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Reduction Methods for Photographic
Meteor Trails1

By Fred L. Whipple2 and Luigi G. Jacchia*

Methods for determining the space trajec-
tories of meteors observed simultaneously from
two stations have been developed by various
investigators including Bessel (1839), Schae-
berle (1895), Turner (1907), Olmsted (1931),
and others. The present photographic tech-
niques of observing meteors simultaneously
from two stations (Whipple, 1938) require a
precise reduction technique suitable for mechan-
ical rather than for tabular methods of calcu-
lation. The use of rotating shutters in the
determination of meteoric velocities further
complicates the reduction, as does the necessity,
in many cases, of solving for the instant of the
meteor from the photographic trails. The
solution now includes the determination of
meteoric deceleration as well as the velocity and
usual geometric circumstances of the phenome-
non. Hence the reduction process has become
relatively complex.

In the methods of reduction presented here
we borrow freely from established techniques.
Rectangular coordinates and direction cosines
enter extensively, as they are most adaptable
to efficient mechanical computation. The
choice of notation has presented a difficult
problem because of the multiplicity of symbols
required. By the generous use of subscripts
we have avoided duplication as much as
possible.

Measurement of a meteor trail and compari-
son stars
At each station the meteor trail and the field
stars are photographed simultaneously on an
emulsion. We shall assume that the star im-
ages are untrailed, or that some point or points
along the trailed images of the stars can be
identified in time and are measurable. The
optical projection will be assumed approxi-
mately gnomonic, as though points on the ce-
lestial sphere were projected through its center
onto a plane surface. Graphical corrections in
reduction can make allowance for rather large
deviations from perfect projection. In case the
projection itself deviates markedly from the
gnomonic, as in fast Schmidt camera systems
with curved focal surfaces, the negatives should
be copied on flat glass plates by means of a lens
system approximately to a gnomonic projection
(see pi. 1). Measurements are then made on
the positives.

The gnomonic projection is very closely ap-
proximated by current astronomical lens sys-
tems, even those of rapid focal ratio and wide
field. This projection has the advantage that
great circles project into straight lines in the
plane; meteor trails lie so nearly on great cir-
cles that careful measurement and reduction
usually are required to demonstrate deviations.

Preparation of the photographic material. Stars
1 Carried out in part under research contracts with the V. 8. Naval Bureau of Ordnance (Re3d), the U. S. Office of Naval Research, Contract No.

N5ori-07647, and the U. S. Army Office of Ordnance Research, Contract'No. DA-19-020-ORD-2556. Reproduction in whole or In part is permitted for
any purposes of the XJ. 8. Government.

' Smithsonian Astrophyslcal Observatory.
* Harvard College Observatory.
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184 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

to be measured can be identified directly by
marking with ink on the glass side of the photo-
graphic plates (see pi. 2). If film is to be meas-
ured, it should be placed between two good-
quality pieces of glass fastened firmly at the
edges to prevent slippage of the film. Identi-
fication marks can then be made on the glass
surface.

Choice of comparison stars. For all good-
quality cameras of focal length greater than
about 3 inches, the precision of measurement
and reduction is greater than that of the star
positions in the Bonner Durchmusterung cata-
log (BD). Astrographic catalog positions are
suitable where right ascension and declination
are tabulated directly, but identification prob-
lems are difficult because meteor trails usually
extend over two or more zones. Where only
rectangular coordinates are tabulated the re-
duction of adjacent zone coordinates to a com-
mon system is added to the problem of identi-
fication. Hence the astrographic catalog posi-
tions are rarely useful in the reduction of me-
teor trails, with the exception of the Helsingfors
Zone (+39° to +47°) and the Catania Zone
(+46° to +55°) which give right ascension and
declination of all stars.

Normally, star positions should be selected
from the Astronomische Gesellschaft catalogs
(AG) or from the Yale catalog. The meteor
trail should be sketched lightly in pencil on a
BD chart and the AG stars identified in its
neighborhood. Stars for measurement should
be selected at uniform intervals along the trail
(z-direction) and alternately on opposite sides
of the trail ( + and — y) as close to the trail
as is convenient or possible. The number of
stars required increases with trail length and
field distortion. For a focal length of 6 inches
and a meteor trail 10° long, eight or ten stars
are usually sufficient. No trail should be re-
duced with fewer than six comparison stars.
With film, more comparison stars are usually
necessary. No precise general rule can be
given; the experimenter should determine the
optimum number on the basis of his own ex-
perience. To minimize the centering errors in
stars with images distorted by vignetting, it is
recommended that the stars selected be as
nearly of the same photographic magnitude,
and as near the plate limit, as possible.

Measuring engine. The ideal measuring en-
gine for our purpose has two mutually perpen-
dicular precision screws to measure x and y
coordinates simultaneously in a plane. Peri-
odic errors should not exceed one micron, or
should be calibrated and capable of correction.
Precise perpendicularity of the ways is not
important in meteor reductions. The ways
must be straight within approximately one
micron per centimeter. Large deviations from
perpendicularity and some smooth curvature of
the ways, as well as considerable systematic
errors in the screws, can be allowed for precisely
in the reductions.

Single-screw measuring engines in which the
plate can be turned through 180° in its plane
can also be used effectively, as can engines in
which the y-screw is quite short compared to
the x-screw. No accuracy is lost if y must be
measured at a different time from x; in fact,
this technique is recommended.

A relatively low-power microscope is ad-
visable for the measurement of meteor trails.
Mutually perpendicular crosswires, parallel to
the ways of the engine, are required. One of the
excellent measuring engines made by D. W.
Mann and currently used in the Harvard Me-
teor Program appears in plate 3.

Measurements. The meteor trail should be
carefully oriented parallel to one of the engine
w&ys. The convenience in checking errors and
in combining "direct" and "reverse" measures
well repays a little effort to make the paral-
lelism good to a few microns over the length
of the trail. Measures in y, perpendicular
to the trail, should be made for each compari-
son star, and at frequent uniform intervals
along the trail, perhaps at every millimeter.
Measures in x, along the trail, should be made
for each star at the beginning and end of the
trail, at the beginning, end, and middle of
each shutter break, and at the beginning, end,
and middle of each flare or noticeable irregu-
larity in the trail. Measures in y along the
trail need not be made at the same points as
measures in x.

It is convenient to identify the shutter
breaks by numbers in time sequence, and to
identify the flares or irregularities in the trail
by consecutive letters. When inspection shows
that it is possible, it is also convenient to use
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REDUCTION METHODS FOR PHOTOGRAPHIC METEORS 185

the same letter to identify the flares on the
trails on each of the paired photographs from
the two stations.

The focus of the microscope should be set
most carefully at the beginning, end, and middle
of the trail to establish the best compromise
in case the engine carriage is not precisely flat.
Focus can be tested most accurately by the
minimizing of parallax between the wires and
star images when the eye is moved across
the eyepiece.

On most measuring engines, because of
possible backlash, it is advisable to make all
measures with the screw turning in the direction
of increasing scale readings. Measures on me-
teor trails are most advantageously made with
the microscope crosswires respectively parallel
and perpendicular to the meteor trail, to the
accuracy within which the wires are straight.
This necessitates measuring not at the inter-
section of the wires but at some definite position
on each wire near the intersection. It is
convenient and probably advisable to make all
measures in one coordinate separately, and
for all points consecutively in order of increas-
ing x values. A remeasure of the first point at
the end of such a run will indicate immediately
whether the adjustment of the engine has been
disturbed during the run or whether tempera-
ture changes have affected the settings sys-
tematically. Temperature changes should be
eliminated as much as possible, but in a closed
room their effect tends to stabilize during the
course of an hour or two of measuring. Hence
a repetition of earlier measures in the same
sequence will often show a progressive decrease
in the differences of the readings. Physical
disturbance of the engine will usually show as a
distinct break in the series of differences in
readings. Where systematic temperature varia-
tions cannot bo avoided, a few checks at repre-
sentative points in a run should be made at
the end; if the difference in readings changes
smoothly from beginning to end, the original
set can be accepted without correction.

All measures made "direct," with the plate
in its original position, should be repeated
"reverse" after the plate has been turned 180°
in its own plane.

Each "measure" should be the mean of
three or more fairly rapid settings.

Combination of the measures. The combina-
tion of direct and reverse measures not only
eliminates systematic errors between the me-
teor trail and stars and between various parts
of the meteor trail but also provides an almost
foolproof method of checking for setting or
reading errors. Usually it is most convenient
to reduce the "reverse" set of measures to
values nearly identical with those of the "di-
rect" set by subtracting their values from an
appropriate number. Then differences, direct
measures minus reverse, can be taken easily
and plotted for both x and y on a magnified
(at least 100 times) ordinate scale against x
as abscissa. The resulting points should lie
on a curve that is smooth within the accuracy
of the settings (a very few microns). Con-
spicuous deviations that are not correlated
with abrupt changes in the brightness of the
trail or in image quality should be rechecked
on the measuring engine. When possible it is
often time-saving to leave the plate in the
measuring engine until the measures have
been combined, so that errors can be checked
quickly after they have been detected.

After gross errors have been eliminated,
the mean of the direct measures and the con-
stant minus the reverse measures should be
obtained. These values constitute the meas-
ures to be used in the reductions.

Reductions for the apparent radiant
Corrections for stellar proper motion. The AG
or other position of each star, s, should be cor-
rected for proper motion in right ascension, a,,
and declination, 5,, if values of the proper
motion can be found in the appropriate cata-
logs. It should be noted that the proper
motions should be applied for the interval from
the epoch of the stellar observations in the AG
or other catalog to the epoch of the meteor,
fractions of years being taken into account.
Also, attention should be given to the fact that
some catalogs give proper motions as Aa and
some as Aa cos 5, per year or per century.

Stellar direction cosines and precession. The
stellar coordinates, after correction for proper
motion, are transformed into equatorial direc-
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tion cosines X,, n,, v,, for the mean equinox of
the catalog, by the formulae:

X,=COS S, COS a,

M«=cos 8, sin a,
rt=sin St

Check:

(1)

(la)

Six significant figures in calculation are
usually appropriate. The check formula is not
adequate for direction cosines smaller than
approximately 0.2, and will not check erroneous
table entries in both functions. A repetition
of this phase of the calculation is advisable to
guard against errors.

Precession can be applied most easily to each
star position by means of nine precessional
direction-cosines, Xx, Xy, etc., applied to the
direction cosines of the star position as follows:

(2)

where the precessional direction cosines apply
to the transformation from Equinox 1 (\lf MI»
PI) to Equinox 2 (X2, m, v2). Tabulations of
these direction cosines from 1850 to 1950
applying to the transformation to 1900 have
been made by E. C. Bower (1932).

The Bower tabulations apply for transformations
from the mean equinox at the beginning of the year to
the mean equinox of 1900.0. The direction cosines to
be applied in equations (2) may be obtained by the
Cracovian calculation (Banachiewicz, 1925, 1929):

(XXYXZX) = (+X x- Yx-Zx) (XXX,X,)
(XWY.Z,) = (-X,+ Y,+ ZJ (YXY,Y.)
{XtY.Z.) = ( - X,+ Y.+ Z.) (ZXZUZ.)
Equinox 1 Equinox 2 to Equinox 1

to 2. 1900.0. to 1900.0.

This notation denotes a calculation convention more
convenient than the usual matrix convention. All
quantities on the left are the sums of three products
of quantities in two vertical columns on the right.
For example,

The tabulations by Bower may also be used less
conveniently in two steps, Equinox 1 to 1900.0 and
1900.0 to Equinox 2.0

Similar quantities for reduction from the
current year to 1950.0 are given in the British
Nautical Almanac.

The direction cosines of the star positions are
rotated from the mean equinox of the star
catalog to the mean equinox at the beginning
of the year nearest in time to the meteor (a
September meteor of 1948 to the mean equinox
of 1949, etc.).

A transfer to the true position at date would
carry advantages too slight to offset the addi-
tional computation involved. The meteor posi-
tions are affected by aberration in the same
fashion as the star positions, while light-time
is negligible on any basis. The combined
errors in aberration and precession-nutation
over half a year enter the solution chiefly in
terms of absolute time. They amount to a
maximum error of 3* of time in the absolute
position of the meteor, or about 50 feet.
Refraction of light in the atmosphere also
affects the meteor positions and the star
positions in almost the same fashion. Its
minor differential effects can be taken into
account accurately in the general reduction.

Standard coordinates of the star positions.
Standard coordinates, | and 17, are rectangular
coordinates in the plane of celestial-sphere
projection (approximately that of the photo-
graphic plate) with origin at the center of
projection. They are expressed in radian
measure. The coordinate jj increases northerly
along the hour circle through the center fo
projection, and | increases easterly along a
tangent to the parallel of declination at the
center.

The center of projection, ae, 5e, may be taken
as the plate center and determined with suffi-
cient precision by means of a ruler on the plate
and a BD chart. Rough precession must be
applied. The direction cosines of the origin
of the new rectangular system and those of the
poles of the two coordinate axes are computed
from the following formulae to the same rela-
tive precision as the direction cosines of the
star positions:
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Plate center{Xe=cos 8e cos ae

JUV.=COS Se sin ae

pe=sin ae

{X , = —sin 8e cos ae

M,= — sin 5e s in ac (3)

[X{=—sin ac

I axis < ju{= +cos ae

Uf=O
Check:

(3a)

For each star the cosine of a,, the angle be-
tween the star position and the center, and the
standard coordinates of the star position are
computed as follows:

COS O - , =

Check:

(4)

(4a)

Equation (4a) does not provide a satisfactory
end-figure check for values of £ or y less than
0.2. A second or a reverse calculation (equa-
tion 10) is generally required.

Standard coordinates along the meteor trail.
SIX-CONSTANT METHOD: The measured posi-
tions can be expressed in terms of the standard
coordinates by means of a least-squares solu-
tion of the following linear equations for all of
the measured stars:

(5)

Here ax, bx, . . . , cv are plate constants,
the unknowns in the least squares solution.
Residuals are more conveniently expressed in
the reverse sense, computed minus observed:

Az,=:c,(Comp.)— x,(obs.)
Ay,=y,(Comp.) —y,(obs.)

Check:

(6)

(6a)

(In addition, all the three normal equations
must be satisfied.)

At this stage of the calculation the accumu-
lated small errors arising from optical distor-
tion, large-scale emulsion distortion, misplace-
ment of the plate center, differential aberra-
tion, differential refraction, systematic screw
error, and systematic deviations of the engine
ways from linearity can all be eliminated
graphically. Deviations of the engine ways
from perpendicularity are already allowed for
precisely in the least-squares solution, as are
all other linear effects along the emulsion.

The residuals, Az, and At/,, for each measured
star position are plotted separately as ordinates
against the measured x, as abscissa. Smooth
curves are drawn through the residual points
on these graphs.

All the measures made on the meteor trail
are corrected from these curves of residuals,
the measured x being used as argument to pro-
vide the appropriate correction from either the
Ax or Ay curve. The corrections are applied as
follows:

x (corrected) =x (measured) + Ax (curve) (7)
y (corrected) =y (measured)+Ay (curve).

These corrected measures are henceforth used
in all calculations involving trail coordinate
measures.

It will be seen that this graphical correction
method has the merit of transferring all the
measures from the actual photograph to the
theoretically perfect plane of projection, and
hence eliminates the various errors listed above.
The remaining errors are those arising in the
measurement, from optical or photographic
image distortion, from small-scale errors in the
emulsion or measuring engine, and from errors
in the star positions.

After the measured x's and y's on the meteor
trail have been corrected by the residual curves,
the values of y along the trail should be plotted
as ordinate expanded against x as abscissa. If
the meteor trail is part of a great circle, the
points will lie on a straight line within the
accuracy of measurement. In this case, it is
convenient to express y as a linear function
of x and to use these rectified values of y in
determining the great-circle motion. If the

39U31—57-
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trail shows clear evidence of curvature, the
early straight-line portion only should be used
in determining the great-circle motion for com-
puting the radiant. For flare measures to be
used in calculating the instant of the meteor,
the originally corrected y values are best. For
meteors of exceptionally long duration ( > 3
seconds), gravity may cause an observable
curvature of the trail. To correct for this
effect, see section on corrections for gravity
(p. 199).

The standard coordinates of any measured
point on the photograph, with corrected co-
ordinates x and y, may be obtained by making
use of inverse plate constants by the following
formulae:

where

Oi = bJCXy
bi——bz/Cxy

Ci=(—byCx

and

a, = — att/czv

ft,= +ax/cxv

) jcxv c, = (+a/i

(8)

(9)
—a^) /cIV

cxy=aj)v—avbx.

Equation (9) may be checked by applying
equation (8) to the measures of a single star
(unconnected). With proper arrangement of
the computation the application of equation (8)
may be checked on the summed values of x, y,
| , and ^.

The direction cosines of points on the meteor
trail are computed from £ and rj as follows:

x=

Check:

= 1 (Recompute X, M, or »<0.2). (10a)

Equations (8), (9), and (10) need be applied
to only a few points on the meteor trail. Usu-
ally the following will suffice: beginning point,
b; end point, e; first shutter break, a; last shut-
ter break, j ; middle point, o; and each flare or

irregularity, /<, that can be identified on both
photographs.

FOUR-CONSTANT METHOD: While the six-
constant method may offer some advantages
when the strip within which the comparison
stars are selected is rather wide, it becomes
difficult or even impossible to handle when the
stars selected are very close to the meteor trail.
Six constants will operate a linear transforma-
tion from the orthogonal (|TJ) system to an
oblique (xy) system; when, however, the range
in y is very small, it becomes impossible to
determine the angle between the oblique co-
ordinate axes. This difficulty is reflected in
an ill-conditioned system of equations for whose
solution it becomes necessary to carry a very
large number of digits in the computation. As
a safety measure, 10 digits have to be carried
even in ordinary cases, greatly limiting the
possibilities of programming the computation
on ordinary punched-card calculators.

An added disadvantage is that the six-con-
stant method cannot be dissociated from the
lengthy least-squares process, which requires an
overhauling of the whole solution whenever a
mistake is discovered in the input data after the
solution has been computed.

A simple way of avoiding these difficulties
consists in assuming that the (xy) coordinate
system also is orthogonal. If the engine ways
are not exactly perpendicular to each other, we
must then expect that the residuals Ax, and Ay,
will show some dependence on y. This effect,
however, should be quite small if the range in y
for the comparison stars is small. Moreover,
even in a six-constant solution the residuals are
not entirely independent of y, due to the effect
of field distortion.

Instead of equation (5) we shall write, then:

(11)b},—

There is no need to determine the four un-
knowns a, b, c, d by least squares; a solution
using two stars at the extremes of the meteor
trail is quite satisfactory. Residuals (C-O),
taken according to equation (6) are plotted
against x and the resulting smooth curves are
used to correct the observed s's and yJs exactly



REDUCTION METHODS FOR PHOTOGRAPHIC METEORS 189

as before. Since the computed residuals may
show a dependence on y, it is advisable to write
in the diagram the value of yt—2/trau next to
each point, and then draw the curve for
yt—2/tnui—0, as one would draw an isobar on a
pressure map.

Standard coordinates are computed from cor-
rected x's and ?/'s using inverse plate constants:

where

A=-

S,=Ax.+By.+C
vs=Bxs—Ay,+D (12)

ad—bc
'"aTW'

(13)

The observed radiant. If the meteor trail is
straight in the corrected xy plane, the direction
cosines of the beginning, b, and end, e, points
and a middle point, o, should be used in cal-
culating the great-circle motion. If the trail
is curved, three points from the early straight-
line portion should be used. The direction
cosines of the pole of the great-circle motion,
^•APJ MAP, and vAp for Station A or \Bp, PBP, vBp

for Station B are given by the equations:

\Ap sin lA—
nApsin.lA =
vAp sin lA=

(14)

(lA is the length of the trail as photographed
at Station A).
Checks:

(14a)

and similarly for XB, MB, VB.
The direction cosines of the apparent radiant

X*, HR, VR> are obtained similarly from the
equations:

\R Sin Q^liApVBp—VApV-Bp
HR sin Q=vAp\Bp—\ApvBp (15)
VR Sin Q=\ApfJiBp— V-Ap^Bp

Checks:

Q is the angle of intersection between the two
meteor trails as seen in the sky from Stations
A and B.

The sign of sin Q is chosen to orient the
radiant above the horizon.

For both stations the standard coordinates
of the radiant (£AR, VAR', IBR, VBR) and first
shutter break (j-Aa, VAO', %Ba, VBO) on the photo-
graphs are required in later calculations, as are
the theoretical x and y measures of the radiant.
These quantities may well be computed at this
stage. The appropriate equations are indicated
below for Station A only:

cos <rAR, |AS and AiiB from equation (4),
xAR from equation (5) or (11)

and

cos <rAa= Aa) ^ from equation (4a).

