \ t i cr?o cor-ij CM i-( C\l CM t~- i? \ r-\ f - rH CM OO o w w o ^ - o o s o p c-oa\ot~Ko?^OJ CM <-i oo t?coco *^t^ - o oCM o ; * o ro bO ? K at 4> rH E-i fr< >> c --> * SB o H M < O CO >>r-l a] < C o 4? > O +> - 1-H.O 2 - O < 4)OJ -H EH -rH rH eH^-CMVOVO CVl O CM rHCO CM CO CM ITVrH r-\ CO . _ MO) rHrOCMCO iA^tJf OCO^fFS CM IfllO .sf tfV* en O ^ - In In uSo CM i f IT\ Oin i f t r lOHUA lAlf?i rHCQ OMTVP'" nwino vopoocvicorocMcoi^-irvcoro^-mmcvioj cjvrHCMO^-iTvocMirv^-^-porH^- ir\uSo^f oiAjH/ro^f ?M CM oevi ^ CM rHVO CM t^- t~-CQ CM OJ C*OICMOOIrHOrHinrHrOO CM ONo invococo^jfl.fZ.fZfltJfZ.vovo t'-vo'vQoot^ r?vo vovboocoiTiuSirS oocococor-coh-t::;-^t--vo CM CM CM CM CM CM CM OJ Ol CM CM CM OJ CM CM CM CM CVl CM CM CM CM CVl CM CM CM CM CM CM CM OJ OJ CM at td A ? ?? 4) 4) W ?> T - t Bj 4) rH rH +> 60 3 a > S 5 ?H 4) 4) TH 4) 3 ? o rH N b nj td iH ? O (d rH ??-HMOOiH<0? O - rH O - C C ?rH JJ XJ 4) oj z O 0h 3 zz< _^ u T*v*-=t-?t5t ?ooooooo ooooooo tooooooo ooooooo f o t-CO O\ ?3: -5 ^ ?S' -5t -5 "^ f ^ I A i?\ 00 00000000 0 ooooooooooo 334 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS' _* oo 7\|COrH o o c M o CMitCMVO CM rHPo\ooirnr?oc iT l ITV rH rH CM CO ocviOcooc VO CM CT\ CO 4 .^?vo in.^ - CM rH i~-1^ co coo covo oco o cot^o invovo i-it--mo\cMincoocococOit COCTNONVO inr-nnoMAvo mmo.^- iAit covo r-i o E COit i t CM CM CO IA in rH CM CM CM lA CM USlfMfMT\rHO O CO IA CM CO-3" CM CMrHCMCOCMCMCOrHO-3-rHrHOOCMCMCOOJlArHOOCMCMlACMin oypOvot--CMiACMiAOrHCOrH QCQCOONCQCO s o ^ r o o i n . y W v - i > u 4 N 4 mm m rHvo in in in CM rnxot-^ co.=t-=t coco coco itvoit t^-3-co^-vOit coco in in LA iAi* incocoit OCM invovo CM mcocococococococo co co co co co co co co co co co rococo coit co^- co coco co rococo co co co co co co co PO co en rococo co co coco co co co PO oOMr\vo mospoocM o\o\ON^ONCOo\t^cr>vo HO\HiniriHOH00000coco?* o^- t^ -t^ -cM ovo mvo ov^ a- ONCOOVO H ( M A S O \ O O O CO CO CO CO CO POCOCO CO CO CO CO CO CO CO C CM CO CO CO CO CO COJ* C O . I 1 - . 3 - COCOCOCOCO^J- C O P O C O C O ^ - CO CO CO CO CO CO CO CO CO i f CM COPOCOCOCO ?H-rl -rt a JS'-J o 10 3 C 3 hI Si m 3 cd 3 cd 3 &$&Z2Z2222??&?&?22SiZ$$%%Zggg&SZ&?$S C U C O - * m v o t--co c r \ o M C M C O vD ^ ov?>vou>*? >xi vo t t t t o o i r v c o c M v o - c i o t ~ - i f M r \ t - - OOiHCOrHCM CM r-l t~ O \ i t - * CT\O [--it CO COVO rHVO ON ONVO CO O\ r-l CM H- -O in O COCM^-rHrHCMrHCOrHOOitO O^"CM Ti -CO CM O^-^-CM lA i t rH t~-ONO\iS-^- rH^CO IA r-l O\ 3 <*"> COit CO CO CO CO CO CM r-t rH COJ* CM i t M I VO CO^t ITlvO-^- CO^LnrHCO^Q O OCO^f O CO rH r-ICM rH r-ICM OOCM CO i3S rH CO CO t~-H r-l COrH VO cocu-s?-CMt--ocoir>cvioco r-t t^ t? t>-JJ- t - CM CM CM VO O CMPOr-(rHCOC\lCOr-lr-ICOCO -lT\r-lO r-t C V O n VO O\C0 CMCOCOCOCMh-ir\COrHt?>CMit O>COit IT? CO CO CO lT\.=f VO ^- VO ^ t -=t l A i t CM H co00cococococococococoit co^-^t coit cocooocococorococncorocorocococo lAt- IAOCM I ,00 IT\ in rH r-H O\ rH rH CM r-l VO COON rHVO t - -O O i t rH i t O rH COCO 1A IT\ CM CO CM i-i t? O CM VO O CVJ IAVO O O O VX) IT\ ON CM ON rH COvO lT\ O O ?^ tH i id o^xio . ^H ? eo 3 a) cd o U U ?> cu - . < to s ' C Z >?<-! d, a, ? S H ? ? (i) cd cu ro x! pq < ' C N ^ O P f i h OX 0) _? p > 3t -H ftI.- i-PCi-HkcepjyfttOr B ? Cl5"r,Jiia. Cd Cd r - t > > CO a . ? a ? o as -P M >-l ? H N Cd O H H rH ? rH CO -H ? O ?> > OJ H < rH - tH CO MSB ?> r H f < < l ) ? l _ _ ? - tO - T H J H O O P rH ? B c d < U > - P Q I - 3 X ! < H tgrHrH&aSdfiri-g SJ t ^ 2 " ? ?"* w f0"* ^^O I""00 ? ^ 0 ^ ^ COit IA VO t?CO ONO rH CM COit IAVO-3- t~-CO ONO rHCVI^- tAVO t^ OO ONO r-t CM CO t^ LAVO t^ -COO O O O H H H H H H H H r t H W W W CM CM CM CM CM CM CT COCOCOCOCOCOCO ON CT\ C7\ONO O O O O O O O O rH rH r-l rH rH rH rH rH rH " I CM CM CM CM CM CM CM CM CVI CVt CM CM CM CM CM CM CM CM SATELLITES 1957 ALPHA AND BETA 335 inot?r- M O O vo-* CUVO-*-* f-f- r-lt? rtw CM CM cvicn. M r-t o\CM.