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Geodetic Uses of Artificial Satellites
By GEORGE V E I S 2

Introduction

The geodetic methods heretofore applied to the
data provided by the artificial satellites have
been based on a dynamic approach. That is,
the perturbations in the motion of a satellite
have been used to determine the gravitational
field of the earth, and thus to obtain informa-
tion on the shape of the geoid (Jacchia, 1958b;
O'Keefe, 1958; O'Keefe and Eckels, 1958;
Kozai, 1959).

This paper presents another way of using
the satellites in geodesy. The methods depend
on a geometric approach, which we may say is
related to mathematical geodesy in the same
way that the dynamic approach is related to
physical geodesy. The geometric method con-
sists in performing a triangulation in space and
determining the positions of a certain number
of observing stations whose positions are un-
known.

The science of geodesy today covers a wide
field, but its main purpose is to determine the
size and shape of the earth as a whole, or of
large areas on its surface. This problem, at
least at first sight, may seem to be a purely
geometric one. But as soon as geodesists
began using the direction of the vertical as a
reference direction, the problem became dy-
namic as well. Selecting the vertical as the
direction of reference is fully justified for the
survey of a small area—say, a few square
kilometers—since we can assume that the
directions of the vertical are parallel to them-
selves over that area. But to relate them over
large areas at different points on the earth we
need to know the shape of the geoid, since the
vertical is defined as being perpendicular to
the geoid.

Since an approximation for the geoid is an
ellipsoid of revolution, the geoid over a large
area can be replaced by a reference ellipsoid.
We therefore use the vertical as if it were the
normal to the ellipsoid, and thus establish the
relation between the reference directions. This
is the method of "classical" geodesy.

The angle between the normal and the ver-
tical (deflection of the vertical) can attain
several seconds of arc, however, and over very
large areas (of the order of continents) the
errors accumulate so that the methods of classi-
cal geodesy are not adequate.

With the methods of physical geodesy
(Stokes, 1849;VeningMeinesz, 1928) we try to
find the geoid as it actually is. To do this we
theoretically need measurements of gravity
over the entire earth. Even if these measure-
ments do not cover the whole world, we can
nevertheless obtain an accuracy to within a
few seconds. We can then relate the reference
directions over any large area, provided we
have measurements of gravity.

But even if we have related the reference
directions at the different points, another
problem remains to be solved: the effect of
refraction.

The different lines of the geometric figures
that we establish on the earth's surface are
defined by rays of light. Because of atmos-
pheric refraction the light rays are bent, and
this bending occurs almost completely on a
vertical plane. Although we correct for the
effect of refraction, the proper amount of cor-
rection is very uncertain, and the errors in
vertical angles (for long lines) can attain several
seconds. I t is important to note, however,
that such errors diminish as the light rays move
away from the earth's surface.

• This paper is based on a dissertation, "Geodetic Applications of Observations to the Moon, Artificial Satellites, and Rockets," presented to the
Institute of Geodesy, Photogrammetry, and Cartography, of Ohio State University.

* Consultant Geodesist, Optical Satellite Tracking Program, Actrophytical Observatory, Smithsonian Institution; and Refearch Associate,
Harvard College Observatory.
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These difficulties have led to a duality in the
methods of geodesy. Determinations of po-
sitions are made separately, for the planimetry
and for the elevations. The planimetry is
based on a more or less geometric procedure,
triangulation, while the vertical control is
based on a physical method, precise levelling.

The methods presented here depend on ob-
servations of orbiting objects such as artificial
satellites. These methods have the advantage
that they use a unique system of reference
direction which is not affected by the earth's
gravitational field (or the geoid), and that
the errors from refraction are reduced to a
minimum. The mathematical tools are fairly
simple, consisting mainly of analytical geometry
in three dimensions.

In principle, the method involves our per-
forming a three-dimensional space triangula-
tion, with the observed objects (satellites) and
the observing stations on the earth as the ver-
tices. On this space-triangulation net we
compute the positions of the stations. Since
the observed object will usually be at a high
altitude, errors from refraction are reduced
to a minimum.

An important feature of the methods pre-
sented here is that instead of measuring angles
to obtain directions, we determine them di-
rectly, in relation to a reference system defined
by the stars. The relative positions of the
stars, corrected for proper motion, aberration,
and parallax, will be the same for all observers,
everywhere on the earth. Therefore if we con-
nect a system of reference to the stars, we can
then define the system by the equator and the
ecliptic of a certain epoch.

For practical reasons, however, we may also
use a system of reference that is not fixed with
respect to the stars but is moving; i.e., we
use a system defined by the instantaneous
equator and ecliptic. This motion (precession
and nutation) actually will not affect the ac-
curacy of the definition of our reference
system. The accuracy depends only on the
consistency of the positions of the stars, and
the accuracy of their proper motions.

Finally, this system will be connected to a
reference system on the earth. Since the two
systems will have a relative motion, we must
have continuous astronomic observations from

fixed observatories, to connect the two systems.
Although the methods presented here were

devised specifically for use with the artificial
satellites, the same methods can be applied,
with some modifications, to such targets as
the moon, rockets, and even to terrestrial
objects. Because these methods have such
general applications, the presentation that
follows will commonly use the word "object"
rather than "satellite."

The coordinate systems

The several systems of coordinates and their
transformations present various problems.

Elliptical coordinate systems.—The system
commonly used in geodesy is that of ellipsoidal
coordinates. A point Q is defined by projecting
it along the normal to a reference ellipsoid.
The projection Q' on the ellipsoid is defined by
the latitude 4> and longitude X. The distance
QQ' defines the height H of the point Q above
the ellipsoid.

Some question exists whether the curved
vertical should be used instead of the normal.
For points near the surface of the earth, how-
ever, the differences are extremely small. For
a height of 10 km, for example, the differences
are 4 cm in <j>, 0 in X, 10~4 cm in H.

In an ideal system of coordinates, the refer-
ence ellipsoid would be centered at the center
of the mass of the earth and the 3-axis would
coincide with the mean axis of rotation. This
is called the terrestrial ellipsoid (Heiskanen
and Vening Meinesz, 1958). Since the center
of mass of the earth is not known, this ideal
system of terrestrial coordinates unfortunately
cannot be realized. It is therefore necessary
to substitute either the astronomic or the
geodetic coordinate system.

The astronomic coordinates fa and \A are
defined as the angles which the vertical makes
with the equator and the meridian of Green-
wich.

These coordinates are related to the geoid and
can be obtained with an accuracy of the order of
0*1 by astronomic observations. They differ
by several seconds from the terrestrial coor-
dinates on account of the irregularities of the
gravitational field. Gravimetrically corrected
for the deflection of the vertical, the astronomic
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coordinates can come much closer to the ter-
restrial.

Terrestrial rectangular coordinates.—The geo-
detic coordinates 4>o and Xo are defined in the
same way as the terrestrial coordinates <f> and
X, but they refer to a particular computation
ellipsoid which may not be centered at the
center of gravity of the earth, and may not be
oriented appropriately. These coordinates are
computed from geodetic surveys on a reference
or computation ellipsoid, which is oriented at
the origin of the geodetic system (Bomford,
1952).

For points referred to the same geodetic
system, the relative positions will be correct
within the accuracy of the survey. They will
not be correct if the points do not refer to the
same system.

The elliptical coordinates (0, X, H) are not
convenient for points far from the earth's sur-
face. For such points, it is much more con-
venient to use a system of rectangular coor-
dinates.

The particular rectangular coordinate sys-
tem X, presented here, has its origin at the
center of gravity of the earth (or of the ter-
restrial ellipsoid) and is oriented so that the
3-axis is directed toward the mean north pole,
as defined by the International Latitude Serv-
ice, and the 1-3 plane is parallel to the mean
meridian of Greenwich (the meridian instru-
ment at Greenwich does not lie in the 1-3
plane), as defined by the Bureau International
de l'Heure (Stoyko, 1955).

This coordinate system is fixed with respect
to the earth's surface, and the coordinates of
any point on the earth are fixed and do not
change with time, if we assume no movements
of the crust.

A point is defined in this system by a vector
X* (X1, X3, X3). This system is related to the
ideal system of the geographic coordinates by
the following formulas of transformation:

Xl= (N+H) cos 4> cos X=p cos /3 cos X
Xt= (JV-j-H) cos <f> sin X=p cos 0 sin X
Z*=[(l— e*)N+H] sin <f>=p sio 0 (1

where AT=radius of curvature in prime vertical,
e=eccentricity of the ellipsoid, p=radius vec-
tor, and /3=geocentric latitude.

The first set of equations is more convenient,
since tables (Perrier and Hasse, 1935; Army
Map Service, 1944) may be obtained for the
values of N.

Sidereal rectangular coordinates.—For points
that do not rotate with the earth, it is conven-
ient to have a coordinate system that does not
rotate with the earth. This is the sidereal sys-
tem. We can reach this, however, only by
means of an intermediate system, the instan-
taneous terrestrial coordinate system Y.

The axis of rotation of the earth is not fixed
with respect to its surface. The motion of the
true pole is studied by the International Lati-
tude Service, which gives the coordinates of the
instantaneous pole with respect to a mean pole
(the same pole used to define the ^-axis).

If we know the coordinates of the apparent
(instantaneous) pole we can define another sys-
tem Y of coordinates which uses this instanta-
neous axis as the y-axis. The I^J^-plane
contains the point where the mean merid-
ian of Greenwich intersects the equator, which
is also the J^-axis, since the instantaneous
zero meridian is thus defined by the Bureau
International de l'Heure (B.I.H.) for the time
UTl. (According to the decision of the Inter-
national Astronomical Union at the 1955 meet-
ing in Dublin, UTO is the observed time; UTl
is the observed time corrected for the motion of
the pole; and UT2 is UTl corrected for the
seasonal variations of the rotation of the earth.)

Let x and y (fig. 1) be the angular (spherical)
coordinates of the instantaneous pole P with
respect to the mean pole P. We have taken
X1 as the primary axis, but since x and y are less
than 1 second of arc, the result is practically the
same.

The transformation from the X to the Y sys-
tem is given by the expression

in which M a n , is the matrix:

cosX'Y1

cosX'Y2 cosX'F2
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X3

VOL.*

FIGURE 1.—Terrestrial and sidereal coordinate systems.

From the spherical triangles in figure 1 we
obtain the formulas given in equation (2) and,
consequently, the relation in equation (2a).

In the sidereal coordinate system Z, the
Z*-*xis will coincide with the F'-axis, and the
Z*-axis will be directed toward the apparent
vernal equinox T. The transformation from
the Y to the Z system will be

with
rcos t —sin t (T

sin t cos t 0

Kfi 0 1J
t being the angle P Z 1 or

Z2

'cos t — sin t (T

sin t cos t 0 Y2

Y3

(3)

cosX2Y1=sinx siny COBX3Y1=—sinx cosy

cosJ£2F3=—cosxsiny cosX3F3=cosx cosy.
rcos x -f sin x sin y —sin x cos y"

0 cos y -f-sin y

j3in x —sin y cos x -f-cos x cos y..

(2)

(2a)
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From the definition, the angle t is clearly
the same as the Greenwich apparent sidereal
time as defined by the B.I.H. (Stoyko, 1955).

We can go directly from the X- to the Z-
coordinates, since

(4)

or as in equation (4a).

The sidereal time t must be considered as an
angle in space and not as elapsed time.

To find t we must use UTl rather than UT2
since UT2 is corrected for seasonal variation
in the speed of rotation of the earth and thus
is not a true measure of the angle between
F1 and Z1. This correction (periodic) has an
amplitude of about 0!03 or 0!5.

We have now obtained a system of coordi-
nates (Z) that is not affected by the rotation of
the earth. This system is not fixed in space,
however, since the axis of rotation of the earth,
which defines our system, is moving under the
influence of precession and nutation. There
are two methods that could be applied here:

1. Keep the Z system and reduce all systems to the
apparent positions. This reduction can be made easily
by using the classical methods of reduction to apparent
positions (Besselian Star Numbers or Independent Star
Numbers). The necessary tables can be found in the
various Ephemerides.

2. Use another system of coordinates, W, that will be
defined as being the mean sidereal system at a certain
fixed epoch To. This system will be defined as follows:
The W1 axis will be directed toward the mean equinox ̂ p
of To and the W* axis will be directed toward the mean
pole P of To.

The relation between the Z and the W systems
will be obtained in two steps through a system
which will be defined as being the W system but

at epoch To; i.e., the epoch in which the Z sys-
tem is defined. We will call this system Z. This
step is necessary since the motion of the polar
axis is given in two parts, as precession and as
nutation.

Let K and « be the angle between the line of
intersection of the mean equator at To and the
mean equator at T with the W and Z2 axes re-
spectively (fig. 2). Let v be the angle between
the planes of the two mean equators (same
figure). The transformation from the W to Z
system will be given by the formula:

or by the rigorous expression of equation (5).

The values of K, G> and v are given as (Danjon,
1952):

K=[23042T53+139!73(r0-1.900) +
0T06(T0-1.900)2] (T-T0)+[Z0:23-
0!27 (To-1.900)1 ( r - T 0 ) 2 +
is'.oo(T-Toy

«=[23042T53+139T73 (To-1.900) +
OTO6(77o-1.9OO)2] (T-T0)+[l09'.50+
0T39(7T

o-1.900)l (T-T o ) 2 +

18T32(7T-r0)3

v= [20046T85-85T33 (To-1.900) —
0r37(T-1.900)2] ( r - r o ) + [ -42 !67 -
0T37(r-1.900)] ( r - T 0 ) 2 -
4ir8O(2T-7To)8

where To and T are expressed in units of a
thousand tropical years.

Z2

rcos t cos x cos t sin x sin y —sin t cos y —cos t sin x cos y —sin t sin y""

sin t cos x sin t sin x sin y +cos t cos y —sin t sin x cos y +cos t sin y

sm x —cos x sin y cos x cos y

'Z1'

Z2

r—sin K sin «+cos K COS W COS V —cos K sin «—sin K COS U COS V —cos w sin v^

sin K cos w+cos K sin u cos v cos K COS W—sin K sin u cos v —sin « sin v

„, cos K sm v

512692—60 2

-sm K sm v COSP

X2

W2

(4a)

(5)
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FIGURE 2.—Instantaneous and mean sidereal coordinate systems.

If we denote by An, Av, Ae, respectively, the
nutation in right ascension, declination, and
obliquity, we get

or with sufficient approximation, omitting
terms of the order 10~9,

zr
z?

z?

=

"i

AM

Av

-An

l

Ae

-Av^

—Ae z* (5a)

The values of An, Av, Ae, can be obtained
from an almanac for the epoch T. Combining
the two rotations we get

and

where

We have now achieved a system of rectan-
gular coordinates (W) centered at the center of
gravity of the earth. This system is not fixed
in space, but—what is more important—it has
no rotation. We have also established the
formulas for making the transformations from
one system to another. All these systems are
geocentric, which means that we should know
the position of the center of gravity of the earth.

Geodetic rectangular coordinates.—Just as we
were obliged to use a system of geodetic coordi-
nates as substitutes for the geographic coordi-
nates, so we are required to use a system of
"geodetic rectangular coordinates" as a sub-
stitute for the terrestrial geocentric coordinates.

The geodetic rectangular coordinate system
X is defined by the geodetic coordinates
<po, \J, Ha given to our triangulation points
and by the parameters of the computation
ellipsoid used. If we compute the rectangular
coordinates X* from equation (1) by using
ipo, Xo, Ha, we obtain exactly our geodetic
rectangular coordinates. For each different
geodetic system, we obtain a different system
of rectangular coordinates.
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FIGURE 3.—Geodetic and terrestrial coordinate systems.

A, \A> HA be the coordinates of the
origin of a geodetic system obtained by astro-
nomic methods and leveling, and let £, % f be
the absolute deflections, so that

17= (X^—X) cos <p

In general, to the origin Qo of the system we
assign the astronomic coordinates q>Ay \A, HA.
But to those coordinates corresponds another
point QA on the terrestrial (geocentric) ellip-
soid. Since the point Q is the same physical
point on the earth, we shall have a displacement
of the system of coordinates. This displace-
ment will be a parallel translation since at the

origin of the system we make the theoretical
normal at QA correspond with the observed
vertical at Qo> These two lines are parallel
(fig. 3), while the direction of the X* axis is
identical with the direction of the pole (which
is observed directly). We assume here that
there are no errors in the determination of the
azimuth.

If we express £ and 17 in linear units by using
the radii p+H and N+H, the total translation
will be (€*+i?2+fs)*. In the X system, the
coordinates of the new origin will be X*c and
the transformation is given by matrices (6) and
(7).

It should be noted that the same formulas
could be obtained by differentiating equation
(1), and that equations (6) and (7) apply only
for small values of £, 17, f.

x%
XL

=

' s in v* cos Xo

sin «po sin Xo

. —COS <po

sin Xo

—cos Xo

0

- c o s w, cos V

—cos <po sin Xo

—sin <po j

V

J
and

"sin <po cos Xo sin <po sin Xo —

sin Xo —cos Xo 0

,,—cos?tcosXo — cosvofflnXo —sin

(6)

(7)
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The parallelism between the geocentric ter-
restrial system (terrestrial ellipsoid) and the
geodetic system (computation ellipsoid) is cor-
rect not only if we use the astronomic values
of ipy X, and azimuth A, but also if we apply
corrections to the astronomic coordinates for
deflection of the vertical, provided the astro-
nomic azimuth is also corrected for the Laplace
equation. In this case £, 17, f are the residuals
from the absolute deflections.

So if x* are the coordinates in the geodetic
system we have the equation,

X*c. (8)

Until now we have assumed that the astro-
nomic coordinates at the origin of the system
were correct. An error in <pA, \A or HA will
have no effect on the parallelism between the
two systems (at least to the first order), since
it will introduce only a different displacement.
However, an error in the azimuth, which is
related to the longitude, does affect this
parallelism.

Obviously an error dA in the azimuth at the
initial point of the system will result in a rota-
tion of the system of coordinates around the
vertical, by the amount dA (in this case dA
is the error in the azimuth plus the effect of the
error in X). We will compute the effect of this
rotation.

First we notice that since the axis around
which the system rotates does not pass from
the origin, we will have also a translation. The
rotation matrix can be obtained as a product
of five rotations, expressed by the matrix (8a).

Since the angle dA will be very small (of the
order of 1"), we find the matrix MA for the
rotation as follows:

We know that a vector r* after an infinitesimal
rotation dA* will become rA=r* + dA* X r*.

If we consider a matrix M whose columns
are the vectors r[, r\ . . . r*h the matrix MA

of the same vectors after the rotation will be

MA=M+dA*XM. (9)

The cross product is simply the matrix whose
columns are the vectors of the cross product
dA* X r*j.

If M has as columns the three unit vectors
of the Xi—Xj} system (the X system after the
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parallel displacement), it is clear that MA will
be the matrix of rotation so that

(X'-Xti-x^MU^ix'-xl), (10)

xl being the coordinates of the initial point of
the geodetic system.

But then M=I (the unit matrix) so that
equation (9) gives the matrix

1 -dA3 dA2

dA3 1 -dA1

•dA2 dA1 1

(11)

In our case if dA is the magnitude of the
error in A, then

dAi=dA(—cos 0o cos Xo, —cos <fo sin Xo, —sin fo)

and we obtain the matrix in equation (12).
This matrix is not orthonormal since the

second and higher order terms of dA have been
disregarded. However, since dA is expected
to be less than 1", which is about 5X10~8, the
discrepancies will arise in the 11th decimal.

If we then introduce the values of M*u)f
to equation (10), we get:

X1 = XI + xl + [sin ntf-xl)-
cos <po sin Xo(â —Xo)] dA,

cos ¥* cos XoCz3—xl)] dA,

X3 = XI + 3? +[cos ft sin \i{xx-x\)-
cos ft cos Xotx2—xl)] dA.