Ranges and heights

For the moment we shall assume that the in-
stant of appearance of the meteor is known. If
the time of the meteor was not recorded from
visual observations, methods for determining it
can be found in the section on page 194.

Fundamental values in the computation of
ranges are the relative rectangular coordinates
in the astronomical equatorial system of Sta-
tion B with respect to Station A when the side-
real time is zero at Station A. These quanti-
ties can be computed once and for all from the
geocentric coordinates of the stations as follows:

ZABO^RB COS 4>'B COS {LB—LA)—RA

VABO=RB COS 4>'B sin (LB—LA)

?ABO=RB sin 4>'B-RA sin +'A.

c o s 4>'A

(16)

Here L stands for the geographic longitude,
positive to the west, <p' for the geocentric lati-
tude, and RA, RB for the distance of the sta-
tions from the center of the earth; the sub-
scripts A and B refer to Stations A and B.
respectively. A convenient unit is 100 km.

The distance RAB between the two stations
is obvioushT given by the equation

RAB=¥ABO + VABO + f i (17)

+ HRHBP + VRVBP = 0

Let 0A be the sidereal time at Station A cor-
responding to the appearance of the meteor.
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The relative coordinates of Station B with re-
spect to Station A at this instant are

&iB=&ij». cos dA—rjABo sin dA

1AB=VABO COS 6A+1-AB, sin $A

fAB— fABo (18)

Check:

Let us now consider the plane through the
meteor and Station B. The intersection of
this plane with the celestial sphere is the great
circle of motion of the meteor, as seen from
Station B, whose pole is PB=(X B * , HB,, vBp).
The distance SA of Station A from this plane
is given by SA=VLAB-^B, i. e., by the equation

(19)

The range RAi (distance from Station A) of
any point i on the plane is given by RAt=SA

sec c<, where c« is the angle between P« and the
range vector HAf. Points on the meteor
0<AU PAU VA%) are just particular points on the
plane; for them we shall have the equations

and
(20)

(21)

In general, it is convenient to compute ranges
(and heights) for four or five meteor points,
conveniently spaced.

Ranges from Station B can be obtained in
the same fashion as those from Station A,
starting from the relative coordinates (%BAO,

HBAO, $BAO) of Station A with respect to B at
sidereal time 6B=0. This procedure, however,
is unnecessary, since clearly RBA=—RBA- We
can thus write

where

and

(22)

(23)

(24)

In computing heights above sea level for
points on the meteor, it is convenient to
compute first the heights (hAi) hBt) above a
plane through the station, normal to the
zenith direction.

The direction cosines of the zenithal point for
Station A are:

cos 6A

sin 6A (25)

where <t>A is the geographic latitude.
The zenith distance ZAt for points on the

meteor is given by the equation

cos ZAf=\ZA\At-\-nZAiiAt+vZAvAt. (26)

The heights hAt above the plane normal to
the zenith direction are then obtained from the
equation

hAi=Rjn COS (27)

To obtain the heights Ht above sea level, we
have to add the elevation of the station HA

above the level and a correction ShAi:

Ht=hAt+HA+5hAi.

The rigorous form of 8hAi is

(28)

(29)

where pA is the distance of the station from the
mean local center of curvature of the geoid
(i. e., the mean local radius of curvature plus
the elevation of the station).

The computation of 5hAi by equation (29) is
somewhat laborious because it is obtained as
the difference of two large quantities, so that a
large number of digits are required in the square
root. I t is therefore much more convenient to
compute 6hAi from the expansion of an approx-
imate formula (in which the zenith of the sta-
tion is assumed to be the same as the zenith of
the meteor points):

shA

where

m2 , m3

m = (30)

The error resulting from the use of this ap-
proximate formula does not exceed 20 meters
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for meteors photographed within 45° of the
zenith and is less than 150 meters for meteors
70° from the zenith. In ordinary cases it is
quite safe to stop at the first term of the ex-
pansion, so that 5hAi becomes

(31)

If this formula is used, instead of (30), the
difference in size of the error is negligible. At
70° from the zenith the errors differ by less
than 4 percent.

It is convenient to plot ShAt against hAi and
to keep the resulting curve for further use in
computing heights above sea level of other
points on the meteor trajectory.

Distances along the meteor trail

When ranges RAt have been computed for
two points ( i = l and i=2) on the meteor
trajectory, the spatial distance between them
can easily be determined. We first compute
for each point the components of the vector
R4< in the direction of the coordinate axes of
the astronomical equatorial system:

(32)

Let us now define a system of distances DAi

along the trail, starting from an arbitrary point,
such as the observed beginning of the trail.
The distance between our two points is then
given by the equation

(33)

To compute meteor velocities and decelera-
tions, we must first compute DAi for all the
observed shutter breaks. The use of equation
(33) for this purpose would obviously be pro-
hibitively laborious. Millman and Hoffleit
(1936) have shown that DAi can be computed
by a very simple formula, involving only the
corrected values xAi corresponding to indi-
vidual breaks, the coordinates of the radiant
(xAB) and of the beginning point (xAa), and a
constant, KA. The formula is

-———^ALSAI,

with (34)

KA=RAa
COS aAB

Here for convenience xAa has been identified
with the beginning of the meteor trail. I t is
obvious, however, that any other point could
have been taken as the origin of DAt. In
equation (34) it is convenient to compute
first DAi for all shutter breaks, and then to
multiply them by the constant KA. This latter
quantity is a function of the meteor instant,
while the D'Ai'& (which we shall call "relative
distances") are clearly independent of time and
can be computed even before the instant of the
meteor has been determined.

When a long series of xA( has to be converted into
DA{, it is useful to re-write equation (34) in the follow-
ing manner, which is more suitable for machine com-
putation:

DA{ = 1— , a_ i where 0 = ando=— fixAM.

Equation (34) fails when <rAB is close to 90°,
a rather common occurrence. The difficulty
can be avoided if we re-write equation (34) in
the form

DAt= (35)

FA and QA are constants for each meteor,
since clearly FA=KA/(xA,—xAB) and GA =
FA/KA; they can therefore be determined by
using known values of DAi, as determined from
equation (33), for any two points other than
the beginning points (center and end point
are recommended).

There is a simple relation between hAi and
DA{ which can be used as a check for the funda-
mental meteor points for which ranges and
heights were computed, as well as to compute
heights for any shutter break:

hA(=hAtt—DAi cos ZAS. (36)

To obtain heights above sea level use equa-
tion (28), with a graph of dhAi as function of
hAi.

Equation (34), or (35), with the subscript A
changed to B can be used to compute distances
along the trail photographed from Station B.
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By taking each individual beginning point as
the origin of the distances DAi and DBi, we
obtain two systems of D'a on the spatial tra-
jectory, differing by a constant. To simplify
inter-comparisons between the two trails, it is
convenient to use a single origin for both DAt

and DBt. To avoid negative D's, the earlier
(greater height above sea level) of the two ob-
served beginning points can be taken as the
common origin.

Our task, then, will be to transfer the begin-
ning point on one plate to the (xy) coordinate
system of the other plate. This is only a
particular case of point transfer, so what is
said for the beginning point is valid for any
other point on the trail. To stress the gen-
erality of the formulae, which can be useful
for other purposes, we shall use the subscript
"i" for the point to be transferred, instead of
the "a" used for the beginning point.

We shall suppose that the transfer is to be
made from plate A (Station A) to plate B
(Station B). Let us first compute the three
components £At, rfAi, $Ai of ~RAi according to
equation (32). The corresponding components
of the range vector RB< from Station B are:

VBi=VAt VAB
i*B<== f AI f AB »

and

(37)

(38)

The direction cosines of the transferred point
are:

Checks:

HAi=HB

(39)

(39a)

(39b)

Standard coordinates (£B<, "rjat) and trail
coordinates (xBi, 2/s<) are then computed from
equations (4) and (5). In computing KB for a
transferred beginning point it must be remembered
that asa o,nd (TBB must be computed for the trans-
ferred, not for the observed, beginning point.

The equations for the transfer from plate
B to plate A are entirely similar when subscripts
are changed. It is perhaps worth mentioning

that in equation (37) we would have to replace
£AB with £BA, which is equal to —£AB, and
similarly for ijxfl and £AB.

If ranges RAf are desired for points (such as
shutter breaks) for which DAt is available, the
following procedure is very useful. Compute
first the value of DAt for the point of minimum
range on the meteor trail and let it be DAt:

Here £Aa, rjAa, fAo are the range components
of the beginning point (origin of DAi).

The minimum range itself, RAt, is computed
from the equation

Check:
RAt=SA/smQ.

(41)

(41a)

Equation (4 la) could be used directly to determine
RA*. We have preferred to use it only as a check, since
both SA and sin Q may become very small in certain
cases.

For any DAt we shall then have the equation

RAt=RA,-\-{DAi—DAt)
2. (42)

Times corresponding to shutter breaks
If P is the period of revolution of the rotating
shutter and N the number of occupations, all
equally spaced, in one revolution, the instant
tt corresponding to the i-ih break can be
written as

P " • (43)

where Att is a function of the position of the
meteor relative to the center of rotation of the
shutter. For frontal shutters ordinarily used
with small cameras, Att can be minimized by
making the distance between the shutter
plane and the first principal point of the
objective lens as small as possible. If it is felt
that Att cannot be neglected altogether, the
correction can be determined empirically by vis-
ual or photographic observations in the focal
plane of the camera.

For Super-Schmidt cameras provided with
focal, radial-edge shutters the correction is
large, but can be rigorously determined from
the observed (x, y) trail coordinates on the
glass copy of the original curved film.
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Let xq, yq be the observed coordinates of the
center of rotation of the shutter, and xc, ye the
coordinates of the projection center—either
observed, or taken from the plate constants
(equation (11); xe=c; ye=d), and let / be the
focal length of the camera. Let us write:

dx=xa—xc # u=djdx t (P

We have then

-p,

where

tan 6i - 2 <x*
t a n (Of—z —.

(44)

(45)

Here u0 designates the value of w correspond-
ing to the origin of t< (usually the first break);
x{ and yt are the observed values of x and y of
the i-th break. The sign of At{ is positive when
the shutter edge chases the meteor, negative
when it runs toward the meteor.

When the shutter center coincides with the
projection center (dx=dtl=0), equation (45) re-
duces to

tan oj=- (45a)

This formula can be safely used whenever
rf<l cm.

When a meteor is photographed close to the
shutter center, the variation of Att with xt

becomes large and a smoothing of Att as com-
puted from Xi is in order.

Velocities and decelerations
When distances DAi have been computed and
tabularly listed as a function of time tAt, they
must be critically appraised before they can be
used to compute velocities and decelerations.

First of all, a weight must be assigned to
each value of DA{ on the basis of the recorded
quality of the basic xAi observations. Strictly
speaking, the scale of weights should be com-
puted from the relative inner scatter found for
each quality class. If no such analysis is avail-
able, the following scale is recommended:
l=very poor, doubtful; 2=poor; 4=fair;
6=good; 8=excellent.

In the second place, the DAi must be in*
spected for inner consistency and to detect
any possible instrumental effect (such as shut-
ter or camera vibrations) that may be amena-
ble to empirical correction. A simple and use-
ful device is the construction of an approximate
"retardation diagram." Take only the first
third of the DAi's and from them compute an
approximate value VAa of the initial velocity
of the meteor. For all shutter breaks compute
AAt=DAi— VAatAi and plot AAi against time tAt.
The range AA{ is only a small fraction of the
range of DAi, so a large scale can be used in
the plot. The scale should be such that the
normal observational scatter is clearly apparent.
Any large deviation from the mean curve should
be checked to detect possible mistakes in the
computation; if the computation is verified,
one should consider whether the observed dis-
crepancy is large enough to warrant rejection
of the point. In a series of good observed
points, there is no reason to retain a small
number of doubtful or bad points, whose inclu-
sion would lower the quality of the results. If
periodic oscillations due to instrumental causes
are present, they should be corrected as far as
possible before any analysis is started. (See
section on shutter and camera vibrations, p. 199.)

A direct numerical differentiation of the ob-
served DAi with respect to tAi is not recom-
mended, even if DA{ were tabulated at equal
time intervals (which is not the case with the
Super-Schmidt meteors), because observational
errors are magnified in the process of numerical
differentiation and also because in this process
it would be impossible to account correctly for
the weight of each single observation.

Experience has shown that a very expedient
and accurate way to compute velocities and
decelerations is to fit to the observed values of
DAi, by least squares, an equation of the type

tAt+cAe (46)

where aA, bA and cA are unknowns, and k is
determined beforehand. A simple way to com-
pute k is to read off four equidistant values of
AA{ (Ai, A2, A3, A4) from a smooth curve drawn
with the help of a French curve through the
points of the retardation diagram. Let the
time interval between two successive values of
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the selected AAt be T. We have then the value:

(47)

When aAi bA, cA have been determined, ve-
locities and accelerations are easily obtained
by differentiation:

(48)

Since equation (46) is at best only an em-
pirical approximation of the true form of DAt

fai), we cannot expect it to hold good for the
whole of the observed trail. When dealing
with a long meteor, we shall find it convenient
to break up the trail into sections (either inde-
pendent, or overlapping) and to compute sepa-
rate least-squares solutions for each of them.
An ideal goal is to obtain individual values of
eA which exceed their computed probable errors
by a factor of 20 or 30; and with a little experi-
ence one can judge how long each section should
be to yield such a margin of safety. In any
case, only the values of VAi and VA1 computed
for the center of each section should be taken
as having full significance.

From equation (48) it is easy to see that bA

is the extrapolated value of VAl for tAt=—».
Thus the least-squares solution provides us
automatically with an important quantity, the
velocity Vm of the meteor before it was de-
celerated by the earth's atmosphere. If sev-
eral values of bA have been obtained for a
meteor, from several sections, the value from
the first section will be the best value of Vm.

Determining the instant of the meteor

Instant from measures of flares. When flares
in the meteor trails can be identified and meas-
ured from both stations, the instant of the
meteor can be determined independently from
each flare. This method, when possible, is
more satisfactory than the method of equalizing
the observed velocities from the two stations
(described in the next section).

The flare method depends upon the fact that
the line joining the two observing stations must

lie in a plane determined by the directions of
the flare as observed at the two stations. I t
will be apparent that the method fails in cer-
tain geometrical configurations. At middle
latitudes the solution is usually precise within
a few seconds of time if the stations are located
along a diagonal to the cardinal directions and
if the flare is sufficiently defined for accurate
measures.

Let us select a flare (or any other clear-cut
feature) which can be recognized on both plates.
From the measured x's and y's we shall com-
pute its celestial coordinates as seen from Sta-
tion A (\Af, fiAf, vAf) and from Station B (Xfl/,
mr, VBf), respectively.

The quantities

mt— vAf\Bf— \A/i>Bf

Check:
(49)

—0
(49a)

are the direction cosines of the pole of the great
circle through the two projections of the flare
on the celestial sphere multiplied by the sine
of their distance in arc. For these projections
to lie in a plane with the two stations, we must
clearly have the condition

(50)

Replacing SAB, VAB, {AB by the expressions
given in equation (18) and writing

rifSAB.^Ct, (51)

we obtain the equation

A, cos dA +Br sin dA + C,=0, (52)

which, when solved, yields 6A. As the equation
is quadratic in either sin 6A or cos 0A, it has two
solutions, of which only one, obviously, is
significant. When the two solutions fall close
together, the accuracy of the time determina-
tion by this method must be considered to be
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poor. The sidereal time, of course, must lie
within the interval common to the two photo-
graphs.

Instant from equalization of velocities. This
method is based on the fact that "relative"

=-H iP'Bi) canvelocities VA—^JJ (D'At) and

be determined before the instant of the meteor
is known. For any given point on the meteor
trajectory we must clearly have

(53)

Since KA and KB are functions of the meteor
instant, the latter can be determined when
equation (53) is rewritten to contain 6A in
explicit form. The method is not very sensi-
tive and is recommended only when the flare
method cannot be used for lack of reliable
common points.

Let us suppose for a moment that vA and VB
have been determined. We shall then write

M vA

S

cos <rAa vB cos aBa

SA cos <rAB' SB cos aBB

PA=Z

A = %ABOPBP — VABo^Bp QB —

(54;

(55)

A.=MAPA+MBPB

B,=MAQA+MBQB

C.= (MAvB+MBvA) UBC (56)

We then find 8A by solving the equation

A, cos 6A+B, sin BA + C,=Q. (57)

To determine vA and VB it is best to proceed
by successive approximations. First find the
asymptotic velocities vAm(=bA) and vBm(=bB)
by least squares, fitting to the observed values
D'A{ and D'Bt an equation of the same type as
equation (46). These asymptotic velocities
can be used instead of vA and vB in equation
(57) to obtain a first approximation to 0A.
Using this first approximation, we can transfer
the center of the trajectory on plate A onto
plate B and compute relative velocities for
these two points. Since these are central

points, the relative velocities pertaining to
them will be more reliable than the extra-
polated asymptotic velocities and will yield a
better approximation to 8A. The process may
be repeated if the possible results seem to be
justified by the labor.

Instant from an undrwen monitoring plate.
We shall suppose that the monitoring camera
is placed close enough to the meteor camera
that the parallax between the two cameras is
negligible. Let us assume that the cameras
are situated at Station A and that a time break
is impressed on the star trails, centered around
the instant 9^ of local sidereal time.

For simplicity we shall consider only a short,
central portion of the meteor trail, and select
a few (four or five) time breaks on star trails
in the region surrounding this portion. Meas-
ure x and y coordinates for the star breaks
and for the meteor portion, and determine the
coordinates (a, 8) of the plate center at the
time of the star breaks. Compute standard
coordinates of star breaks and plate constants
(six-constant method preferable). If the area
covered by the star breaks is not too wide,
the field distortion within the area, as revealed
by the individual residuals Ax and Ay, will be
small; it must be made small because we shall
be forced to neglect it.

Plot y against x for the measured points on
the meteor trail, and derive a smoothed value
yu of V for a given value xM of y near the center.
For this point, compute standard coordinates,
direction cosines, and finally right ascension
and declination (a'M} hM), all in the system of
star breaks. The correct right ascension au

corresponding to hu can be computed from the
equation of the great circle of motion of the
meteor:

cos (au—aP) = — tan &u tan Sr (58)

Here aP and 6P are the right ascension and
declination of the pole of the trail, both known
from the driven meteor plate. The difference
A6=au—a'u is equal to the sidereal time
elapsed between the instant of the star breaks
and the instant of the meteor; i. e., we have
the equation

(59)
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This method fails when the meteor runs
approximately along a parallel of declination.
In that case, the difference Ad can be computed
from aP—a'p, where a'P is the right ascension
of the pole of the meteor trail, referred to the
star breaks. If the meteor runs approximately
along the celestial equator, the method fails
completely unless some use can be made of
identifiable common points.

Space trajectory by direct triangulation

When the angle of intersection Q between
the great circles of motion of the meteor as
seen from the two stations is very small, the
method described in the section on ranges and
heights (p. 189) fails. In such cases direct tri-
angulation can be used.

The instant of the meteor must be known
from visual observations or from a monitoring
plate, and a good common point m (xAn, yAm

on plate A; xBm, VBm on plate B) must be avail-
able. A second common point n, as remote as
possible from m, is established by making use
of the shutter breaks. Select a break (xAn,
yAn) on plate A and evaluate the time interval
tnn between this break and the first point m;
on plate B find the point (xBn, 2/sn) for which
the time interval from point m is exactly equal
to tmn. Be sure to eliminate the effect of
observational errors by first smoothing xAi and
xBi (smoothing by differences is not recom-
mended; comparison with a close-fitting poly-
nomial is preferable).

We shall have two separate triangulations
to compute RAm, RBm and RA*, Ran', in the
following formulae i stands for either m o r n .
RAB is the spatial distance between the two
stations.

The base angles at and fi{ and the vertex
angle yt are first computed from the equations

RAB cos ai = tA

RAB COS /3<=—

(60)

sin 7i=sin a< cos /3<+cos a< sin /9< (60a)

after which the ranges become

At this stage, we must decide whether we
want to use the trail on plate A or the trail
on plate B for the computation of the radiant,
or a compromise between the two. Since the
radiant is no longer defined as the intersection
of the great circles corresponding to the trails,
but rather as the vanishing point of the space
trajectory of the meteor, we must expect to find
a slight discrepancy between the two determi-
nations. Suppose we have selected the trail on
plate A as the most reliable. Then:

Vmn — VAm VAn't ^AR^=

?mn = tAm — fAn VAR~£
(62)

s i n & - s i n a <

Meteors photographed by stationary cameras

General problems. Either one or both meteor
photographs may have been taken with sta-
tionary cameras. We shall discuss each case
separately; first, however, we may examine a
few problems which arise with trailed plates in
general.