=?- rHrH r-l rHVOClO m o rt CJ evi evi evi o e v i o evi CT\ voifvoo m m o ^ ^ ^CVI C V I * t (nroi fv = oocfun I-HOO o\h- muMn vp W H^OOOWHS o rnt t (nt^ coo\ vo vo CM rH ^ ^ i moo vo vo o\ ?*Jf Iflrl O rl: ._ coco inco f?t^ -t CVI OJ OJ CVI OJ CVI OJ CMCM CVIOJCMCMCMCMCMCMCM IT? VO in m o\ ir\ H r-l rH CO b- t - i ^ t~-CM CM CM CM VO O CMCM ad > C ?J?H O ca eg Xt -P < P 01 O O O < H U M ? n ? o co ri o ?o o ? J3 " - XI - ffl XI P CO O < O C X! ?O C Xi ?H < * ' - ^ -rl a O O ? O O JC ?>CO ? -PXI .rfCrjUiat, ? K * ? ct) cc)O C > P -H XI a) O 0 ? C 3 ? CO T3 P 43 O i H c d e ? . O r H E - > r H c n 4 > ? > O X iCCO CO C -H C P P 00 C B X> 41 O XI O S OP&CO CXi C 3> COONOrH CM mi l - invo t^OOCfvOrHCMfO^m VO t? CO O\ O CMCO J*O rH O rH OHO rHCMfO^tOrH CMCVJCOCO en en en coco enenen^^^'^3'^^' ^ ^ ^ -^ * m irvin mo o m m ooin mmmmoo OOOO OOO OO OOOOOOOOO O O O O O OO Ozt ^^zt VOvpvO VOvpvO "" CMCUlCMCVI CVI OJ CVI CVI CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CMCM CMCM CM CM CM CM CM CM CM CM CMCM CM CM CM CVI CM CM P 19 X! U 60 9) in ITMTV in o\ PO m irv CT\ o rrv* r~-coin i-iincM CM OCM miHt--voN-?n. r-i r-i ^t incom fOr-ICM CM H O V O rHCVIVO O rH CMCVI t~-vo co chvovo CM CMCMCM r i CM o\ m CM en I I I o^-in m omcvicvi i rH rH in CM OJ r H r n i H i n m m O ' ?>mCM t~-t-m.=l- rH rH COCO CO CM '_ r-HH mrorooooororoij-jr cocoro^-^- ON en en mm co f CM J?-o rH ov* mcrirocMcocovo mom co rtrtJfinwin(oOHO4^iAOH CM Oxmvoro vo co co oo CM CM CM CM CO miHVO-^?Hrl rHin0>0\0\C0COiH rH iH .=*? o o o oxocococo ocovo S > o P o 8 S S 3 3 6 (SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Me oo cot? m co o o oco JTi? i n VOVO t V H f? VQ t?CM ?in COrHO CM O rHin oco CO ?s CM CO i t rHrHCM O CM rH vo t? CO CTi rH in CO vo rH in co t?t? C7\ i t CM i t rHit CM co coco VO CM O O ?P -OCO O O O O O O - * O CT>CM ON H ON CQ CO CO C?O\H ?H inco CM CM rH cu o m i t in coo co com in in i t o H . O C M * rHCM ONCO * COt?t?COCO VO t? o t-< . a. a, 4> < f a p T\ 4ii 1 ?> CD U - * H rH cd U Cd . . _ O +> ?> cd o u -rl ? H ? O , o ^ ? H < H cd cu ? ? ? ? JO . cu m . U - H cdo h E H B - C SE.ed ? -P tP * S H4> ? -P * m -rt ? - d P Z o m o OP to en o Z a r_> -H hO PQ -P -H cd cd (d - ' - C ?? ? E ? ? ? >>M r-i ? < n 4J 4J . .C W 3 Oi rHjScd < O ? H I ? A C CO O M . . ? ? ? ??> ? -O i ix ; ffl Ut) ? ?h O to > cj U E O rH O ? - ? C Q E X > r H O < O C CO to X O c d ' C * U o a a J O C w + j < 3 4 ) 3 - H C U O C n o 60 4. ?? ?-H E H < C r l H ? O - C K COrH ^ - > XJ O ctj C "-* O rH 4; cd ^ > +-> < CQ ?* C N 4) ? O O CC ?* * C 3 M ^ H < ? < P^P C 0) C 111 d d H S QJ C 1^ gff '>HcjMt/<-KHOfl) ? ' 3 t> O O -P W "O 4)"O^ CrCHC^cd 4> ?* Id O 01 O H O^t? tt? O V < O ^ ?> C O-PO 4)C M4) ^O*> CI4H C "H aC BB h 3 j) J CZ * i P -P Z 4J d C ? ? ? ? * J a) ? E ? ( H H o cd SS cd H ?? - -H & c d X H ? 3 ? 0 X 6 ? O O 60 C C C 0 C 3 C B - H 4 ) h E 1 ^ O D C N U O HI l i X O t ) > > t ( C O 3 O 4) E ? 4> O ? Cr fa O O B O h O O O H ? H ? O P O O 1 H 4 ) H * f a O O ^ M - H P O J - H T I * -H ft, 4) 4> 4) O C ^ CO ? CO -P >H T3 > t)rHj?HHHQC^4>HPA|Ii?P4>nPO?eMHOr.B lt>COfcrHcdC)C?HOlt, C c ? HdZOU C ? r H ( D Q ) a l O C t i 4 ) t t ) l 3 O ) 3 ( d ? cd 0 ?HI ? QJ ? O O -C e cd ? cd (d cd O -P Q ; P 1) ft) *H 43 Q O H O H Q H CMCO cd . oo oo o OOOHH inmo oo o o o ooo OH H H in O OOO O O OO *? O OO OO O OOOQO ii-=tOQ CDO O O O OOO OO O O it t~- t~-CJ\C^ O O OO m z inm inmin inmininm ininin invo vo vo vo vovovo vovo vo vo vo vo vovovot? t-- o-c*-co8 o Si ?< 81 . O ^ - CO VOC O i t ?