(13)

The formulas are correct to at least 10"10.

The computation ellipsoid (and thus the
geodetic system), as defined by the origin of
the system, will be parallel to the terrestrial
ellipsoid and the terrestrial system, if we assume
no error in the astronomic azimuth. Since the
triangulation is calculated on the same com-

putation ellipsoid, there is apparently no reason
for any tilt between the computation and the
terrestrial ellipsoid.

Indeed, that would be the case if the coordi-
nates of the different points were computed
with a consistent geometric method. How-
ever, the measurements are made with reference
to the geoid, while the computations are made
on the ellipsoid. Furthermore, the heights are
measured by leveling and are measured from
the geoid. This means that there is a kind of
distortion in the triangulation net.

If the computation ellipsoid is very near the
geoid over the area of the triangulation, the
distortion will be minimum. It is possible,
however, that the computation ellipsoid may
be tilted with respect to the mean geoid over
the area. This would happen if, on account
of local attraction at the origin of the system,
the geoid were very rough and thus the true
vertical were tilted from a mean vertical by
an amount d% (and drj) (fig. 4).

Since heights of points are measured from
the geoid, we must tilt the computation ellipsoid
so that the computed position Q[ is on the
true point Qt. This means a tilt around point
Qo by d£ (and drf). This tilt will bring an
inconsistency in that the computed direction
of the pole (axis z8) will not be the one that
has been .observed.

We must notice, however, that the angle dl
(and drj) will be zero or very near zero, if we
have corrected the heights to those correspond-
ing to the computation ellipsoid, e.g., by making
astronomic leveling; or if we have corrected
for the deflection of the vertical and hence for
the local attraction by, e.g., a gravity survey
around the initial point of the system.

Let d£ and <Zij be the magnitude of the tilt.
The vectors of rotation dp rfij' will be

<££'=<2g(sm Xo, —cos Xo, 0),

drit=dn(—sin ft, cos Xo, —sin ft, sin Xo, cos ft),

with positive direction to the west for
to the north for drj*.

and

1 +dA sin <po —dA cos ft sin

—dA sintpo 1 +dA cos

te dA cos ft sin Xo — dA cos ft cos Xo 1

(12)
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Normal
Mean
vertical
True

vertical

We can compute the rotation matrices M(£) and
M(v) with the help of equation (11), replacing
dA* with d? and dnf.

FIGURE 4.—Tilt of the computation ellipsoid.

X* - XI - i$)=M\»i(x'-xl)

We then obtain equations (14) and (15).

Thus if we consider only the effect of d£ or
dt\ we will have

The total rotation from the effect of dA,
£, and di\, will be

1

0

jl£ cos

0

1

sin

—d£ cos

—d% sin

1

1 — di\ cos ô

dq cos ^ 1

jitl sin b̂ sin Xo —dy sin D̂ COS

—di\ sin ^ sin Xô

dti sin >̂ cos

(14)

(15)
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(since we have eliminated second order terms
the order of multiplication does not affect the
result), or as in equation (16).

If we include all three errors of orientation,
dA, dZ, dy, then equation (10) will be written as

(17)

or

(x'-xo>). (17a)

Grouping the terms, if g* is the vector (dA,
dl-, dti) we get

or

X 1 = x1 -{- ̂ c +[s in <po(x2—xl) —

cos <po sin ^ ( x 3 — X<J)]GL4 —

[cos Xotx3—Xo)] <2£—[cos ^(x2—Xo) +

sin <po sin ^(x3—x§)] dtj, (18a)

X 2 = x2 -f- X% -\-[—sin ^(x1—a-J) +

cos <po cos X0(x
3—X3,)] dA —

[sin XoOc3—xl)] tf£+[cos ^o(xx—xj) +

sin <po cos X0(x
3—x§)] dij, (18b)

*\. — Js ~\~ ^\.^~p"^COS ip§ S i l l A0^X """XQ^ ™~"

COS ^ ) COS Ao îf/ ~~~iCQ^ J (Ijfx ~y~

[cos Xo(xl—xj) + sin X0(x
2—x§)] rfj +

[sin #0 sin Xo(x*—xl) —

sin #> cos Xo(x2—x§)] 1̂7. (18c)

Let us now consider the effect of an error in
scale. Since triangulation schemes are scaled
by geodetic base lines, nonconnected triangula-
tions may be at different scales.

Then, again eliminating second-order terms,
we should add « (x*—xj) to equation (18). With
Ax' used for (xi—xj1), the final equations of
transformation will become

X* = xl -\- Xc + G)g} + eAx', (19)

or

X1 = x1 -f Xh + (sin poAx2 —

cos <po sin XoAx^d-A — (cos XoAx*)d{ —

(cos *?oAx2 + sin <p0 sin XoAx3)^ + «Axl,

(19a)

A = X -f- .A£ -j- v— Sin ^oAX -|-

cos <po cos \)Ax3)dA — (sin XoAx*)rff -f-

(cos ^oAx1 + sin <p0 cos XoAx3)^ + eAx2,
(19b)

(19c)

cos <p0 cos XoAx 2 )^ + (cos XoAx

sin XoAx2)^ + (sin >̂0 sin

sin $9o cos \>Ax2)dr) + eAx3;

or also,

X< = x* + XJ. + ( - /)Ax' + e • Ax*. (20)

Finally, we have another group of systems of
rectangular coordinates, which are parallel to
the geocentric but have their origin at a partic-
ular station Q. Such a system will be called
"topocentric" and will be designated by a prime
accent. If we refer to terrestrial coordinates,
the transformation is given by the relation

Similarly, in geodetic coordinates we have

-dA sin <po-\-dr) cos <p

dA cos <po sin Ao+^£ cos \o-\-drj sin <po sin

dA sin ipo—

dA cos ipo sin

cos <pa

1
—dq sin <po cos Xo

—dA cos v>o sin Xo—d£ cosXo—dq sin ̂  sinXo

dA cos v3o sin Xo—d£ sin Xo-f cfij sin v?o cos Xo |« (16)

1 •}
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Accuracy of the transformations.—The trans-
formation from one coordinate system to an-
other requires that we use a number of para-
meters that are derived from observations and
theory. We shall try to estimate the expected
accuracy of the transformed coordinates, using
the accuracy with which the parameters are
known.

In making transformations from the X sys-
tem to the Y, from the expression

we get the equation

dY<=dM\ ,X>- (21)

Taking the differentials of the elements of the
matrix Mum), we obtain equation (21a). Since
the values of x and y are small, we can eliminate
the second-order terms so that

0 0 -dx"*\

0 0 dy

jix —dy 0 >
and therefore

dY*

ro

o

0

0

dy

-dx''

dy

0 «,

X* (22)

I t is not easy to estimate the accuracy with
which the coordinates x and y of the pole are
given. We accept ±0?02 as a measure of the

accuracy (Melchior, 1954, p. 36). With this
value for dx and dy we have, for points on the
surface of the earth, errors (expected) of about
0.40 meters for the transformation to the Y
system.

When we perform the transformation from
the Y (or X) to the Z system, we have

oJ'. (23)
We evaluate:

r —sin tdt —cos t

cos tdt —sin tdt

0 0
and therefore
CdZl~\ f—sin tdt —cos tdt 0

dZ2 cos tdt —sin tdt 0

0 0 0.

F 2

LF3J
(24)

This formula is correct if Y* has no errors.
But from equation (21) we see that Y* has the
error dY* so that equation (23) must be written

or, if we replace dY* from equation (21), as

Since F'~X<,

Or we have the matrix shown in (24a).

"—sin xdx sin y cos xdx-\- cosy sin xdx sin x cos ydy—cosy cos xdx

0 — sin ydy cos ydy • (21a)

.cos xdx — cos x cos ydy-\- sin x sin ydx — cos x sin ydy—sin x cos ydxj

Therefore

cos

sin

, 0

t

t

—sin

cos

0

t

t
or
0

i

0

0

Jx

0 — dx*

0 dy

—dy 0j

= 0

jlx

0 —cos

0 —sin

—dy

tdx— sin

tdx +cos

0

r—sin <d£ —cos 2cft —cos &fa —sin ^y"

cos tdt —sin <</< —sin fcfc -f-cos tdy

dx —dy 0

(24a)
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Or, finally we have the form shown in equation
(25).

Note that we could obtain the same result by
taking the differentials of the elements of the
matrix M\XZ)} from equation (4) and eliminating
the terms of second order.

The study of the accuracy of the angle t is
very complicated. The apparent sidereal time
of Greenwich is the hour angle of the apparent
equinox T • It is related to the rotation of the
earth and can be determined directly by astro-
nomic observations at Greenwich.

In practice, however, we use Universal Time
from which we find the apparent sidereal time
at Greenwich by using the special tables in the
ephemerides. This transformation is based on
Newcomb's tables. Universal Time itself is
obtained in the opposite manner, i.e., from the
apparent sidereal time as determined from
astronomic observations which have been trans-
formed to Universal Time (mean time) with the
same tables.

At first glance we might think that since the
apparent sidereal time is determined directly
(the use of the mean time as an intermediate
stage has no effect) it is given with the ac-
curacy of the observations themselves. This
is not true, however, mainly because the ob-
served values of the sidereal time have been
smoothed to make them agree more closely with
the time given by the clocks, to obtain a time as
nearly uniform as possible. This smoothing
eliminates the effect of changes in the rotation
of the earth, at least those of short period.

I t is obvious that the effect of the secular
deceleration of the earth, as well as of the effect
of the term B of fluctuation (Jones, 1939), is
zero, since both have an extremely slow effect
and UT is not corrected, for the moment, for
this effect. However, corrections for the sea-
sonal variations are applied according to the
resolutions of the International Astronomical
Union at the Dublin assembly. These correc-
tions (ATs) are published in advance in the
Bulletin Horaire. Since we do not require
a uniform time, but the true angle of the point
T, we must not use UT2 and convert it to the
sidereal time but, instead, we must use UTl
which is not corrected for ATs. Since the
radio time signals refer to UT2, we must apply
the correction — ATs to obtain UTl.

In analyzing the errors, we find that they
result from errors in the astronomic observa-
tions made at the observatories of the B.I.H.,
and from the very short period irregularities
of the rotation of the earth. Since we smooth
our results we do not know how much of the
error derives from each of these two categories.

We assume that the B.I.H. can provide the
sidereal time with an accuracy better than
± Of007. How accurately we can determine
the time of an observation is another question.

Expressing the estimated errors in radians,
we have

dx=dy= ±0.1 X10"6

dt = ±0.5X10-'

so that equation (25) becomes equation (25a).

dZ2

dZ2

Or

dZ2

r—sin tdt —cos tdt —cos tdx —sin tdy'

cos tdt —sin tdt —sin tdx +cos tdy

dx —dy 0 _

=F0.5 sin < 3=0.5 cos * =F0.1(cos £+sin t)

±0.5 cos £ =F0.5 sin t ±0.1 (cos t—sin t)

L ±0.1 T0.1 0

f—Xl sin *—X2 cos t —X3 cos * — X3 sin *

X1 cos t—X2 sin < X3 sin * X s cos *

0 X1 X2 s

'X1'

X2 (25)

X2

dx

.dyJ

(25a)

(26)
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For a point at 0=40°, X=45°, H=0 and
for a sidereal time <=3h, we get a total uncer-
tainty in position of about 2.6 meters.

Equation (25) may also be written in the
form of equation (26), or

dZl=Mt

CdV

dx

If V{t, x, y) is the variance of t, x, y, then the
variance V{Z*} will be

(27)

Disregarding the errors in x and y, we obtain
equation (28) where <rt is the standard error in
t, of the order of 0.5 X1O~6.

In transforming from the Z to the W system
or vice versa, one should expect to introduce
errors arising from errors in the values of the
astronomical constants (precession, etc.). This
source of error is more apparent than real,
however, since such errors will be eliminated
when we determine from observations the
position of the mean pole and the sidereal
time.

Determination of directions.—Since the stars
lie at so great a distance from the earth, the
direction of a star is the same from the center
of the earth as from any station on its surface.

The directions of the stars are given in the
various catalogs or ephemerides in the W or
Z system, as right ascension (R.A.) and de-
clination. Therefore we know the direction
of the line connecting the center of the earth
with the star; this direction is the same as
that of the line connecting any station on the
earth with the star.

In determining directions, if we use the Z
system of coordinates we must use the true
positions of the stars for the time of observation,
i.e., referred to the equinox of the epoch. This
direction (defined with a and 8) is the true and
not the apparent. To get the apparent direction
we must correct for aberration as well, or use the
apparent positions of the stars.

If we use the W system of coordinates, we
must use the mean positions of the stars for the
epoch TQ. The mean positions must be cor-

t
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I
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rected only for the proper motions of the stars,
and if we need the apparent directions we must
correct also for aberration.

The fact that a star has the same (known)
direction from all stations on the earth indicates a
method by which we can determine the direction
of an object from a station in the sidereal
system.

Let Q be the station and S be the object
(fig. 5). Also let the object be in front of a

FIGURE 5.—Directions in the sidereal coordinate system.

fictitious star whose topocentric position is
(a',8'). It is obvious that the direction of the
line^Q/S will be given by a' and 8f.

If the direction cosines of QS in the Z system
are

Z^cos a1

Z2=cos a2

Z*=cos a9,

we have the following simple relations between
Z<>nd a'fi'i

Z^cos 8' cos a'

and

Z2=cos 8' sin a'

Z»=sin 8'

sin 5'=Z8

tan a'=ji*

(29)

(30)

Using equation (3) we can find the direction
cosines m* in the Y system by making Zl a unit
vector. We then obtain

m1=cos 8' cos (a'—t),

TO2=COS 8' sin (a'—t),

TO8=sin 8'.

When we introduce 8=a—t= — (t—a)=GHA,
we obtain

TO1=COS 8' cos 8',

m*=cos 8' sin 8*, (31)

TO8=sin 8',
and

, _ m 2

TO1

sin 8'=TO8.

(32)

Similarly, we get the direction cosines n* in
the X system by using equation (2). We obtain

n 1=+sin x sin S'+cos x cos 8' cos 8',

n*— —cos x sin y sin 5'+sin x sin y cos 5' cos 6'+

cos y cos 5' sin 6', (33)

n8= -f-sin tf sin y cos 8'—sin x cos y cos 8' cos 0'+

cos x cos y sin 8'',
and

n2 cos y+n3 sin y ^
n1 cos z-f sin x n2 sin y—sin x ns cos y

sin 8'=nl sin x—cos x n2 sin y+cos x n8 cos y.
(34)

To obtain directions in the X system, we get
the direction cosines q* in the geodetic system X
by using equation (17) in the form

(35)

or

q1=nl + (—n2 sin «* -f n3 cos <po sin \t)dA-\-

(n3 cos Xo)d£+ (n2 cos ^ +

2 = n 2 + (n1 sin «% — n8 cos «* sin

(n8 sin Xo)d$+ (—n1 cos <po—

n3 sin W) cos \))drif

(36a)

(36b)
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gs=n3 + (—nl cos ipo sin Xo + n2 cos <po sin

(—n1 cos Xo — n2 sin Xo)</£+

(n1 sin <po sin Xo — n2 sin ̂  sin Xo)rfi7. (36c)

The big advantage of using the sidereal sys-
tem of coordinates lies in the fact that we can
get the direction of an object in this system
directly from a photographic method sug-
gested by V&isala (1946).

The object is photographed with a metric
camera, with the stars as background. Using
the methods of photographic astrometry we
find the topocentric apparent R.A. a' and dec-
lination 5' of the object. These values of a'
and 5' then define the direction of the line
Q-S. By using formulas (29) we can find the
direction of the line between station and object
with respect to the Z system of coordinates.

If we wish we can determine the direction in
the Y, X, or X system by using formulas (31),
(33), or (36), provided we know the parameters
that relate these systems with the Z system, i.e.,
t, x, y, dA, d£, and drj. The effect of these param-
eters is small but we must know the time of
the observation in order to determine t to better
than 10 msec to have positional errors smaller
than 5 meters. However, as another alternative
we can fix the camera in the X (or the X) system,
determine the orientation of the camera, using
the stars in the same X system, and then deter-
mine the direction of the object, knowing the
orientation of the camera. In this case the time
of the observation is not needed.

A source of error is the possible error in the
positions of the stars used as reference, as given
in the various star catalogs.

Since the FK3 catalog (Dritter Fundamen-
talkatalog, 1937, 1938) is used for the definition
of time, it must also be used for computing
the apparent places of stars.

When we say the sidereal time is the hour
angle of point T, we must make it clear that
the point T itself is not observed. The stars
are observed; and knowing the R.A. of the
stars we can find the hour angle of T . In
other words, our Z system of coordinates is
defined by the coordinates of a number of
stars from one catalog and by the constants
of precession, nutation, and aberration as well
as by the proper motions that we have assumed.

We might more correctly say that the point
whose hour angle gives the sidereal time is not
the intersection of the planes of the equator
and the ecliptic, but the mean of the points
defined as being — at from the stars.

So if we change the catalog from which we
take our data, we change also our system of
reference and our Z system. Corrections exist
which enable one to shift from one catalog to
another, and the same corrections should be
applied to change from the Z system defined
by the one catalog to the system defined by
another.

Unfortunately the FK3 catalog that should
be used contains only 1,500 stars, which are
not always enough for our purpose. If we
use a camera with long focus and a small field
of view it is very probable that we will not
observe a large enough number of stars in-
cluded in FK3. For this reason we will be
obliged to use additional stars that do not
belong to FK3, and must reduce their positions
to the FK3 system.

It is very difficult to say what the degree of
accuracy is within the FK3 system. The in-
ternal errors are mainly accidental. Some
systematic errors exist, resulting from errors
in the astronomical constants, but these will
be eliminated, since the Z system is defined
with the same constants (the same errors with
opposite sign are also made in the determina-
tion of the time). This is also true for the
errors Aaa that are partly eliminated in the
same way.

The observations

Although for orbiting objects the dynamic
quantities (e.g., velocities) can be measured,
this discussion will deal only with the measur-
able geometric quantities, i.e., distances and
angles or directions.

Measurement of distances.—The only possible
way to measure directly the distance to the
object seems to be to use electromagnetic
waves, or radar. The electromagnetic waves
are reflected from the object and we measure
the time needed for the waves to travel the
double distance. Knowing the velocity of the
electromagnetic waves, we can find the distance.

Better results can be obtained if the object
carries a receiver-transmitter (transponder) to
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send back the signal. Both the pulse system
(Shoran, Hiran) (Canada, 1955) and the phase
system (Raydist) (Comstock and Hastings,
1952) can be used.

The accuracy of the distances thus measured
depends on two things: the accuracy with
which we can measure the small time interval
the wave needs to travel; and the accuracy
with which we know the velocity of the wave
in the medium traveled. The distance r will
be given by the equation

r=~ (37)

where Vm is the mean velocity along the path
and T the time interval.

Differentiating, we obtain:

or
1 v A MdV- (38)

The value of Vn is about 0.3 X109 m/sec,
and if T can be measured within ±0.02 msec,
the distances will be given within ± 3 meters.

An error dVm causes an error proportional
to the distance. Vm is computed from the
value of c (velocity in vacuum) by applying
a correction for the index of refraction. The
latest value of c, accepted by the International
Association of Geodesy at Toronto in 1957,
gives c=299,792.5±0.4 km/sec, which gives a
value of dc/c= 1.3 XI 0~fl. However, the value
of dVm/Vm will be higher than that and prob-
ably of the order of 10~8, because of uncertain-
ties in the index of refraction. Furthermore,
the curvature of the path will cause additional
errors.

Finally, we must consider possible errors in
the timing of the observations if the object is
moving (compare with p. 112, where this prob-
lem is treated for the measurement of direc-
tions). Since time is a parameter, we will
include the effect of an error in timing in the
errors of the observed quantities, by using
time as the independent variable.