We shall suppose that the star trails on the
undriven plate show "time breaks" caused by
a mechanical or hand-operated shutter at cer-
tain instants which have been carefully timed.
If we refer the meteor and the plate center to
one particular set of time breaks on star trails,
we do not obtain its true position in the sky,
unless the time of appearance of the meteor
happened by chance to coincide exactly with
the instant of the time breaks. All the declina-
tions we determine in such fashion are correct,
but the right ascensions are shifted by an
amount A6=6A—BA, where 0A is the sidereal
time of the meteor, and 0A that of the star
breaks, both taken here as observed at Station
A. We shall call such a hybrid system of coor-
dinates "relative coordinates," and designate
them with a prime (a'At, 8Ai; \'At, n'Ai, vAi, etc.).

The faintest stars recorded on trailed plates
are considerably brighter than those that are
normally selected as comparison stars on di-
verse plates. Thus fewer stars are available
and it is almost impossible to find time breaks
sufficiently close to the meteor trail to yield
satisfactory field correction (Ax, Ay) curves.
It is therefore convenient to determine the
plate constants from star breaks in a limited
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area of the plate rich in star breaks and crossed
by the meteor trail—an area sufficiently small
to justify the neglect of field corrections within
its limits. The "relative" position of the pole
(aA, &A) of the meteor trail must be determined
from (x, y) measures confined to this area alone;
i. e., in the plot of observed y's in function of x,
we must isolate the portion of the diagram that
lies within the extreme values of x measured for
the star breaks, and draw the best possible
straight line through those points only.

If the instant of the meteor is known, or has
been computed, relative coordinates can be
transformed into true coordinates by the fol-
lowing transformation:

\ n = ^ < cos A0—p'Ai sin A0
MA<=M4* cos A0+\'At sin A0 (63)

The usual checks must be applied to the
transformed meteor points

equation of the great circle of motion of
the meteor in "relative" coordinates:

(63a)
= co3 A0.

Once all coordinates (of points on the meteor,
of the pole, and of the plate center) have been
thus converted, the reduction can proceed in
normal fashion, as for driven plates.

When the meteor intersects the star trails at
a considerable angle, so that intersection points
can be accurately measured, such points can be
used to determine the field correction at least
in the x coordinate. To avoid interference
with the shutter breaks on the meteor trail, we
should first measure the y coordinate of the
meteor trail at convenient intervals of x (with
one of the cross-wires of the measuring engine
as nearly parallel to the meteor trail as possible),
then plot the observed y's against x and draw a
smooth curve through the points. This curve
can then be used to set the y coordinate of the
measuring engine for each intersection to be
measured; in this fashion one of the cross-wires
replaces the meteor trail, bridging the gaps
caused by the rotating shutter.

At the intersection with a star trail, the
declination 8m of the meteor is equal to the dec-
lination of the star. Thus, by feeding the
declination of the intersecting star into the

cos (a'A—am) = — tan SAp tan (64)

we shall obtain the "relative" right ascension
aut of the intersection point. We can do this
for all the measured intersections, from the
actual beginning to the actual end of the
meteor trail; for each intersection we can cor-
rect (aUt SM) into standard coordinates and
compute the corresponding (a;, y) coordinates
with the help of the plate constants from the
time breaks in the small area. A comparison
with the measured values of x and y will yield
individual residuals Ax and Ay, from which
field correction curves can be obtained. While
the Ax curve can be considered to be an ex-
cellent approximation to the real field distor-
tion relative to the adopted plate constants,
the same is not necessarily true of the Ay curve.
The reasons for this are two:

(1) We determined the (xy) equation of the
trail from a small portion of the trail only, so
that the margin of error at the extremes of the
trail is rather large.

(2) We assumed, in computing intersections,
that the meteor followed a great circle in the
sky, and this may not have been rigorously
true.

A final word should be said about time
breaks. If several time breaks are impressed
on star trails during the course of the exposure,
breaks belonging to different sets may be used
to determine plate constants provided they are
all reduced to a common set. On glass plates,
the indiscriminate choice of time breaks of
different sets should cause no trouble when the
timing is accurate. On the other hand, in film
photographs taken with conventional cameras
some trouble may be caused by progressive
film distortion under stress.

Case of one driven and one stationary camera.
Suppose the stationary camera is located at
Station A. If the instant of the meteor is
known, there is no problem. First compute
"relative" coordinates of points on the meteor
and of the pole of the trail, and then convert
them to true coordinates, as described in the
preceding section.

If the instant of the meteor is not known, it
must first be determined by using flares or
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other common points on the two photographic
meteor trails. Only when good, sharp common
points can be found is a solution worth trying.

Compute first:

Z'AB=Z'AB, COS e'A—

IIAB=VABO COS

s in B'A

s in O'A

Check:

(65)

(65a)

For each flare (relative coordinates \'Af,
/A/, »Af) compute

/ / / yj I

t—MA/SAB—^A

TTlf= (66)

and the coefficients

(67)

Then solve the equation,

.4', cos Afl+B'/sin A0+ C,=0. (68)

Since Ad is always relatively small, solve for
sin Ad. If the computation was done for several
flares, take a weighted mean of all the resulting
values of A0 and proceed to convert all relative
coordinates to true coordinates, as described
in the preceding section.

Case of two stationary cameras. If the meteor
is photographed with stationary cameras at
both stations, the solution is independent of
time. By this we mean that correct heights,
distances, and velocities will be obtained no
matter what instant is assumed for the meteor.
Unless, however, we know the instant from
observation, the position of the radiant remains
indeterminate; i. e., its declination can be
computed, but not its right ascension.

If the instant of the meteor is not known,
assume for simplicity that the meteor appeared
at the time of a given set of time breaks on star

trails on plate A. Then the plate constants
on plate A can be computed in a straight-
forward manner by directly correlating the
observed (xy) coordinates of star breaks with
($, 17) coordinates computed from catalog
positions for the stars. On plate B, however,
the right ascensions of the stars (and of the
plate center, as referred to star breaks) must
be augmented by 0%—O'B, where 0% is the
sidereal time at Station B corresponding to
the assumed meteor instant, and B'B is the
sidereal time, at the same station, of the time
breaks.

From here on the solution proceeds as for
meteors on driven plates with observed time.
One should remember that while the positions
of the radiant and of the zenith, as computed,
are purely fictitious, their distance ZR is correct.
Since the radiant position is indeterminate,
no orbit can be computed.

Plate center from three stars

Estimate the approximate position of the
plate center and select three stars Su S2, S3, as
nearly equidistant as possible from the center
and at 120° (counted from the center) from
each other. We recommend taking a plate of
clear glass or a transparent plastic sheet and
drawing on it three lines issuing at 120° from a
common point, with distances from this point
marked on each line. This plate or sheet can
then be superimposed on the meteor plate to
help select the stars. The three stars should
not be too close to the center, but not so far that
differential atmospheric refraction might affect
the results; also, they should be of the same
brightness and rather faint, to avoid excessive
coma distortion.

On a measuring engine measure the distance
between pairs:

di=distance between S2 and S3
<^2=distance between $1 and Sa
d\=distance between Si and S2

Compute the corresponding angular dis-
tances in the sky:

COS 7 l =
COS 7 2 =

COS 7 3 = (69)
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By successive approximations solve the fol-
lowing equations for Pi(p<=/2+d?, where/ is the
focal length of the camera):

2-2 COSY,

2-2 COST,
IJ,

2-2 COSTS

. /IS

In first approximation it can be assumed that
P2—P3=Pi—P3=Pi—p,!=0; proceed to further
approximations until all three p's are stabilized
to the nearest micron (0.001 mm). The co-
ordinates of the plate center (Xe, ne, ve) are ob-
tained from the equation

=//P« (*=1, 2, 3). (71)

Suggested procedure: Solve

(72)

for \e/f, pe/f, vjj; compute / from the obvious
relation

Corrections for gravity

The spatial deflection of a meteor from its
purely inertial trajectory, due to gravity, at a
given point i is

/ ? , = ! a t? (14)

where g is the acceleration of gravity (=0.0096
km/sec2 at average meteor heights) and t{ is the
time elapsed from the time origin (i. e., from
the instant of the first break, or from any other
convenient point on the meteor trail).

The corresponding deflection Sy on the photo-
graphic plate, in the y direction (perpendicular
to the direction of motion of the meteor), is

Sy=
Gt cos ^

(75)

where R{ is the distance of the meteor from the
station, Sv is the scale of the photographic plate

in the y direction (see section on photometry,
p. 203), and ̂  is the zenith distance of the pole
of the meteor trail, for Station A (and sim-
ilarly for Station B), computed from the
equation

COS TI>A= (76)

As a correction to the observed y'a on the
trail, Sy should be applied with such a sign as
to bring the meteor positions closer to the
zenith. Ordinarily Rt is computed only at a
later stage, but since a very limited accuracy
in R{ is needed to obtain 5t, a rough solution,
requiring only a few minutes, is in order.

To correct distances on the trail:

De0Tr=Dt~Gt cos ZB. (77)

To correct velocities:

VC0TT=V0-g (t,-t0) cos ZR. (78)

Here Vo is the velocity determined for a
given instant t0 and Zs stands for either ZAR or
ZBB- A correction to the observed velocities
is justified only when it becomes necessary to
inter-compare several velocity determinations
in the course of a trajectory. For orbital
purposes, the correction for zenith attraction
(see p. 201) takes into account the effect of
gravity from infinity to the point of observation.

To correct accelerations:

VCOrr=V— g cos Zfi. (79)

This correction is not always negligible in
early parts of meteor trajectories.

Corrections for vibrations
A common trouble in the photography of
meteors with small cameras provided with
frontal rotating shutters arises from vibrations
imparted by the shutter to the camera. In
Super-Schmidt cameras the shutter is too light
to transmit any vibrations to the camera;
frequently, however, a modulated flutter is
observed in the rotational motion of the
shutter. Both of these effects are reflected in
a semiperiodic oscillation of the observed posi-
tion of the meteor in its trajectory. In the first
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case, however, the oscillation affects directly
the measured (xy) coordinates, while in the
second case it affects the computed time of the
shutter breaks. We must, therefore, treat
the two cases separately.

Camera vibration. In dealing with camera
vibrations, we shall assume that the rotating
shutter showed no error arising from eccen-
tricity or from asymmetry, or that any such
errors have been determined experimentally
and corrected for. A true camera oscillation
is revealed by its occasional effect on the
transverse (y) coordinate of the meteor trail,
resulting in a sinuous trajectory. We can
easily eliminate this latter effect either by
trying to measure the mean rather than the
actual y coordinate or by drawing a straight
line through the observed oscillations in the
(xy) diagram.

In general, the oscillation of a given point
on the plate will be along an ellipse, whose
shape may be subject to semiperiodic changes.
If the oscillation is imparted by the shutter,
its period will be either the period of rotation of
the shutter, or a submultiple of it. To study
the longitudinal component of the oscillations,
one should analyze the observed x's; this task,
however, is made difficult by the fact that x
on the meteor trail is a rather complicated
function of time. I t is much more convenient
to do the analysis when the x's have been
reduced to distances D, and then to convert
residuals AD to Ax by means of simple formulae.
When D's have been computed, a retardation
diagram must be plotted; if the range of the
retardation is large, it is convenient to compute
approximate values of the coefficients aA, bA, cA

in equation (46) from three points on the
retardation curve and compute residuals A2D
from this equation. These residuals can then
be converted to the corresponding residuals
in x (A&) by multiplying them by dxfdD
(=Vmm/V; see equation (106)), which can
easily be computed to two or three figures
even at this stage.

Once the period of oscillation has been estab-
lished, divide the shutter breaks into as many
groups as there are breaks in one cycle of the
oscillation, and for each group draw a separate
curve of A& against i, the order number of the

break. The differences between the curves will
supply the systematic corrections to be applied
to the observed x of each individual break.
Instead of applying this correction to x, one
may, of course, multiply it by dD/dx and apply
it to Dt.

Shutter flutter. The flutter in the shutter of
the Super-Schmidt cameras causes the com-
puted instants of individual shutter breaks to
be in error by a visible amount At; conversely,
if we assume that the computed instants are
correct, we shall observe corresponding oscilla-
tions AD=vAt in the distances. Since we can-
not detect At except by analyzing AD, it is con-
venient, once AD has been isolated, to apply
corrections to the observed distances Dt rather
than to the instants U.

To isolate the fluctuations AD, follow the
same procedure as for camera vibrations: con-
struct a retardation diagram and plot residuals
A2D from equation (46), with coefficients com-
puted from three points, against i. For the
Super-Schmidt cameras A2D occasionally shows
slow, semiperiodic oscillations (most frequent
period=0*23), superimposed on a slower varia-
tion, due to the imperfect fit of equation (46).
Draw first a smooth curve through the observed
points, following all the oscillations; then draw
a smooth curve to bisect all the waves of the
oscillations. The difference between the two
curves can be taken as the correction to be
applied to D{. If the trail covers only a little
more than one cycle of the oscillation, it is con-
venient to fit a sine term to the observed values
of A2D.

Computation of orbital elements

When the position of the apparent radiant (X«,
MB, VR) and the apparent velocity of the meteor
before atmospheric deceleration (Va>) have been
determined, it is possible to compute the orbital
elements of the meteor.

If Va is determined separately from two
plates, take a weighted mean of the two
quantities.

Correction for earth's rotation (aberration).
Compute the (negative) velocity components
of the velocity:

(80)
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The corrected velocity and radiant are com-
puted from the equations

Vc\Rc=$'+~RA cos <f>'A sin 6A
-*«

VCHRC=T)'—~RA cos <}>A cos 0A (81)
•*»

Here T, is the sidereal period of rotation of
the earth in seconds=86164. Station A is
chosen as the observers' point, although no
substantial difference is found if Station B is
used.

Corrections jor zenith attraction. Let us take
a central point on the meteor trajectory as
photographed from Station A (X ô, HAO, VAO) and
compute its distance Ro from the center of the
earth and the zenith direction through it (XZo,
too, vZe):

RO^ZO^RA COS <f>'A cos 6A+RAo\Ao

RoliZo=RA cos 4>'A sin dA+RAonAo (82)

AOVAO-

Calculate the direction cosines XJV, pN, vN and
X«, HK, VK of the normals to the zenith, and the
corrected zenith distance ZRe by the equations

\N s in ZRe=nRevZo— vRenzo

nN sin ZRc— vRe\Zo— \RevZo (83)

vN sin ZRC=\RCHZO—^RC^ZO

Checks:

X.vXZo+UNPZO + vNvZo=0

(84)

(83a)

(84a)

The velocity Vee corrected for zenith attrac-
tion is given by the equation

COS ZRe= XR<.XZo4" HRCHZO + VRCVZO

sin ZJee=X/rXZ(,+/iKMzo+»'Jt»'zo-

where go is the acceleration of gravity corre-
sponding to a distance Ro from the center of
the earth. A good approximation for 2g0R0 is
given by the equation

20O#O=O.79464/#O (in units of 100 km/sec2). (86)

The correction AZ to the zenith distance is
given by the equation

AZ Ve-Vee sinZRcAZ
t a n 2 -

ZRee=ZRe-{-AZ,

(87)

in which

sin AZ=
2 tan —

. , UkZ
1 + tan2 —

; cos AZ= (88)

Compute the direction cosines of the final
corrected radiant:

XKW= XRC COS AZ+ XK sin AZ

HRCC=VRC COS AZ+MJC sin AZ

VRCC^VRC COS AZ+VK sin AZ (89)

Checks:
,=cos ZBet

Be = CO8 AZ
= 0
=sin AZ. (89a)

Heliocentric velocity. The geocentric velocity
of the meteor in a.u./1/fc mean solar days is

TV-=3.3595Ffc (90)

when Vet is expressed in units of 100 km/sec.
In the conversion constant the solar parallax
has been assumed to be 8T80. Compute the
velocity components,

Ym= — \ mURct
Z'm=-VnvRct. (91)

Vle=V*-2goR.t (85)

These components are referred to the equinox
of the year of the meteor and should now be
converted to the standard equinox of 1950.0
by using the same equations and tables as for
the precessional rotation of direction cosines.

From an astronomical ephemeris interpolate,
for the instant of the meteor, the equatorial
rectangular coordinates of the sun for the
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standard equinox (1950.0) (Xo, F o , Z o ) , and
their first derivatives (X'Q, YQ, Z'Q) with respect
to time, expressed in mean solar days. It is
convenient to compute the derivatives (using
all significant differences) for midpoints be-
tween tabulated values for a few days before
and after the date of the meteor, and then to
interpolate for the exact instant of the meteor.

The interpolated positions and derivatives
can be checked against the ephemeris of the
radius vector rT of the earth in its orbit, given
elsewhere in the almanac:

XQ -\- YQ + ZQ = TT

XoX'Q+YQYQ+ZQZ'Q=-rTr'T. (92)

To obtain the heliocentric position and
velocity components of the earth in the same
system and units, we have simply to change
sign in the above quantities. The velocities
are expressed in a. u. per mean solar day; to
add them to the meteor velocity components,
we must first multiply them by 1/k (=58.132).
Neglecting the distance of the meteor from the
center of the earth, we can thus compute the
heliocentric equatorial coordinates and velocity
components of the meteor:

X=-XQ X'=X'm-

Y=-Yo; Y' = 7^-58.

Z = -ZQ Z' =Z'm-58.132Z'Q (94)

ri=X2+Yi+Z2

rr'=XXf+YY'+ZZ'

V*=X'2+Y'2+Z'a. (95)

The heliocentric velocity of the meteor in
km/sec is 29.767 V.

Orbital elements. The customary symbols
used in orbit calculations are given in the fol-
lowing section. Some slight duplication of the
previous symbols should not cause confusion.

o=semimajor axis \
<7=perihelion distance I.

3 \. i- J- i. >m a. u.
q — aphelion distance
p=parameter J
e=eccentricity

i=inclination
«=obliquity of the ecliptic
»=true anomaly
«=argument of perihelion
Qt = longitude of ascendingequinox of 1950.0

node
o=longitude of perihelion
P= period of revolution (sidereal years)
X=elongation of the corrected radiant from

the apex of the earth's orbital motion.

The elements are derived as follows:

Check:

e sin v=r'plf2

e cos v—-—1
r

1—e2

(96)

(96a)

Direction cosines of the major axis:

(97)

Direction cosines of the minor axis:

p—r Y'

r ~ . p—rZ' (98)

Checks:

Q2X+QY+QI=1

PXQX+PYQY+PZQZ=O. (98a)
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Ecliptic elements:

sin i cos u=Qz cos t—QY sin «

sin i sin u=Pz cos «—P r sin « (99)

cos ft = Px cos w—Qx sin w

sin ft = ( P r cos o>—Qr sin w)-4-cos e. (100)

Check:

—cos i sin ft = @x cos «-f-Px 8 m «• (100a)

If Y' sin €—Z' cos e>0, «=180°—© and ft
=Longitude of Sun.

If Y' sin «—Z' cos e<0, «=360°—1> and ft =
Longitude of Sun+180°.

Additional elements:
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ra=ft+«
q'=a(l+e)
P=a3/2

cos X= j~i

(101)

Photometry

In this section we shall briefly describe the
techniques used in the Harvard Meteor Project
to measure the apparent brightness of meteors
photographed on glass plates (small cameras)
and on curved films (Super-Schmidt cameras).
We shall start with a few general remarks and
useful formulae.

Scale on photographic plates. Apart from
relatively small distortions, the scale S (in
radians/mm) can be considered to be constant
on Super-Schmidt films, and equal to / , the
effective focal length of the camera (in mm).
We can compute / from the plate constants on
the glass copy:

f2=a?-\-bi (4-constant method)
or J'=ai+bl (6-constant method). (102)

The same formulae can be used to derive
the focal length of an ordinary camera using
glass plates.

On plates, the scale varies at each point with
direction. In the absence of distortions, at a
distance d from the projection center (where
the optical axis of the camera, or of the copying

system, encounters the plate) and in a direction
which makes an angle 4> with the radial direc-
tion, the scale of the plate is

f2+d>
(103)

In the case of a meteor, in which the x co-
ordinate is measured on the trail, and y is
constant, the scale factor Ss in the direction of
motion of the meteor, and the scale factor S9

in the perpendicular direction are, respectively:

g _yp—\*—*e). g _\p—yy—ye) Q ^
P2 p1

Here xc, ye are the coordinates of the projec-
tion center; pt=ft-\-d2; d can be computed from
d*=(x-xey+(y-ye)>.

Trailing velocity of stars and meteors. On a
plate taken with a stationary camera, the trail-
ing velocity of stars (in mm/sec) is

2x
(105)

where T, is the sidereal period of rotation of
the earth (86164 seconds of mean time).