& O H COOVQ in vo H^*coin^- o CM VO o in HCM in H H in OOCM rH OJ t? ro t-rH O r-\ r-i O COCO t--co CM in CO CM vo in CO CM VO CM CVI COT co in co covo co t i i H C O ^ ? -3- ? * cor-- ?S = o ? rn82 o ^ 2 ^ ? ^ WOs5t o^ CM H com CQH vo in H OCMVO ON HCO VO A ?o <->ir " o * t? ?=!? .H .st-.=t i tcoo co O H CM H ino ?& ?& m CM^-CO CM CMCO o m fl " 2$S 2i+f^ "2 0 * 2 5 ^ ^ ^ ^ t - v o ^ o H in coo\o.*in vo cot--r- o vo m\o o\ O>H cr?vo ?g ,^ ?*" " HiT?J H U ^ H f O pr, i t CM CM COlf\^- H in O H CO O in ^- COCM^ t CO 3So H i t CM i t COCM 5 5? SJ^ 5 2 ^ S N S2JO vo coc7\a\coinco vo m covococMin vo coot - co m i n n t- O N HCO SrS 'r?ft!5i ?0 cot?t?oocom r? t- uScot?itvo co COHCO CO OOCOOO CO vo m com ~" m CM CM H c\J CM OJ CVI CVI CVI CVI CM CM CM CM CM CM CM H H H CM CM CM CM CM CVI CM CO CMCM 3 i 11 ll a a ? ? - i ! - - ?"? 5 - t S 5 o S * - ? - E + ? b O . m m m 5 O W O ? 0 H ? S 5 i H C 4 > ^ H H h r f C V i ? >-> ca C ?> C ' : I - .'S 8 I " - z S H ^ O ^ K - S S HScd3H - ^ ^ H ^ . S . z 3 H ^ " 5 i2sIic3i3?g:? ? ? ? ^ ? c ! S * 2 or.e<^ccK5r? T l O *? -4J fl3 -^ ^J &3 P i C^ CQ C*0 CJ >-5 "^3 *? C5 O COZ ? ? c^&c^J & WcSoicM- cT, ^ ^ ^ , Jn fV, ^ . V , , ^ ^ ^ M ;H: - :^ .'r ' I ' - i ' ^ SATELLITES 1957 ALPHA AND BETA 337 OCM O O ON 0 - r t OOCM OO in CM m o m ^ ? J * CM rH m r-CM O r o ^ i t oo^tooro 1 CVJ i-H oo CVJ r-t CO oo ro CVJ ^ t O " - . C M * in lilCVJ CVJ CVJ -3- ro CM rH CM -3 Oj .3" rHOO O l>- r l O 4 CM VO r-t UTWC cvj co ro on i I O r-t 00 ONCO OOmrH 0 0 ^ - CM t--o.=* m JJ- O O r H ^ t OO CM CMCQOOOO CM CM CM CM rH 0 0 o co ro CVJ \ n CVJ CO CM O O rH O O CVl VO -O OO oo co m CM CVJ CM in o CJ CM "Va coco cvj r-- co vo ON n 1-1 rH OO $6 OT 2 * H -t cd Ji ? l op c4) cd o u CJ * "'ciZ) ? -t n o 3 . x: ca cd ?s 4) S po 305 9E <0 c_, o 15 +> u o ?cd ?> O 0) ? H ?* cd Cd rH bO CD 3 T3 O T H I - H U cd u ?> r-t Cd CO - > 3O rH >> 0) 3 3 hoto 2 < co roin' o o mm 00 00 CO 00 CO s mCO cd ^> T3 r H 4> ? H 4 H ?H CO Q c 3 c '3CO cd * ^ 3 ? H C_> y O o rH in CO ?> r < SB -o + j o c 2: * m cd a< c CIS bO C ?H CU c m o -C>H Cd ?I-'- T* ClJVl cw <: ?H CO r l ro r-, CO 3 CO a' O tl r-t ? O noons rH O 0 0 2 ?oo 2 CQ ?? c 5 pq * a acr) ?-3 O ? in 8 a CO N , - l id o o o cri cr. os i in fc- cooo vo < O O O CM I O \ 0 O CTlrH OOOO t? ^t CM CM CM CM CM CM CM 04 CVJ OOOOCVJ OO i>-vo oo CM oo oo CM in in ini-HOOOinOrH r-t Gl CM O * l f \ O H C O V O H OO O in VQ jtoo CMO^trHooocM in o r-t in J? ? O O C cd > ?? ? o nuQWfc -a rH c u . . . . . . d 0) ? rHrHrHi-HCCIrH J? c j c d c d c d c d ' d i u J-> cd< to o c U OJ ? .P O ? O O O ! d cd -H o -a = . \ CD f - o co a. co ra co > i * j O cd cd ?cdcdCi'adcd 1 COCO W 3 J O cv.?-? 2 s i C C C K > - H S o o c d c d < d c d " o^ ooooo ? o > > c m . > < u c i > 4 ) 4 ) . a ? u -P cd > ?H O H W O i D * f t Q , 4 > OOOcd^t QO W cd SZ <-t ? C i d r d f l J c d ; 3 4 > O . - i O E - - CM oo - ^ invo c^oo o o <-i CM OOJJ- invo IS-CO O rn CM O O O OO OO O r-t r-t rH rH rH rH r-t rH rH CM CM CM O O O OO OO OOO OOO OOOOOOO co oo co oc co coco cooooo cocooo oo ooco coco coco CM CM CM r? co cfiO r-t CM CM CM r O O Oo o ooo CO CO ODOOCO fOOO OO OOCO O oooooin CO CO OO CO CO 0 0 Successive Revisions of Orbital Elements for Satellite 1957 Beta By L. G. JACCHIA Since the launching of the second Soviet It should be made clear that the orbital earth satellite, the computation and analysis elements in table 1 are prediction elements, in center of the Optical Satellite Tracking Program the form suited for the machine computation of at the Smithsonian Astrophysical Observatory ephemerides. In view of the erratic accelera- has issued orbital elements, ephemerides, pre tion of the satellite in its orbit, no simple dictions of latitude crossings, as well as station equation can represent its orbital position over predictions on a continuous basis. The fre- any extensive period