If f is the change of the observed distance
per unit of time and o? the variance of timing,
the variance of r will be

and this value should be added to the variance
<J? as given from an analysis of the accuracy
of distance measurements to fixed points; thus

(39)

The value of f can be easily obtained if we
have continuous observations.

Optical measurement of directions.—Measure-
ments by the optical method can be referred
either to a system of local coordinates (for
example, azimuth and zenith distance) or to a
system of universal coordinates, such as ap-
parent right ascension and declination (see
p. 108 ff.).

Directions may be obtained from photographs
taken with a calibrated camera. With the
methods of terrestrial photogrammetry we can
use a camera with known elements of exterior
orientation. From the picture we can get the
direction of a photographed object analytically
by measuring the photographic plates with a
comparator or directly by using a photo-
goniometer.

The directions so obtained will refer to
the horizontal system h* of the station and
thus will be affected by the deflection of the
vertical. We can get directions in a general
system if we photograph the object with the
stars as background. With the help of the
stars we will find the apparent right ascension
and declination, i.e., the directions in the
sidereal system Z of coordinates. Those direc-
tions can be transformed to any other system
with the equations given on page 108 ff. The
determination of apparent positions with the
help of photography is a common method in
astronomy; a summary of the techniques can
be found in Smart (1956, chapter 12).

For geodetic applications, the observed
object will be moving with respect to the
stars, and the timing of the exposure is highly
important. Since the stars and (usually) the
object itself will not be very bright, the exposure
will vary from a fraction of a second to some
seconds, depending on the camera. On the
other hand, we must know the timing of the
exposure to within about 1 millisecond, de-
pending on the apparent velocity of the moving
object.
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Various methods can be used.
a. The camera is equatorially mounted and follows

the stare; thus the image of the object will be a trail.
With the help of a special shutter, the trail will be
interrupted and the timing of the interruptions will be
taken.

b. The camera follows the stars, and the relative
motion of the object is compensated with a rotating
plate. The time is taken when the rotating plate is in
the normal position; this method is used by Markowitz
(1954).

c.The camera is kept fixed so that both the stars and
the object produce trails as images. The trails will
be interrupted for timing with a special shutter.

d. The camera follows the stars while the object
(invisible) produce flashes at known times and prefer-
ably at equal intervals. Then the plate will contain
point images of the stare as well as point images of the
flashes. This method has been proposed by Vais&la
(1946) and by Atkinson (in 1957).

Methods (a) and (c) can always be used,
provided the trail of the object is bright enough
to be photographed. Method (b) requires
that the relative motion of the object be known.
But even if the motion is not completely
known, the method will be a help in photo-
graphing fainter objects, since the trail will be
much smaller. Method (d) applies only to a
specially instrumented object.

Figure 6 gives a schematic version of plates
taken with the different methods.

! /

! / !

1 / ,

!

i

i

FIGURE 6.—Schematic version of moving objects photographed
with four methods.

Alternative methods exist. Instead of using
a rotating plate to integrate the light of the
object and thus increase the effectiveness of the
optics, the camera can follow the object. This
principle is used in the Baker-Nunn satellite
tracking camera (Henize, 1957). Also, for a
flashing object the camera may be kept fixed;
the stars will then produce trails and the object
will give point images. If a shutter is used to
interrupt the trail (of the object or the stars), a
correction must be applied either to the posi-
tions or to the time, to allow for the fact that
the shutter has a finite speed.

Electronic measurement of directions.—Elec-
tronic methods using the principle of inter-
ference have also been developed to determine
the direction of an object which has a trans-
mitter. The Minitrack system (Easton, 1957)
is perhaps the best of this type. Such methods
give the directions with respect to a local
system of antennas, specially arranged and
fixed on the ground. By careful and repeated
calibrations, however, they can give directions
in a general system such as the terrestrial or
even the sidereal system.

The accuracy of these electronic methods, at
present, is low. Minitrack can provide direc-
tions accurate to within one or two minutes of
arc, which is low for geodetic applications.
Electronic direction methods probably cannot
be used, but observations made with electronic
systems could give valuable information re-
garding the variation of the orbital elements,
and as such they can be used as described on
page 140.

Since conventional radar will give at best
an accuracy of ±0°l, its use is out of the
question. A possible method using electronic
optical observations is discussed by Merrill
(1956).

Correlations between the observed quantities.—
If the measurements on the photographic plate
were made with equal accuracy to every direc-
tion and there were no errors of timing, the
values of a' cos 8' and 5' would be determined
with the same weight. However, the position
of the image of the object on the plate is not
likely to be determined with the same accuracy
in the direction of the apparent motion as in
the perpendicular direction. This is more
obvious in the case of the methods (a) and (c)
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on page 112, because the image is in the form of
an interrupted line.

Also, we must introduce the effect of errors
in timing. Since time is a parameter, we will
introduce the error of the timing in the posi-
tions observed, but such an error will affect the
accuracy only in the direction of the orbit.

We introduce a coordinate system x and $ on
the plate oriented along the orbit (fig. 7) which

c>, we will have

V

\

AS'

f\ V Aa*

X

t

COS 5 '

FIGURE 7.—Orientation of the coordinate systems x and
along the orbit.

makes an angle <p with the axis of R.A. We
assume that the standard error in the direc-
tion of x is A: times the standard error a in the
perpendicular direction f. The value of k
will depend on the image and on the standard
error of timing. It can be evaluated as follows.

If because of the shape of the image alone the
standard error in the direction of the orbit is p
times the standard error in the perpendicular
direction, and the standard error in timing is

or
(40)

where x is the change of x per unit of time (x
can be evaluated from the plate directly).

If the image of the object is a point, p will be
1. Otherwise, it must be determined experi-
mentally, or taken as 1.

The axes x and 4> being the primary axes of
the error ellipse, we have

(41)

and since

\Aa' cos i'J \cos <p —sin <p/ \w \w

therefore

or as shown in equations (42) and (43).

We have found the variance of a' cos h' and &'
as well as the variance of r for the effect of the
errors in timing. To complete this analysis of
the correlations, we must find the variance of a'
cos 5', 5', and r as a whole, since all three elements
are correlated.

We begin with the fact that if we have a num-
ber of reasons to introduce errors to a vector
with the partial variances Vt, V9, . . ., the total
variance of the vector will be the sum of the
partial variances. Let Aa' cos 6', A5', and Ar
be a system of coordinates having its origin at
the object, and parallel to the directions of the

and 8inceP=F~1 ,

cos2 (p (1c2 — 1)sin tpcos $>]

tp k* cos2 ̂ >-f sin* <p J

r . , I . , / . i\ .

cos2 *>+p sin2 ip ( 1 — p j sin <p cos <p

( 1 —TJ ) sin <p cos <p sin2 9+15 cos2 *p

(42)

(43)
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apparent R.A., declination, and radius vector
(fig. 8).

Ar

FIGURE 8.—Orientation of the velocity vector.

Let <r be the standard error in the measure-
ment of the directions 8' and a' cos 8' (assumed
to be equal) and at the standard error of the
distance measurements. If the object were not
moving, the variance of &', a' cos 8', r would be

8' ^ Co2 0 0

Vi- a' cos 8'

r

0 a3 0

0 0 <r*

(44)

This represents an ellipsoid of revolution.
Further, let w be the relative velocity of the

object with respect to the observer, the direction

of the velocity being defined in our coordinate
system with the angles <p and i (fig. 8).

An error in the timing will introduce new
errors in the position. As has already been
pointed out, the errors in timing are introduced
in the observations, since time is kept as a
parameter. The errors thus introduced will be
waT in the direction of the velocity. They will
represent an error ellipsoid that has become a
segment of a straight line.

If we introduce the system of coordinates x,
\p, w as in figure 8 (the axis x to the direction of
to), the variance in x, $, « will be

0 0

0 0 0

0 OJ

but equation (45a) shows that the variance
expressed in 5', a' cos 8', r will be

5'

(45)

V2 a' cos 5' E'.

Or, the variance V* will be that shown in equa-
tion (46), and the total variance will be

or that of equation (47).

AS'

Aa' cos 5'

Ar .

sin <p cos i co8<p —Bin % s in <p

r r r

cos (p cos i —sin <p —sin i cos <p

r

sin i 0

r

cos i

=E (45a)

~2 sin2 <p c o s 2 1
1 . . . . 1 . . . ."
~2 sm <p cos* % sm <p - sin <p cos i sin %

1 , . . 1 , , .
-5 cos tp cos1* t sm <p -j- cosz ^ cosz i - cos <p cos i sin i

1 . . . . 1 . . . . . .
- sm <p cos % sin % - cos <p cos i sin i smz i

(46)

rr ~i sir
. gW2 . ,

% <XJI —jr s in ^ cos ip cos

^ 2

rs sin 9 cos £ sin

T -j cos <p sin <p cos2 i a2 + <rr -j cos2 >̂ cos2 i <r| -g- cos >̂ cos £ sin i

r̂ - j sin >̂ cos i sin i o-| - j cos <p cos ^ sin i
r" r*

sin2

(47)
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Introducing the rate of change 6', it' cos &',
and f, we obtain the variance as written in
equation (48).

The weight matrix is obtained as

P=V~l.

We may make the following comments on
these methods:

Equations (39) and (42) are special cases of the gen-
eral equation (47).

If the standard errors in R.A. and declination are
not equal, this fact can easily be taken into account.

From equation (47) we have eliminated the effect of
the image (coefficient p), but this effect can also be
taken into account.

Similarly, we could also introduce the effect of errors
from refraction, since they will also introduce more
correlations. However, this effect will not be significant
from a practical point of view.

Reduction of observations to the station.—
Sometimes the instruments used to measure
directions or distances are not centered at the
station but are placed eccentrically (in general
not far from the station). Since different in-
struments are needed to measure directions
and distances, it will be impossible to have
both instruments at the same point. We will,
therefore, have to reduce the observations made
at the eccentric station. The reduction will be
given by a differential formula (see p. 114 ff.).

If we call &'„ a',, rt the values observed at the
eccentric station with coordinates X\, and i',
a', r are the observations that would have been
made from the true station with coordinates
X£, then we will have the formula shown in
equation (49).

Correction for aberration.—Usually the object
will be moving with respect to the observer and
its velocity will be rather high (the velocity of
the artificial satellites is of the order of 8 km/
sec). This relative motion will introduce an
aberration effect which will apparently displace
the ray of light.

We could correct for the effect of aberration
by the method used in astronomy for observa-
tions of planets and comets (planetary aber-
ration), and apply a correction to the time of
the observations instead of correcting the
observed directions. However, if we wish to
keep the time of the observation unconnected,
we must apply the corrections to the observed
quantities &' and a!. In this case, let Q and S
be the positions of the station and the object
(fig. 9); let V© be the velocity of the earth with
respect to the sun, VI be the velocity of the
observer with respect to the earth, V* be the
velocity of the object with respect to the
earth, and V& be its total velocity, VQ+V.

The velocity of the object with respect to the
observer will then be

The total correction for the aberration will be
e (fig. 9) and will have the value

tocos i (50)

w cos i being the projection of w on the plane
perpendicular to QS, and c the velocity of light.
It will lie on the plane defined by w* and Q.

We introduce the system of coordinates
Aa' cos 6', A5', Ar to the point S, the same

1 ^ ' ( a ' c o s $') o\h'r

rid'(a'COS8') o*+o*T(a' COS «')» a\(a' cosa ' ) r

o\h'r <rr(af cos 6')r

(48)

6'

J

sin 6',

rt

COS 0
r, cos 8', r, cos 6i

„ CO8 0J cos 8', sin 9i cos 8't sin 6 ^ l » ^ « — • " t t

(49)
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Apparent direction^
of object and star

vi

FIGURE 9.—Correction for aberration.

system given on page 114 ff. If wm, wt, w, are the
components of w* in the three new axes, then

wa=w cos i cos 4>

wt—w cos i sin <f>

wr=w sin t.

Then the corrections e to a', 8', r will be

v>a 1

In the case of photographic determination of
the directions, it will be easy to find the values
of wa and Wt bv measuring on the plate the
change a and 8' of a' and h' with time. We
have then

ccos5
(52)

c cos 8

. , = * : .

(51)

(See footnote.1)

'Some explanation most be given for this formula. It may seem
ridiculous to apply a correction for the velocity of light to the measure-
ment of distances. Actually, no measurement can be made instan-
taneously, and e should be the. . . velocity of the used yardstick! Since
the distances will be measured with electromagnetic waves we must use
the velocity of light. Notice, also, that if for the time of the observation
we take the mean time between the emission and the reception of the
signal, the correction will be zero.
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When the directions are obtained by the use
of stars, as described on page 111, we will get
the apparent direction of the object if the posi-
tions of the stars are also apparent. We then
apply the corrections given by equation (51)
to find the true position (or true direction) of
the object. It will be more convenient, how-
ever, and will avoid many computations if
we use the true rather than the apparent
positions of the stars. In this case (fig. 9) we
must add (or subtract the negative of) the
effect of the aberration of the stars, i.e., the
effect of the motion of the observer with re-
spect to the sun (annual and diurnal aberration).
This means that we must use V*3 instead of
to*. Thus we compute the position of the
object by using the true positions of the stars;
we then apply the correction for the annual
aberration for the position of the object as
well as the diurnal aberration, and finally
apply the correction for the aberration of the
object according to equation (51).

Since the diurnal aberration is less than
0?3, it will in most cases be negligible. The
annual aberration can be computed by Bessel's
method:

Cc+Dd in R.A.

Cc'-\-Ddr in declination.

We could further simplify the computations
if instead of using the true position of the stars
we use the mean position for a given epoch,
but the positions of the stars should be corrected
for their proper motions.

The position of the object, thus determined,
and corrected for the annual aberration as well
as for the aberration of its own velocity, will
be the mean position for the given epoch,
and thus will refer to the W system of coordi-
nates. We can then compute the true position
of the object by using known methods of reduc-
tion, such as Bessel's method, if we want our
directions to refer to the Z system rather than
the W.

Correction for optical refraction.—Although
the observed objects will be at rather high
altitudes, the optical rays will have to pass
through the atmosphere and thus undergo a
curvature. The existing formulas for the cor-
rections for astronomic and geodetic refraction

cannot be applied in our case, because they
assume that the observed object is either at
infinity or at a rather small distance and low
altitude.

We will therefore try to find a formula that
can be applied for the intermediate case. We
will assume that the density of the atmosphere
p as a function of altitude H is given by the
relation,

log P=Kt H + K2. (53)

The observed values of p at different alti-
tudes H (Whipple, 1954) fit accurately enough
to those of equation (53) for heights up to 80
to 100 km. The results from the artificial
satellites for the density at heights of 200 to
600 km show an important deviation from the
values of equation (53) (Whitney, 1959), but
this does not affect our solution (see p. 118).

The coefficients Kx and Ka will be determined
experimentally. Or we can write

P=e

1 "~\ I -K-2
where a=-r4> O=-T-7M M

(M=log10«).

But if n is the index of refraction, (n— l)=Bp
according to Gladstone's law, and so

or
(n-l)=kettB, (54)

where it=.Be6=7io— 1, if iu> is n for H=0.

We assume that the index of refraction as a
function of the altitude H is given by equation
(54), k and a being coefficients whose values will
be determined experimentally.

Let Q (fig. 10) be the station and S the
observed object. The ray of light will follow
the curved line SMQ, and the observed zenith
distance will be Zo, the angle between the
vertical and the tangent to the curve at Q.
Also let 6 be the angle between the tangent at
any point M with the tangent at Q.

Assuming no curvature of the earth (this
assumption will hold for Z<45°), we have the
relation

=—tanZ—»n (55)
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Vertical

FIGURE 10.—Correction for refraction, when curvature of the
earth is not considered.

which, since Z will be constant, will give by
integration

= tan ZoQn nQ—In n). (56)

Since n is very near 1, we can expand the
equation so that

e= t anZ 0 [ (w 0 - l ) - (w- l ) ] . (57)

If we introduce a system of coordinates $ and
il so that | is the tangent at Q we have

^ = 6 = tan Z0[(n*-1) - (n-1)] (58)

or with the help of equation (54)

But since the angle e is small, we can replace
£ with r (r is the distance QS); thus H=r cos Z.

Then equation (58) is written

^ = & tan Zo—k tan Zo^C08 z», (59)

or

, = C\k tan Z0-

Integrating, we obtain

Thus we obtain an equation that expresses the
line followed by the ray of light:

»-*«•» ̂ H-

If R is the correction, we have tan i ? = |

since R is small, and if we replace $ with r we
get an equation which gives the correction for
the refraction R as a function of the zenith
distance Zo and distance r:

This is a general formula and can be applied
for any r provided Z<45°. We can find that
for r= oo (we have a<C0), the correction is
k tan Zo, which is the well-known astronomic
refraction.

For the constants, we take k=(n0—1) =
292X10"8 or 60T25 for the normal case (0°,
760 mm Hg), while for Kt of equation (53)
we have estimated from the work of Whipple
(1954) that Kx=— 0.06 km"1, which brings
a=-0 .1385 km"1.

Then for the normal case we get

For {=0, i7=0; therefore

#=60r25tanZo-435r0 ^ ^

(62)
where r is expressed in km.

From equation (57) we see that for an ob-
servation made at a height between 100 km
and infinity, the angle e will be

cioo= tan Z^oo—1),

and since (nl00— l)£^0.5X10-9=0!0001,

«ioo=0?0001 tan Z,

which proves that even for values of Z=80°,
the angle e^ will be less than 07001. This
means that we need not consider the atmos-
phere above a height of 100 km, since the errors
introduced by this neglect will be very much
smaller than the errors of our measurements.

As follows from equation (60), the curve of
the ray of light has an asymptote (fig. 11),
given by the expression,

acosZo
(63)
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FIGURE 11.—Asymptote of a refracted ray of light.

The curve will fast approach the asymptote.
With the assumed constants, the distance be-
tween the curve and the asymptote will be

6==0.0021tanZoe_0.1386eOBZot

cosZo

For positions of the object not far from Q the
elimination of the curvature of the earth (and
thus the curvature of the equal n layers) will
not have any important effect. This will be
true for points within Z^45° and # = 1 0 0 km.
In such a case, confusing H with r cos Z will not
have important effects. For points beyond this
limit, we cannot replace H with r cos Z. But
provided Z<45°, the curve will almost have
completed its shape when it reaches the height
of 100 km. In such an extreme case, the value
of b will be about 1 mm.

Actually, in this case, we could use the equa-
tion of the asymptote, and from it compute the
correction,

k tan Z0H

page 111 ff. the correction should be AR=€m—R8

or AR=Ba—Rs- We then obtain

(65)
COS

a cos Zor

We prefer to leave the formula for the correc-
tion as given in equation (61) since for points
at distances farther than our limit, the term
(1— eatoaZor) will differ from unity by only
10~9. Thus equation (61) holds also for every
value of r, provided Z<45°.

If the directions were obtained photographi-
cally with reference to stars, as described on

A nomogram (fig. 22) is given on page 158 for
this correction, which is always negative.

This correction will be in the zenith distance.
The correction in a' and 6' will be given by the
formulas

Ca=—AJ? sec h' sin g'

C,=— Aflcosg'

where g' is the apparent parallactic angle of the
object.

We may want also to consider the effect of
the earth's curvature. Since layers of equal
n have a curvature following the curvature of
the earth, the value of Z in equation (55) will
not be constant, and equation (56) will no
longer be its integral. The angle Z (fig. 12)
will be

and since the height of the atmosphere has
been taken as 100 km, « will be a small angle
so that

«=—tanZo,
p

where p is the radius of curvature of the earth
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S

FIGURE 12.—Correction for refraction, including the effect of the earth's curvature.