The trailing velocity of the meteor on the
plate, vmM=dx/dt, can be determined either by
numerical differentiation, from the measured
values of x, or from the following formula:

Vi(xAt-
KA(xA.-

(106)

Here the subscript A indicates the plate taken
at Station A; with changed subscript, of course,
it can be used for Station B. Vt is the instan-
taneous velocity of the meteor and xAl, xAm, xAm

and KA have the same meaning as in equation
(34). &tA is read off the field-correction curve
in function of xA; the last factor, which was
introduced to account for field distortions, is
always very close to 1 and may be disregarded
in ordinary cases.

Reciprocity-law failure. If a given star region
is successively photographed by a driven camera
with different exposure times tx and U, and the
photographic images on the two plates are
intercompared for brightness, we find that there
is a constant difference between the two sets of
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star images, corresponding to a magnitude
difference,

m.-m^-2 .5 log £+/(«„*,), (107)

where/ (tiy t2) is a term arising from reciprocity-
law failure (Mees, 1942). If the reciprocity-law
curve, plotted with log / (intensity) as abscissa
and log (It) as ordinate, is nearly a straight line
in the interval between U and t2, equation (107)
can be written in the form

m 1 -m 1 =-(2 .5+F, ) log ; - f . (108)

In fast emulsions FB is usually quite large
(+0.3 to +0.9) for exposures ranging from 1
minute to a few hours; for short exposures
(<1 socond) FR may range from 0.0 to —0.2,
according to the typo of emulsion. For the
Kodak X-Ray emulsion, FR is nearly zero in
the short-exposure branch.

Absolute magnitudes. I t is convenient to re-
duce the apparent (observed) meteor magni-
tudes to a standard distance of 100 km. If the
ranges Rt (i. e., RAt or RBt) are expressed in
units of 100 km, the reduced, "absolute" mag-
nitudes are, clearly:

Mt—mt— 5 log Rt (109)

Photometry on small-camera plates. The
brightness of meteors is measured, emulsion
against emulsion, with free-trailed star images
on comparison plates taken with the same
instrument as the driven meteor plate (Jacchia,
1949).

The comparison plates are all taken without
rotating shutter and are centered on the
equator, in a region rich in bright stars (first
choice: Orion; second choice: Aquila); the most
suitable exposure seems to be one that gives
star trails half millimeter in length. I t is useful
to take plates with different focal settings, and
to have out-of-focus images to compare with
fuzzy-looking meteors; also, it is convenient to
take several plates of each type, so that plates
whose emulsions have been damaged by use
can be replaced when necessary. Two stand-
ard, driven plates must be taken with rotating
shutter, one before and one after the series of
comparison plates; the center must be the same

as that of all the comparison plates and the
exposure equal to that of standard meteor
plates. To avoid complications arising from
extinction, the whole series of plates must be
so timed that its center roughly coincides with
the culmination of the selected region. The
series can be considered to be acceptable if no
difference in brightness can be noticed between
the two extreme plates.

Photographic magnitudes in the standard
region can be taken from the Henry Draper
Catalogue when the following rules are ob-
served:

(1) Take only the stars whose magnitudes are
given to two decimal places (the others are
simply reduced B. D. magnitudes, too un-
reliable for our purpose).

(2) Select only stars of spectral types from
Bo to F5, for which the color index is reliable,
because the photographic magnitudes in the
Draper catalog are really visual magnitudes
reduced to photographic magnitudes with stand-
ard color indices.

When the meteor trail is compared with the
comparison star trails, we obtain fictitious mag-
nitudes m[, which must be corrected for the
different trailing velocities of the stars and the
meteor on the plate. The correction, according
to equation (108) is

(110)

The effective exposure time for star trails
is of the order of I s and that for meteor trails
of the order of 10~8 to 10~4 seconds.

Due to the progressive dimming of images
with increasing distance r from the center of
the plate, a distance correction /(r) must be
applied to the observed meteor magnitudes to
reduce them to the plate center, where the
standard comparison stars are located. This
correction must be determined separately for
each camera and for each focal setting. A
simple way to determine/(r) is to compare the
trails on two plates of the same series, on the
north-south line through the center, in the
northern half of the plate. I t is easy to see
from equation (105) that on the north-south
line vt is the same for all stars if the plate center
is at 5=0; by taking the northern half, which
is close to the zenith, extinction problems are
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minimized. It appears that /(r) is larger for
fainter stars than for brighter stars. The
limited number of bright stars available on the
plate makes it impossible, however, to deter-
mine separate curves of j(r) for different classes
of star brightness. A good approximation can
be obtained by determining/(r) for stars 1 to 2
magnitudes brighter than the plate limit, and
assuming for brighter trails the correction can
be expressed as j(I)f(r), where / ( / ) is a factor
dependent on brightness alone, which can be
determined by using a few brighter stars.

If we compare stars at the center of the
meteor plate with stars of the standard region
at the center of the driven comparison plates,
we shall find a constant difference between the
estimated magnitudes m« and the catalog
magnitudes me. When allowance is made for
the difference in the exposure times of the
meteor plate (tm) and of the comparison plate
{t0), we obtain a corrected difference,

T=me—mg—2.5 log t?, (111)

which may be due to any combination of the
following factors:
1. Difference in sky transparency.
2. Difference in differential extinction.
3. Difference in the sensitivity of the emulsion.
4. Difference in the development.
5. Clouds on the meteor plate (it is assumed that the

comparison plates were taken on a clear night).

The first four factors affect the meteor and
the background stars equally; but the fifth
does not. Therefore, it is safe to apply the
correction to the meteor magnitudes only
when there is absolute certainty that no clouds
were on the central region during the whole
exposure. Otherwise, it is better to ignore the
correction and take the risk of introducing an
error of a few tenths of a magnitude in the
reduction.

To summarize: absolute magnitudes Mt are
obtained from "observed" magnitudes m\ by
the equation

Mt=m't-{2.&+FB) log - 5 log R.

(112)

Photometry on Super-Schmidt films. The
brightness of meteors photographed with Super-

Schmidt cameras is estimated on the original
films with the help of free-trailed star images
on comparison films. Since the rotating
shutter has openings totalling only a quarter of
the circumference, the meteor trail is reduced
to a succession of widely separated dashes.
In most cases these dashes appear diffuse due
to the difference in focus between stars and
meteor. To avoid systematic errors, it is
necessary to compare these dashes with star
trails of equal length and equal degree of
diffuseness. To this end, comparison films are
taken (with stationary cameras without shut-
ter) at various focal settings and with different
exposures. Specifically, four focal settings
were used in the Harvard Meteor Project and
at each focal setting four films taken, with
exposures of 3*, 6*, 12*, and 24*, respectively—
a total of 16 films for each camera (actually,
the whole series was taken in triplicate, to
supply a reserve for replacements).

To enable a direct comparison, emulsion
against emulsion, with the meteor films, the
comparison films are turned inside out, so that
the emulsion is placed on the concave side; the
operation can be done with a sharp rap of the
hand without injuring the film. As a support
for the films, we find that the hemispherical
surface of an opalescent glass globe for overhead
lighting, with a strong light source inside,
provides an almost ideal device. The globes
which are available have a radius of 7 inches,
one inch less than the radius of curvature of the
films, but the difference is well within the
tolerable limit. It is actually better to use
supporting globes a little more curved than the
films: if the curvature is only a small fraction
of an inch less than that of the films, these
cannot be brought in contact with the support-
ing surface and the gadget becomes useless.

Stars in Harvard Standard Regions at decli-
nation + 15° are used for comparison with
meteor trails. All comparison films are cen-
tered on the celestial equator, so that the
center of the standard region is always a little
more than halfway from the film center to the
edge. No appreciable magnitude correction in
function of distance from the film center has
been detected.

The trailing velocity of stars on the films, V,,
can be computed from equation (105) with
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S+=llf; the trailing velocity »£,„ of the meteor
on the film can bejobtained from vmn as com-
puted for the glass plate:

Vmrn==jS^Omm- (113)

Since compact, small cumulus clouds'are fre-
quently present in the New Mexico sky, we
deem it safer to do away entirely with the
intercomparison of stars on meteor films and
driven standard films to determine the correc-
tion T. Since the standard exposure for Super-
Schmidt films is only 12 minutes, the dimming
effect of a passing cloud on field stars can be
quite large.

Notation symbols
Sky and plate coordinates.
a, &—The spherieal'equatorial coordinates right ascen-

sion and declination.
X, ft, *—Direction cosines referred to the equatorial

astronomical system.
i, n—Standard rectangularlcoordinates with the origin

at the optical plate center.
x, y—Measured rectilinear coordinates on photographic

plate.
9—Angular distance from optical plate center.

Single-letter subscripts:
s—Coordinates of stars.
c—Projection center of plate.
q—Center of rotating shutter.

Double-letter subscripts are used for points
on the meteor trail, or related to the trail.
The first letter is always A (for Station A) or
B (for Station B). A list of second subscript
letters follows:
i—A generic point on the trail, in particular any shutter

break or segment.
b—Beginning of photographic trail,
e—End of photographic trail.
a—First measured break or segment.
o—Central break or segment.
j—Last measured break or segment.
/—A specific flare.
«—Point of minimum range,
p—Pole of trail, considered as a great circle.
R—Meteor radiant.

Points not on meteor:
ZA, ZB—Zenith at Station A or Station B.

Primes (a'; X', y.' / ) are used for "relative"
celestial coordinates on undriven plates.

Processional direction cosines:
•A«J Ay, "B

Y,, Y,, Y.
Zx, Zt, Z,

Rectangular coordinates in space.
R—Range or distance vector, with origin at the

observing station.
R—Modulus of R.
£, ij, f—Components of R in the astronomical equatorial

system.

Double-letter subscripts are affixed to these
symbols, and they have the same meaning as
for sky and plate coordinates.

Additional symbols:
RAB {£AB, VAB, TAB)—Vector from Station A to Station

B.
RIM (ZBA, VBAJ $BA)—Vector from Station B to Station

A.(~*-RAB).

RABO ({is., VABO, £AB»)—Vector from Station A to
Station B at sidereal time 0^=0.

RBAO (bioi VBAO, £BAO)—Vector from Station B to
Station A at sidereal time 0a=0.

Rx, R-a—The single subscripts stand for the distance
of the station (A or B) from the center of the earth.

XQ, YQ, ZQ—Geocentric coordinates of the sun in the
astronomical equatorial system (in a. u.).

Xt Y, Z—Heliocentric coordinates of the meteor in the
astronomical equatorial system (in a. u.).

rT—Radius vector of the earth in its orbit,
r—Radius vector of the meteor in its orbit.
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The Method of Reduction of
Short-Trail Meteors1

By Gerald S. Hawkins2

The preceding paper gives a comprehensive
account of the reduction of photographic meteor
trails and indicates that a great deal of time is
spent in evaluating the distortions of the plate,
the deceleration of the meteoroid, and the vi-
brations of the camera and shutter. These
three stages of the analysis require a critical
assessment by the computer and cannot be
handled by existing machines. In the case of
short trails, however (angular length <C5° on
Super-Schmidt plates), distortion, deceleration,
and vibration are usually below the limits of
measurement, and we may use a simplified
method of reduction. This method embodies
the minimum requirements for the precise
determination of the radiant point, height, and
velocity of a meteor when photographed at two
separate stations. I t is assumed that the
cameras are driven to follow the diurnal motion
of the sky and that one at least is equipped with
an occulting shutter.

Methods of measurements

Plate marking and selection of comparison stars.
This method presumes that we are dealing with
flat plates which approximate to a gnomonic
projection of the sky (loc. cit. Whipple and
Jacchia, p. 183) .3 Four stars are selected for
comparison purposes and marked on the glass

side of a plate. They are labeled 1, 2, 3, and 4
in the direction of motion of the meteor, which
is usually given by a visual observation. The
direction may also be found by placing the star
field of one plate on top of the other and noting
the apparent intersection point or radiant of the
meteor trails. Two of the stars are used sub-
sequently for determining the plate constants
and two are used as checks. The stars are
identified in the B. D. catalog and marked
together with the meteor trail on B. D. charts
(loc. cit., p. 184). Accurate star positions are
found from the Yale and A. G. catalogs. In
selecting stars for short trail reductions, we
should observe certain criteria to obtain the
utmost accuracy. These criteria are based on
experience with Super-Schmidt plates and a
measuring engine which can be read to ±0.0001
cm.

1. Star positions must be available which are ac-
curate to 0T5 of arc.

2. The diameter of the star image should not be
greater than 120", or 0.012 cm on Super-Schmidt
plates.

The above standards severely limit the choice
of star images; the Yale and A. G. catalogs do
not, in general, give positions for stars fainter
than a visual magnitude of 9.2, and stars
brighter than magnitude 7.5 produce large

1 Carried out In part under research contract with the Massachusetts Institute of Technology, Lincoln Laboratory, Contract No. AF19(122)-458,
Subcontract No. 57. Reproduction In whole or in part Is permitted for any purposes of the TJ. S. Government.

1 Ilarvard College Observatory, Cambridge, Mass.
J All references given thus (loc. cit.) refer to the previous paper by F. L. Whipple and L. Q. Jacchia on "Reduction Methods For Photographic

Meteor Trails."
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images. In the ideal case the stars must be
close to 9th magnitude visual.

3. The stars should be equally spaced along the trail
with not more than 5° between the end stars. They
should be not more than %° from the great circle path
of the meteor.

4. Any two of the stars may be chosen for the deter-
mination of plate constants, but it is advisable to use
a pair with good images which are from 1° to 3° apart
and on the same side of the trail.

5. A single star image that is recorded as a double
star in the catalogs should be avoided if the separation
of the components is greater than 1T0.

Measurement of the projection center of the
plate. In the process of copying Super-
Schmidt negatives onto flat plates, the projec-
tion center is marked automatically by a white
circle. Normally there is sufficient overlap be-
tween a pair of plates so that the star fields can
be superimposed in the region of the projection
centers, and the position of the center can be
read from a star chart. An accuracy of ±0°.l
is sufficient and readily obtained.

Measurement of comparison stars and trail.
The plate is set, emulsion down, on the ma-
chine with the trail parallel to the x axis to
within ±20 microns and with x values increas-
ing in the direction of motion of the meteor.
Standard precautions, as given in the previous
paper (loc. cit., p. 185), are taken in using the
machine. In the short trail method it is found
expedient to take only one series of measure-
ments, because there are checks at the end of
the computing that will detect gross errors such
as misreading a vernier or misidentifying a star.
Measurements in rectangular coordinates x and
y on the plate should be recorded to the nearest
micron.

Marked stars: Three readings of x and three
readings of y are taken from the center of the
star images.

Trail: To obtain a linear equation relating
x and y, 10 points on the trail are selected at
approximately equal intervals of x. The value
of x is measured to the nearest tenth of a mm
and three values of y are observed at each point
and recorded to within ±0.0001 cm.

Segments of the trail: With an occulting or
rotating shutter the meteor trail is divided into
bright sigments. With a double-bladed shut-
ter, rotating at 1800 rpm, the segments are
short and the vertical crosswire may be set

accurately at the midpoint of a segment. Three
values of x are obtained for b and e, the first
and last segments visible on the plate. These
give the beginning and end heights of the trail.
(The center and not the end of the dash is
measured in these cases, to give additional
values of velocity if they should be required.
The consequent errors in heights of the begin-
ning and end of the trail are negligible.) The
segments are numbered consecutively along
the trail with dash b designated zero. Three
dashes, a, o, and j , are now selected along the
trail, and three values of x are observed for
each, with the crosswire set at the center of
the dash. It is essential to take great care in
selecting a, o, and j as the accuracy of the
method depends to a great extent on the quality
of the image. Asymmetrical dashes whose
image is distorted, for example by a back-
ground star, should be avoided. The good
quality dashes are selected to make the separa-
tion between a-o, and o-j as large as possible.
One x value is taken for point /, the point of
maximum light. If more than one maximum
is present, / refers to the brightest maximum.

To check that the plate has not been dis-
turbed during the series of readings, the x and
y values of the first star are measured again.

Finally, one reading is taken of the x and y
values of the projection center. The accuracy
required in this reading is ±0.01 cm.

Measurement of the magnitude of the meteor
and the limiting magnitude of the plate. Photo-
metric estimates are made following the gen-
eral procedure of the Harvard Meteor Project
(loc.cit., p.205). The brightest segment of the
meteor trail is compared with trailed star
images which are approximately equal in
length to the segment. For this comparison
the original Super-Schmidt film is used with
the emulsions in contact. The maximum mag-
nitude of the meteor, MmiX, and the faintest
magnitude visible on the comparison plate,
•fl̂ iim > are estimated to ±0.1 mag.

Equations used in the computations
The computing program for short trails is a
simplified and abbreviated version of the full
treatment described by Whipple and Jacchia
(loc. cit.); their notation is used in the equa-
tions given here, where possible; new symbols
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are listed at the end of this paper. In addition,
methods are given for estimating the errors of
the observations. Formulae for checking the
computing are given in the previous paper.

Reductions are carried out in equatorial rec-
tangular coordinates with the X axis pointing
towards the vernal equinox (R. A. 0b, Dec. 0°),M
axis pointing towards R.A. 6b, Dec. 0°, and
v axis pointing towards the north celestial pole.

All measurements are made in "trail coordi-
nates" (x, y), with the x axis along the trail and
x increasing in the direction of motion of the
meteor. The first stage of the computing is to
determine the plate constants which enable one
to convert the measured values (r, y) into equa-
torial direction cosines (X, fi, v).

Equatorial coordinates. The direction cosines
of a point with R. A.=a, Dec.=5 are given by
the formulae,

Xro=cos 5 cos a"

Mro=cos 5 sin a (1)

o=sin 5.

In the case of stars a correction has to be
made to a and S for proper motion (loc. cit.,
p. 185). The direction cosines are computed for
the four comparison stars and for the projec-
tion centers of each plate. These values apply
to the equinox, To, of the catalog or chart from
which a and S were obtained.

To convert equatorial direction cosines to
R. A. and Dec,

dn 5= v"\

an «=£ J (2)

where sin a has the same sign as ft, cos a has
the same sign as X.

Precession. To convert direction cosines from
equinox To to the equinox of the meteor T,

(3)

(4)

(5)

Mr=i7z^ro+ YvnTo-\-YzvTo.

vT=Zx\To-\-ZvixTo-{-ZzvTo.

The values of Xx, Xy, X, may be found by
the Cracovian calculation (loc. cit., p. 186).

Values of (Xr, V-T, VT) are computed for the pro-
jection center and comparison stars of each
plate. The equinox T is taken as the beginning
of the year which is nearest in time to the date
of the meteor.

Standard plate coordinates. The standard
plate has the same projection center as the
measured plate, but is tangential to a unit
sphere. These coordinates are a rectangular,
linear system (|, ij) with origin at the projection
center and the tj axis directed northward along
a meridian of R. A. The direction cosines of
the £ axis are

=Pc= — s in oie ( = — ^

v=re=O

and the direction cosines of the rj axis are

/ X p \ "\=lc=—sin 8e cosac I = — — 1

• * • / Vcfic
fi=mc=—aux Se sm ae ( = — ^ ~

\ fie

(6)

(7)

where the subscript c refers to the projection
center. These components are computed for
both plates. To convert equatorial direction
cosines (X, n, v) to standard plate coordinates
(i> v), we may use the equations,

£ cos <r= i

^ COS ff=l= (Ue+fime+vnc) J
where

COS ff—

(8)

(9)

To convert standard plate coordinates (£, y) to
equatorial direction cosines (X, n, v), we may
use the equations

j : ) COS <J

M— G*«+weij-f-g<£) cos a-

v^ivc+Tlcy) COS <r
where

sec <r=

(10)

(11)
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Equations (6)-(ll) may be applied to both
plates.

Relations between plate and trail coordinates.
To convert standard plate coordinates (|, rj) to
trail coordinates (x, y) we assume that

(12)

The coefficients a, b, c, and d are called the
plate constants.

To convert trail coordinates (x, y) to plate
coordinates Q, rj) we use the inverse equations,

l=Ax+By+C 1

i=Bx-Ay+D.J
(13)

The coefficients A, B, C, and D are called the
inverse plate constants.

Determination of plate constants. If the plate
constant stars are designated 1 and 2 we have
measured values (xu yt), fe, y2), and computed
plate coordinates (fr, rji), (&, ija).

Hence

=(*?2—50 fa— —ft) (yt—

(14)

(15)

c=x1—a£l—btji, (16)

. . (17)

As a rough check, c and d should agree with the
measured x and y values of the projection
center. The inverse plate constants are given
by the expressions

A a
A==tf+b2'

b
V+ft2*B

ac+bd
~~ a2+b2

ad—be
~'a2+b2'

(18)

Eight constants are computed for each plate.
To check the distortions of the plate, (x, y) is
computed for stars 3 and 4 from equation (12)
and the residuals (Ax, Ay) in the sense "com-
puted minus observed" are found. These

should be of the order of the error of measure-
ment.