of time. Therefore these quency with which these parameters are issued prediction elements should not be used to coin- depends on operational needs; the orbital ele- pute satellite positions except for epochs very ments are revised at intervals of about one week. close to the date at which they were released. A selected listing of orbital elements for Satellite 1957 01, determined at various inter- Preliminary orbital elements vals is presented in table 1 It should be ^ N o v ft 1Q57 o m h o u n j a f t e r ^ l a u n c h i emphasized that two basic effects determine the D n j c A Whk% L G J a c c h i a n d G V e b degree of revision necessary for successive d o r i v e d ^ f o l l o w i p r e l i m i n a r y o r b i t a l e l e . determinations of the elements. m e n t f l {m g ^ ^ 1 9 5 ? B e U from y g ? R During the initial stages of orbit calculations, a n n o u n c e m e n t 8 a n d t h r e e o p t i c a i sightings: a process takes place which has its closest analogy in the mathematical process of succes- EP??h ?nd t i m e of osculation Nov. 4.3952 UT sive approximations. As more and better . (*t ascending node). . , , , # L- i Inclination... i>-68T8?l0 data are received, the exact values of orbital Period P?103.6?0.05 min elements can be determined with increasing Right ascension of node aO=m?0?0ri accuracy. Eccentricity e?0.105 On the other hand, the orbit configurations Semi-m?jor axis (in equatorial o-1.1463 of a satellite close to a planetary body undergo ^ ^ of ^ ^ #,-44-+0T6/day considerable changes with time. I he changes in the values of the orbital elements evidence The successive revisions of the prediction the effects of such factors as the oblateness of elements are given in table 1. Table 2 gives the earth and atmospheric drag, and, in turn, the orbital elements derived from the prediction lend themselves to a determination of these elements. factors. 339 340 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Table 1.?Successive revisions of prediction elements for Satellite 1957 Beta [t In year days") Date of revision 1957 Dec. 27 Time of ascending node crossing 358.136965 + O.O7O279655n -1.42032 x 10"6n2 -A.252 x 10~10n3 Right ascension of ascending node 338T3-289 (t-358) Argument of perigee 40?0-0.2 (t-358) Perigee distance Inclin- ation 1958 Jan. 9 358.136965 + O.O7O279655n -1.42032 x 10"6n2 -4.252 x 10-10n3 338T1-2.799 (t-358) -0!00l9 (t-358)2 40?0-0.2 (t-358) Jan. 16 358.20725 + 0.07028728n -1.586 x 10"6n2 -6.0 x 10" n n 3 (n>0) 40!-0.2 (t-358) 1.034 65? 358.20725 + 0.07028728n -1.290 x 10"6n2 -6.0 x (n<0) Jan. 22 386.06345 + O.O68973O5n -1.714 x 10"6n2 -1.138 x 10-1 0n3 (t-386) 34?-O!3 (t-386) -0!0Ol8 (t-386) 65!4 Jan. 28 386.06347 + O.O6898On -I.636 x 10"6 x n2 xFeb. 4 399.79521 + O.O68349n -1.55 x 10~6n2 -1.0 x 10-10n3 1Peb. 11 Peb. 10.61309 + OdO68OOOn -1.86 x 10"6n2 -3.0 x 10"10n3 1Peb. 19 Peb. 17.39430 + Od067620n -ld90 x 10"6n2 -3dO x 10-10n3 259?8-2!87 (t-386) -0?0017 (t-386)2 34?-O?3 (t-386) 65!4 259?3-2!876 (t-386) 27!3-0!46l (t-386) -0?00l7 (t-386)2 -OTOOO27 (t-386)2 I.031 201!0-2?944 (t-Peb. 10.0) -0!0017 (t-Feb. 10.0)' 17l!O-3?OO (t-Peb. 20.0) -0T0018 (t-Peb. 20.0)2 19!4-0!44 (t-Feb. 10.0) 1.031 -O!OOO25 (t-Peb. 10.0)2 15"O-O!445 (t-Peb. 20.0) I.030 -OTOOO25 (t-Peb. 20.0)2 65:3 65t3 Peb. 25 Peb. 24.13890 + 0.067260n -1?94 x 10"6n2 -3.0 x 10"10n3 159*l-3!OO8 (t-Peb. 24.0) -0?00l8 (t-Feb. 24.0) 13?2-0!447 (t-Feb. 24.0) 1.032 -O!OOO25 (t-Feb. 24.0)2 65?3 lThe acceleration of the sa te l l i t e in i t s orbit is experiencing marked fluctuations, presumably due to systematic variations in i t s effective cross-section. SATELLITE 1957 BETA 341 Table 1.?Successive revisions of prediction elements for Satell i te 1957 Beta (continued) (t In year days') Date of revision 1958 2Mar. 4 . 