Then But €=-£ so that

. „ . „ fftan
tan Z=tan Zo j -

p cos*

(66)
ii=k tan Zo \d£ — Tc tan Zo [ef3[ -y

Thus equation (55) will be

, , rwdn. tan Zo
d€=—tan Zo—rn p cos2 Zo n

Integrating, we obtain

(67)
ap cos2 Zo

p cos* n

Also

and since

p cos 2 Zo Jo

dH cos Z'

tan2 Zo

0J

(68)

cos Z=cos ZO(1H H),

H.dH cos Zo p cos Zo

So equation (68) is written as in equation (68a).

n=> cos
ktan3 Zp
p2 cos3 Zo

f
p cos

3 ^ap cos3 Zo
(

J p cos3 Zo J Ha"dH-

2 2 i
ap2 cos2 Zo

fg g "^g+ A r t a n
2

Z ° fdf. (68a)
J ap cos2 Zo J
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Integrating and eliminating second order

( H*\terms containing —j- j , we obtain

, y /k tan Zo , k tan Zo

p cos Zo

k tan Zo

_kJ^nZo\ a

a?p cos3 Z o / '

ap cos Zo

The constant of integration is found from the
condition that at the origin 17=0. We get

finally equation (69) and thus, since R=% we
obtain equation (70).

Introducing the values of the constants, we
get equation (71) which gives the correction for
the refraction for values of Z up to perhaps 80°.
The last term usually can be neglected.

(All formulas given in this section are based
on normal conditions for the value of k. If the
temperature and pressure at the station are
different, k should be changed. A nomogram
(fig. 23) is given on page 159 for this correc-
tion. The height of the station Ho will not
change the results except for extremely high
altitudes. In such a case the integration must
begin from Ho.)

It can be seen that for Z0<C45°, equation (71)
gives practically the same correction as equa-
tion (62).

Formulas (69) to (71) will be correct for
Zo<75° (or perhaps 80°) and # < 1 0 0 km
since we have expanded Z in series and elimi-
nated second order terms. For i7>100 km,
as we have shown, the path of the ray will,
practically, already have taken its shape and
will follow the asymptote. The equation of
the asymptote will be

17 = (k tan Zo+— tan Zo sec2 Z^) ( +
\ ap /

- tan Zo sec Zo |~1 +— (2 sec2 Zo+tan2 Zo)T (72)
a L °P J

Thus the correction will be:

i? =it tan Zo + — tan Zo sec* Zo+ap

— tan Zo sec Zofl +— (2 sec2 Zo + tan\Zo)T (73)or [_ ap • J

But as with equation (61), we leave the
formula for the correction as given in equation
(71) since the additional terms will bring prac-
tically no change.

Thus we can check the fact that for points
at infinity we get

or
fi=60!25 tanZo—0T0682 tanZ0sec*Zo

#=60r i8 tanZ0-0!0682 tansZ0,

which is exactly the general formula of astro-
nomic refraction.

v=(ktfinZo)S+[— tanZosec2Zolf + -tanZoBecZori + — (2 sec* Zo + tan* Z0)"l ( 1 -\_ap j a [_ ap j

— tan Zo sec Z0(sec* Zo+ tan1 ZJHf*. (69)

R=k tan Z o +— tan Zo sec* Zo + — tan Zo sec Zo [~1 +— (2 sec1 Zo + tan* Zo)l (1 —
ap at [_ ap J

apr
tan Zo sec Z0(sec2 Zo + tan2Z0)HfB.

= 60T25 tanZo—0T0682 tan Zo sec* Zo—43570 sec Zo[l—0.00113(2 sec2 Zo+

tan* Zo)] (1 -e-0-W!Mwr)-0r0682 tan Zo sec Zo(sec2 Zo + tan* Zo) *j-e-°'13%6a.

(70)

(71)
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When the directions are obtained photo-
graphically with the stars as reference (p. I l l ) ,
the correction will be that given in equation
(74). The last term generally is negligible.
Also, since the term 0.00113 (tan2Z0+2 sec2Z0)
is about 0.04 for Z0=75°, we could say that in
most cases equation (65) will be sufficient.

Correction for electronic refraction.—The re-
fraction of electromagnetic waves in the earth's
atmosphere is a very complicated problem. It
depends on the wave length and also on the
dielectric condition of the air. Different ionized
layers exist at altitudes that vary with place
and time, where reflections and refractions occur.
This greatly complicates the problem. How-
ever, the shorter the wave length the less is the
influence of those layers. The directions thus
obtained with radio methods, as described on
page 112, must be corrected.

The distances obtained with radio methods
need two corrections, the first for the curvature
of the path followed by the electromagnetic
wave, and the second for the change of the
value of the velocity along the path.

These corrections have been studied (Jacob-
sen, 1951; Williams, 1951) for low altitudes for
applications in electronic geodesy (Shoran, etc.),
but it is very doubtful whether they can be
applied also in the case of high altitudes. With
the use of radio methods, however, the distances
will probably be more accurately measured than
the directions.

Observations to objects of known positions

Several methods exist for making observations
to objects of known positions.

Use of angles in space.—Let us consider first
the case in which we have observed angles to
three known positions. Let Su S2, St (fig. 13)
be the known positions of the object, and Q
the unknown station where the angles /3<12>,
/3UM, pm) have been observed.

FIGURE 13.—Determining the position of an object by use of
three angles in space.

In general there is a solution giving the
position of Q, provided Si, Sa, S3 are not
colinear. The problem is that of resection in
space, and Q will lie on the intersection of three
tores. The direct solution gives a system of
high order and is not applicable. This problem
is of great importance in photogrammetry. Of
the many solutions suggested, the best, which
has also the advantage of being easily general-
ized in a case of more than three known
points S, seems to be one in which we compu te
corrections dXl to an approximate position X*
of the point Q. This principle is very much
used ia geodesy.

Briefly, the solution is obtained as follows:
Let (jj_be the approximate position of Q.
Using Q and Si, S2, St, we compute the angles
is"2*, ^23), j ? 3 " . __

If Q is near Q and the corrections to Q are
dX* we obtain the equation:

5 C ^ 1 2 > dX*=coa /3(12>-cos J3<12) (75)

and two more equations with /3(23) and /3(S1).

[l-0.00113(tan2 Z 0 + 2 sec2 Z0)l (1 - « -« •»«" ) -

Z o + sec2 (74)



W0.» GEODETIC USES OF ARTIFICIAL SATELLITES 123

The coefficients of dX* ere of the form

d cos /3(>w

, r 1 cos
cosa*Us,—mrj

where a* is the direction angle of the line SQ.
The solution of this system of three equations

with three unknowns gives the correction
dX* to the approximate values ~X*.

The method can be generalized for the case
in which we have observed more than three
angles /3(iW. The solution will be obtained by
the method of least squares. We must notice,
however, that if equation (75) is applicable in
the case of three known points, it is not applic-
able if we must make an adjustment, since
cos put) is not the measured quantity. In
this case we must use equations with /3<iw

—jS*'*' since the angles /? are assumed to be
measured directly.

We must replace

dcos /3 m U U 5j8 d cos ft. d/3
XOT dX dcos/3*

We then get equations of the form

(76)

where

A (W cos a) 1 cos /3"*H
S, QS, J

cosaj |~ 1 cos/3a*H
sin/3«*>L<2S, QSk J

The accuracy of this method of determining
the position of the station depends on the
accuracy of the observations and on the net
configuration (the positions of the object are
assumed to be errorless).

An analysis to estimate the accuracy could
be made, but since this method will not be of
much use we shall not attempt it. The reader
may refer, however, to a similar study for photo-
grammetric applications (Doyle, 1957). We
may note, also, that if the different positions
of the object lie near a straight line (as happens
with an artificial satellite) the solution is
very weak.

Use of directions and distances.—Let ZQ
(fig. 14) be the coordinates of the station
Q, Z*s the coordinates of the object S, r* the
vector QS, and I* the direction cosines (unit
vector) in the Z system of the vector r1 cor-
responding to a! and 8'.

z'

FIGURE 14.—Relation between the positions of the station and
the object.

The equation relating the positions of Q and S is

or
S=ZJQ-\-I r. K*O

If the coordinates are referred to the terres-
trial system, we will have

A.8=j\.Q-x~n r. \io)

Again, since we almost always know the ap-
proximate positions, we will develop formulas
relating the corrections to the approximate co-
ordinates Z* or X* and use the method of varia-
tion of coordinates.

Differentiating equation (77) we get

where I* is a function of a' and 6'. Differenti-
ating equation (29) we get

dll=—(cos a' sin i')dir—(sin a' cos 6')daf,

dl*= — (sin a' sin 6')d8' + (cos a' cos h')da!, (80)

dl* = (cos 8')d8'.

Then equation (79) can be written in the
form shown in equations (81).

512692—60 8
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(dZ\—dZ1
Q) = — (cos a' sin V)r d8f—

(sin a')r cos V da'-\- (cos a' cos V)dr,
(dZ2

a-dZl) = - (sin a' sin 5')r d8' + (81)
(cos a')7 cos S' 6^'+ (sin a' cos 8~')dr,

(dZ%-dZl) = + (coB I')r d8'+
0+ (sin 8')dr.

Inverting the system (81) (the matrix is
orthonormal) we get

or

( I ) (<*Z|

(82)

dr=(cos a' cos 3') (dZ^
(sin a' cos 5') (dZI-
(Bint')(dZl-dZZ).

We will write this system

(82a)

In the Y system, assuming that t is known, we
replace a' with 0'=a'—t, and Z* with Y* and
find that

(83)

(sin ?' cos ? ) (dY%-dY%) +

LdrJ

(83a)

Equations (83) or (83a) can also be used for
the terrestrial (X) and geodetic (x) systems,
since the omitted terms will be of the order of
dXXlO'* (for dX=1000 meters we will omit
terms of 1 millimeter).

Hence we get

da'

with

(84)

cos 0' sin 5' sin 0' sin 8' cos 8'
r

sin0'
7 cos 5'

r
COS0'

7 cos 3'

cos 0' cos 5' sin 0' cos J'

and d8'=8'—5', da'=a'—a', dr=r—r, which
are the observed values minus those com-
puted from the approximate coordinates.

The computed values of 5', a', (or ?'), 7 can
be obtained from the rectangular coordinates
of the object, with the help of equations (30),
(32), (34), or (35), depending on the system in
which the coordinates are given. If the position
of the object is given in spherical coordinates
a, S, B, in the Z system, we can find the ap-
parent a', 1', (or 0'), 7 as follows (fig. 15):

(tana'—a)=tan (fi'—0)=

t 7/ cos (9'-tan o =

FA sin 0—F^cosfl
= = -= '

(85)

cos (0—0) cos 5

where

A=B cos 8—Tl cos 0—¥% sin 0.
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If from one station we have observed a', b'
and r of an object of known position, we can
find the position of the station with the help
of equation (84).

If we have observed from the same station
many positions j of the object and we have all
a'*, bf), r*, we adjust by the method of least
squares for the coordinates of the station by
using the appropriate weights and correlations,
if any.

Y1

FIGURE IS.—Topocentric and geocentric directions.

I t may happen that we do not observe both
directions and distances. If we observe only
directions, i.e., a'* and 8'*, for every observation
we will have two equations, the first two of
equation (84). If we have measured only the
distances r*, we will have for every observation
one equation, the last of equation (84).

We can also get a solution if we have
observed only declinations but we do not get a

complete solution if we have observed only
R.A., since a is independent of Xs.

The same equation (84) can be applied both
to problems of resection (i.e., from known
positions of the object compute the position of
the station) and to problems of intersection
(i.e., from known positions of stations compute
the position of the object). In the latter case,
since the object will be moving, we must
make the observations simultaneously from
all stations.

If we do not want the rectangular coordinates
of the station (or the object) but instead want
the ecliptic coordinates <p, X, H (or 5, a, R),
we must replace dX*Q with dtp, d\, dH (or dX*8

with dS, da, dB). We therefore introduce a
system of coordinates with origin at the approx-
imate point Q. The 3-axds is directed toward
the normal (zenith), the 2-axis is directed
toward north on the horizontal plane, and the
1-axis toward east.

We will call this system horizontal and we
will use the symbol h. We find that the relation
between this and the terrestrial system is given
by the formula of equation (86). Or,

"X* and ip, X being the coordinates of Q. By
using differential displacements, and since
dkl=N cos <p d\, dh?=pd<p, dh*=dH, we obtain
the matrix (87) or (88). Or,

*N cos <pd)C

pd<p

dH

dX*

'"—sin X cos X 0

—cos X sin ip —sin X sin ip cos <p

„. cos X cos ip sin X cos <p sin ip.

—sin X cos X 0

—cos X sin tp —sin X sin ip

w cos X cos tp sin X cos ip

*—iVsin X cos tp —p cos X sin ip cos X cos <p

JVcosXcos? —p sin X sin ip sin X cos ip

0 p c o s p sin??

(86)

dX* (87)

dip

[dHj

(88)
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dtp (88a)

If the height of the station is not negligible,
N and p should be replaced with N-\-H, and
P+H.

Substituting in equation (84) we get

jir ^

— KjjlJL a— d<p

[dHj

(84a)

Similarly, we get the matrix in equation (89).
Or,

dX*=Si da

KdRj

and equation (84) becomes

(89a)

da' da (84b)

Accuracy of the determined positions.—After
the solution of the matrix equation (84), or
after the adjustment of the same equation, in
the case of superfluous observations, the ac-
curacy with which the positions are determined
depends on three things: the accuracy of the
measured quantities, the accuracy of the given
positions, and the net configuration.

Since the problems of resection and intersec-
tion are the same (in both cases we have meas-
ured the same directions and distances), we
shall study the case in which we determine the
position of one station Q from a number of
known positions j ( j = 1, 2 , . . . s) of the object
(or objects), having measured all or some of
the elements a', &', r.

Both the accuracy of the observations and
the net configuration will affect the accuracy of
the determined positions. On the assumption
that the positions Xi

Sj are given and correct, the
solution for dX& (or X*) will be given by the
system

(90)

Here A\ is a matrix consisting of matrices
— 6< arranged in columns, and I' is a vector
consisting of vectors (ddf, da', dr) arranged in
a column. If we have observed all three ele-
ments at every position j , we have g=3j .
The solution by least squares will be given
by the equation

or

NdX=A'-P-l

dX=N-1A'-PJ, (91)

where N—A'-P-A and P is the weight matrix,
or P= V~l, V being the variance of the measured
quantities I9.

Furthermore, the variance V {XQ} which is
the same as the variance of dXq will be

(92)V{XQ}=N-1=(A'-P'A)-1.

If the values I' are not correlated and have

the same variance <r2
h P= -a J and

(92a)

We see from equation (92a) that the variance
of XQ (or in other words the standard error of
XQ) depends on <rj=the standard error of the
observed quantities. There is no doubt that
the smaller the value of <r%, the more accurate
point Q will be. But V{XQ} also depends on
(A' -A) ~x (or in the more general case on N~x) and
(A''A)'1 is a function of the geometry of the
net, as can easily be proved.

dX2

—R cos 0 sin 5 — R sin 0 cos 8 cos 0 cos 5'

—Rsin 0sin 5 R cos 0 cos 8 sin0 cos 5

L R cos 5 0 sin 5

da

\JRJ

(89)
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Finally, to compute the error ellipsoid for

the point Q, we try to find a system of axes
such that no correlation exists between them,
i.e., so that the variance matrix will be written
as

"a1 0 0

0 a2 0

.0 0 a\

Let T be the matrix of the rotation. T is a
3X3 orthonormal matrix, and its elements can
be expressed as a function of three quantities
(e.g., 0, Xand^L).

If V0{XQ} is the variance of XQ after the
rotation T, we will have

V 0 0

0

10

(93)

Solving equation (93) we can find both a* and
T; a* is obtained from the solution of the
discriminating cubic:

\V{XQ} — a ' / | = 0 , (94)

and T is obtained from the solution of the
system:

t'tti=\ (95)

where tt are the column vectors of T (or
principal directions).

Although we must have the matrix A to be
able to find the variance XQ, every observation
will define completely the position of the
station if all three elements a', 8', and r have
been measured. Or, every observed quantity
will define one locus which in the case of small
corrections dXQ, will be a plane. To get higher

accuracy for XQ, these planes must intersect in
right angles if possible.

If we measure only distances r and the given
positions S lie on a straight line, there is no
solution (the planes will intersect in one line).
The closer the positions S are to a straight line,
the weaker the solution will be. The solution
will be weak also if the given positions and the
station lie on the same plane.

Furthermore, the last part of equation (84)
(if we assume the positions of the object as
given and correct) can be written:

(96)

dr__
r

cos 0 cos 5
r

sin

dX1-

0 cos 5dX2 =— dX3.
r r

Therefore the system (84) can be written as
shown in equation (84c), the matrix being
orthonormal.

As we said previously, dh' and da' cos &' will
in general have the same weight. If drfr also
has the same weight,* the variance of XQ as
obtained from equation (84c) will be

V{XQ)=a*r.% (97)

a being the standard error of the weight unit.
This proves that the accuracy in the deter-

mination of the station Q is independent of the
net configuration and the error ellipsoid is a
sphere (the error, however, will be proportional
to the distance).

The same is true if we have more than one
observed position of the object (provided we
have observations of the same weight). In
this case we see that the matrix A is composed

• in most of the cases the errors In distance measurements are supposed
to be proportional to the distance. In this case the weight of drfr will
be the same for all distances. In the electronic methods of distance
measurements, the errors are sometimes supposed to be independent of
the distance. In this case irlr will not have the same weight for all rfs.

'd8'

dot' cos ti

dr

cos 0' sin h'

sin?'

sin 0' sin 5'

-cos ~0'

-cos b'

0

—cos 0' cos b' —sin 8' cos 8' —sin 8'

(84c)
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of orthonormal matrices with a factor 1/r*, so
we can easily prove that

o
In most cases <r*=<ra eoiC=cr. Then Pi=-j>

•Af"/-
or

Introducing this expression to equation (92a),
we obtain

V{XS\-X?P-I (98)

where P* is the harmonic mean of (r*)*. Equa-
tion (98) is of the same type as equation (97)
and thus the same conclusions can be obtained.

We can therefore state the following general
rules concerning the accuracy of our deter-
minations of position:

a) When we have observed only distances
(having the same weight), we obtain the best
result if the positions of the observed object
can be grouped by threes so that the lines
connecting them with the station are mutually
perpendicular.

b) When we have observed 8' and a' (and
8' and a' cos 8' have the same weight), we
obtain the best result if the positions of the
observed object can be grouped by twos, so
that the lines connecting them with the station
are perpendicular (the distances being assumed
to be almost equal).

c) When we have observed all three elements
(i.e., r, 8', a'), the net configuration will not
affect the accuracy, provided we have the same
weights.

d) If we have to choose between measuring
distances and directions, we must compare the
weights; that is, compare

with P2*

where a refers to standard errors.
If Pi>Pa it will be more accurate to measure

direction, and if Pi<P2, it will be more accurate
to measure distances.

and so we compare a with — -\/2, and if

the measurement of directions is=V5.
— -J2 the op-more advantageous, while if

posite is true.
As an example, if 8' and a' cos h' can be

measured with an accuracy of ± 3 " or about
1.45X10"8, the measurement of distance will
be better only il the distances can be measured

with an accuracy better than 10~8csd0~8.

Let us now consider the effect of errors in
the given points (in this case the object points).

Let 8X3 be the errors in the position of the
object. Then the system (90) will be, with
the help of system (84),

AidXQ=l<+&f8Xs, (99)

where $ is a gX<Z matrix having in its diagonal
the matrices —9 and the other elements zero.
If all the elements have not been observed, the
matrices 0 will not be square, and thus the
matrix $ will not be square either.