Determination of the pole of the trail. The
equation

y=a'+b'x (19)

represents the best straight line which may be
drawn through the 10 measured points on the
meteor trail. Values of y for the beginning,
b, and end, e, of the trail are obtained by insert-
ing the observed x values in equation (19).
Equatorial direction cosines are then computed
from equations (12), (11), and (10). For the
pole of the trail we may write

\A, sin

nAp sin

vAv sin

(20)

where

(21)

and similarly for trail B.
Determination of the radiant point. The d irec-

tion cosines of the radiant point are given by
the formulae

\B sin <2=2

M« sin Q=

vR sin Q=

(22)

where

sin2Q=2j+22+22.-

(23)

The sign of Q is chosen to orient the radiant
above the horizon, and XB fiR, and vR are com-
puted for the equinox T and for the equinox
of 1950. For later computation we require
the quantities cos aB, xB, and yR for both plates.
These may be found from equations (9) and
(12). We also require EA and EB, the elonga-
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tions of the trails from the radiant. The elonga-
tion is given by the expression

COS EA= (24)

where the direction cosines of the approximate
center of the trail, o, are found in the manner
described for points b and e in section 6.

The third stage is to compute the space tra-
jectory of the meteor.

Hour angle, or sidereal time at the apperance
of the meteor. The sidereal time for the instant
of the meteor is computed as follows:

OA=0O+OJ.T.)-LA + A$
(25)

where 60 is the sidereal time at Greenwich for
0h U. T. on the night of occurrence of the
meteor. U. T., the instant of appearance in
universal time, is given for New Mexico by the
expression

U. T.=Mountain Standard Time +7h . (26)

The correction Ad is given by the expression

A6*= 236.555 Q^£r\ (27)

The longitudes LA, LB of the Harvard stations
are

Dona Ana: LA = '
(28)

na: LA = 7b7mll\9>\
y

: ZB=7h6m26e.8. JSoledad: Z B =

Space vector. The equatorial direction cosines
of the vector from Station A to Station B at the
instant of the meteor are given by the formulae

sin 6A

sin BA (29)

=ZAB=$ABO COS 6A —

=VAB=VABO COS

The quantities with subscripts ABo, BAo refer
to the components at sidereal time 0h at Stations

391131—57 3

"ABRAB ZAB£ABO- J

The components of the vector from B to A are

>>BARAB = SBA = ZBAO COS QB — VBAO sin 9B*

HBARAB=VBA = VBAO COS 6B+$BA, sin 6B • (30)

A and B, respectively. They are given by
equation (16) (loc. cit., p. 189) and for Soledad
and Dona Ana are, in units of 100 kms, as
follows,

£4*0=0.12128228 ZBAO= -0.12186172

VABO=0. 17695427 VBAB= -0.17655574

UBO=- 0.188639 fB^0=0.188639.

(31)

Components of the space vector are computed
from equations (29) and (30). As a check it
may be noted that ZAB=—£BA and VAB=— VBA-

Direction oj zenith. The direction of the
zenith in equatorial direction cosines is given
by the formulae

Xr4=cos 4>A cos 0A

Hz A = cos <f>A s i n BA

p Z j l = s i n 4>A.

(32)

Similar formulae give \XB, UZB, *ZB, and the
directions of both zeniths are calculated.

Dona Ana:

Soledad:

cos ^=0.8433343
sin ^ = 0.5373893

cos 0«=0.8452266
sin 4>B=0.5344081 J

(33)

Range. The range RAt, in units of 100 km,
from Station A to a point i on the trail is given
by the expression

Tf __ (34)

Range is calculated for points b, a, o, j,j, and e
on trail A. Ranges between Station B and
points on trail B are also computed.

Heights. The heights of points Au Bt, above
the sea level surface of the earth are given by
equation (28) of Whipple and Jacchia (loc. cit.).
For Dona Ana and Soledad

(35)

where

. (36)
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A similar equation holds for hBi. HAi and HBt

are computed for segments b, J, and e. As a
check, heights other than hAb may be computed
from the equation

hAl=hAb—100 HA
COS <Tx» (X XAb)-——-f-—-—r
coaaAB (x—xAR)

. (37)

A similar equation holds for hBi- The value of
cos aAb may be found from equations (11) and
(13). Values of hAt and hBi are computed for
points 6, a, o, j , e, and / from equations (36)
and (37). Agreement between the values of h
found from the two methods shows that there
are no errors in the computation of heights and
ranges.

Time at segment No. nt. In the case of Super-
Schmidt cameras, a double-bladed shutter ro-
tates in the focal plane about an axis which is
aligned with the center of projection of the
plate, and the time lapse between dash b and
dash nt is given by the expression

tAt=,
S0nAt r+

30

(R.P.M>
i~ <aAb) (38)

where the number of revolutions of the shutter
per minute are given first as a modulus and
secondly with a sign + or —. If the shutter
appears to rotate in a clockwise direction over
the sky, the + sign is taken and vice versa.
The angle u is measured clockwise in the sky
and is given by the equation,

(39)
(aA—dA)

Similar relations hold for the times on plate
B. Values of tAt and tBi are computed for a,
o, and j .

Velocity of the meteor. The velocity of the
meteor determined from segments dA and
oA is VA\\ and the velocity from oA and jA is
VA2- Equation (35) of Whipple and Jacchia
(loc. cit.) gives

VA1=
<rAb

,— *„) cos aAR

r(^i4o %Ab)

A similar equation holds for VA2, VB\,
all four velocities are computed.

(40)

and

Correction jor deceleration. In the case of a
short trail it is usually not possible to measure
the deceleration directly (loc. cit. p. 193). It is
possible, however, to apply a correction for
the drag of the atmosphere based on the
measured decelerations from longer trails. We
may write

1=^^-31 .69 log. (41)

From the exact reduction of long trails we
know that the ratio of the mass at any instant
to the mass of the meteoroid outside the atmos-
phere is given to a good approximation by the
assumption that the light curve is formed from
two half parabolae joining at nf. Then before
the position of maximum light, when n'<nff

ne
2- 0.99814+

(42)

and after the position of maximum light, when

0.09374

n, [»•9 9 8 1 4 +

(43)

where n' is the difference between the position
of maximum light and the mean dash number,
hence

_ i _

(44)

(45)

and

Similar equations hold for VmAi, VmBi, V.sa-
Absolute magnitude. The maximum photo-

graphic magnitude, reduced to a range of 100
km, is given for Super-Schmidt plates by the
expression

M ^ M ^ - 9 . 0 6 3 - 2 . 5 log,.
(46)

Equation (104) of Whipple and Jacchia (loc.
cit.) gives jsx. The last term is a small cor-
rection which can be added to Mmtx at the time
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the photometric comparison is made. I t is a
function of the position of the trail on the film,
and for Super-Schmidt films with the center of
projection at the shutter center, the correction
has been tabulated below.

TABLE 1.—Photometry correction for distance of trail in
cms from center of film

Correction
—2.5 logn/f

+0.0

+0.1

+0.2

+0.3

Trail parallel
to radius

0.0

4.4

7. 6

9.9

Trail at 45° Trail perpendlc-
to radius ular to radius

0.0

5. 1

8. 8

0. 0

6. 2

10. 9

In critical cases descend. The absolute
visual magnitude is given by the expression

M=.i,M,m+1.8. (47)

Mass of meteoroid. By assuming, as in the
section on correction for deceleration (p. 212),
that the light curve is a double parabola it can
be shown that

t1

-

where w is visible energy in ergs emitted by a
meteor of zero magnitude and r0 is the luminous
efficiency. In all previous work it has been as-
sumed that the value of the term in brackets is
47.71. If T0 is subsequently revised the value
of maA must be scaled accordingly. A similar
equation holds for mmB.

The final stage of the computation for radiant
and trajectory is to estimate the errors of the
computed quantities. This is essential in short
trail reductions since only a few measures are
available and the accuracy depends on many
variable factors.

Probable error in the radiant position. The
error in position in radians is given by the
expression

SE= cosec QV(sin EA 8b'A)2+(sin EB bb'Bf (49)

where bb'A and 8b'B are the estimated errors in
the angle of the trail. Usually the largest com-
ponent of 6b' is due to plate distortions, and if

391131—57 4

1 and 2 are the plate constant stars and 3 and 4
are the check stars, then 56' is given by the
approximate equation

(50)

where Ayt, Ayt are the residuals of the check
stars as defined in the section on determination
of plate constants (p. 210).

This equation applies to both trails with the
appropriate change of values.

Probable error in velocity. The error in in-
dividual determinations of velocity is given by
the expression

VAl

T Vv2

(xo—xa)

(cot EA« (51)

where At is the estimated error due to vibration
of the shutter. For the Harvard Super-
Schmidt cameras, with the original motors and
shafts,

and

ST

and BT is the estimated error in the time of
appearance of the meteor in units of 6 minutes.
In the measurements at Harvard the error in
x measurements has been found to be 6(x0—z.)
= 5 X 10~* cm. Similar equations hold for

and

Time of appearance by equalization of veloc-
ities. If the time of appearance is not known,
but assumed to be at the midtime of the ex-
posure, then the time of appearance is found
by adding a correction term A TV where

minutes. (54)

irA

The correction should not be applied if
VmA—VmB is less than the error in velocity
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estimated from the first three terms of equation
(51). I t holds for exposure times that are less
than 20 minutes from Dona Ana and Soledad
stations.

Time of appearance by equalization oj heights.
The time of appearance may also be calculated
by adding a correction A TH to the assumed
time. The correction is given by the expression

minutes (55)

6T ST

where

(56)

and the differential 8RA/RA&T is found from
equation (53) by putting ST=1. The correc-
tion term ATS should also be evaluated for
points b and e on the trail and a mean value
taken. However if it is suspected that one
camera has not recorded the beginning or end
portion of the trail, due to clouds and other
causes, then the equalization of heights at that
end of the trail should be ignored.

From a weighted mean value of A TV and
ATB we may computed the correction to
velocity and height. The correction to height
is obtained from equation (56); the correction
to velocity is obtained from the differential
equation

V &T~R 8T (57)

Notation symbols additional to those of
Whipple and Jacchia (loc. cit., p. 206)

To—Equinox of star position or R. A. and Dec. of
projection center.

T—Equinox of meteor. This is taken as the beginning
of the year nearest in time to the date of the
appearance of the meteor.

VAi—Velocity determined from points a, o on trail A.
VA2—Velocity determined from points o, j on trail A.
U. T.—Universal or Greenwich Civil Time.
LA—Geographical longitude of Station A.
tAi—Time in seconds for meteoroid to move from middle

of segment b to middle of segment i on plate A
R. P. M.—Rotational speed of shutter in revolutions

per minute.
rtimA—Mass of meteoroid outside atmosphere as

measured on plate A.
mAi:—Mass of meteoroid at any instant, i.
Mmax—Photographic magnitude of a star which pro-

duces a trailed image on a stationary plate equal
to the maximum intensity of the meteor trail.

Mvm—Photographic magnitude of a star which pro-
duces the same intensity as the meteor's maximum
photographic intensity when the star is trailed
at the angular velocity of the meteor. This
magnitude is also corrected for the inverse square
law to correspond to a standard range of 100 km.

MW{,—Visual magnitude corresponding to Mvm.
Mum—The photographic magnitude of the faintest star

visible on the comparison plate.
EA—Angle in the sky between the radiant and point o

on trail A.
SE—Probable error in position of radiant in units of

circular measure.
Sb'A—Probable error in the gradient of the trail equation

of plate A.
/—The point of maximum light on the trail.
n—The number of the trail segment with segment b

numbered 0.
a'A, b'A—Constants in the linear equation chosen to rep-

resent the meteor trail on plate A.



A Rapid Graphical Method of Meteor Trail
Reduction1

By Richard E. McCrosky

Since February of 1952 when the Harvard
Meteor Project initiated double-station opera-
tions with the Baker-Super-Schmidt cameras,
more than 4,000 meteor pairs have been photo-
graphed. Both the magnitude and the quality
of this recent photographic material have made
it comparable with visual and radar observa-
tions as a basis for statistical analysis. How-
ever, a previous method of analysis described
by Whipple and Jacchia (in the first paper of
this series) is far too time-consuming to be con-
sidered practical as a routine reduction method
for statistical data. A more rapid method was
needed, and is presented here.

When the approximate reduction program
was first considered, the criteria for a "satis-
factory" method were rather vague. However,
from the experience gained in the accurate re-
duction program one could be certain that data
with errors of as little as 1 percent could not be
obtained with a small expenditure of time. At
the other extreme, one could question the value
of statistics derived from data with mean errors
as large as 10 to 15 percent. With these limita-
tions on the accuracy, a search for a sufficiently
rapid method was made. The general result
of this attempt is a method, about to be de-
scribed, that yields mean errors of about 5
percent and requires 30 minutes for the com-
plete reduction of a meteor pair. The method

can be best explained if we first derive the
necessary equations, next discuss separately
the methods of measurements, and finally, re-
turn to the equations and estimate the magni-
tude of errors due to various simplifying as-
sumptions and to errors of measurement.

Meteor heights

The geometry of the problem can be seen in
figure 1, where RAB is the distance between
stations A and B; RA is the distance from Sta-
tion A to some point on the meteor path C;
and RB is the distance from Station B to the
same point in space. This point, on either
meteor trail, will be referred to as a common
point (C). The orientation in space of the
triangle (A, B, C) is described by the declina-
tion (5) and the hour angle (t) coordinates.
(See figure 1). RAB, &AB and tAB are constants
of the stations. The hour angle, tAB, and declina-
tion, SAB, represent the direction of Station B
as seen from Station A.

From the spherical triangle, (Pole, PAB, Pt),
we solve for yif the angle between the direction
to the meteor and the direction of the line join-
ing the stations. The subscripts i and j may
refer to either Station A or Station B.

cos7,=sin St sin (tAB—

(1)

> This paper is based upon research supported by the XT. 8. Office of Naval Research, Contract N5cri-O7M7. Reproduction in whole or In part is
permitted for any purposes of the U. S. Government.

> Harvard College Observatory.
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Station B Station A
FIGURE 1.—Relationship of geometrical quantities used in determining meteor heights.

With y determined, the values of the ranges
RA and RB are found from the equation:

Rt=RAB
sin 7,

sin (7B—
(2)

The height of the common point above ground,
if we assume a flat earth, is then:

i=Rt cos Zt, (3)

where Z is the zenith distance of the common
point and cos Zt is given by the equation,

cos Z,=sin 4> sin 5,+cos <f> cos St cos tf, (4)

where, for the latitude <f>, we have used the
average value of the two stations.

Clearly the same point in space can be de-
scribed by only one height, and thus hA=hB.
This comparison gives the first check on the
computations. The height above sea level,
H, is found by assuming h to be measured
from an elevation equal to the mean elevation
of the two stations.

Solutions for equations (1) and (2) were pre-
pared in graphical form in order to eliminate
the tedious and time-consuming task of directly
forming such solutions many thousands of times.

Since both yt and cos Z, are functions of 8t

and tt, a solution for coz Z was also prepared
and superimposed on the graph for y. These
charts will not be reproduced here. They are
applicable only to the data acquired at the
Soledad Canyon and Dona Ana Stations of the
Harvard Meteor Project, and therefore are not
of general interest. Table 1 summarizes the
information obtained from these graphs and
from another to be discussed later.

TABLE 1.—Graphs utilized in the approximate reductions

Graph

la

Ib

II

III

IV

Enter with—

f-io°<a,<9O°l
t-50°</,<50°J
{ Same }

l60o<7B<135°J

{ Same }

f.50<#<1.00l
\o0<tAB<200j

Read

COS Zi

«'

RB

sin a

Accuracy

0°. 1

0.01

1 km

1 km

.001

Velocities and radiants
The meteor trail is interrupted every %o sec by
one of the occulting sections of the rotating
shutter. These breaks in the trail allow one to
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measure the apparent angular velocity of the
meteor at some point along its trajectory. This
measure is referred to as the apparent angular
velocity, since only the component normal to
the line of sight is measured. In general, such
measures are made on both photographs of the
meteor at the position of the common points.

Figure 2 shows the relationships between the
apparent angular velocity, « ' ; the angular ve-
locity, «; and the radiant. We see that:

(5)

or

sin

where tt is the angular distance from the radiant
to the common point. The space velocity, V,
is then given by the equation:

(6)sin e<

where Rt is the range found in the solution for
heights. As in the case of the heights, the veloc-
ities obtained from the two photographs should
agree.

Co'

FIGURE 2.—Relationships of geometrical quantities used in
determining meteor velocities.

For equation (6) to be applicable, we must
have determined the position of the radiant.
When the two meteor trails intersect at a small
angle, Q, it is difficult to find an accurate radiant
point. In such cases another approach to de-
termine the velocity is desirable. From equa-
tion (6) we have:

y y WARA U>'BRB / - \
A~ fl~~sin «,!~sin tB

sin u'ARA

sin
:E, by definition. (8)

If the apparent angular velocity is measurable
on both trails of a meteor pair, E may be com-
puted. This gives one relationship between eA

and eB. For meteors with a small Q, it is pos-
sible to measure €A—eB (or eA+tB) with good
accuracy. That this is true can be most easily
seen by considering the extreme case of a meteor
pair intersecting at Q=0° (or #=180°); i. e.,
both trails lie on the same great circle. Then
the distance between the two common points
will be exactly:

«A—«B=«XB (or tA+tB=eAB), by definition. (9)

The simultaneous equations (8) and (9) may be
solved for sin eA and sin eB. This solution was
prepared in graphical form. (See table 1, graph
IV.) With these values of et, Vf is found from
(6). We have called velocities determined in
such a fashion "indirect velocities," as distinct
from the velocities obtained from meteors where
a direct measure of the radiant is possible
(direct velocities). It will be noted from equa-
tion (7) that we have forced the indirect ve-
locities determined from each trail to agree.
The comparison of these velocities offers a
check on the computations.

The position of the radiant may be obtained
by finding the intersection of two small circles,
with radii of tA and tB with centers at PA and
PB, respectively. In general such circles will
intersect twice, but a quick inspection of the
trails is sufficient to distinguish the spurious
radiant point.

Reduction procedure

In this section we shall carry through the com-
plete reduction of an imaginary meteor pair.
Our purpose is not primarily to instruct in
technique but to present, in logical sequence,
the various difficulties and approximations that
are present so that the reader may acquire a
realization of the limitations of the method.

A separate computing form is used for each
meteor. Certain data necessary for each meteor



218 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

are copied from the card catalog maintained for
all Harvard meteors. These include:
(a) Meteor serial number for each trail.
(b) Camera designation (SS, ST, SK, SL) and plate

number for each film.
(c) Region of the plate center, given by S and a.
(d) Astronomical date of the exposure.
(e) Time of meteor occurrence, to 0.01 minute if the

meteor was observed visually; or the mean time
of the exposure if no visual observation was
available.

The local sidereal time, in degrees, of the
nearest midnight is obtained for the date. To
this is added a correction to obtain the local
sidereal time of the meteor instant.

The preceding section makes it clear that the
entire method depends heavily on our ability
to locate on each film a point on the meteor
trails that represents the same point in space,
the common points. If the meteor shows a
burst or some other discontinuity in the light
curve, a common point is obvious. However,
the faint meteors, with which we are primarily
concerned here, usually have smooth light
curves. In these cases a more subtle technique
is necessary. The number of dashes visible on
each trail is counted and, if it is the same, we
assume that dashes with the same ordinal num-
ber are common points.

Such an assumption fails in three minor re-
spects. Firstly, the shutters are not synchro-
nized; i. e., we do not know the orientation of
one shutter with respect to the other at any
given instant. Consequently the common point
can be in error by as much as half the distance
between dashes. Secondly, the focal plane
shutter interrupts the same position of the film
at constant time intervals. The rate at which
the meteor is interrupted depends on its direc-
tion of motion and its apparent velocity on the
film. In the extreme case of a meteor trail
passing through the film center, an error of one
dash can be made. But since the two trails of
a meteor pair are usually similar in their direc-
tion of travel on the film, and since their ap-
parent velocities on the film are small compared
to the shutter velocity, the error will generally
be only a small fraction of a dash. Thirdly, in
assuming that breaks with the same ordinal
number are common points, we assume that
both cameras have photographed the meteor to
the same limiting absolute magnitude or, alter-

natively, that the differential distance correction
from the beginning to the end of the meteor is
small or the same for both trails. Since most
of our trails are short, the differential distance
correction is small.