10 Time of ascending node crossing Mar. 2.84610 + O?O6688ln T 6 n 2-1?91 x lC -3*0 x 10-10n3 Mar. 9.51273 + OdO66436n -2.44 x 10"6n2 -6.0 x l0-1 0n3 Right ascension of ascending node 137?93!O33 (t-Mar. 3.0) -0!00l8 (t-Mar. 3.0)^ 115?2-3!l42 (t-Mar. 10.0) -0T0028 _ (t-Mar. 10.0)^ Argument of perigee 9?2-0!458 (t-Mar. 3.0) -0?00027 (t-Mar. 3.0)2 Perigee Inclln- distance ation 1.031 6?O-O?474 (t-Mar. 10.0) I.O3O7 -0:0004 (t-Mar. 10.0)2 65:29 65:29 Mar. 17 Mar. 16.13077 + 0.0659098n -2.833 x 10~6n2 -1.33 x 10"9n3 96:1-3:188 (t-E) -0:0033 (t-E)2 -6? x 10"6 (t-E)3 2:9-0:48l (t-E) -5:0 x 10~4 (t-E)2 -9" x 10"7 (t-E)3 1.0307 65:29 -6 x 10"5 (t-E) -9 x 10"70 (W)2 2At the present rate of acceleration the satellite should perform its last revolutions around April 17. ^Starting about March 3 .the orbital acceleration of the satellite has undergone a very rapid increase. At the present rate of acceleration its fall is expected around April 14. Under these circumstances predictions are becoming very difficult and can be expected to be In error by many minutes after only a few days. \ t the present rate of acceleration the satellite is expected to fall about April 12. Table 2.?Successive revisions of orbital data for Date and time 1957 Dec. 27 1958 Jan. 9 1958 Jan. 22 1958 Jan. 28 1958 Feb. 3.795 1958 Feb. 10.613 1958 Feb. 20.0 1958 Feb. 24.0 1958 Mar. 3.0 1958 Mar. 10.0 1958 Mar. 16.0 Satell i te Eccen- t r ic i ty 0.08342 0.08342 0.0727 0.07296 0.0688 O.O659 0.0632 O.O582 0.0554 0.0510 0.0461 1957 Beta Semimajor axis 1.12810 1.12810 1.1140 1.1143 1.1072 1.1037 1.0995 1.0958 1.0915 1.0864 I.O8O5 Nodal period 97.358 96.866 96.297 95.62 94.89 460132 O?58 11 A Chart for Finding a Satellite's Distance and Elevation1 By J. W. SLOWEY 2 Satellite observers often want to know the conditions of visibility for an object, yet do not have all the desired information. For ex- ample, an observer in Chicago may know that at a particular time a Russian artificial satellite is to pass directly over Pittsburgh, say, at a height of 500 miles. He wants to know how many degrees up the sky the satellite will appear from Chicago, how many miles away it will be at the time, and how bright it will look. The graph on the following page provides an easy way to obtain approximate answers to questions of this kind. On it are represented the four principal quantities involved in the geometry of satellite observations: Height (in miles) of the satellite above the earth's surface. Distance (in degrees) along the surface from the ob- server to the place where the satellite passes overhead (sub-satellite point). Range or line-of-sight distance from the observer to the satellite. Altitude or angular elevation of the satellite above the observer's horizon. Given any two of these quantities, the re- maining two can be found from the graph Perhaps the two most frequently known prior to making an observation are height and dis- tance. They are represented on the graph by two families of heavy curved lines. The first, giving lines of equal distance to the sub-satellite point, runs from lower left to upper right; the second, giving lines of equal satellite height, runs from lower right to upper left. Therefore, in our Chicago-Pittsburgh exam- ple, the observer knows the height, 500 miles, and the approximate distance between the cities, 400 miles. The distance must be con- verted to degrees, 1 degree on the earth's surface being about 69 miles; therefore 400 1 First issued March 1958 in Bulletin for Visual Observers of Sat- ellites, No. 8, Smithsonian Astrophysical Observatory. 