This means that we introduce the errors 8XQ
in XQ which arise from the errors 8XS in the
given positions Xs:

A-SXQ=$-8XS. (100)

We want to find the variance V{XQ} of 8XQ

(or of XQ), knowing the variance V{XS} of 8Xa

(or of Xs). From equation (100) we have

or

K (101)

If V{Xs}=<r%'I, equation (101) will be sim-
plified to

(102)
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Considering that the matrices A and $ are
made from the submatrices —6^, we have the
matrices in (102a). Therefore

(103)

Or, the variance of XQ from the standard
error aa in the position of the given points is
independent of the net configuration, and the
standard error of XQ is equal to the standard
error of Xs divided by <y[s, the result to be
expected.

Observations to objects of unknown
positions

We shall now discuss the computation of posi-
tion for the case in which we do not know the
position of the object, but have observed it
from stations of both known and unknown
positions. Since the object is moving, the ob-
servations must be made simultaneously.

For one solution, we could first compute the
positions of the object by using observations
from the known stations, and eventually make
an adjustment if we have superfluous observa-
tions. Then from the already computed posi-
tions of the object, we could find (or adjust for)
the positions of the unknown stations by using
the observations made from the unknown sta-
tions to the object.

I t will be more advantageous, however, if we
adjust the space net as a whole, since we will
get higher accuracy.

Unconditioned equations of observation.—Let
us suppose we have n known stations Qk, m
unknown stations Qu and s unknown positions
of the object Sj. Let us also suppose that we
have observed the object from both known and
unknown stations, but have not necessarily ob-
served all its positions nor all of the elements
«', «', r.

For every element observed, we will have an
observation equation relating the position of
the station and the object that will be of the
form of one of equations (84).

We will call Qit the matrix of equation (84)
connecting the j position of the object with the
known station k, and Qju the matrix connecting
the j position of the object with the unknown
station u.

The matrix Qju or 6,* may be the complete
matrix of equation (84) or it may be incom-
plete, that is, it may contain only certain rows
of that matrix, depending on how many and
what elements have been observed from the
station. We will then have a system of observa-
tion equations of the form

A>dX=l, (104)

where A is a matrix consisting of submatrices
G# and Qju, dX a vector consisting of the vec-
tors dX^m and dX*Si (corrections to the approxi-
mate coordinates XQ% and Xst) and I a vector
consisting of the vectors (db', da', dr) obtained
from the observations at both known and un-
known stations. Needless to say, these vec-

- G x 0 . . . ^

0 - G 2 . . .

r-e
0

l o . . q
- e ; . . . =

Gx€

0

) i 0 . . .
GJGJ . . .

or

(102a)

and

-er
- e , =«/.
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tore need not have all three components; they
will depend on how many and what elements
we have observed.

The matrix A will be of the general form
shown in equation (104a).

We notice that in each of the three partitions
(the partition with all zeros is excluded), at
every row, there is only one submatrix 9, and
in the two upper partitions, for every element
—Qi% in the left partition, there is a correspond-
ing element QJn on the right, in the same row.
An example of a matrix A appears in equation
(104b).

The solution by the method of least squares
for dX will be given by the system of normal
equations

N-dX=A'Pl, (105)

where N=A''P-A, and P = the weight matrix
(if the observations are of different weight).
From the general form of the matrix A we can
see that the matrix N of normal equations will
be of the form shown on page 131. Since the
subscripts in parentheses are constant numbers,
it is understood that there is no summation

with respect to those indices. The matrices P
are the corresponding weight matrices.

The matrix N (equation 106) is symmetric,
as would be expected. To every row and every
column there corresponds one point Qu and St
in sequence. Then every element of the matrix
is formed by summing all the terms of the form
0'P9 where 6 is the matrix that relates the two
points that correspond to the column and row
of that element. Since no observations have
been made between the stations or between the
objects, the corresponding elements will be zero.

It may happen, however, that we also have
observations between the unknown stations.
In this case the elements of the matrices that
correspond to those stations will not be zero.
These observations in practice would be mainly
distance measurements by Shoran or any other
electronic method, since no intervisibility will
exist for observations of directions, because of
the long distance between the stations. Such
distance measurements between the stations by
any electronic method will be very desirable
because they will strengthen our net.

Submatrix
with elements

—GJU

Submatrix
with elements

0 . . .
Submatrix

with elements

Observations from
unknown stations

Observations from
known stations

(104a)

Observations from
unknown stations

(104b)

Observations from
known stations
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If we observed all three elements from
every station, and they have the same weight,
the matrix N will be much simplified. The
expression [Qj»PQju] will be (?/?*) I, where v is
the total number of observed positions and

f* is the harmonic mean of the squares of the
corresponding distances, the standard error
being unity. In this case the matrix JV will be
as shown in equation (107).

0 '(/1)(«1)P 0 (/I) («

N=

' (it) («ai)

(106)

« [ G 0 . O ••• •

[-40 [-40 - [-*

(107)
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The variance V{dX} of the unknowns will be
given by the formula: N~l=(A''P'A)~1. In
practice, the weights are given in terms of an
appropriate weight unit, in order to have simple
numbers. Therefore we have

(108)

o* being the variance of the weight unit.

In all our derivations and formulas we have
used the terrestrial coordinate system X. The
same formulas hold for any other system pro-
vided we change the matrices 6 as indicated on
page 124 ff.

In case we have geodetic rectangular co-
ordinates x*, equations (104) to (108) are
exactly the same, since the matrices 0 will be
the same.

The only restriction is that the coordinates x*
of the known stations must be referred to the
same system and of course the positions of the
unknown stations and of the object will refer
to the same system.

Also it must be mentioned again that the
values of a' and 5' will be obtained from equa-
tions (32), (34), or (35), depending on the
system of coordinates used; e.g., if we use the
X system we will first find the approximate
direction cosines n* with the approximate
coordinates 3 * and then with the help of equa-
tion (34), we find 6 and 5.

If we use the X system we have to go through
the direction cosines q1 of equations (35) and
(36), provided we know the values of dA, d£,
dti. Since in most cases those values will be
unknown, the directions in the X system will be
the same as in the X.

We could simplify the computations if all
observations were made within a short interval
(some days), during which the instantaneous
pole will be practically fixed. In this case we
could make all the computations in the Y system
and afterward make the transformation of the
adjusted coordinates.

Introduction of conditions.—There may be
certain conditions that must be fulfilled between
the unknown stations—for example, the distance
between the unknown stations must be kept
fixed. In making our adjustment we must then

impose a number of condition equations be-
tween the values dX*.

Let the equation

CdX=k (109)

be the condition equations in matrix notation,
while

A-dX=l (HO)

is, as previously, the observation equation.
The solution by least squares will be given

by the system

dX\ (A'Pl\

where N=Af'P'At the same as in equation (105)
and X are the auxiliary unknowns (correlates)
equal in number to the conditions.

From the solution of equation (111) we get
the unknowns dX, while their variance is given
by the formula,

(112)

cr being the standard error of the weight unit.
In most cases, the conditions will relate the

coordinates of the unknown stations Qu. It is
more probable that there are fixed lengths or
directions between the unknown stations.
There may also, however, be conditions between
the coordinates of the object (e.g., we may
know the distance between two positions of an
object if we know its velocity and the elapsed
time).

The conditions will be mainly of two kinds:
imposed length and imposed direction.

Let us first consider the conditions of imposed
length. Let Lo be the known and fixed distance
between any two points Qt and Q2. Let Z be
the computed distance between the approximate
positions Q and <&. We have

(113)

where AX^Xi-Xl
Differentiating, we get

L dL=&X1(dX\-dX\)+&X2(dXl-dX*l)
AX*(dXl-dX\)
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or
A y*

(dXi-dX\)-\-~- (dX\-dX\) +

A V 3

or, further, by using n*, the direction cosines of
the line QiQ2, we obtain

dL=n1(dX1
2-dX\)+n*(dXl-dX{)+

n*(dXl-dX\).

If dL—L0—Z, dX* is the correction to the
approximate coordinates Xf, and so the condi-
tion equation is written

nxdX\-nldX\ +n*dX\-n*dX\+nldX\-

n*dX\=Lo-L. (114)

For every imposed fixed length, we have one
condition equation of the form (114) which
could also be written as

ntdXl-n'dX^Lo-L. (114a)

If we take the approximate positions 7$ so
that Lo—Z we have

By comparing equation (114) with the last
of equation (84), we see that they are the same.
We can write the conditions also in the form
shown in equation (116).

We must be sure that we use the direct
distance between the two points (also called
chord distance), and not the distance along the
terrestrial ellipsoid Qength of the geodesic).

Next let us consider conditions imposed on
the directions. A line connecting two unknown
stations may have a known direction that has
to be kept fixed in the adjustment. One direc-
tion in space has two freedoms, and so for every
imposed direction we will have two condition
equations.

Instead of using the direction cosines of the
imposed direction, we will find it more con-
venient to use their equivalent elements, i.e.,
the angles 0' and 8'. Let d'o and 8'0 be the
imposed values and 0' and 5' the computed

values from the approximate coordinates. I t
will not be necessary to derive the condition
equations, since we know beforehand that they
will be the same as equations (84a) and (84b).
We can therefore write the condition equations
by using L for the distance between the two
points Qi and Q2, as shown in equations (117)
and (118).

(117)

cos 8

If the imposed directions of 0'o and 8'0 have
been obtained with the help of astronomic ob-
servations, as they will be in general, they refer
to the Y system. If we are using a different
system, the computed 6' and j ' must be obtained
by using the T* coordinates of the approximate
points.

Regarding the condition equation, we must
make the following remark: if we have measured
the distance, e.g., by Shoran, between two of
the unknown stations, we must not use this
measurement as a condition equation, but rather
as an observation equation. We can correctly
use it as a condition equation only if we want
the distance to be kept fixed after the adjust-
ment or, perhaps, if the accuracy of the measure-
ment between the stations is much higher than
that of the measurement to the object.

The connection of geodetic systems.—One
important problem that often arises in geodesy
is that of connecting two geodetic systems; that
is, to find the relative positions of the two com-
putation ellipsoids or, equivalently, to find the
relative positions of the two X systems of coordi-
nates. The connection can be made by com-

(cos 0'cos 8')(dX\-dXX) + (sin 0'cos 8')(dX*a-dX\) + (sin 8')(dX\-dXf) ==U~ (116)
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paring the coordinates of common points of
the two systems.

If we have observed the positions of an object
from stations belonging to both systems, we
will be able to make the connection. For that
we use the points belonging to the one system
as known points, and we find the coordinates of
the points belonging to the other system (as if
they were unknown), but we introduce the
necessary condition equations so that the net
will not change as a whole. We then compare
the coordinates computed in this way with the
coordinates of the same points as given in the
second system.

Instead of comparing the coordinates of
points of the one system, as computed from
the other system, with those originally given,
we could compare the coordinates of the object
as computed from the two systems. This will
be much more simple, since we will have to com-
pute positions of an object from known stations
and will have only groups of normal equations
with three unknowns.

The relation between the two systems will be
given by one translation (3 unknowns), one
rotation (3 unknowns), and perhaps one scale
factor (1 unknown).

If the two geodetic systems have no orienta-
tion errors dA, d£ and drj, they will be parallel,
since both will be parallel to the terrestrial sys-
tem (see p. 109). Connecting the two systems will
then require only translation, and no rotation.
Further, if the two surveys are scaled correctly
(or are scaled far better than we can detect), we
have only three unknowns. Then only one
position of an object, observed and computed
from both systems, will give us the solution.
More positions will help in eliminating the acci-
dental errors since we can make an adjustment.

From equation (8) we have the expression
x[=Xi—Xci for the coordinates of one point
in the first system, and x\==X*—Xi

c% for the
coordinates of the same point in the second sys-
tem; therefore

i—*J—-Ac,—•A-ov—-A-c (119)

Thus the relative position X^. , (which is the
same as the relative position of the center of the
computation ellipsoid of the second system with
respect to the first), is simply the difference of

coordinates of the same point computed in the
two systems. If we have more points we will
take the mean.

If we want to express this translation in terms
of the deflections £, tj, f, we will use equation
(7). The £ and 17 so obtained will be expressed
in length units, but we can express them in
angular units by using the radii of curvature.
We must remember, however, that those deflec-
tions are not absolute but relative, i.e., with
respect to the computation ellipsoid of the first
datum.

If in equation (7) <po, \> are the coordinates
of the origin of the second datum, the deflections
will correspond to that point. If we want the
deflections at any other point (^, X), we have to
replace <po with <p and Xo with X.

The residuals of X^^, obtained from the dif-
ferent positions of the object, should be within
the accuracy of the computed positions. If the
residuals are bigger, this indicates that the sys-
tems also have orientation errors dA, d£, and drj,
and/or are at different scales.

It is not possible to find the absolute errors
in orientation of the two systems, but we can
find the relative orientation error of, e.g., the
second system with respect to the first.

If we take the first system as reference, we
can write equation (119) as follows:

(120)

where X^^ are the coordinates of the origin of
the second system with respect to the first,
g2~i the orientation errors at the origin of the
second system with respect to the first system
(computation ellipsoid), and 68-i is the scale
difference of the second system with respect
to the first.

In equation (120) we have seven unknowns,—
three for the translation, three for the rotation,
and one for the scale. In most cases the scaling
of the two systems will be so much more correct
than can be obtained with this method that
we may disregard the last term of equation
(120).

Every observed and computable position of
the object will provide the three equations of
(120).

If we disregard the scale difference, two posi-
tions of the object can give the solution for the
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six unknowns. If we have more positions, we
can make an adjustment by the method of least
squares, and eventually introduce the scale dif-
ference. After the adjustment, we could ex-
press ^ 2 _ , in terms of the deflections.

If the two geodetic systems are connected by
Shoran, the connection is not complete because,
although we have the horizontal positions re-
ferred to the same ellipsoid, the heights refer to
the geoid, and it is not possible (except with a
gravity method) to connect the geoid of the
two areas (cf. Bomford, 1952, p. 367).

If such connections exist, we will introduce
them to our solution either as condition equa-
tions, if the measured distances should be pre-
served, or as observation equations if the
Shoran distance should also be corrected.

First, we assume no errors in orientation.
Let L be the distance between the connected
points. If Xcsl=Xc, we have

(121)

and so the distance

(122)

This equation is not linear with respect to
the unknown xc and thus can not be used.
We will use, therefore, an expansion into the
Taylor series:

LdL= (zj-zf
or

or

t
c=dL = L-L, (123)

For the value of Xc we can take the mean
value obtained before we introduced the con-
dition equation.* L is the observed distance
and L is the distance computed with the approx-
imate value xc, and can be obtained from
equation (122) by replacing x& with Xc.

* The term xc'can also be neglected completely. Since x& b expected
to be smaller than 600 meters, while L to bigger than 300 kilometers,
XcfL will be of the order of 10~»; therefore the omitted terms amount to

It is very important to introduce the correct
weight to our equation, if equation (123) is an
observation equation.

In general, where we have also the unknowns
dA, d£, dq, and e, if the vector (dAa-u d&-i, dih-i)
is denoted by g\-\, then, through the use of
equation (120), equation (121) will become:

Therefore,

(124)

(125)

Differentiating and eliminating the second-
order terms, we obtain

or:

i [xl-xl+xi
c)'dxt

c+j- [(*4-

[(J (126)

Equation (126) is the observation equation
(or condition equation), the same as (123) but
it contains all seven unknowns. We will have
as many equations of this form as there are dis-
tances measured between the two systems to be
connected.

Observations to orbiting objects
If the observed object is orbiting and the orbit
is assumed to be known, we could treat the
problem as one involving an object of known
position (p. 122 ff.). If the orbit is completely
unknown (as for a rocket's orbit in the earth's
atmosphere), we could treat the problem as one
involving an object of unknown position (p. 129
ff.), by making simultaneous observations. In
the latter case, however, we would make con-
tinuous observations of the object and, having
also the time of the observations, we can inter-
polate for fictitious simultaneous observations.
We will call this method that of quasi-simul-
taneous observations.

But very frequently we will meet the problem
in which we know the theory of the orbit (more
or less), but we do not know the values of the
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parameters that define it. It is then possible,
from observations from known stations, to find
those parameters and eventually to find the posi-
tions of unknown stations. Since the object that
we can use in this way will be an artificial satel-
lite, we will limit ourselves to elliptic (or quasi-
elliptic) orbits.

Quasi-simultaneous observations.—We assume
that we have continuous observations of the
object from both known and unknown stations
and for the same period of time. The result
of those observations can be either a continuous
recording against time or individual values at,
preferably, equal and short intervals of time.

If we have a recording, we can easily find the
value that corresponds to a given time Tt. We
will then take the times Tu T% . . . and find
the values that would have been observed from
the different stations at those times. We then
apply the method devised for simultaneous
observations.6

If the data are given as individual observa-
tions, we must make a numerical interpolation;
we may use a linear interpolation or second and
third differences, our choice depending on how
smooth the values run. Any interpolation
formula can be used, although if the observa-
tions are not at equal intervals, we must use
Newton's or Lagrange's formulas for unequal
intervals.

We could also extrapolate the orbit beyond
the observed values. This is dangerous, how-
ever, unless we are very sure that the values
will continue to run smoothly. Even then, the
extrapolation should not be made for an argu-
ment far outside the two extreme observed
values.

The accuracy that we can get depends on
the accuracy of the timing, as well as on the
factors mentioned earlier (p. 129 ff.). If we
want the position of the object to be accurate
within ± hX and the velocity of the object is
V, the timing accuracy of the observations at
all stations should be better than within ST,

ay
where ST<~

The interpolation itself will not introduce
errors, provided that the observed values run

• It should be pointed out that since the object is moving, to be really
simultaneous the observations should refer to the time that the signal
(light pulse for optical observations) left the object, and not to the time
that the signal was received by the observer.

smoothly, that there is no Tn«.iriTniiTn or mini-
mum or inflection point, and that the inter-
polated interval is small. On the contrary,
since every fictitious observation will be
obtained from a number of true observations,
this method will tend to reduce the effect of
accidental errors. On the other hand, we must
consider the correlation between the observed
values (see p. 115).

Use of a first-approximation orbit.—Let us
assume the object has an elliptical orbit
around the earth, and conforms to Kepler's
laws. Unquestionably the orbit of an object
not too far from the earth's surface will be much
more complicated, but if mean elements are
used, the elliptical orbit is very nearly correct
for a small interval of time, and can be used as
a first approximation.

We will use the following elements to define
the orbit at epoch To:

mean anomalistic motion n
eccentricity e
R.A. of ascending node Q
inclination i
argument of perigee «
mean anomaly Mo

We will use 6" to designate the vector con-
sisting of these elements, in the same sequence;
i.e., 6-=(n, e, Q, i, to, To), (u = 1, 2, . . . 6).

Instead of the mean motion, we could use
the period P or the semimajor axis a, as we
have the relations,

r*Jp> (127)

n2a3=k*en. (128)

Here k\ is the geocentric gravitational constant
with the value (Herrick, Baker, and Hilton,
1958):

k\= 1.4350087 Mm3/min2, (129)

where me=mass of earth, m,=mass of orbiting
object, and Am=an augmentation of the masses
for the effect of the perturbations.

For an object of negligible mass orbiting
around the earth with an orbit of small eccen-
tricity, we have with sufficient approximation
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the relation (see also equation (129b), p. 144):

- | s i n 8 (129a)

where a e = t h e earth's equatorial radius, J=
the coefficient of second harmonic of the earth's
ellipsoid with the value J=1.624X10-3 (Jac-
chia, 1958a).