We can conclude that the common points
chosen on trails showing the same number of
breaks will be accurate to within one dash.
However, the two cameras often do not record
the same number of breaks for the following
reasons:

1. The sensitivities of the cameras are not equal.
With increasing experience in figuring the correcting
plate, the manufacturer has been able to improve the
quality of each succeeding camera. The effect is most
noticeable when we compare trails obtained on the
first (SS) and second (ST) Super-Schmidts.

2. The apparent magnitude of the meteor as seen
from the two stations may differ by several tenths of
a magnitude because of distance corrections. Effects
1 and 2 often compensate one another in part, since
the earlier camera, at Soledad Station, is directed more
nearly toward the zenith than is the mate camera at
the Dofia Ana Station.

3. The effective exposure time per dash is propor-
tional to o>i. Thus, the trail nearer the radiant is
photographed as a brighter image and the plate limit
is reached at a fainter absolute magnitude.

Effects 1 and 2 combined are usually minor
compared to effect 3. By noting the general
shape of the meteor light curve of the brighter
trail one can obtain an acceptable common
point by estimating the number of dashes
that failed to be recorded at the beginning and
at the end of the fainter meteor trail. In only
a very few cases does the combination of the
factors of effective sensitivity of the camera,
and the apparent velocity of the meteor, differ
so much that no acceptable common point can
be found. For each common point, we record
under "Quality" an estimate of the number of
dashes by which the common point may be
in error. This never exceeds three for an
acceptable meteor and rarely exceeds two.

To mark the common points, a small piece
of Scotch tape is placed on the reverse side
of the film at the location of the trail. Ink
dots placed on this tape indicate the common
point. For longer meteors (20 dashes or more)
two common points are chosen in order to
make a check on the entire reduction. The
common point is recorded as the ordinal number
of the dash, the dash nearest the radiant being



MCCROSKY PLATE 1

The transparent plotting globe. The declination scale pivots about the horizontal rod which passes
through the globe at the celestial poles. The computer is positioning the curved rules to be co-
incident with the meteor image on each film. The juncture of the rulers (under the right hand)
represents the meteor's radiant.
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called " 1 . " The duration of the meteor is
measured in terms of the total number of
visible dashes, N.

To measure the celestial coordinates of the
common points and radiant, we utilize a trans-
parent Plexiglass hemisphere of 8-inch radius,
calibrated in hour angle and declination. The
scale of these calibrations and the radius of
the globe correspond to the scale and radius
of the Super-Schmidt films. To read the
coordinates of the common point, we need only
to position the film properly on the globe.
We accomplish this by choosing three or four
bright stars which appear on one of the films,
determining the declination and hour angle
of these stars at the time of the meteor, and
plotting these star positions on the globe.
The film is then placed on the globe so that
the star images and their plotted positions
coincide. Since the regions of the two mate
films overlap in an area of approximately
one-quarter of the film, we can position the
second film by superimposing stars in this
region. The hour angle and declination of the
common points are then read from the globe
scales.

We determine the radiant and radiant
distances, eA and eB, with the aid of a pair of
curved rulers of 8-inch radius and 90° length,
attached to one another by a hinge. They are
calibrated in degrees, the pivot point of the
hinge being zero degrees. When each rule
lies parallel to one of the meteor trails, the zero
point represents the radiant. The radiant
distances are read from the rules and the
coordinates of the radiant point are read from
the hemisphere (see pi. 1). The cosine of the
zenith distance of the radiant (cos ZB) is
determined from graph Ib of table 1.

The quantity Q is the angle of intersection
of the two trails. An estimate of this quantity,
accurate to about 10 per cent, is made when
the radiant is found. The value of this angle
is not used in the reductions but it serves as a
measure of quality of the directly determined
radiant.

The apparent angular velocity, or distance
per break, is measured on the Harvard Coast
and Geodetic measuring machine. This has
been equipped with a section of an 8-inch radius

Plexiglass sphere for the support of the film.
The spherical section is large enough to permit
all measurements to be made with the optical
axis perpendicular to the image when the trail
occurs at the edge of the film. This reduces
the focusing problem and also allows us to
neglect any correction for the projection effect
which would be necessary if the curved film
rested on the flat carriage of the measuring
engine.

The number of breaks measured depends on
the apparent angular velocity of the trail. In
general, we attempt to measure a distance of
from 1 to 3 mm, which may represent 2 to 8
breaks. The measurements are usually made
from the end of one dash to the end of another;
that is, an integral number of dashes is meas-
ured. Corrections, by eye, are made for the
photographic spreading of the image if the two
terminal dashes of the measured trail section
do not appear to be of about the same intensity.
The dashes to be measured are chosen in such
a way that the common point lies in the center
of the measured section.

The trails are inspected for any wake, ter-
minal blending, or marked abnormalities in
the distribution of light over the trail. The
position and apparent magnitude of the bright-
est dash may be measured.

This completes the measurements made on
a meteor pair. We then determine, from the
equations given earlier, cos Zt, yt, Rit ht H,
E, and Vit in that order.

To complete this outline of the method, we
will add a description of an earlier approach to
the problem of finding common points. The
argument, due to C. P. Olivier,3 proceeds as
follows: Consider the plane defined by the two
stations and a point on the meteor. The lines
RA, RB, and RAB lie in this plane which inter-
sects the celestial sphere on a great circle.
Then the position of the meteor point as seen
from each station must lie on a great circle
which also includes the celestial position of one
station as seen from the other. Conversely, if
the two meteors are located properly on the
globe, we can draw a great circle through the
point defining the direction between the sta-
tions. Then, by the argument above, the inter-
sections of this great circle with the meteor

* Meteors, 276 pp., 1925. Williams and Wilkins Co., Baltimore. (Esp. pp. 156-157.)
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trails must represent common points. This
technique was tried and discarded as being too
insensitive for most cases. In practice, we
employed a movable great circle which was
attached to the measuring globe and pivoted
at the points (8AB, tAB) and (— SAB, <UB—180°).
When the meteor trails formed a moderately
small angle with this circle, the common points
could be varied by several dashes with only a
slight shift of the films. If the time of the
meteor occurrence is lacking, the precise posi-
tion of the film on the celestial sphere is un-
known.

Single-station shower meteors and the
approximate method

The program of meteor astronomy at the Har-
vard College Observatory includes the investi-
gation of the origin and histories of the shower
meteors by study of the distribution of the
radiants over the period of the shower. Single-
station meteors are used in a least-squares solu-
tion to determine the radiant, if they appear
to belong to the shower—that is, if an extension
of the trail passes through (or near) the assumed
radiant point for the time of the meteor, and
if visual inspection determines that the apparent
angular velocity of the meteor is reasonable for
the shower velocity and the radiant distance.
A small amount of work with the globe used in
the approximate method removes the guesswork
from this visual determination. By assuming
that the meteor belongs to the shower, we can
estimate a height that corresponds to that of
meteors of the shower velocity. The apparent
angular velocity (wj), cos Zt, and the distance
from the assumed radiant (e{), are measured
for some point on the trail. From equations
(3) and (6), we have:

V—cos Z{ sin tt
(10)

If the meteor belongs to the shower, the meas-
ured values should yield the shower velocity.
We may be deceived occasionally by meteors
whose true radiants and velocities are not
those of the shower but combine, by chance, in
such a way that

( F Sin €i)8hower=(F Sm €,)nOMhow«- (11)

Such cases must be far more rare than the 10
percent of single-station meteors which we
have been able to eliminate from those meteors
thought to belong to the shower.

It is obvious that the usual approximate
method may also be used to eliminate those
double-station meteors that have the proper
radiant but a nonshower velocity.

Height errors

The problem of errors in our data reduction
includes two major questions, neither of which
has yet been finally answered. First, the
velocities and radiants determined by the
direct and indirect methods are, in general, at
variance with one another. We need some
quantitative criteria for making a choice
between the two results. Second, we desire a
more exact knowledge of the mean errors as a
function of the various parameters of the
solution. The final answers to these questions
will be found only after the completion of the
reduction project. Eventually we intend to
acquire approximate data on 2000 meteors,
including about 300 faint meteors that have
been reduced by the method described by
Hawkins in the preceding paper. An inter-
comparison of results should supply the infor-
mation we want. Comparison can be made
with several hundred brighter meteors already
reduced by Jacchia. However, the accuracy
we can obtain in determining the radiant of
these long meteors will seldom be approached
for fainter meteors. On the other hand,
common points are often more difficult to
obtain on long meteors. All in all, we do not
consider bright meteors to be comparable to
faint ones with regard to our system of measur-
ing. A comparison of velocities obtained by
accurate methods and by the present method
has been made for some 25 bright meteors.
Our average error in velocity was about 3
percent.

With respect to the order-of-magnitude
estimate we can study the results of measuring
errors of probable amounts. We may also
compare our velocity results for shower meteors
with their known values.

Let us begin with the errors in height intro-
duced by our assumption that the earth is a
plane surface. The correction for this was
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ignored as being small compared with the
intrinsic errors of measurement. This is true
if the meteors are in the vicinity of the zenith.
It is easily shown that:

Ah=h-h'-- R2-h'2

'' D (12)

where h is the computed height above the
station level, h' is the true height above the
station level, R is the range from meteor to
station, and D is earth's diameter. With the
assumption that

.R2-h2
we obtain

Employing equation (3), we may write

D+2h

(13)

(14)

(15)

For meteors of 100 km altitude, the correction
factor reaches 0.5 km at a zenith distance of
37°.7. Essentially none of the meteors reduced
exceed this value. The average zenith distance
is of the order of 20°.

If the common point is improperly chosen or
measured, or if the two films are not correctly
positioned on the globe, the two range lines, as
defined by (8A, tA) and (5s, tB) will either not
intersect in space or will not intersect at a point
on the meteor trail. Whether the intersection
occurs for any given set of measures or not, our
computations still lead to a complete descrip-
tion of some triangle which represents, to some
degree of approximation, the true triangle de-
fined by the two stations and a point on the
meteor. We are interested in knowing how
good an approximation our measures probably
give. We will discuss the errors involved in one
particular case. Computations for other cases
show that the total errors will be similar in
other parts of the sky where meteors have been
photographed.

It is a bit difficult to estimate a reasonable
amount for the errors in the common point,
positioning, or measuring which combine to
give the total errors, AS and ht. The error
involved in reading the globe scale should not

391131—57 5

exceed 0°.2. For fast meteors with a high ap-
parent angular velocity and with a common
point of only moderate quality, say two, the
common point error would be about 1°. We
believe this to be considerably greater, perhaps
by a factor of two, than the common point
error for the average meteor.

Positioning errors can occur in two ways.
First, the two films may not be properly super-
imposed. Because the globe is not perfectly
spherical and because its mean radius is not
exactly that of the films, we can not always
superimpose the entire star field common to
both films. The attempt is always made to
carry out the superposition in the vicinity of
the meteors and an error of about 0°.5 would
probably be large. The second positioning
error, resulting from an unknown time of the
meteor occurrence, is a special case and will be
treated separately.

From the preceding extreme figures, we may
estimate that the average error, in 5, or tt, will
almost certainly not exceed 1°. It is unfor-
tunate that this figure cannot be verified by
more rigorous methods than those used. How-
ever, another check on our errors, to follow
later, will supply additional information tend-
ing to confirm this as being an extreme value.

Let us assume that the common point at
Station B has been properly located, positioned
and measured, and that, for any of the afore-
mentioned reasons, a 1°.O error exists in the
measures of the common point at Station A.
The percentage errors for this case have been
computed from the differentials of equations
1, 2, 3, and 4 and are listed in table 2. The
quantity t\ is defined by the equation

At'i=Mt cos 5<.

TABLE 2.—Errors resulting from a 1°.O error in the

Percentage
•nor in:
RA*=

hA=

common point

3.7
3.7
3.5
3.8

3.6
3.7
3.7
3.7

The similarity of values within either column
should be expected. The similarity between
the two columns is the result of chance and
indicates that the maximum error for the
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meteor will occur for departures in a direction
roughly half way between the directions of the
5 and the t axes.

When the instant of the meteor is unknown,
we choose the instant of the middle of the
exposure for reduction purposes. Thus, with
12-minute exposures our maximum error is
Mt=6 minutes=l°.5. However, in this case
the common points do not suffer a shift relative
to one another and the resulting errors in the
ranges will be the algebraic sums of the errors
caused by the displacement of both common
points. Since these are of opposite sign and
of about the same magnitude, the final errors
will be small. Table 3 shows the percentage
errors resulting from a 1°.5 shift in tt of both
films. We can see that the timing error will
be negligible even in those cases where the
maximum possible error results from a displace-
ment along the f-axis.

TABLE 3.—Errors resulting from a displacement of Af<
1°.B of both films

Quantity RA RB hA hB

Error (km) +0.34 -0.14 +0.20 -0.17
Percentage error. 0.4 0.2 0. 2 0.2

Velocity errors

Errors in velocity may result from errors in any
of the measures. Errors in the apparent angu-
lar velocity, w<, are probably small compared
to any other type and we will neglect these.
From differentials of equation (6) we see that
the percentage errors due to range and radiant
errors are, respectively:

\VL.M~ cot eAc. (17)

Thus the error in velocity cannot be less than
the range error, which we found to be about
4 percent with the assumption of a common
point error of l°.0. The function A* is itself a
function of e as one can understand by visualiz-
ing the extreme cases when the meteor appears
at the radiant (e=0°, Ae=0°), and when the
meteor appears at a great distance from the
radiant (say, c=;90°, Ae=?^0°). We might

estimate this unknown Ac to be of the order of
5° or 10° in the worst cases. We may say that
certainly Ac varies less rapidly than tan c.
This leads to the apparently contradictory result
that, in general, meteors must have a badly
determined radiant to allow us to produce an
accurate velocity. However, another inde-
pendent error in e, that imposed by our scale
reading accuracy, 0°.2, weighs more heavily
against meteors of small e. These two errors
may combine in such a way that meteors at
some intermediate e give the best velocities.

We have no method of determining a satis-
factory relationship between e and Ac and we
must therefore approach this problem from
another side. Among the meteors reduced,
there are 36 Orionid and 45 Geminid shower
meteors for which we know velocities. These
groups will determine our velocities errors.
Furthermore, since most meteors in these
showers were reduced by both the direct and
indirect methods, we can find some estimate
of a criterion for choosing between the results
of the two methods.

In general, the direct velocities from the two
films of a given meteor do not agree with one
another to within several percent. The direct
velocity chosen is usually the average of the
two. However, in some examples, the radiant
distance of one common point greatly exceeds
that of the mate photograph and, in these in-
stances, the velocity derived from the more
distant trail is used or weighted more heavily
in the average. Average velocities, mean errors,
and percentage errors were found for both sets
of shower meteors for the following cases:

(a) Direct velocity used for all meteors.
(b) Indirect velocity used for all meteors.
(c) Indirect velocities used when | « 4 B I ^ 1 0 ° . 0 , direct

when | « X B | < 1 0 0 . 0 .
(d) Same as (c), with division made at |«.*fl| = 9o.0.
(e) Same as (c), with division made at |«XB| = 8°.O.

Table 4 gives the average values, mean devia-
tions, and percentage errors for each of these
velocity criteria and for both groups of shower
meteors. The letters refer to the categories
outlined above.

We should qualify the character of these data
before discussing the results. First, the Gem-
inids were somewhat brighter meteors than
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normal and, hence, easier to measure. Further-
more, the radiant of this shower is not far dis-
tant from a Geminii, a star that appears on
most of the Geminid meteor photographs.
Since these meteors were reduced specifically
to check for errors, it was necessary for the
measurer to "forget" the position of the radiant
for each measure, a difficult task with a radiant
so clearly marked. Still, we believe this was
accomplished.

TABLE 4.—Errors in velocity for two sets of shower meteors

Geminids:
(a)
(b)
(c)
(d)
(e)

Orionids:
(a)
(b)
(c)
(d)
(e)

Number of
Number indirect de-

of
meteon

44
38
45
45
45

34
34
36
36
36

termina- i
i tions used

0
38
16
21
26

0
34
18
24
28

^/km\
\sec/
35.7
35.7
36.3
36. 1
36.0

68.3
67.2
68.2
67.7
67.6

/km\
\sec/
1.42
1.74
0.92
1.05
1. 13

3.01
2.52
2.59
2. 17
2.05

Percent-
age error

4.0
4.9
2.5
2.9
3. 1

4.4
3.8
3.8
3.2
3.0

In the case of the Orionids, the situation is
quite different. The radiant was not present
on the region being photographed and, more
important, we did not realize we were reducing
shower meteors until after the measures had
been made. Also, these meteors did not pro-
duce such bright trails as the Geminids. Per-
haps, then, the Orionids should be regarded as
giving the best test, although, as can be seen
in table 4, the errors for both showers are
comparable.

In regard to the indirectly determined veloc-
ities, our measured quantities are E and tAB as
defined by equations (8) and (9). I t may easily
be shown that if the radiant is properly chosen
and there are no measuring errors,

sin t\
sin eAB

(18)

where et, in this case, is the angle from the
radiant to the common point of the trail most
distant from the radiant. A poorly determined
common point has little effect on E, since this
quantity is determined from a ratio of the
ranges, R. A reasonable error in the common

point results in comparable changes, of the
same sign, in the two ranges. We may write

Ecc

Then:
. J?_

R%

(19)

(20)

Thus, the errors in the range tend to compen-
sate one another in the determination of E.
However, since we must still apply the velocity
equation (6) in its original form after determin-
ing et) any error in range will affect the velocity
in the usual fashion.

One can see that an error in the common
point will directly affect eAB, which is essentially
the distance between common points. It is also

clear from the — factor in equation (18)
sin eAB

that the indirect method will be more powerful
when tAB is sufficiently large. From the shower
meteors we can obtain an idea of how large.

Table 4 indicates that the deviation from the
mean velocities of the showers is of the order of
3 to 4 percent, but we have yet to show that
these mean velocities actually correspond to
those expected for these showers. Our veloc-
ities are those at some point in the atmosphere,
uncorrected for deceleration and therefore some-
what lower than the velocity outside the atmos-
phere which is usually quoted for a shower. In
general, we choose common points as near the
beginning of the trail as possible to minimize
the deceleration correction. From Orionid and
Geminid meteors reduced by Jaccbia, we have
obtained the velocities at the beginning point
of the meteor (F«). These results, as well as
Jacchia's values for the no-atmosphere velocity
(F . ) are given in table 5. They are compared
with the average velocity we obtained for the
method which yielded the smallest a in table 4.
The agreement is excellent and there is no
evidence of a systematic error with velocity.
We may conclude that our velocity errors, for
these cases, are about 3 percent and that the
TABLE 5.—Average velocities obtained by accurate reduc-

tions of shower meteors (by Jacchia)

Geminids
Orionids

Number of
meteors

17
7

Va.

36.6
67.5

V.

36.3
67.4

Vmmu

36.3
67.6



224 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS
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31.7 37.733.7 35.7
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FIGURE 3.—Velocity distribution of Geminid shower meteors, approximate reductions.

optimum minimum value of «AB for the indirect
reductions is about 8° to 10°. It seems un-
likely that measures on somewhat shorter and
fainter nonshower meteors would yield errors
that exceed 5 percent. When this result is
compared with the errors expected for ranges
and heights, we see that we must have over-
estimated the probable error in the common
point, for, as was pointed out earlier, the
velocity error cannot be less than the range
error, which was of the order of 4 percent on
the assumption of a 1°.O error in common
point.

There still remains the possibility that in
selecting the shower meteors, we passed over
some cases which were so badly determined
that they were unrecognizable as members of
the shower. A study of the frequency diagram
of the velocities of the individual meteors makes
such a hypothesis unlikely if, on the basis of
such a diagram, one is willing to grant that the
scatter may be represented to a fair degree of
approximation by the usual error curve. We
have reproduced in figure 3 the frequency
diagram for the directly determined velocities
of our Geminid meteors.



A Reduction Method for the Motions of
Persistent Meteor Trains1

By Allan F. Cook2 and Robert F. Hughes2

Two Baker Super-Schmidt cameras, located
35 kilometers apart, at Mayhill and at Sacra-
mento Peak, New Mexico, operate continuously
to obtain multiple exposures of persistent
meteor trains. The method of operation of the
cameras and the general process of obtaining
wind velocities normal to such meteor trains
have been described by F. L. Whipple (1953).
Further results from the program have been
presented by Liller and Whipple (1954). No
details of the reduction methods have been
published, however, nor have the methods been
previously extended to include determination
of the air motion parallel to the direction of
the meteor. Hence we present, in considerable
detail, the procedures of measurement and
reduction that we have found to be useful in
determining atmospheric motions from multiply-
photographed persistent meteor trains.