1 Physicist, Optical Satellite Tracking Program, Smithsonian Astro- physical Observatory. miles is nearly 5.8 degrees. Read up the scale of heights on the right-hand edge of the graph to the line for 500-mile height; then follow this line to the left until its intersection with the other curved line representing 6 degrees of distance on the earth's surface (this is the 12th line from the right in that family). It is easy to interpolate for the value 5.8 between the curves for 5.5 and 6 degrees. This point on the 500-mile height curve completely deter- mines the situation geometrically. Read vertically downward from this point to the scale at the bottom of the graph, where we see that the altitude of the satellite at Chicago will be about 47 degrees. Next read horizon- tally to the scale at the far left, where the range of the satellite is found to be about 660 miles. It should be possible to interpolate with similar accuracy at all points on Che graph. The chart also provides a means of estimating the apparent magnitude of a spherical satellite from its range and the altitude. At the ob- server's zenith, the apparent magnitude of a satellite illuminated by the sun when the latter is below the horizon depends principally on the height of the sphere, its diameter, and the re- flectivity of its surface. Therefore, on the right side of the graph there is a scale showing the photorisucU magnitude of a satellite at the zenith. This is evaluated for a 21-inch sphere of 80 percent reflectivity, about that of polished alu- minum. The observer will rarely see a satellite exactly in his zenith, however, so the magnitude scale must be corrected for the extinction or dimming by the atmosphere, which depends upon the altitude above the observer's horizon. This correction to the photovisual magnitude scale is shown at the top of the graph?for altitudes above 45 degrees it amounts to 0.1 magnitude or less and may be ignored for most purposes. For altitudes of less than 15 degrees, extinction 343 344 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS Range ? L I N E - O F - S I G H T D I S T A N C E IN M I L E S I * i?i?i?i?r Distance ON EARTH'S SURFACE ? O - N Zt * U>_ Height OF SATELLITE IN MILES 21 - INCH SPHERE PHOTOVISUAL MAGNITUDE, AT ZENITH FIGURE 1.?Diagram for finding a satellite's distance and elevation. increases rapidly and depends so much upon the condition of the atmosphere (haze, smoke, and the like) that magnitude predictions cannot be made with any reliability. For spheres of sizes other than 21 inches, the correction to be added to the value given by the magnitude scale is given by the expression: Correction= ?5 log (diameter/21), where the diameter of the sphere is in inches. Here are some representative values: Diameter in inches 6 30 60 120 Correction +2.72 ?0.77 ?2.28 ?3.78 A second correction, to be added for a reflec- tivity different from 0.8, is Correction = ?2.5 log (reflectivity/0.8). Some typical values are: Reflectivity 0.75 0.70 0.60 0.50 Correction +0.07 +0.15 +0.31 +0.51 Recent Orbital Information In accord with agreements made for the International Geophysical Year, the Harvard College Observatory has generously cooperated by printing and distributing important orbital data on the Harvard Announcement Cards, a rapid method of communicating information. Information announced in this way since Jan. 31, 1958, is summarized below. Special reference should be made to An- nouncement Cards 1389,1391, and 1392 (fig. I). HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1389 Satellite 1*57.1.? According to Dr L. G. Jacchis of the Astrophysical Observatory of the Smithsonian Institution, the following ephemera represents with a fair degree of accuracy the equatorial crossings from the time of the launching to 1957 D> cember 10, U.T, time of the last reliable observation: TO - 1KT Oct. ?.WU8 (U.T.) + t-MMMIlii - ' t U C - . . - . (MJta; - 1.7M I 10 VjptO O1OJ1,, - 1 Jt i l l - % , i l u ? ?fl - SMI - lloU (t - Oct. 7.0) - O'OHI (t - Oct. 7.?