When these six elements are given, the orbit
is defined and we can find the position of the
object at any time T. The positions can be
computed in either rectangular or polar coordi-
nates. We shall use the polar coordinates a,
6, and R as more convenient. (Note that the
values a and 5 are not the apparent but the
mean coordinates, referring to the equinox and
the obliquity of the epoch for which the elements
of the orbit are given.) They are expressed as
follows:

a=G+arc tan [cos i tan («+»)], (130)

sin 5=sin i sin (&»+»), (131)

R=a(l — ecosE). (132)

Here the auxiliary elements o=true anomaly,
E= eccentric anomaly, Af=mean anomaly, are
given by the formulae

n f (i33)

M=E — e sin E, (134)

M=M0+n(T-T0), (135)

and a is given by equation (128) .7

The classical methods of Laplace and Gauss
may be used for determining the elements of
the orbit from three observations (Moulton,
1958), although the orbits of the earth's nearby
satellites can be determined also with other
more simple and less accurate methods. In
all those methods, however, we must assume
that we know the positions of the stations with
respect to the center of gravity of the earth,
since the equations of the orbit are given with
respect to that point.

• The element M% can be replaced by Tt, which is both the epoch and
the time of a certain perigee crossing. The expressions for this latter
can are given in Veis (19S8).

By differentiating equations (90) and (92) to
(97), and using l=w+v, we obtain the following:

ba_ tan I sin i
di ~~ 1+tan2 I cos2 i

ba cos i
=

bu cos2 /(1+tan21 cos2 i)
ba

bR

cos i
cos2 Z(l+tan8 Zoos2*)

= 1— e cos E

bR w
—— = — a cos E
de
bR
oh, a e sin

dM

bM

bs
bi~

bs
ba

bs
bv

dp

bE~

bv
be"

bM

bE
be"

ba
bn

bR
bn

cos i sin I
cos 6

sin i cos I
cos 5

sin i cos I
cos 5

sine
"sin 2?

sin v

1—ecosE

sin 2?
1— ecosE

2a
s"3^

2o(l—ecosE)
3 n
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\bvbEbMbn

/dado , da do
de

da do

/babv bE bM\,
n

/da do bE dM
V ^ ^ M d M

bRbEb

TOL.I

da\ .

(137)

bR,bRbE

( 1 3 8 )

When we introduce the values of the partial
derivatives, we obtain equations (139), (140),
and (141).

We now write equations (139) to (141) in a
matrix form:

da =u*
de
dQ
di
dco

(142)

Or, if we introduce the vector dbn=(dn, de,
dQ, di, do, dM0), we obtain

'di

da

.dRj

=U*db\ (143)

Equation (143) relates the differentials of
the position of the object with the differentials
of the parameters of the orbit bm.

If we introduce equation (143) into equation
(84b), we obtain

dec

jir ^

=Qr
t-Si-U*'db«-er

t-dXi
Q. (144)

This equation will help us to find the orbit
from observations from known stations, with

fsin i cos I sin o (T— To)
Lcos a sin E(l—e cos E)

s t sin L I , . , I sin t cos

i*icosl*nv / 1 + 1
cos 8 \1—e2 1—ec

sin t cos Z sin o
cos a sin E(l—e cosE) (139)

da=
cost sin V(T—TQ)

Lcos2 Z(l+tan21 cos2 i) sin^U—e cos

c o s i s i n o / 1 . 1
Lcos2 Z(l+tan2 Z cos21) V j — ^ l —

cost "J
cos2Z(l+tan2Zcos2t)J

Hr
r ae

, , TO , F tan Z sin i "1 , . ,
d e + +L""l+tan2 Z cos2 i\ +

cosisinv

cos2 Z(l + tan2 Z cos21)
2a(l—ecoaE) , oesinff

o«sin.E

Z(l+tan21 cos21) sin E{\-e cos £ )I"
—acosL

ag sin2 g
1—ecos£ \J

(141)
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the method of variation of coordinates. In this
case dX£=0 and thus

/dS>\
Ida' \=e-S'U'db't. (145)
\dr /

From an approximate orbit £" we find the
elements of the matrices 0, S, U, as well as the
computed quantities J / 3 / r. If we have
measured 5', a', r for two positions of the
object8, we can solve for dbu. If we have
observed only the directions, we need three
positions. If we have more observations, we
will adjust by the method of least squares.

We can also introduce as unknowns the cor-
rection dX£ to the coordinates of the stations
and solve simultaneously for both dbu and dX^,
using equation (144).

If the stations from which the observations
have been made belong to the same geodetic
system and there is no orientation error, the
value dX& will be the same for all the stations;
therefore we can introduce only one dX* which
will be identical with X£. In this case the
observation equations will be

The variance of bm (or dbu), Xl
c, and g' will be

\dr/
Q-S-U-db'-Q-Xh, (146)

with a total of 6+3=9 unknowns.
If we introduce also the orientation errors

gs=(dA, d£, drf), the observation equations
will be:9

1. (147)

If we have more than the minimum required
number of observations, we will adjust by the
method of least squares (as described on p. 122
ff. and p. 129 ff). Whenever this method of
adjustment is used, it may be necessary to
iterate the solution, since the coefficients of the
observation equations depend on the approxi-
mate orbit.

[(e -s-u, - e , -e-G)'P(es-u, - e , -e-6)]-1,
where (0 'S-U, — 0, — 0 -0) is a matrix con mating
of the submatrices Q-S-U, —0 and —Q*Q.

The variance V{dbu, X£, g}) can be found
only after the observations have been made,
since it depends on the configuration of the
net. We can, however, notice that the ele-
ments of the orbit will be more accurately deter-
mined if the positions of the object are not
concentrated in only one part of the orbit.
For the accuracy of the positions of the stations
(or of Xc and g$, which is the same), see page
126 ff.

Use of a second-approximation orbit.—To the
elliptic orbit (considered on p. 136 ff.) we
will introduce the secular perturbations caused
by the oblateness of the earth (second har-
monic) and by the air drag.

The oblateness of the earth introduces a
rotation of the line of nodes on the equatorial
plane (regression of SI) and a rotation of the
line of apsides on the plane of the orbit. The
two motions will be uniform. They depend
both on the orbit (n, e, i) and on the flattening
of the earth (or the constant </).

Various formulas have been developed (Brou-
wer, 1946; Spitzer, 1950; Davis, Whipple,
and Zirker, 1956; King-Hele and Gilmore, 1957)
for the values of those motions that will be
denoted by Q and u (the dot denotes deriva-
tives with respect to time). Cunningham
(1957) gives the simple formulas

Q = —nj(2S) cos t,
\P /

* ct and K must not refer to apparent positions bat to those
corresponding to the epoch for which we want to compute the elements
of the orbit.

* Compare with equation (130).

where p=a (1-e*), the parameter of the ellipse.
The effect of the air drag is to change the

shape and dimension of the orbit on its plane,
i.e., to change both a (and thus n) and e. For-
mulas for d and e are given by Davis, Whipple,
and Zirker (1956) for different assumptions.
A very interesting result is that the perigee g
changes very little.

512692—60 5
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Assuming a distribution for the densities,
we can integrate dq/da numerically and obtain
the relation q—j(a) (Jacchia, 1958a).

A secular variation in the inclination will
arise from the rotation of the atmosphere,
(Sterne, private communication; Merson, King-
Hele, and Plimmer, 1959;. The inclination will
diminish,

The secular variations of the elements can
be assumed to be linear over a short period of
time, but not in general. The most important
effect will be the pseudo-periodic variation in
the densities at high altitudes, which has been
correlated with variations of the flux of solar
radiation (Jacchia, 1959a,b). These variations
(at altitudes of 700 km the densities may vary
by as much as 100 percent) introduce consider-
able variation in the acceleration (Veis, 1959).

The existence of a third harmonic term in the
earth's potential will also introduce a periodic
variation in the orbital elements (O'Keefe and
Eckels, 1958).

If we take only the secular part, the orbit
could be expressed in the general form of a
polynomial,

(135) we will integrate

ndT.

where h is the vector (n, e, Q, i, «, Jiio), b the
vector (n, e, 0, i, », Sin), etc. The number of
terms will depend on the maximum value of
(T—To). Additional (e.g., exponential or trig-
onometric) terms can be added if needed.

To find the position of the orbiting object
at time T, we will use equations (130) to (134),
using for e, Q, i, <•>, the instantaneous values
corresponding to time T, and for equation

r.

One method that could be applied to de-
termine the orbit (second approximation),
similar to the one on page 138 ff., is the follow-
ing: With the new definition for the orbit,
equation (143) will be written as in (143a),
where db^, db', dSw . . • are the corrections
to the approximate values 6*, 6f, $"
(db0, db, db . . . may not be of the same di-
mensions; actually M=n so that b does not
contain M).

Then equation (144) will be written as in
(144a).

Assuming the stations known (i.e., dX^—0),
we solve for db^, db' . . . as on page 138.
We have applied this method for orbit deter-
minations at the Smithsonian Astrophysics!
Observatory (Veis, unpublished) and obtained
very satisfactory results.

A second method would be to find the mean
elements from observations within a short
interval of time by using, if necessary, approxi-
mate values for the variations of the elements
to make the reductions. Provided the time
interval is short, errors in the values of b,
J . . . will not have much effect. Given the
mean elements for different epochs Tit T2, . . .,
we can find the value of b as a function of time.

We now consider the simultaneous deter-
mination of the orbit and the positions of the
stations. If we try to solve equation (144a)
for both the orbit and the positions of the
stations vn will have a large number of un-

'd8

da ==f/7* T7*(T—T~} T7*(T—T~\* db' (143a)

da'

'dbJTl

db' (144a)



GEODETIC USES OF ARTIFICIAL SATELLITES 141

knowns, and thus the solution will be weak.
Therefore we solve separately for the orbit at
epoch and the positions of the stations, and
separately for the variation of the elements of
the orbit.

The larger the part of the orbit we use and
the longer the interval of our observations, the
more accurate will be the elements of the orbit,
as well as their variations. But on the other
hand, the smaller the part of the orbit we use
and the shorter the period during which the
observations are made, the more likely it is
that the computed positions of the orbiting
object will be correct. For this reason we will
divide the observations into two groups.

In the first group, the observations will be
made over a long period of time to determine
the variation of the elements b, $, . . . If the
observations are made from enough stations
(which need not belong to those we use for
geodetic purposes; on the contrary, they
preferably should be spread all over the world),
and for a rather long period of time (many
revolutions;, they can provide us with accurate
enough values for b, f>, . . ., although the
observations and the positions of the stations
may not be so accurate.

The second group of observations will be
made as described on page 136 ff. Our purpose
will be to find the elements of the mean orbit
at epoch and the corrections in the positions
of the stations. For this we will use an approxi-
mate mean orbit 6" for an arbitrary epoch To
(e.g., the middle of the observations). We will
then compute the positions of the orbiting object
by using T>$+bw(T— To) as orbit, where b' is
the vector obtained from the first group of
observations. In most cases, b" will be constant
in the interval (T— To). If not, we must also
include terms of 5", b*, etc.

If we assume there are no errors in the value
of 6f, the discrepancies will be due only to
d&", ie., the correction to the mean orbit of
epoch To. Thus the observation equations for
stations of the same system will be similar to
equation (147):

the matrix U being evaluated for the value of

Separating the unknowns as described above
may not always be the most efficient method.
For each situation we must decide which sep-
aration will give the strongest solution. For
example, the mean anomaly n will often be
more accurately determined from the first group
of observations than from the second (it should
be remembered that n is actually the secular
variation of M).

With the help of equation (146)—where Xc
will be replaced by dX^, which is the correction
to the coordinates of the station—we could
use stations not belonging to the same sys-
tem, but such a method would be less accurate
because of the large number of unknowns. In
such a case we must also have distance measure-
ments to the object.

From stations of the same geodetic system
we will not usually be able to observe the
object over a large part of its orbit, and thus
the orbit will not be well determined. This
inaccuracy will, in turn, bring large errors in
the determination of X*c and g1.

There are two possible methods for dealing
with the problem.

1) The first method uses two groups of sta-
tions, belonging to two different geodetic sys-
tems, from which the object can be observed
at two different parts of its orbit during the
same revolution (fig. 16).

The observation equations will be two groups
of the form of equation (148), the one referring

da' ]= e-S-U>dbl-QXh-QGg1, (148) FIGURE 16.—Connection of two geodetic system* by fir»t
method.
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to observations from stations of the first system
and the other to observations from stations of
the second system; or,

(d£) = 9SUdb»-9X<->

/dl'\
[da'] = OS- U- dbl-Q-Xh,-<
\dr)

(149)

This gives a total of 18 unknowns, or 12
unknowns if the geodetic systems have no
orientation errors.

If we have independent unknown stations
between the two systems, we could compute
their positions by observing the object while
it moves from one geodetic system to the other.
For this we will compute the position of the
object for the times of observation, using the
orbit 6j+t#J+&f (T—To)+. . . , as obtained
from the adjustment of equation (149), and
continue according to the procedure described
on page 122 ff.

Or, we could introduce the observations from
the unknown stations to the system (149) and
adjust as a whole. This would give a more
rigorous solution, but would result in a system
with more unknowns. Similarly, if we have
more than two geodetic systems along the orbit,
we will have to introduce for each one an
additional group of equations, of the form (149).

2) The second method is to use a small part
of the orbit, which is the same for the observa-
tions from both geodetic systems. This can
be done since different areas will be under the
same part of the orbit during each revolution
(fig. 17) because of the rotation of the earth.
The orbit determined in this manner may not
be very accurate but, on the other hand, the
poorly determined elements willl not greatly
affect the determination of the positions. The
observation equations will be the same as those
of equation (149).

Errors in the orbit and the timing will have
certain effects. From equations (143) and (89a)
we can see that an error Sdu in the orbit will
introduce an error in the position of the object,

N revolution

N + l revolution

FIGURE 17.—Connection of two geodetic systems by second
method.

given by the expression

(150)

To find the effect of an error 5Tin the timing
of the observations, we must differentiate
equations (129) to (134) with respect to T so
that we can find the effect of dT in a, 8, R.
The result will be

/da\
I dd )=u>
\dR/

dT

where u* is a vector, the last row of the matrix
U multiplied by n.

So the introduced errors in the position of
the object will be

dX^Siu^T. (151)

If, furthermore, we have an error sb* in the
value of bv (we again use the index u to indicate
the complete vector b, 5 . . . with zero ele-
ments if they do not exist), we will introduce
an additional error db*(T— To) to bu, or an
error in the position of the object,

6Xl
a=(T-T0)SU6i>«. (152)

From equations (150), (151), and (152) we
see that the variance of Xl

s will be

V{Xt
s}=S>U'V{bl}-U'-S'+S-u-V{T}.u'-S'+

(T-T0)S-U'V{b«}>U'>S'(T-T0).



GEODETIC USES OP ARTIFICIAL SATELLITES 143

The variance of XQ, then, can be found with
the help of equation (101).

The effect of an error bT in bu (T— To) will be
of the second order and thus may be neglected.

The accuracy with which we can expect to
determine the orbit and the positions of the
unknown station (or the elements Xc and g*)
depends not only on the accuracy of the obser-
vations and the net configuration (see p. 139^,
but also on the accuracy of the elements 6"
(since they are determined separately) and on
the correctness of our theory of the orbit.

An error 8b* in 6" in the determination of
the orbit with the method described on p. 140 ff.
will introduce an error to the value of

8bu
0=8b»E{(T-T0)}, (153)

where E{ (T— To)} is the mean value of (T— To)
of the different observations used. If we select
To as the mean time of the observations,
E{(T— To)} will be zero; thus we will not
introduce errors in bo (provided 6*=0). How-
ever, an error 8bn will introduce errors 8X3 in
the positions given by equation (152).

We must keep 8XS as low as possible, and
this can be done by keeping 8b" low (by making
many observations from many stations well
spread along the orbit and over a long period
of time), and by keeping short the interval of
time used for the geodetic connections (using
no more than a few revolutions, if possible).

If we desire an accuracy such that the errors
in position do not exceed /x', then 8b", and
T— To should satisfy the conditions,

SU 8om (T— To) </i*. (154)

Also the time must be measured with an
accuracy such that from equation (151) we
obtain

(155)

Finally, some errors result from the fact that
our theory for the orbit is not complete. With-
out a complete theory it is not possible to find
these errors. We can, however, consider the
following remarks:

1. The second-approximation orbit should not be
very far from the true orbit, and if we limit ourselves to
the use of a small part, it is more likely to approach
the true orbit. Also, the farther from the earth's

surface the orbit, the smaller the effect of the per-
turbations from the earth's gravitational field and
from air drag.

2. In our second-approximation orbit we have
assumed that the one focus of the instantaneous elliptic
orbit is always at the center of gravity of the earth.
This assumption may not be correct for the ellipse
that we fit to the true orbit. In such a case, the
values Xc will not be correct, since they will correspond
not to the true center of gravity, but to an assumed
center of gravity, at the focus of the fitted ellipse.
This can be checked by computing Xc for the same
geodetic system with different orbits. However,
although the Xc values may not be correct, the relative
values between systems connected with observations
on the same part of the orbit will be much more nearly
correct, since both will refer to the same assumed center of
gravity.

3. There are also periodic perturbations that we
have neglected, which introduce a periodic variation
in the position of the object from the elliptic orbit.
The effect of such errors is reduced by the fact that
we fit the elliptical orbit to the observed positions.
There will be, however, a displacement of the ellipse.

For best results, therefore, we should use only a
small part of the orbit. Thus the'method given on
page 142 is more advantageous. The results will also
be improved if we make the same connection, using
different orbits.

4. Perturbations caused by the earth's gravitational
anomalies are expected to be insignificant for the small
interval of time covered by our observations.

5. For the computation of the orbit we have as-
sumed that the constant fc|/i in equation (128) is
known and correct. Actually, an uncertainty exists
of a little more than 10~§ Mm'/min* (Herrick, Baker,
and Hilton, 1958); this includes the uncertainty of J.
Thus the value of a computed from n may be wrong
by about 80 meters, which will introduce an error
of the same magnitude in the geocentric positions.

To eliminate this error we can introduce the constant
k\n as an additional unknown, or, what amounts to
the same thing, define the orbit with both a and n.
Thus, the orbit will be defined with seven elements;
therefore bM and £/£ will have different meanings.

The use of a third-approximation orbit.—
Until now we have not considered any periodic
variations in the orbital elements. However,
such periodic variations exist because of the
non-sphericity of the earth's gravitational field,
and because of the variation of air densities
with altitude. These variations may be of
long period, « or 2« (some months), or of short
period, v or 2v (of the order of 1 hour).

Pseudo-periodic variations (mainly in n) also
exist, due to pseudo-periodic variations in the
densities, of a geophysical or solar character.
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If we use the methods already described we
need not worry about the long period variations,
if we limit ourselves (as we do) to observations
covering only some days. (The periodic vari-
ation of the orbit due to the third harmonic
(Kozai, 1959) can easily be taken into account.)
The situation is different with the short period
variations, however; they can be reduced to
some extent only if our observations are very
well spread in true anomaly over the orbit.

At the bottom of this page are expressions
for the short period variations (or perturba-
tions), reduced to four elements. They were
derived by Kozai (unpublished).

Associated with these expressions is the fol-
lowing value for /*:

w (*)'(
(129b)

These expressions show that the discrepancy
from an orbit without short period perturba-
tions can amount to 1 to 2 kilometers, and thus
cannot be neglected. Since these variations
can be computed from their theoretical values
with sufficient accuracy (the effect of an error
in J is completely negligible), we will correct
the orbital elements for short period perturba-
tions to obtain a third-approximation orbit.
Note that it is not an oscillating orbit, and we
shall therefore call it a mean orbit. When we

use it to compute the position of the object at
a certain time, we should add the effect of the
short period perturbations to the elements as
given from the previous expressions.

Aside from the effect from the nonspherical
potential,10 a short period variation occurs in
the orbital elements because the air densities,
and thus the air drag, vary with altitude. In-
deed, the assumption of a secular variation in
n cannot be correct since the greater part of
the effect of the air resistance during one revo-
lution will occur within a very small region
around perigee. However, the amplitude of
this periodic variation cannot be more than
the total variation per revolution. In any case,
the orbits that will be of any use for geodetic
applications will have small values of h; there-
fore this periodic effect can be neglected (the
displacement along the orbit per revolution will
be equal to n/w2).