For measurement the spherical Super-
Schmidt films undergo an approximate gnomonic
projection to a flat glass-plate emulsion by
means of a copying camera. With the Mann
measuring engine, train positions are measured
with respect to the infinitely distant reference
system provided by the stars. The loci of the
multiple trains are readily converted to linear
plate displacements from the trail in the reduc-
tion system of the concurrent meteor photo-
graphs, which provide complete geometric
and time coordinates of the meteor's flight.

From the length of the exposures, as determined
by photometric measures and clock records,
the velocity components of the train motion on
the plate are calculated and transformed to two
components in space. One component of the
train motion is normal to both the meteor trail
and the line of sight, and the second is parallel
to the projection of the meteor trail on the
plane normal to the line of sight. If the former
component is observed at both stations, the
air motion is determined as a composite of a
mean wind field plus a superimposed turbulent
field. Given the train motion component
parallel to the projected trail at even one
station, one may investigate the existence of
any systematic motion of the train along the
actual meteor trail.

Selection of train films

The Super-Schmidt cameras used by the
Harvard Meteor Expedition for photographing
meteor trains are triggered photoelectrically or
manually. The exposure durations of roughly
1/2", 28, 2s, etc., are separated by o!3 shifts
of the camera in declination, and are pro-
grammed automatically with a special long
exposure added manually at the end. On the
train film, the various star exposures appear in a
line at angular separations of about 1/3°, or
1 mm linearly, where the fainter end exposure
is the first exposure. Plate 1 is an example of

1 This paper is based upon research supported by the U. S. Air Force under Contract NTo. A F19(122M82. Reproduction in whole or in part is permitted
for any purposes of the U. 8. Government.

1 Harvard College Observatory, Cambridge, Mass.
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such a photograph. The observers generally
use a greased crayon to indicate the trains,
which may be continuous, diffuse, or varying
in intensity and amount of distortion from a
straight line. The possible appearance of the
meteor trail on the train film, or alignment
with the concurrent meteor film, confirms
the identification. Trail films marked SS
(Sacramento Peak) or ST (Mayhill) have
concurrent meteor films SL and SK, respec-
tively. The initial "processing" of the train
films may be outlined as follows:

/. Standards for selection:
(a) Concurrent meteor films are successful.
(b) Train film is in good focus.
(c) At least four train exposures or 3 trains

and a trail are observable
2. Copying:
(a) The train and concurrent meteor films

are both copied.
(b) If the meteor or the train occurs very

near the film edge, an offset position of the
desired projection center is indicated so that
the containing rim of the camera will not
eclipse the image.

(c) The plates of the films are inspected in
order to see that all detail observed on the
train film has been reproduced. Several copy-
ing attempts are sometimes necessary to insure
optimum results.

S. Marking:
(a) Reference stars are marked on the train

and meteor plates during the reduction for the
meteor's trajectory, velocity, and deceleration.
At Harvard this is done by the Meteor Analysis
Laboratory.

(b) If the number of train exposures is greater
than four, the first and last images of the fainter
stars are indicated.

(c) Stars, lettered A to Z in the direction of
meteor flight, are placed every 5-10 mm, as
near the train as possible, and extending slightly
beyond the extremities of the trains.

4- Photometric reduction:
(a) After the films are successfully copied,

they are subjected to photometric analysis.
Magnitude differences between successive im-
ages are determined by eye intercomparison of
the images of a selected standard star sequence
(Payne-Gaposchkin, 1937).

(b) The film center is indicated from record
sheets to aid in the identification of the star
field.

Measuring procedures
Careful application of the parallax test is neces-
sary to adjust the focus of the measuring: engine
properly. To measure a diffuse line with poorly
defined edges which are susceptible to distor-
tions from grain structure in the emulsion re-
quires an eye integration along nearly 1 mm
of the cross-hair. Any one position is best
defined with the aid of neighboring points,
which tend to average out the small irregulari-
ties of the train shapes. Train images are
measured to the limit of visibility. The hori-
zontal cross-hair, which is parallel to the engine
carriage, is the X-axis; the vertical cross-hair
is the F-axis. The procedure for measurement
is as follows:

1. Plate alignment:
(a) The plate is secured in the frame with

the emulsion down.
(b) The lighting is adjusted for maximum

train visibility.
(c) The train is placed (similar to trail)

parallel to the X-axis and the frame locked
securely in position.

(d) The four verniers are read as accurately
as possible (to 10" on the Mann engine).

2. Stars and trains:
(a) Stars. For each exposure one reading is

made in X and Y to the nearest micron (0.001
mm) in the region of the respective train image.
The reading is repeated after the train measure-
ments to obtain averaged star readings and to
check for the possibility that a plate movement
has occurred during the train measurement.
Two fiducial marks (sharp images of faint
stars, emulsion defects, etc.) are chosen and
their positions read before and after the meas-
urements as a further protection against dis-
turbance of the plate during the measures.

(b) Trains. For convenience in making the
reduction, the Y coordinate of the train is
measured at equal intervals of X along the
train. X intervals need only be small enough
to define and confirm the varying shape of the
train. Generally 0.5 to 1.0 mm is adequate
for earlier images. This is sometimes dimin-
ished to 0.1 to 0.25 mm for later images where
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distortions occur and difficulty in measurement
increases. Regions about singular points in
the trains are specially defined in each image.

(c) Elimination of personal equation. The
systematic error, due to personal equation, in
centering the cross-hairs on the train images
is averaged out by taking two sets of readings
measured from opposite directions. After the
plate has been rotated 180°, the measurements
described in section 2-b are repeated. Com-
parison of the vernier readings with the first
position allows a very close approximation to
180° rotation. A shift in the Y scale is often
necessary to make the train region observable.

Reduction to a single train system

The transformation of the two sets of train
readings into a common train system consists
of a rotation and translation, where the angle
of rotation may be expressed as 180°+e.
Then,

where the constants of rotation (e) and transla-
tion (a, b) are found from the star measurements
as follows:

1. Averaging. The star readings of each of
the two sets of measurements are averaged.

2. Conversion from one system to the other.
Three stars in good focus are selected, two of
which have a long base line in X. The third is
taken near the midpoint as a check. If
{Xx-\-X2) and (Y1 + Y2) are constant for these
stars, £=0, and the average sums are taken as
a and b, respectively. A nonzero « will intro-
duce in {Yi-\-Y^) a marked linear change in
proportion to X. In this case, a larger number
of points (Yi+Y2, X{) is plotted to determine
the slope «. The X and Y sums are corrected
for c, and then a, b determined from the average
values of (X1-\-X2-{-€Y1) and (Y1 + Ya-€Xl),
respectively.

S. Choice of adopted system. The single train
system is taken as that in which the X co-
ordinate of stars A, B, to Z increases positively.
Finally all star and train readings are trans-
formed by equation (1).

Reduction to the concurrent meteor system

The precise reduction of the concurrent meteor
plates (see Whipple and Jacchia in the first

paper of this group) provides accurate geometric
and time coordinates of the meteor's flight in
space and as projected on the tangent plane of
the sky at the plate center. In order to relate
the train positions to the original trail position
and to the time of train formation, measure-
ments in the common train system are trans-
formed to the concurrent computed meteor
system, the coordinates of which are equal to
the original plate measure plus field corrections.
The coordinates of identical stars in the com-
puted meteor system and hi the train system
define the transformation of X and Y co-
ordinates for each train image. The difference
in the coordinate values for the image (t),
(X—Xt, Y—Yt) will be a nonlinear function in
Xt, with a possible additional linear term in the
Y transformation, proportional to the distance
of the star from the meteor trail. Although a
least-squares solution is possible, a graphical
representation is sufficient and much easier,
since (X—Xt) can readily be found graphically
to 0.01 mm and (F— Yt) to 0.003 mm. The
detailed procedure of this transformation is as
follows.

/ . Transformation plots. Averages for the
two sets of star positions in the common system
are formed. For each image the differences
(X—Xi) and (Y— Yt) are formed and plotted
against Xt. I t is preferable to plot these on
the same graph by using one abscissa scale and
introducing various ordinate scales, because the
X and Y transformations for all images have
the same general variation; this aids in the
curve drawing, especially when one or two star
positions are found to be inconsistent. The X
transformation function is well defined (to 0.01
mm by the above difference plots). In other
words, the scatter of points about a freehand
curve smoothed by a French curve is small. If
the scatter in (F—F<) is too large to define a
function to 0.003 mm, a linear correspondence
of the residuals from a first approximation func-
tion to the star's displacement from the trail
may be noted. Introduction of a linear term
in displacement from the trail should reduce
the scatter enough to allow a determination of
the transformation to within 0.003 mm.

2. The X, Y coordinates. The X, Y coordi-
nates for both sets of tram measurements are
next transformed individually according to
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the above difference functions. The trans-
formed X is expressed to the nearest 0.01 mm
and Y to the nearest 0.001 mm.

Train displacements
The systematic error in the train measurements
due to personal equation depending on intensity
of the train image is now averaged out by
freehand curves drawn through the plots of
the train images in the meteor system. This
elimination is possible since points from both
the direct and reversed measurements will
have been plotted. Since the equation of the
trail is known, displacements of train images
from the trail at any position along the trail (X)
are readily computed. A more detailed des-
cription follows.

1. Plotting. Abscissa scales {X) for all
images should allow estimation of X coordinate
to 0.01 mm. Ordinate scales (F) for earlier
images (1-3) should allow estimation to 0.001
mm, but in later images the Y scale must be
compressed to facilitate curve drawing, because
the magnitude of the scatter in train measures
increases in the later exposures. However, the
percentage (scatter) generally remains rather
constant (10 percent).

2. Averaging. The two sets of train measures
will differ systematically from each other with
an increased separation in the later images, if
this separation has not already been eliminated
by the large scatter that results from the
extreme difficulty of measurement. A freehand
curve averaging the two sets of readings is
drawn to represent the most likely train
position. All curve variations consistent with
the two independent sets of measurements are
drawn regardless of the scales adopted in the
plotting. At this stage no attempt should be
made to correct for distortion introduced by
the emulsion and varying scales.

S. Displacement computation. The displace-
ment of train image (i) from the meteor trail,
at a point X along the trail, may be defined
as AiY=Yi— YT, where the subscript Tdenotes
the trail. Since YT is a very slowly varying
linear function of X, AtY may be tabulated
directly by reading the smoothed plots of the
train images at appropriate intervals of X and
subtracting YT. Again, the X interval need

only be small enough to define the freehand
curve.

Epochs of exposure
Photometric measures of star exposures give the
relative exposure times for different images.
The total time of shutter opening during the
automatic program is indicated by the clock
record, and thus determines the actual duration
of the exposure. Clock readings and the
observations provide consistency checks. If
reasonable assumptions are made for the decay
function of train luminosity, the effective
epoch of exposure for a train image will not
deviate significantly from a simple average of
the times at the beginning and end of the
exposure. Since the time interval required to
shift the camera from one exposure to another
is negligible compared with the duration of
all exposures after the first, the effective time of
exposure of image (i) with respect to the
beginning of the first exposure is the sum of the
durations of the preceding exposures plus
one-half the duration of image (i). In order
to determine the time since formation of the
train, the time interval (T0) between the
beginning point (t=0) on the meteor's trail
and the beginning of the first exposure must be
known. The reduction of the photometric
data, consistency checks, and the determination
of r0 are carried out as follows:

1. Photometric determination of exposure dura-
tion:

(a) Given the magnitude differences between
successive images, the magnitude difference
(Am,) between image (i) and the first image is
obtained. Negative differences are taken con-
ventionally to indicate greater brightness of
image (i) with respect to the first image.

(b) Relative exposure durations. If the ex-
posure duration (d() is proportional to /<, then
the exposure time of image (i) relative to the
total exposure (program plus special exposure)
is given by the expressions (/J//i)/(S</1//1),
where the summation is over all exposures.

(c) As a rough check, the ratio of program
time to special exposure time from photometric
analysis and clock record should agree to better
than 40 percent.

(d) The relative time of exposure of image (i)
to the program time (P) is given by the expres-
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sion: (/i/ZO/CZ^/Ji), where the summation is
only over the automatically programmed ex-
posures.

(e) The program time (P) is read directly
from the clock record; the exposure duration is
the product of P and the expression for the
relative times given above. The exposure dura-
tion for the last exposure (special) is taken
directly from the clock record. The duration
times (dt) should be expressed to three signifi-
cant figures, which generally means to 0901 for
the early images.

2. Clock check for consistency. Time readings
as given on the clock tape (0.01 min.) are about
one order of magnitude less precise than
desired, but nevertheless they provide limits
to the possible range in the exposure durations
determined photometrically. If ±0*004
maximum error is allowed in each clock tape-
reading for beginning and ending of exposures,
the allowable values of dt may be determined,
and checked with the photometry for con-
sistency. If disagreement occurs, the photo-
metric values must be adjusted to fit those of
the clock in the following manner:

(a) A di and a beginning or ending time of
an exposure which are well substantiated by
the clock and by photometry should be sought.
As an example, if the clock records the time
exactly midway between successive hundredths
of a minute, both digits will be observed on the
tape straddling the proper position; i. e., the
dial for 0.01 minute intervals moves contin-
uously. This increases the accuracy of the
clock so that it becomes comparable to that
of the photometry. If agreement for these
durations is good, the exposure time is well
substantiated.

(b) Small magnitude differences given photo-
metrically are more accurate than large differ-
ences O O ^ ) . Successive exposures with small
magnitude differences (^O^S) are used as
much as possible; dt+i then may be computed
from Sd—— 0.92 dt 8m where 8d and hm denote
small increments in duration and magnitude
respectively. This procedure allows simulation
of the clock tape record of beginning and
ending times. If di was well chosen, successive
exposure times computed from the small
difference equation should be consistent with
the clock readings.

(c) For a large magnitude difference, di+i is
computed from the expression,

If a computed end or beginning time of an ex-
posure is not consistent with that of the clock,
the allowable clock time nearest to the photo-
metric value is the best to assume.

(d) All program exposures can be adjusted
except possibly the first exposure. The magni-
tude differences between the first and second
image may be as large as 2m and consequently
subject to large errors. In this case, the clock
will generally be of no aid in fixing a lower limit
on dx, so one usually has no choice but to
assume the photometric value. If photometry
is also done on the train images the decay law
for its radiation may be found and the epochs
of exposure corrected accordingly.

(e) The validity of the adjusted durations
can be checked by comparison of the final
magnitude difference for the adopted times
with the original photometric values. Errors
of about O1^ are possible in large differences,
especially when star images are extremely
distorted, or when one star is excessively faint.

(f) The epoch of exposure with respect to the
beginning of the first exposure (T\) is given by
the expression («?!+<?!-}- . . . +</<_,+ 1/2*^).

S. Observational test for consistency of adopted
durations. Assume that the train displace-
ments from the trail a t a given value of X are
directly proportional to the time elapsed since
the train was formed for all time intervals.
In the meteor system, f = 0 is taken as the time
at the first measurable dash on the trail; the
time of meteor passage at all other points is
given by t(X). If T0 is the time between t=0
and the beginning of the first exposure, then
for an image (i) a t point X, the time elapsed
since the train was formed (time of meteor
passage) is given by T O +TI— t (X) , and conse-
quently

&iY_ _ T O+T< t(X)
'X^V—A Y— ' ' ' _ _ ' * v*5/

The ratio AtY/(AjY—AfY) is a linear function
of t(X). The determination of the slope pro-
vides an observational check on the exposure
epochs which, if successful, leads immediately
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to an evaluation of TO from the intercept. De-
tails of the observational test follow:

(a) Generally, only the first and second train
images are long enough to provide a sufficient
time base for a slope determination. A plot
of AiF/(A2F— AXF) against t(X) is required.

(b) The instability of the displacement ratio
due to the small values of AtY necessitates an
estimate of the ordinate error originating from
the scatter in the train measurements. If the
root mean-square scatter in Yt from the
smoothed train position for image (i) at X is
given by €it then the corresponding root mean-
square scatter in the ratio A,F/(A2F— AiF) is:

(3)

When the distribution of the scatter magnitude
has been noted, the most reasonable slope for
the above linear function may be drawn. The
slope — (TJ—TJ)"1 gives di+d?. If the observa-
tional estimate is consistent (20 percent), the
clock-photometric durations are adopted as the
final values.

4- Epoch oj exposure with respect to first break
on trail. In order to decrease the percentage
errors in T\— T\ and AtY/(AjY—AiY), two widely
separated images are chosen to determine a
point on the linear function as follows:

(a) For i and j , the first and last images
respectively are usually used.

(b) A small range of t(X) in a region of well-
defined train images giving A«F/(AyF—A<F) is
selected and its scatter computed. An aver-
aged point AiF/(A,F— A,F), t(X0) may be
estimated graphically.

(c) If the adopted epochs are taken, then T0

is given by the equation

TO=(T>—U) I +t(X0). (4)

(d) For a rough check, T0 may be computed
from the (AXF/A2F—AXF, t) plot by use of the
slope from the adopted times. If many images
are observed, several pairings of first and later
images may be employed to find a weighted
average of T0.

(e) The epoch of exposure with respect to
t=0 for image (i) is given by T<=TO+T<.

(f) If the trail is present on the train film,

then TO is equal to the time of meteor passage
at the point along the trail where the train
ends and the trail begins.

Linear plate velocity and correction for
rotation
The displacement of the train normal to the
meteor trail A tF and the times since forma-
tion [TI—t(X)] determine the velocity on the
plate normal to the projected trail. Because
the stars are used as a reference system, a
spurious train motion is introduced correspond-
ing to the westward diurnal motion of the
stars. The correction to the normal velocity
is generally large enough to be considered.
Corrections to the X coordinate of the measure-
ment of A,F may be neglected if three or fewer
images exist, but they are otherwise required.
Details of plotting the corrected normal veloci-
ties are as follows:

1. Normal velocities. The normal train veloc-
ities (Vfn) for each image should be tabulated:

(5)

2. Correction for diurnal rotation. The de-
tailed equations may be found in Appendix III.
Note that the time rates of change of the plate
coordinates X and F are proportional to the
time rate of change of the right ascension of the
corresponding spatial point of the train. A
westward motion of the reference system
increases the right ascension of the train point
spuriously, and hence its X and F points also.
The time during which a train point has been
tracking is simply the time elapsed since its
formation, namely r<—t(X). Let the rate of
change of X, Y due to rotation of the reference
system be Xr(X) and YT{X) respectively in
mm sec"1. Then the correction procedure is
as follows (the formulae are derived and given
in Appendix III):

(a) The correction to X,is —XT(X)[Ti—t(X)].
(b) The correction to F, is — YT(X)[r{—t(X)].

Since VNi is proportional to [T<—t(X)]~x, the
correction to the normal velocity is simply
— YT(X), a constant for all images.

(c) The magnitude of YT is about 0.007 mm
and varies linearly but slowly with X. The
magnitude of XT is about 0.01 mm and varies
quadratically in X.
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(d) The tabulated correction of the normal
velocity is applied and the abscissa X corrected
and plotted in a single operation. Velocity
points for each image are plotted on one graph
with an indication of the scatter in VNi given
by ««/[r,-

Train motion components

Inspection of the plots of velocity on the plate
determines semiquantitatively whether one or
two components are defined. If the Vst agree
within the scatter of the measurements, a
single component of train motion is defined;
namely, that which is normal to the projected
meteor trail. In this case a freehand curve
may immediately be drawn through the points,
weighted inversely proportional to the scatter
in velocity for each train image. If the plots
of the train velocities have similar shapes and
show a systematic shift parallel to the trail,
then the train motion component that is
parallel to the projected meteor trail may be
found. Measurement of a normal displacement
of a train over a small range in X adequately
defines the displacement in F a t the given X}

but a given displacement in Y defines X poorly.
Consequently, detection of a motion parallel
to the trail requires a large relative shift in
X (0.5 to 3 mm) over several images that form
distinctive shapes. Large relative shifts be-
come increasingly apparent, the greater the
time since formation of the train; hence, a large
number of images (more than five) is required
for a solution for velocity parallel to the trail.
No parallel motion will be apparent from the
scatter of the normal velocity component for
two-image to four-image trains. The procedure
for defining the parallel component VP{X) is
as follows:

1. Displacements parallel to trail. Displace-
ments in X between images widely separated
in time are measured from the normal velocity
plots at those velocities for which the normal
curve has a non-zero slope.

2. Determination of parallel velocity. The
parallel plate velocity component (VP) at a
given normal velocity (VN) is computed from
the X displacement between images j and k

by the equation:

(6)

The determinations of VP from various image
pairings are plotted against VN, and a freehand
smooth curve is drawn through the points which
are weighted roughly in proportion to the time
base (TJ.—T)). The scatter will be considerably
larger than for the normal velocity component,
but a general agreement on the shape of the
function must exist in order to establish VP.
No systematic deviations should be observed
from any highly weighted image pairings.