>" (t ill tity,. C.T.) These equations were obtained from an analysis of approximately 300 sub-satellite points derived from visual and radio observations. The following elements were used in the compu- tation of the sub-satellite points and nodes: ? - ? ? ? - ?'< (t - Oct. M)g q - cost. - l.MS auth'i muttonil ndii: i - Ml The plane of reference is the plane of the earth's equator. ? represents the number of revolutions elapsed since Oct. 834335 (n - 0) January 31, 1958 Fan L W n m i HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1391 jarchia of the Astrophyaical Observatory of the Smith- sonian Institution his derived the following equa- torial elements: Epoch and osculation: 1967 December 17.18575 U.T. a = 1.1311 e m 0.0876 i = to'fi mil- 357 J . m 430 Following is a list of normal values of the position and time of crossing of the ascending node, as well as instantaneous values of the nodal period and of the precession of the node as derived from observations, at intervals of 100 revolutions: ?1) Pll daO/dt 100 200 (18.74867) 300 25.88997 400 Dec. 300874 500 1009866 800 17.16675 700 2420737 800 3122018 900 1958 Jan. 720102 14.14905 2106338 27 944S0 1124 0071990 933 071766(74.1) (071534) 560 .071292 071043 070795 070547 070277 069971 1000 1100 1300 (To be continued SM 167 357 i 3382 3186 398 9 3791 3592 239.4 on BA.C 1992) 061645 069312 068977 068669 288 269 -271 -273 -276 - 2 79 -2.83 - 2 J 6 -2S8 - 2 90 /??brvory s. MM FM> L Warrru HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1392 (Continued from HA.C. 1391) The acceleration of the orbital motion during this time interval underwent marked fluctuations, presum- ably due to systematic variation! in the effective crass- sectional area of the satellite. The precession or the ascending node in the time interval from 1957 Nov. to to 1968 Jan. 25X) amounted to 330 4 as compared with the theoretical first-order value of -2215. com- puted using the above elements sad J - A163847. Since a difference of 0.1 in i alone would cause a difference of 0 8 in the total precession, the discrepancy can easily be accounted for by the uncertainty in the pres- ent elements. The ratio d- 'd?n was assumed through- out to be 0.1604, the theoretical value for i = 66*4. f rhrunry t, IM? Fun L. WHDTU FIGURE 1.?Harvard Announcement Cards giving recent orbital information for Satellites 1957 a\ and 1957 Beta. 345 346 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS The ephemeris derived by Dr. L. G. Jacchia and published on Card 1389 depicts with a fair degree of accuracy the life history of Satellite 1957 a\. Approximate determinations of any instantaneous location of the carrier rocket of Satellite 1957 Alpha can be made with the information given. Satellite 1957 Beta is still in orbit at the time of this writing, but the information on Cards 1391 and 1392 fulfills a similar objective within the limitations specified. The results of Dr. Jacchia's preliminary calculations with regard to Satellite 1957 a2 are shown on Harvard Announcement Card 1402 (fig. 2). HARVARD COLLEGE OBSERVATORY ANNOUNCEMENT CARD 1402 > 1*7.2.? Dr. Luip Q. Jacchia of the Astro- physical Observatory of the Smithsonian Institution b u nude an analysis of the optical observations re- ceived at the Observatory and reports as follows: Out of 45 observations of faint moving objects, only 21 can be safely attributed to 1957.2, and these refer to 17 separate sightings?14 in the interval October 3-39, and 3 in die interval November 24-29. Sub- satellite points were computed using the same values of ? and q u for 1957.1 (see