In applying the third-approximation orbit we
will use the methods described previously, with
one exception. In computing the position of
the object at the time of observation, T, in
order to determine the computed values d',
a', r, we will not use the approximate orbit
t=bo+&(T-To)+ . . . . Instead, we will use
the orbit b-{~5b, where 8b are the short period
variations of the orbit.

» The abort period effect of the other terms In the expansion of the
gravity potential is very small.

«Q=—

sin i / c o s 2(i>+«)+« cos (o+2w) + | ecos(3»+2w) V

^ \ cos t -[ (v—M)+e sin v~ sin 2(t>+»)—^ e sin (v+2a)— i e sin (3v+ 2«) \ •

yK1"!8in2 0 [-^
§sin'i) (o-^y [(2-§sin'i) (o-M+e sin - § sin2 -5Lvw)sin v+

•J 1— VT—i5)sin 2 o V— f n"~R sin2ijesin (v-\-2u)—

\ 2 ~ l 2 S m 2 V S i n 2(t;+<l>)~~6 ( 1 — s m S ^e s m (3tH-2«)|-
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An orbit of unknown mean distance.—We shall
now consider the case in which we know the
orbit except for the mean parallax (or mean
distance, which corresponds to an unknown
value for kl). (The moon's orbit is an example;
after the perfection of Brown's (1899a, 1899b,
1901, 1908) theory, it is expected that the only
doubtful value will be the mean parallax, cr0-)

Since the orbit will be based on the unknown
mean distance, there will be an unknown scale
factor (1+K) by which the given distances Rt
should be multiplied to give the correct dis-
tance R. Thus

or
B=0.+K)R,

dR=R—Rt=KRt,

where K is supposed to be a small quantity.
But a difference dR in R will introduce a

difference in X% given by equation (89); or

dX%=cos 6 cos 8 dR= (Rt cos 6 cos 8)K—S1K,

dX%=sm B cos 8 dR= (Rt sin d cos 5)K=S2K,

d3T|=sin 8 dR = (Rt sin 8) K =S>K.

(156)

Introducing equation (156) to equation (84)
we get

/d8'\
ida'MsU-edXl.

These are the observation equations for the
computation of both dX*Q and #c. They are the
same as equation (84b) with d8=da=0,

Applications of the various methods

Any of the three methods described earlier can
be used to obtain geodetic information from
the artificial satellites. The choice of method
will depend on the kind of satellite, its orbit,
shape, instrumentation, etc.

If we know the orbit of the satellite with a
good degree of accuracy (of the same order as
that with which we want to determine the posi-
tions of the stations), we can apply the method
described in pages 122 to 126. If we do not know
the orbit accurately enough, but we do know

that the variation of the elements is more or
less smooth, we can use the method of orbital
interpolation as described in pages 135 to 144.
This more flexible method can be used with
any spherical satellite of rather high specific
gravity and a perigee height of more than 500
km.

If we do not know the orbit at all, we can
use the satellite by making simultaneous obser-
vations and using the method described in
pages 129 to 133. Simultaneity of observations
can be ideally achieved if the satellite is specially
instrumented to send flashes of very short dura-
tion; such an object we shall call a flashing
satellite.

The orbit: ephemerides and visibility.—Ran-
dom variations occur in the orbital accelera-
tion,11 because of variations (of geophysical and
solar origin) in the densities. Such random
variations make it almost impossible to deter-
mine an orbit that could be extrapolated for a
long period of time and give a sufficiently ac-
curate position for the satellite. The accelera-
tion varies from 10 per cent (perigee heights of
170 km) to 100 per cent (perigee heights of
700 km) of its value. These variations are
sufficient to displace a satellite by several kilo-
meters along the orbit (or some seconds in time)
in one day, even for a perigee height of 700 km.
However, such variations in acceleration do not
seem to be of a sudden character.

For these reasons, the orbits and ephemerides
prepared by the various agencies (e.g., the
Smithsonian Astrophysics! Observatory) are
revised at least once every week. Although
the extrapolation of an orbit may be in error
by several kilometers, the a posteriori orbit
determination is expected to be much more
exact. Preliminary results of orbit determina-
tions made with the method described on page
140 without correction for the short period per-
turbations and with observations of moderate
accuracy, gave residuals in the position of the
satellite of the order of 1 km. The final orbits
from accurate observations are expected to be
accurate to within ± 100 meters, or better.

Visibility is an important factor. Unless we
measure only distances, or use electronic meth-

" By orbital acceleration we mean the variation of the period P or of
the mean motion m, per revolution or per day. In the notation of p. 140
the acceleration will be i.
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ods for determining the directions, the satellites
must be visible to be observed or photographed.

During the day a satellite is rarely visible.
At night it will be visible if it is illuminated,
as would be possible if the satellite carried a
light source, either continuous or flashing.
O'Keefe (1956) has suggested the use of retro-
directive reflectors illuminated from the ground
by searchlights.

The simplest solution would be to let the sun
illuminate the satellite. Indeed the satellite
can be out of the earth's shadow and thus
illuminated by the sun, while an observer
underneath it is in the shadow (fig. 18). The

Point where the satellite
enters the earth's shadow

Area of visibility

FIGURE 18.—Area of satellite visibility.

satellite will enter into the shadow of the earth
when at an angular distance D from the line
of the terminator given by the formula

cos D f

where p is the radius of the earth. The effect
of refraction has been excluded.

The observer, on the other hand, should be
in darkness, the degree depending on the
apparent magnitude of the satellite. If the
satellite is rather bright, the nautical twilight
(12° depression of the sun) must have ceased
for the observer, but if the satellite is faint,
the astronomical twilight (18° depression)
should be considered. This means that the
observer should be farther than 12° (or 18°)
from the terminator.

In addition, the satellite must be above the
horizon of the observer, preferably more than
15° above, to reduce the errors from refraction.
Or, the angular distance d between the satellite
and the observer should be

sin (75°-d)=psin 105°
P+H '

Figure 18 shows the form of the visibility
area on the earth, which can be found easily
with a graphical solution if we use a polar
stereographic projection (fig. 19), and assume
the earth to be a sphere. A polar stereographic
map of the world may be combined with this
graphical solution to give the visibility areas on
the same map. This method is now in use for
visibility predictions at the Smithsonian Astro-
physical Observatory (Schilling, 1958).

The observations.—Both optical (photo-
graphic) and electronic methods can be used
for observing the satellites. For the moment,
however, only photographic methods seem to
be useful for geodetic purposes, since present
electronic methods do not yet give the needed
accuracy.

Since the apparent angular velocity is fairly
important and satellites are not always very
bright, the Smithsonian Astrophysical Observa-
tory constructed a special camera, the Baker-
Nunn Satellite Tracking camera, designed by
J. G. Baker and J. Nunn under the direction of
F. L. Whipple (Henize, 1957). The instru-
ment is a Super-Schmidt F/l camera with

FIGURE 19.—Area of satellite visibility on a stereographic
projection.
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focal length 50 cm and a field of view 5° X 30°,
and is expected to photograph satellites fainter
than 10th magnitude.

The focal field is spherical, and a cinemascope
film stretched on a focal spherical surface is
used for the emulsion support. At a scale of
406" per mm, an accuracy of ± 2 " is expected
in the determination of the directions (Henize,
1958).

In addition, a time unit, controlled by a
crystal clock, gives the time of the middle of
the exposure to O'.OOOl (Davis, 1958). How-
ever, the accuracy of the timing is not expected
to be higher than ±08.001. This error in
timing will introduce errors in the direction of
the motion, in view of the fact that the satel-
lites have rather rapid motion. The variance
of d' and a' cos 5' can be computed from
equation (42).

The Baker-Nunn camera was developed
especially to photograph faint satellites. If

* they are not particularly faint we can use astro-
graphic cameras or even long focus refractors,
provided we use a special shutter to interrupt
the trail and get the timing. For a flashing
satellite no shutter is needed.

Markowitz (1959b) has developed a dual-rate
camera on the same principle as that of his
moon camera (Markowitz, 1954). Ballistic
cameras (e.g., of the type made by Wild
Heerbrugg Ltd., Switzerland) also can be used
for bright satellites. These cameras, developed
for missile tracking, can give directions with
an accuracy between 3 " and 5" when properly
used. For a flashing satellite they can be
used with or without a shutter.

The direction of a satellite can also be de-
termined electronically (see p. 112); there is
then no problem of visibility but, on the other
hand, the satellite must carry a transmitter.
Electronic methods do not as yet give sufficient
accuracy and can be used only as described on
page 140 ff.

No direct distance measurements to the
satellites have yet been made, but are expected
in the near future. Johns (1958) discusses
this possibility and expects an accuracy of
±30 meters in the measured distances, a rather
optimistic estimate for long distances. If we
also include the effect of errors in timing
(p. I l l ) , the accuracy will be still less.

The observed directions (or distances) must
be corrected for aberration (p. 115 ff.) and
refraction (p. 117 ff.).

Method for a known orbit.—The method
based on the assumption of a known orbit is
perhaps the simplest in regard to the geodetic
computations, but it is the most difficult to
apply because of the difficulty in obtaining an
accurate orbit. The theory of this method is
discussed on pages 122 to 128.

If we know the orbit, to determine the posi-
tion of a station we have only to observe the
satellite (or satellites) from the unknown sta-
tion with an appropriate instrument (e.g.,
photograph the object with a Baker-Nunn or
ballistic camera against the star background).
We observe the satellite at a minimum of two
positions, and record the times of the observa-
tions.

The reduction of the observations, after the
appropriate corrections have been applied, will
furnish the observed elements (say a' and 5')
and their variances. We obtain the solution
as described on page 122 ff. The corrections to
the approximate coordinates will be given by
equation (91) and the variance by equation
(92).

If we have a number of stations all belonging
to the same geodetic system, we introduce as
unknowns the coordinates X*c of the origin of
the system and, perhaps, the rotation g* and
the scale factor «.

The observation equations using equations
(20) and (84) in this case will be:
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It is important to know the system of refer-
ence in which the orbit is defined and the
system in which the observations were made,
in order to apply the correct expression and to
reduce the observed and computed 5', a', r to
the same system, as explained on page 124.

Since this method requires that we know the
position of the satellite to a high degree of
accuracy, we shall use it only for satellites
whose orbits can be determined accurately.
Since, as we have seen, random variations in
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the accelerations displace the satellite con-
siderably along the orbit, we must use an orbit
derived from a rather large number of observa-
tions made around the same time that the
observations from the unknown station Cor
stations) were made. For a spherical satellite
of a high specific gravity and a perigee height
of more than 700 km, and preferably of 1000
km, and using good observations, we can get
an orbit accurate to ±100 meters or better,
with the method described on page 143. The
larger part of this uncertainty will be of an
accidental character.

This orbit, and thus the unknown stations as
well, will refer to a system of reference that may
not be geocentric. Indeed, the origin of this
system will be a kind of weighted mean of the
origins of the different systems to which the
stations, used for the determination of the
orbit, were referred. Some complications will
also arise from the fact that the true orbit does
refer to the center of gravity of the earth.

If we use many stations belonging to different
geodetic systems all over the world to determine
the orbit, we can expect that a large part of the
errors in the different systems will be compen-
sated; thus the origin of the mean system in
which the orbit will be given will be close
enough to the center of our ideal terrestrial
ellipsoid. New positions for the stations could
be determined with this orbit and an iteration
could be performed to improve the positions of
the stations and thus also of the orbit.

Another approach is to compute the orbit by
using only stations that belong to one and the
same system. The positions of the unknown
stations thus determined will refer to that
same system.

The larger part of the uncertainty in the
position of the satellite will be accidental in
character. Therefore if we use a certain num-
ber of observations to determine the position
of the station, and those observations are dis-
tributed in every direction, we will considerably
improve the final result as given by equation
(84). The same is also true for the effect of
errors in the observations. Combining equa-
tion (98), which will hold for a good distribution
even if we do not measure distances, with

equation (103), then for the standard error of
the position of a station aQ we obtain

(158)
o

If we adopt the rather conservative values
«s=±100 meters, <r=±4*=±2X10-6, r=3
megameters, and «=25, we get <rQ= ±23 meters.

The effect of the systematic errors may in-
crease the error to about ±30 to 40 meters,
this value being always rather conservative.

The velocity of the satellite being about 7-8
km/sec, a systematic error of 1 millisecond in
the time (which is rather optimistic) will intro-
duce an error of 7-8 meters in the position.
Since this error will be in the direction of the
satellite's orbit, the final result can be improved
by using different passes of the satellite so that
the projections of the orbits on the earth will
intersect at different angles.

Finally we have errors arising from errors in
the theoretical values for the perturbations of
short period (p. 143) which will introduce
equivalent errors in the positions.

Since the theory and the values of the con-
stants are good to a few parts in a thousand,
and since the amplitude of those perturbations
is less than a few kilometers, the errors thus
introduced will be less than ± 10 meters. The
use of different orbits will reduce the errors
still further.

Method of orbital interpolation.—With this
method we use the observations to the
satellite to determine simultaneously the posi-
tions of the stations and the elements of the
orbit, as described on pages 129 to 133. This
method is very similar to that used for a known
orbit. In a final analysis, the only difference is
whether or not we solve separately for the orbit
and for the positions of the stations. The
remarks made for the previous method are thus
valid also for this one. The choice of method
will depend on the magnitude of the variations
of the orbital elements.

This method is best fitted for connecting
geodetic systems as described on page 140 ff.
The satellite then will be observed during one
or two passes over the two systems and the
solution will be given by equation (149). The
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variation of the elements will be determined
(see p. 140) from observations from other sta-
tions over a longer period of time. It may also
prove better to use these auxiliary observations
to determine the mean motion n (which is
actually the variation of M). Since the ob-
servations that will be used for the connection
cover a rather short period of time, they may
introduce an important uncertainty in n. In
this case equation (149) will not include dn as
unknown and the vector 6" will be (e, 12, i, «, Mo).
If any other element of the orbit is assumed to
be known for any reason, we can eliminate it as
unknown from equation (149).

To apply this method, the satellite must be
visible during a single revolution over both
geodetic systems, and for as long an arc as
possible. This condition is not unrealizable,
and the higher the position of the satellite, the
easier it will be. Such a favorable situation will
have a duration of several days and will occur
every few months. As an example, we give
in figure 20 a favorable condition for a connec-

FIGURE 20.—Possible connection of the North American and
European geodetic systems. Dash-dot line, satellite orbit;
solid line, visible part of orbit; broken line, area of visibility.

tion between the European and the American
geodetic systems. The satellite is assumed to
have an inclination of 60° and a height of 500
km. The sun has a declination of +10°, and

the difference between 12 and ao is 6h. If we
use the second method given on page 142, the
visibility conditions are much more favorable.

The accuracy with which the positions of the
stations and the orbital elements will be com-
puted is discussed from a general point of view
on pages 139,140, and 143. For best results, it is
essential that we have a good net configuration
as described on page 126. If we observe only
directions, this will not be very difficult to
accomplish. If we measure only distances, it
will be rather difficult, and it will be impossible
for independent stations. At one station, it is
impossible to get mutual perpendicular direc-
tions to the satellite during the same revolution.
A deviation from the ideal conditions for the
net configuration will appreciably reduce the
accuracy, and the errors may be as much as
five times as large.

The kind of orbit is also very important for
the accuracy. The smaller the eccentricity,
the less is the effect of the position of the peri-
gee. The higher the perigee of the satellite,
the more undisturbed the orbit will be. But
since the accuracy of the directions is ± 2 " or
10~6, high orbits will bring large linear error,
and should be avoided unless we use long focus
cameras. A height of 1,000 to 2,000 km may
be a good value.

The final accuracy will depend on the ac-
curacy with which the orbit at epoch could be
determined, and the accuracy with which the
variation of the orbital elements and the
theoretical corrections to the orbit (short
period terms) will be given.

The value of b can be determined from
continuous observations over a long period of
time. They need not be of very high accuracy,
but should be made from a rather large number
of stations.

An accuracy of ± 7"/day can be expected for
12, provided the change of 12 is smooth (the
accuracy will depend on the inclination). It
follows from equation (152) that the linear
accuracy of the satellite's position will be ± 10
meters for a duration (T—To) of 1 hour and a
satellite height of 700 km. This error will be
in a direction perpendicular to the polar axis.

If the timing at the auxiliary stations is taken
to±l*, the change of the period can be deter-
mined to about ±0\025/day. It follows that
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the error in the position of the satellite will be
±7 meters for a value of (T-To) equal to one
hour. This error will be in the direction of the
orbit.

With the help of equation (152), we find that
the main term in the error of the position, for
an error 8d> in 6> and S'e in e will be, respectively,

and
a(T—T0)6'e.

It follows that for a duration (T-To) of one
hour and a height of 700 km, to get an accuracy
of 7 meters in the position of the satellite, we
must have

&i><±50" per day,

8e<±0.000024 per day,

the first value being for «=0.1.
A very small eccentricity will increase the

accuracy of the determination of both e and a.
Finally, the accuracy will increase if the in-
clination of the orbit is near 63?4 where u is
zero.

The values of b (and b, etc.) can also be com-
puted from their theoretical expressions, pro-
vided the constants are known to a good degree
of accuracy. Q and o» are proportional to J.
For the moment, J is known to about 1 part in
a thousand, and since those variations are
about 5° per day they will be given to about
±0?005. The theoretical determination of h
and e will be more difficult, because the uncer-
tainties of the densities are rather important.
For the errors arising from possible errors in the
short period terms in the perturbations and
systematic errors in the timing, we refer to the
method used when the orbit is assumed to be
known (p. 147).

The accuracy with which the geodetic con-
nections will be made can be computed only
after we have made the observations, because
of the very strong correlations between the
different elements. A rough estimate can be
obtained by making some simplifications such
as the following.

Let <r be the (linear) standard error of our
observations, i.e., the standard error of the
determination of the satellite's position with

respect to the geodetic system, the latter as-
sumed to be self-consistent.

If we use a part of the orbit of length Li to
determine the orbit, and we extrapolate it to a
distance L, the errors will be c(L/Li), and since
the orbit is determined from two independent
parts (the parts observed from the two geodetic
systems) with, say, lengths L\ and L%, we will
have as errors o(LjijL\-\-L\).

If we have v observations, considering that
we have m unknowns, we get as errors

The errors in the determination of the elements
for the connection of the two systems will be
of the same order as those in the determination
of positions.

The value of a will be of the order of ±20
meters.

If the lengths Lx and Z* are equal and the
distance between the two systems is 2Lt, con-
sidering that m=12, we get as errors

in meters.

If we have a total of 30 observations, we will
get an accuracy of about ±7 meters.

This estimate will be valid if we assume the
orbital theory to be correct. Including the ac-
cidental and systematic errors from other
sources, the total error will increase, but in all
probability it will stay below ±30 meters. By
performing the same geodetic connection with
different orbits we should be able to improve
our results still more.

Methods for simultaneous observations.—This
method does not demand any knowledge of the
orbit, but requires only that we make simulta-
neous observations from two systems. Since
the problem is purely geometrical there is no
reason to restrict the use of the method to
satellites alone. Any visible object M at a cer-
tain height can serve our purpose.

There are no dynamic parameters entering
directly or indirectly into the solution. This
fact makes the method a very accurate one

«* V&isalft (1046) and Atkinson (unpublished) have proposed the use of
a flashing rocket in a similar way. For further Information on the
application of the method to rockets, see Veis (1958).



GEODETIC USES OP ARTIFICIAL SATELLITES 151

which may prove to give the best results for
geodetic connections or for tieing individual
stations (mainly islands) into a geodetic system.
The only limitation is the height at which the
satellite must be if we are to observe it simul-
taneously from the two geodetic systems. At
an altitude of 1000 km we can connect systems
that will be 15° apart, by maintaining a strong
net configuration and the elevation angles above
25° to 30° (to keep the uncertainties from re-
fraction as small as possible). If we want to
connect geodetic systems that are apart by 30°
and 50°, as will be the case for intercontinental
ties, the satellites should have altitudes of the
order of 5000 km to give strong solutions.

The observations may be reduced to simul-
taneity either by using the method of quasi-
simultaneous observations described on page 136,
or by synchronizing the shutters of the different
cameras so that they open at the same time.
In this case, however, the observations will not,
strictly speaking, be simultaneous, because they
will not refer to the same time that the light
pulse left the satellite (aberrational effect). A
reduction could easily be made to correct for
this error since we will know approximately
the distances and the velocities. The correc-
tion will be given by equation (52), which in
this case will be written:

Ar
CCOBS

e =8'—,

where Ar is the difference in the topocentric
distances from the two stations to the satellite.

Simultaneous observations are best obtained
when the satellite emits flashes. The techniques
for a flashing satellite are discussed in greater
detail by Whitney and Veis (1958).

The timing of the simultaneous observations
will be needed only if we use the star back-
ground to determine the direction (the usual
procedure). The timing will be used to relate
the sidereal and the terrestrial coordinate sys-
tems; thus it does not need to be of very great
accuracy since an error of 10 milliseconds will
introduce an error in the positions of only 5
meters at the equator. The timing can be se-
cured with an accuracy better than ±10 milli-

seconds for a flashing satellite, by various meth-
ods (Whitney and Veis, 1958). The methods
described in pages 129 to 133 can be used to
compute the connections of the geodetic sys-
tems, or to determine the position of the inde-
pendent stations.

To achieve a strong solution it is very impor-
tant to obtain a good net configuration. We
should try to arrange the observed positions of
the satellite so that the lines from the known
stations to the satellite, as well as the lines
from the satellite to the unknown stations,
intersect as nearly as possible at right angles.

The final accuracy with which the unknown
stations or the elements of the geodetic connec-
tion (i.e., Xci-i, g1, e) will be obtained can be
determined only after the final solution, since
it depends on the net configuration. We can
estimate this accuracy, however, by assuming
a perfect net configuration; we can then apply
equation (158) by replacing a\ with

in accordance with equation (98), where rj is
the harmonic mean of the squares of the dis-
tances r from the n unknown stations.

Equation (158) then becomes

0 sn 8

where f\ is the harmonic mean of the squares
of the distances r from the unknown station.

Assuming that <r=±2"=±10-», f«=f t=3
megameters, «=5, n=5, we get

meters.

The effect of systematic errors and an im-
perfect net configuration will increase the errors
to about 20 to 30 meters. By repeating the
observations we may get a final accuracy of
±15 meters.

This value corresponds to a relative accuracy
of 10~6 for a distance of 1,500 km between the
stations to be connected. The existing triangu-
lations, which are used as a sort of base line,
are expected to be accurate to only 10~" and
may further reduce the final accuracy, especially
for the connection of distant stations.
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The use of the moon
The moon being a natural satellite of the earth,
there is no reason that the methods described
for artificial satellites could not apply for the
moon as well, although it is by no means the
best object for observation, and is somewhat
farther from the earth than is desirable for our
purposes.

The advantage of using the moon is that, for
the present, it is the only terrestrial satellite
for which we have a good orbital theory. In
the future, when satellites will be launched to
heights of some earth radii, they may be
expected to replace the moon completely, and
advantageously, for geodetic purposes.

Only methods that involve direct observa-
tions to the moon are discussed here. For
methods involving indirect observations (solar
eclipses and occultations of stars), see Lambert
(1949), Kukkamaki and Hirvonen (1954),
Kaiaja (1955), O'Eeefe and Anderson (1953),
and Army Map Service (1954).

The orbit of the moon: libration.—The pres-
ently accepted theory for the moon's orbit is
that of Brown (1899a, 1899b, 1901, 1908), who
formulated special tables (Brown, 1919) for the
preparation of an ephemeris of the moon. The
National Ephemerides give the position of the
moon (computed with Brown's tables) for every
lh interval, to 0*01 in a, and OTl in 5. With
the improvement of electronic computers, the
U.S. Naval Observatory undertook to prepare
improved ephemerides of the moon, in which
the positions were given to 0*001 in R.A., OfOl
in declination, and 0TO01 in parallax, and
Brown's theory was used directly without the
help of his tables.

In the new ephemeris the empirical (periodic)
term of Brown's theory has been removed; the
mean longitude has been corrected by an amount

-8T72-26T74 T-11T22 T2,

to bring accordance with Newcomb's tables of
the Sun, Mercury, and Venus; and a small
correction has been added to the apparent
longitudes to correct for aberration.

The Improved Lunar Ephemeris for 1952-59
(U.S. Naval Observatory and Greenwich Royal
Observatory, 1954) contains the most accurate
material yet available for the position of the

moon. The value for the mean horizontal
parallax, BJQ, may be wrong, however, and for
this reason it may be better to introduce an
unknown scale factor (1 -f K) . Thus the distance
to the moon will be

R-
sin 0o a e .

The ephemeris (as well as the theory) gives
the position of the moon as a function of a
time that must be absolutely uniform (some-
times called Newtonian). Such a time is, un-
fortunately, unrealizable for the moment (al-
though the so-called atomic clocks may be able
to furnish it). We use, instead, "Ephemeris
time" (ET) which is very close to uniform and,
as a matter of fact, is computed from observa-
tions of the moon. The second of ephemeris
time is defined by the I.A.U. as 1:31 556 925.975
of the tropical year 1900.

ET is obtained from UT2 as:

where
ET=UT2+AT,

A!F=+24"349+72?318r+29i.950T2+
1.82144 B.

Tis in centuries from 1900.0.
The value of B, determined by direct obser-

vations of the moon (Jones, 1939), is B—l^
— C, where l^=observed longitude of the
moon, and (from Brown's tables)

C= — 10T71 sin (140°. 0 T— 240?7) +
5!22r2+12:96 T + 4T65.

Using the Improved Lunar Ephemeris we have:

AT= 1.82144 (lt-lB)

where lK is the longitude of the moon given by
the new ephemeris.

Ephemeris time can also be computed directly
with the observed a and 5 by inverse inter-
polation in the ephemeris. The value obtained
from R.A. will be more accurate than the one
obtained from the declination (the accuracy will
depend on the rate of change of those elements).

But to obtain ET we must have the geocentric
observed values of a and S, which means that
we have to know the position of the station,
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to make the appropriate reductions given by
equation (85). We can eliminate the effect of
the error in the position of the station by making
two observations of the moon at positions differ-
ing in hour angle by 12h. In this case, as can be
seen from the second of equation (83), the errors
made in the two reductions will be equal and
of opposite sign. Thus the mean value of ET
computed from those two observations will not
be affected by errors in the position of the
station.

To make observations of the moon at posi-
tions differing by 12b in hour angle, we must
observe at both moonrise and moonset from the
same station.

The errors arising from the fact that the
R.A. of the moon does not change linearly with
ET will be smaller than 0*001.

The orbital theory gives the position of the
center of gravity of the moon, but this is an
inaccessible point for observations. Instead, a
point called "center of figure" is observed.
By that we mean the center of a circle that fits
best the apparent limb of the moon.

But the moon does not always show the same
limb to the observer because of the libration.
The problem then is how to bring the centers
of the best fitted circles to the same reference
datum, and also, since very often we observe
several points on the limb, to bring the topog-
raphy of the moon to the same reference datum.

Provided the topography of the moon is
"accidental" the best fitted circles will have
the same radius and the same center. But the
topography of the moon has also a systematic
character. Yakovkin (1954) finds different
radii for different values of libration in latitude
(libration in radius), and different radii have
been found for the east and west limbs.

The foremost completed material is that of
Hayn (1914) and Weimer (1952). A new and
more rigorous study, expected to be completed
in the near future, has been undertaken by the
U.S. Naval Observatory under the direction of
Watts (Watts and Adams, 1950). Its purpose
is to give the heights of different points of the
profile of the moon expressed in seconds of arc
with reference to a unique datum, and for
different values of the libration.

The datum must finally be connected to the
center of gravity of the moon. This connection

has not been yet definitely established. How-
ever, if the center of figure is used as the datum
it probably will not be far from the center of
gravity.

The observations.—Markowitz (1954) has
devised an ingenious method for measuring the
apparent coordinates of the moon, using a
special dual-rate moon camera.

The camera, which can be mounted on almost
any telescope,13 takes pictures of the stars for
about 20 seconds, the plate following their
apparent motion. If at the same time the
image of the moon were formed on the photo-
graphic plate, the image would not be sharp
because of the moon's relative displacement
with respect to the stars. To compensate,
Markowitz uses a parallel plane plate rotating
around an axis that is perpendicular to the
direction of the apparent relative orbit, and at
an angular velocity such that the image of the
moon is kept fixed with respect to the images
of the stars. This plate is at the same time a
dark filter, which reduces the brightness of the
moon.

At the instant at which the parallel plate is
perpendicular to the optical axis, and thus the
image of the moon is in its true position with
respect to the stars, an electric contact affects
a chronograph and records the time correspond-
ing to this fictitious instant of the exposure.

The plates are measured on a specially con-
structed comparator, and the readings are
punched directly on IBM cards. About 10
stars near the moon are selected (from the
Yale Catalogue) as reference stars, and their
positions are measured twice. The position of
the center of the moon is determined as follows:

We find an approximate center 7) of the moon
(fig. 21). Using this point as origin, we measure
the polar coordinates of a number of points on
the limb. According to practice at the U.S.
Naval Observatory, 30 points are taken at every
6° along the bright limb.

Using the measured polar coordinates (0, p),
we adjust by the method of least squares for
the coordinates (z, y) of the center of the best
fitted circle, as well as for its radius R.

The observation equations will be

M For the I.O.Y., special telescopes were made with an aperture of
12" and a focal distance oflSO".
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FIGURE 21.—Determination of the position of the center of
the moon.

and thus the coefficient matrix for the normal
equations is:

f[sbD*6]

N=

[sin e cos 0] [sin

[sin 0 cos 0] [cos* 0] [cos 0]

JanO] [cos0]
(159)

where v is the number of measured points.
For the method used by the U.S. Naval Ob-
servatory, we thus have with sufficient ap-
proximation:

and thus

fl5 0 201

0 15 0

,20 0 30j

(160)

r+o.6
0

L-0.4

0 -0.41

+0.0667 0

0 +0.3J

(161)

if we assume that the standard error of meas-
urement of p is unity.

In general,

N=

and

- 0 —2 u 3

0 \ 0

J °

— 0
p

o 2
p

1 2 «— 0
p

(162)

(163)

As can be seen from equations (161) or (163),
the determination of the center O will not be
made with the same accuracy in every direction.
The error in the y direction (line of terminator)
will be one-third the error in the x direction.

As a result, the determination of a' and h'
will in general not be of the same weight, and
there will be an additional correlation.

If a is the position angle of the terminator
(fig. 21), we find that the variance for the
determination of S'o and a'o cos 5'0 of the center
will be that given in equation (164), where o> is
the standard error of p.

This variance should be combined with the
one given by the errors of timing, equation (46).
The motion of the moon is about 0T5 per second
of time, so even if the error of timing is 0"01,
the introduced errors in the positions will be
only 0T005. This means that equation (46)
can be disregarded and the variance will be
given by equation (164).

To evaluate <r, of equation (164), we have to
consider both the errors in the measurements
and the errors resulting from the topography.
If the standard error of measuring the distance

cosSi /J " \ -

18sin2« + 2

16 sin w cos w

— 16sinwcosa>
(164)
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p is o- and the variance of the topography is
<*\ov will have the equation,

(165)

If there is no correction for the topography
of the moon, atov will be equal to the RMS of
the topography, which is of the order of 0T7.
This value will drop to 0T2 with the use of the
existing maps of the moon and perhaps to less
than Of 1 after the work of Watts is completed.
The value of <r, on the other hand, is expected
(Markowitz, 1959a) to be of the order of 1/* on
the plate. With a focal distance of 180", this
corresponds to about 0T04. This means that
the errors are due mainly to insufficient knowl-
edge of the moon's topography.

As an example, we give the following values
of <rj,, and oati assuming the position angle of
the terminator «=0 and the declination 8'=Q
(in this case there is no correlation):

Without correction for the topography:

With correction for the topography from
existing maps:

With correction for the topography from
Watts' maps (expected):

The ratio between the weights in all cases
is 9:1.

There is no doubt that if the moon could
be observed around all the limb, the results
would be much better. In such a case there
would be no correlation between 5' and a' cos 6',
and the standard error of one coordinate would

be

Determination of positions and expected ac-
curacy.—The position of a station from which
we have observed the moon with a moon camera
will be obtained with the same method given
for a satellite of known orbit (p. 147). Since
the value of the moon's mean parallax is doubt-
ful, it would be valuable to introduce it as an
additional unknown, as described on page 143 ff.
We introduce an unknown scale factor (l+«)
and we determine the value of K.

But in this case, since we have not measured
distances but only directions, it will be impos-

sible to solve for K. This follows immediately
from a geometric consideration. Thus, the
computed positions of the stations will be given
within the unknown scale factor (1+*). If
we have two stations of known distance apart,
the value of K can be obtained by comparing
the computed with the known distance.

This means that to get a complete solution
we must have stations geodetically connected.
The introduction of the conditions will be made
as on page 132 ff.

The accuracy obtainable depends on the
accuracy of our observations, on the correctness
of the lunar theory, and on the net configura-
tion. A general analysis is given in page 126 ff.
We will here introduce some numerical values
to get a better idea.

For simplicity, we will assume that the moon
is always at the same distance r and that the
observed values of a' and 5' have no correlation.
But we will assume that the weight of a' cos &'
is % the weight of £'. (This is the case in
which the position angle of the terminator is
zero.) The normal matrix will then be that
shown in equation (166), on the following page.

If we have a great number s of observations,
we can replace the elements of the matrix with
their mean (expected) values, considering that
e takes the values X— 9O°<0'<X+9O°, i
—30°<5<+30°, and assuming that the values
are randomly distributed.

We find approximately,

ro.5 o o

0.5 0

0 0.9 J

or
2 o o

0 2 0 (167)

I 0 1.1 J

Therefore the variance of X ' is
r 2 0 0

8

Lo o
a being the standard error of the weight unit.

0 2 0

512692—60 6
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*o The standard errors <r* in X* will be

Ms

O* = i

<> If we make no correction for the topography
a °g we have (see p. 154) a = 0T18, and if we have

•^ *2. 100 observations we will get the following errors

' in the coordinates:

^ = ± 4 8 meters,

o*=±48 meters,
u*=±36 meters.

i

With the additional corrections for the topog-
raphy from existing maps and from Watt's

„ maps (p. 155) the errors will be respectively:

§ ax= ± 13 meters,

•b <r*= ±13 meters,
a
y <rs= ± 10 meters
• and

•£ (^=±8 meters,

o*= ±8 meters,

ff*= ± 6 meters.
This estimated accuracy looks very promis-

ing. Unfortunately, this is not the true accu-
racy obtainable, since we have neglected the
systematic errors. Many efforts have been

^ made to eliminate those errors occurring in the
*» camera and the comparator (Markowitz, 1959a).
§ Both accidental and systematic errors in the

K> positions of the stars used as reference introduce
.9 another source of error.
«. If the standard error of one coordinate of a
o star is ±0Tl and we use 10 reference stars, the

*j* computed coordinates of the moon will have an
/ additional error of about ±0!06. This will

increase the errors a* by some meters.
Only after the final adjustment has been

made will we be able to determine the accuracy
of our result. However, we may expect that the
coordinates of the stations will be computed
with an accuracy of tbe order of 30 to 50 meters.
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A final source of error that we must consider is
the correctness of the ephemeris of the moon.
The coordinates of the moon in the Improved
Lunar Ephemeris are given to within 0T01 in 5,
0*001 in a, and 0T001 in vs. From this rounding
we thus have errors approximately equal to ± 5
meters in 8, ± 7 meters in a, and ±30 meters in
a. With a great number of observations, how-
ever, as mentioned on page 128, the errors so
introduced will be very small.

What is important is the correctness of the
theory of the moon from which the ephemerides
were prepared, since it will introduce systematic
errors. As has already been pointed out, the
mean parallax of the moon, GJO, is very doubtful.
For this reason it will be advisable to use the
mean distance M of the moon as an additional
unknown. We will then get much better re-
sults, considering that the mean distance may
be wrong by several kilometers.

I t is not easy to estimate the correctness of
the theory of the moon and how it will affect
our solutions. On the other hand, by analyzing
the residuals we should be able to check and
probably correct the orbit of the moon. The
same holds also for the relative position of the
center of figure with respect to the center of
gravity.
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Symbols used
Following is a list of symbols used and their
meanings:

u This is affected not only by errors of the mean PM»IIM-, bat also by
the earth's equatorial radios.

a, semimajor axis
A, azimuth
bu, vector or orbital

elements
e, eccentricity
E, eccentric anomaly
H, terrestrial height
Ha, geodetic height
HA, astronomic height
«/, coefficient of sec-

ond harmonic
of the earth's
potential

k\, geocentric gravi-
tational con-
stant

I*, direction cosines
in the sidereal
system

L, geometric dis-
tance between
the two stations

TO', direction cosines
in the instan-
taneous terres-
trial system

M, mean anomaly
n', direction cosines

in the terres-
trial system

n, mean anomalistic
motion

N{, matrix of normal
equations

P{, weight matrix
q{, direction cosines

in the geodetic
system

q, perigee distance
r, topocentric dis-

tance
R, geocentric dis-

tance (on pp.
118 to 122,
R=correction
for refraction)

/, Greenwich side-
real time

T, time as independ-
ent variable

v, true anomaly
V, variance
W, coordinates in

mean sidereal
system

z', coordinates in
geodetic system

X', coordinates in ter-
restrial system

Y*f coordinates in in-
stantaneous ter-
restrial system

Z', coordinates in ap-
parent sidereal
system

Z, zenith distance
a, right ascension,

geocentric
a', rignt ascension,

topocentric
T , equinox
6, decb'nation, geo-

centric
8', declination, topo-

centric

r, HA-H
% deflection of the

vertical in
prime vertical

6, a—t
X, terrestrial longi-

tude
Xo, geodetic longitude
\A, astronomic longi-

tude
£, deflection of the

vertical in
meridian

p, radius vector,
geocentric

<r, standard devia-
tion

r, small time in-
terval

u, argument of
perigee

Q, right ascension of
the node
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H or
rcosZo
in km

1000-
900-
800^
700-

600-

500:

400 :

300--

200--

100- -
9 0 : :

80 —
7 0 - :

6 0 - -

5 0 -

4 0 : ;

30 '-}

2 0 - -

Zo

- -80°

- 7 0 °

--60°

--50°

- 4 0 °

--30°

- -20°

- - 10°

• 2 °

AR
(always negative)

-10"
1 9'
- 8'
• T

- 6'

- 5"

- 4'

- 2'

- - 1"
: - 0".9
: - 0'.8
: - O'J
- - 0r.6

— 0'.5

- - 0'.2

FIGURE 22.—Nomogram giving correction for refraction.
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Temperature

F° C°

8 0 -

6 0 -

4 0 -

2 0 -

-+30

-+20

- -+10
Pressure

inches mm.

- 0

- - 1 0

3 0 -

2 8 -

-760

- 7 2 0

-680

2 6 - -
- 660

Corrector factor

--1.10

--1.08

- - 1.06

-- 1.04

- - 1.02

-- 1.00

- - 0.98

- - 0.96

- - 0.94

- - 0.92

- - 0.90

--0.88

FIGURE 23.—Nomognm for correcting refraction for temperature and pressure.
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