MAC. 1389), and from these, under the assumption of i = 653, equatorial crossings were derived, which can be fairly well represented by T_ = 1857 Oct. 4.871S9 (U.T.) 4-0*WJ79ol n-7<4? u X 10-* n* - * W X 10-" n1 ? ? - 3343 - 3 06 (t - Oct. 7.0) - 0.0082 (t - Oct. (n represents the number of revolutions elapsed aincc 1987 Oct. 4.87159). Seven observations (five separate sightings) between October 7 and October 34 yield values of . ? in essen- tial agreement with the expression given above, but the times of the equatorial crossings are off by 8 to 13 minutes and can be represented quite well by the equation. T = 1957 Oct. 4.87159 (U.T.) + MM07OS8 n - M45 X 10* n." Since a chance alignment of wrong nigh ting, seems to be highly improbable, the object (nosTcooeT) has been tentatively labelled 1957.3. March 10, 19S8 Fu? L. Winu FIGURE 2.?Harvard Announcement Card giving recent orbital information for Satellite 1957 <*2. Bibliography A number of articles and reports have now appeared in print, presenting orbital informa- tion on the Soviet satellites. The list of papers that follows includes the published material at present available to us, but obviously it cannot be considered to be a complete survey of the literature published to date. ANDERSON, R. A., AND KEAY, C. S. L. 1957. New Zealand visual observations of the rocket accompanying the Russian arti- ficial satellite. Astronautica Acta, vol. 3, p. 227. ANONYMOUS 1957. Preliminary summary of U. S. S. R. satel- lite reports. National Academy of Sci- ences, IGY Bulletin No. 5, November. 1957. Second Soviet satellite. National Academy of Sciences. IGY Bulletin No. 6, December. 1958. Satellite talk. Sky and Telescope, vol. 17, p. 129. COUDERC, P . 1957. Le satellite artificiel. l'Astronomie, vol. 71, p. 431. 1957. Les satellites artificiels. l'Astronomie, vol. 71, p. 453. DE JAOER, C. (Ed.) 1957. Kunstmaan-Waarnemingen in 1957. De Meteoor, vol. 13, p. 53. 1958. De Banen van de eerste twee Kunstmanen. Hemel en Dampkring, p. 197. DUNBINK OBSERVATORY 1957. Rocket of the first earth satellite. Nature, vol. 180, p. 944. FEJER, J. A. 1957. Life-time of an artificial earth satellite. Nature, vol. 180, p. 1413. FRIEDMAN, H. 1958. Soviet satellite instrumentation. Astro- nautics, vol. 3, No. 2, p. 32. HARRIS, I., AND J ASTRO W, R. 1958. Upper atmospheric densities from Mini- track observations on Sputnik I. Science, voL 127, p. 471. KoELLE, H. H. 1957. Sputniks and Vanguard: a comparison. Astronautics, vol. 2, No. 5, p. 32. MULLARD RADIO ASTRONOMY OBSERVATORY 1957. Radio observations of the first Russian earth satellite. Nature, vol. 180, p. 879. NECKEL, H. 1958. A photographic observation of the Satellite 1957 Beta leaving the earth's shadow. Nature, vol. 181, p. 257. OBUBKA, O. 1957. Jaka je zivotnost drusic zeme? Rise Hverd, vol. 38, p. 267. PRIESTER, W.; BENNEWITZ, H. G.; AND LENGRUEBSER, P. 1958. Radiobeobachtungen des ersten kuenstli- chen Erdsatelliten. Wissenschaftliche Abhandlung, Arbeitsgemeinschaft fuer Forschung des Landes Nordrhein-West- falen, Band 1, Westdeutocher Verlag, 38 pages, Koeln und Opladen. RORDEN, L. H., AND JATB, W. E . 1957. Russian earth Satellite 1957 Alpha, radio and radar data and preliminary analysis of satellite orbit prediction techniques. Report of the Stanford Research Insti- tute, Menlo Park, Calif., December. ROYAL AIRCRAFT ESTABLISHMENT 1957. Observations of the orbit of the first Russian earth satellite. Nature, vol. 180, p. 937. SCOTT, J. M. C. 1957. Estimating the life of a satellite. Nature, vol. 180, p. 1467. STANYUKOVICH, K. 1957. A Soviet scientist looks at Sputnik. UNESCO Courier, p. 20, November. SUMMERFIELD, M. 1957. Problems of launching an earth satellite. Astronautics, vol. 2, No. 5, p. 34. 347 o