8. Correction of normal velocity for parallel
displacement. A normal velocity, VKi(X), is
now plotted on a separate graph at the abscissae
[X— VP (VN)[(Tt—t (X)]}. Enough points in V*
should be used to prevent introduction of any
systematic error in the definition of the trans-
posed curves other than the abscissa correction.

4- Final normal velocity component. After
the parallel velocity correction, all train images
occur at the point in X along the trail where the
train was originally formed. A smooth curve
is drawn as in the case of a single component
solution to define V#(X).

5. Plot of parallel velocity component. The
normal velocity as a function of X, V^iX), is
defined by the smoothed curve in section 4,
which in turn defines VP from section 2 above.
The tabulation of (X, VP) is plotted with X as
the independent variable.

6. The accuracy of the results. Steps 1-5 may
be considered as the first step in successive ap-
proximations for VN(X) and VP(X), since the
times used to compute V̂ < were taken at points
along the trail where the train image was ob-
served rather than at the points where the train
was actually formed. But t(X) enters as
Tfc—t(X), where X here is the point at which
the train was observed. Since

\t(X)-t(X-VP(X)[rk-t(X)})\<^rt, (7)

the first approximation to the normal and
parallel velocity components is entirely satis-
factory.

Coordination of velocity components from
two stations

Double-station observation of the train motion
requires the matching of the X coordinates in
the two meteor systems according to a common
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height above sea level (H) in the following
manner:

Let subscripts A and B refer to the Mayhill
and Sacramento Peak Stations respectively.

The distance (D) along the trail from the
first measurable dash at one station, say May-
hill, must be computed from the equation,

DA = 100KA(X-XAa)/(X-XAR), (8)

where KA, XAa, XAR are constants provided in
the meteor reduction. At Harvard these ap-
pear on the reduction sheets of the Meteor
Analysis Project. See the notation list in Ap-
pendix V for more detailed definitions.

The height of the point XA above the plane
tangent to the earth at one station, e. g., May-
hill, is given by the equation,

hA=h(DA=0)-DA. cosZA> (9)

where h(DA=Q) and the zenith angle ZA are
given quantities.

From the AhA versus hA graph, the height
above sea level (HA) is given by hA+AhA

The mated meteor systems are arranged so
that points with the same D have the same
height; therefore the XB corresponding to XA
is given by the equation

D(XA)XBR-100KBXB

D(XA)-l00KB
(10)

where the subscript B denotes the second sta-
tion, e. g., Sacramento Peak.

Intervals in height should be small enough to
define the projected velocity curves. A table
of D, XA, XB, and the respective normal and
parallel velocity components versus H as inde-
pendent variable may then be prepared.

Spatial components of train motion
The plate velocities normal and parallel to the
trail are readily transformed to two spatial
components normal and parallel to the meteor
trail as projected on a plane perpendicular to
the line of sight. These velocities in turn may
be expressed in terms of the three components
of velocity of the train. These components
are taken parallel to the east, north, and zenith
directions from the midpoint of the observed
train region. Since the X axis is parallel to the

projected meteor trail, a systematic motion of
the train along the trail will not influence the
component normal to the meteor trail in space.
Thus this normal component is indicative only
of air motion flowing transversely to the meteor
trail. When the component normal to the pro-
jection of the meteor trail is plotted against
distance along the trail, large variations in am-
plitude occur over ranges in distance along the
trail of the order of 10 kilometers. Smaller
variations in amplitude over a considerably
smaller distance scale are superimposed on
these. A smooth curve is drawn through the
large-scale fluctuations and the smaller fluctua-
tions are smoothed out. This curve defines
the component of the mean wind field normal
to the projected trail. The difference between
the two curves represents the component of
turbulent motion. Because the parallel ve-
locity component is much less accurately meas-
ured than the normal component, only the
latter can be used to define the small-scale
velocity variations.

Observation of the two normal and parallel
velocity components at both stations defines
three linear equations in terms of the unknown
train motion components (TB, TN, Tz). The
solution of the simultaneous equations for T
is not singularly significant for several reasons.
First, the combining of the less accurate parallel
function with the more accurate normal func-
tion decreases the accuracy of all the train
components. Second, the relatively small base
of triangulation makes the determinant of the
coefficients of (Tg, TN, Tz) nearly zero. This
results in a solution in which the errors inherent
in the train measurements are noticeable frac-
tions of the derived train-velocity components.
Third, in the first double-station train reduc-
tion attempted, an observed systematic motion
of the train along the trail had a vertical com-
ponent six times the maximum value (~.r)ins~I)
allowable for vertical air transport in the ther-
mally stable region above about 80 kilometers.
The theory of the persistence of meteoric lumi-
nescence and the momentum exchanges from
meteor to air particles can explain such a
coasting train-velocity, but has not been de-
veloped to a degree of accuracy such that the
parallel component functions can be corrected
to represent only the mean wind projection.
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The analysis is therefore aimed at investigating
the existence of a coasting train-velocity from
the solutions for T after the mean wind field
has been defined by the normal components
alone.

The reasonable assumption is made that the
vertical component of the mean wind (W) is
very small compared to the horizontal com-
ponent, or Wz=0. The horizontal mean-wind
components, WB and WN, are computed from
the smoothed spatial component normal to the
projected trail as observed at both stations. It
is to be noted that, under certain geometrical
conditions, some small variations on the plate
will become greatly enlarged when projected on
the horizontal plane. The reduction of T by
the mean-wind solution leaves the train com-
ponents (TB—WB, TN—WN, TZ) independent of
any mean air motion. The only remaining
wind contribution is a fluctuating component
due to turbulence. Since the random com-
ponent fluctuates about a zero point, each com-
ponent is smoothed as in the procedure of
separating the mean wind component from the
normal wind component. If the resulting
smooth curves actually can be regarded as
representing a coasting velocity along the
meteor trail, then the direction cosines of the
velocity vector will coincide with the direction
of meteor flight at all heights.

Deriration of normal and parallel spatial
velocity components

1. Basic linear equations. For a general point
at a distance R from the observing station and
with direction cosines (I, m, n), equation (11)
gives the components of the point with respect
to axes parallel to those of the meteor system
(see Appendix I):

(11)r\—Rm

Because the train velocity components
(ms"1), are very small (10~3) compared to R,
the time rates of change in the coordinates of a
train point may be represented as the projection
of T(H) on the respective axes of the meteor
system:

, + TNlN+ Tzlz (12a)
ii=Rm+mR=TBmB+TNmN+Tzmz (12b)

(12c)

where (I, m, n) B, #, z are direction cosines of
the train coordinate axes in the meteor system
(see Appendix II).

2. Linear expression jor rate of change of
distance. The distance by equations (11) is,

and by equations (11), R=l£-{-
or,

m (TBmB-\- TNmN-{- Tzmz) +
n(TBnB+TNnN+Tznz). (13)

3. Distance as a function of position on the
plate. If Rt is the minimum distance to the
trail, RJR is the cosine of the included angle,
or the scalar product of the direction cosines of
R« and R expressed in any system. In the local
system (see Appendix I) Rt/R is given by equa-
tion (14) where the subscript (e) denotes the
point of minimum distance:

(14)
and

from equation A(2)3 (Appendix I). From equa-
tion A(9), xxt+yy, = jf,+ljfljf where x, y
are dimensionless as defined in Appendix I.
Y may be taken as the same value used in the
rotation correction formulae; Xt is defined by
formulae (8) and (10) for D=D, (see Appendix
IV). Also,

By equations A(2) (Appendix I),

and from equation A(9) (Appendix I),

(15)

Substitution of these expressions in equation
(14) gives:

l+xx.+yy.

4. Rates of change of direction cosines as func-
tions of position on the plate. From Appendix

• Equation numbers preceded by the letter "A" indicate formulae appearing in the appendices.
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I, x=l(n, y=m/n, and n = f ' =
by equation (15). Straightforward differentia-
tion with time gives:

I =n[(l—n2x*)x—n2xyy],

m=n[—n2xyx+ (l—n2y2)y],

n=—n3[xx+yy].

(17)

5. Equations jor velocities on the plate as junc-
tions oj components of velocities oj the train.
Direct substitution into equation (12) of A
from equation (13), R from equation (16), and
(I, m, n) from equation (17) gives three non-
independent equations for T(H). Multiplica-
tion of expression (12c) by x and subtraction
from expression (12a), and multiplication of
expression (12c) by y and subtraction from
expression (12b) reduces the three expressions
to equations (18a) and (18b), respectively:

(ls~nBx) TB+(lN-nNx) 7>+

(mB—nBy) TB+{mN—nNy) TN

Here x= VP/f and y = V^//have units of inverse
seconds; if R, is in units of meters, the train

VlB— nEx

VmB~nBy mN—nNy

VmE--nEy

La+2)*
mN-nNy~\

J
7. Formulae jor mean horizontal wind. If

Wz—0 is assumed, then the simultaneous solu-
tion of expressions for the normal train com-
ponent defines the mean wind, where the
smoothed normal components (A0 of the mean
wind motion are used:

L+ L d + y 2 ) ^ J f l ) J
(21)

8. Formulae jor investigation oj coasting veloc-
ity. As functions of height, the train meteor

velocities are expressed in meters per second.
The left-hand sides of expressions (18a) and
(18b) are similar to the scalar products of T(fl)
and the vector parallel and normal to the pro-
jected trail, respectively. Hence, normaliza-
tion of the vectors in equation (18a) by the
factor (1-f-a;2)"^ and of the vector in equation
(18b) by the factor (1+y2)"** represents the
spatial components P(H) and N(H) correspond-
ing to the plate components VP and VN, re-
spectively, or

and

where
(19)

N(H) and P(H) are directly proportional to
Vu and VP, Rt, and a slowly varying function

6. Formulae jor components oj velocity oj train.
The normal component expressions (18b) from
both stations are combined with one parallel
component of the form of expression (18a) to
give three simultaneous equations in three un-
knowns. Two solutions for T(H) are obtained
by taking the parallel component from each of
the two stations individually. As an example,
for Station A,

pz-nzxl T =p ff

(20)

components corrected for the mean air motion
are: (Tg-Wg, 7V-W^, Tz). The magnitude and
direction cosines of the motion are readily
determined. If (XB, nR, vR) are the direction
cosines of the meteor radiant, then the velocity
component is truly a coasting train motion if
the condition (22) is satisfied at all heights,
where Vc is the magnitude of the above vector:

Vmz—nzy\ T _
Ui+y^L2

\mz—nzy\ T _

— WE= — VC(XflXjy "f HRHE + VRVE),

Tz= —

(22)

+ HRUZ + vRvz).
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The bar denotes smoothed expressions; X*, etc.,
are the equatorial direction cosines of the east,
north, and zenith points at the midpoint of the
observed train region.

Outline of computational steps with
formulae

Following is a convenient outline of the steps in
reducing a meteor train with the numbers of
the appropriate formulae.
1. Transformation constants: A(l).
2. Direction cosines of train system in meteor system:

3. Plate coordinates, x, y, xt, y, in dimensionless form:
A(20), A(6), (8), (10).

4. Minimum distance between trail and station: A(20),

5. Tabulation of velocity components relative to trail
atff: (19).

6. Tabulation of coefficients in solution for T: (20).
7. Computation of total train motion components: (20).
8. Computation of mean wind components: (21).
9. Analysis of coasting velocity: (22).

Appendix I : Coordinate transformation
formulae

1. Equatorial system. Direction cosines are
given by (\, A,) „).

2. Local system. The equatorial system is
transformed so that the vertical axis is parallel
to the direction of the plate center and the
other axes are directed towards the east and
north points. Direction cosines (X, n, v) are
transformed to (£', rj', f') by equation A(l),
where the subscript (e) denotes the plate center.

where 72+i»J=l.
S. Meteor system. The spherical Super-

Schmidt film is projected on the tangent plane
of the sky at the point of the plate center.
The £', V axes, toward the east and north
points respectively, become the standard coor-
dinate axes £, rj as given by equations A (2).

A ( 2 )
A ( 2 )

The X, Y axes in the tangent plane are taken
so that the X axis is parallel to the projected
meteor trail; they represent a rotation and

translation from the £, lj axes except for addi-
tional plate distortion effects. The plate
constants at, av, etc., are given at Harvard on
the reduction sheets for the meteor.

or sufficiently,

where,

X aJ+brH-c,, 1

==a/^-\-b'rj-\-cx, I

. _ ;_ y
==b £ — a ri~\~Cyt J

a '=2 (a,— by),

b'=\{bx+av).

A(3)

A(4)

A(5)

Let the nondimensional quantities x, y be
defined as follows:

x=
X—cx "

/ A(6)

Here / denotes the focal length of the camera
and is given by

/=(a"+&")K. A(7)

The corresponding nondimensional plate con-
stants are

a=a'ljy 6=67/- A(8)

Substitution into equation A (4) simpUfies the
form as shown in equation A(9),

W \b-a)\v),
A(9)

where a8+6*=l. If (/, m, n) are the direction
cosines of a point in the meteor system, then
the dimensionless x, y, are equal to l/n and
m/n respectively. Substitution of the expres-
sions for x, y, and J, fl into equation A(9) gives
the direction cosines in the meteor system:

W \b-a)\tj A(10)
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The vertical component (n) is invariant under a
rotation about the vertical axis.

Appendix II: Direction cosines of train
coordinate axes in the meteor system
The train coordinate system has its origin near
the midpoint of the train region with axes
directed toward the east, north, and zenith
points at the midpoint. Let (I, m, n) B, N, z,
respectively represent the direction cosines of
these vectors in the meteor system. Computa-
tional formulae are outlined below.

/ . Equatorial direction cosines of the zenith.
(a) Given the equatorial direction (XOT, nm, vm)

of the midpoint of the train, and its distance
Rm from a station, the rectangular coordinates
from the station are:

Sm—

(b) Referred to a geocentric system, equa-
tions A(ll) become:

7 = ( p f cos <t>s) cos ds+Sm,*

5=(p, cos 4>,) sin 6,+rim,

€=p, sin 0,—{-|*m,

A(12)

where p, is the geocentric distance of the
station, <f>t is its geocentric latitude and 6, is tbe
local sidereal time. Equations A(13) represent
the equatorial direction cosines corresponding
to (y, 8, e).

A(13)

where pm=(ys-\-82+t2)X is the geocentric dis-
tance of the midpoint.

2. Equatorial direction cosines of east and
north points.

(a) Given the equatorial coordinates of the
zenith at the midpoint of the train as (azm,
5«m)> the east and north points are in the
directions toward (a^+x/2 , 0) and (azm±ir,
ir/2—Stm), respectively.

(b) Let 7 m =cos 8,m, whence y\m+vin=\.
Then, for the east point:

A(14)

and for the north point,

A(15)

(c) As a check, X1X>+/i<^+vJ^=5j, where 5}=0
for i^j and 5j=l for i—j.

3. Direction cosines on the meteor system. The
equatorial coordinates of the east, north, and
zenith points of the train system are trans-
formed by equations A(l) and A(10) to
(/, m, n)K,ifz. As a check:

A(16)

Appendix III: Correction for rotation

For a given point on the train with plate co-
ordinates (X, Y) and equatorial coordinates
(a, 5), (XT, YT), the change in (X, Y) from the
increase in the right ascension, due to the west-
ward motion of the reference system, is desired.
The X, Y coordinates are dimensional [mm] as

measured. From equation A(3),

A(17)

i, rj are functions of i ' , rj' and f' by equations
A(2). Differentiation of equation A(l) with
respect to time for the point X=cos 5 cos a,
/i=cos 8 sin a, v=sin 5 and straightforward sub-
stitution into the expressions for XT, YT define
the spurious plate velocities by equations A (18),

Xr=a[axyc+ vc(—axrj-\- b

a=7.272X10-6[s-1]

e\{X—

— Cy)],

A(18)
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where £, ij, derived from the inverse of equation
A (3), are given by

A(19)

The inverse plate constants A%, B$, etc., are
given at Harvard on the reduction sheets. Y
may be taken as a constant equal to a mean
position of the observed train images. The
differential expression of YT for a change in Y
indicates that XT and YT are insensitive to a
change in Y of about one half millimeter. One
may even choose Y— YT, the trail ordinate.

Appendix IV: Minimum distance to meteor
trail from station

On the reduction sheets of the meteor as ob-
served from Station A, the direction cosines of
the point t=0 are given by \Aa, nAa. vAa. Let
the direction of the radiant be \R, nR, vR; then
the distance along the trail from £=0 to the
point of minimum distance is given by the
equation,

DAt=100 A(20)

where RAa is the distance in units of 100 km
from Station A to the point for t~0. Then

A(21)

where RAt is in units of 100 km. Similar for-
mulae hold for Station B.

Appendix V: Notation

The following symbols and units have been
arranged in an order roughly corresponding to
their use in train analysis. I t is understood
that each symbol is applicable at either station
and may carry a subscript (for the Harvard
Meteor Expedition, vl=Mayhill, i?=Sacra-
mento Peak) when distinction is necessary.
A and B are carefully indicated on the meteor
reduction sheets.
X, Y—Meteor plate system coordinates [mm].
YT—Ordinate of meteor trail in meteor plate system

[mm].
AiY—Train displacement of image i from trail [mm].
di—Duration of exposure i [s].

T{—Epoch of exposure (i) with respect to beginning of
the first train exposure [s].

TO—Time interval between ( = 0 and the beginning of
the first train exposure [s].

T,—Epoch of exposure (i) with respect to t=0 [s].
t(X)—Time of meteor passage at a general point on

the trail [s].
Ox, bx, cx—Plate constants for transformation of stand-

ard coordinates to X, Y system [mm].
| , ij—Standard coordinates.
I', ij', ?'—Direction cosines in local system.
X, p, p—Direction cosines in equatorial system.
Xe, Me> **—Direction cosines of plate center.
Xs, M«I "R—Direction cosines of radiant.
it—Time rate of change of hour angle due to the earth's

rotation [s-1].
V,—Normal train velocity component from image (i)

[mms-'J.
Vp—Plate velocity component of train parallel to the

trail [mms-1].
VN—Plate velocity component of train normal to the

trail and corrected for Vp [mm-1].
Xa—Position of <=0 in meteor system [mm].
Xs—Position of the radiant in the meteor system [mm].
ZR—Zenith distance of radiant.
D—Distance along the trail from <=0 [km].
h—Height above tangent plate [km].
H—Height above sea level [km].
R—Distance to trail from station [km].
a—Subscript denotes first measurable dash.
t—Subscript denotes point of minimum distance from

station.
m—Subscript denotes midpoint of train region.
R—Subscript denotes meteor radiant.
I, m, n—Direction cosines in the meteor system for a

general point.
(I, m, n)g, if, z—Direction consines in the meteor system

for east, north and zenith axes of the train system
respectively.

x, y—Dimensionless plate coordinates.
TE, TN, TZ—Train velocity components in the train

system [ms-1].
WK, WN—Horizontal components of the mean wind

field [ms-'].
N(H)—Spatial component of T(H) normal to the pro-

jected meteor trail [ms-1].
P(H)—Spatial component of T parallel to the pro-

jected meteor trail [ms-1].
N—Smoothed functions are denoted by a bar.
v—Coasting velocity [ms-1].
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Methods for the Study of Shower Radiants
from Photographic Meteor Trails1

Fred L. Whipple2 and Frances W. Wright3

The techniques described here were developed
for the rapid analysis of single-station photo-
graphic meteor trails used in determining the
nature of shower radiants. The measurements
are made graphically on Durchmusterung star
charts; the reductions have been simplified
as far as possible without sacrifice of significant
accuracy. Continued application of the meth-
ods to many of the trails photographed by the
Baker-Super-Schmidt meteor cameras has led
to improvement and elaboration of the tech-
niques described earlier (Whipple, Proc. Amer.
Philos. Soc, vol. 91, No. 2, p. 189, 1947). We
present the method in some detail.

Measurement

To measure single-station meteors, we plot each
photographic meteor trail carefully, with the
aid of a magnifying glass, on a large-scale Bonn,
Cordoba, or Cape Photographic Durchmuster-
ung chart, according to the region of the
meteor's occurrence. Through the observed
points, with as much care as possible, we pass
a smooth curve which represents closely a great
circle; the chart scale is approximately 1° to
2 cm. For convenience and greater accuracy
we select five points that are nearly equally

spaced on the smooth trail, at intersections of
the trail with hour or declination circles. After
making visual measurements, under a mag-
nifier, of distances on the chart, we determine
the equatorial coordinates of these five points.
Then, using formulae of analytic geometry, we
derive the direction cosines, given below, of the
pole of the great circle through four of the
points selected above (the mean for points 1-4
and 2-5); the fifth central point is used for a
check. The probable error of the independ-
ently measured point from the great circle
through the plotted points is approximately 30
seconds of arc. The precision of plotting and
measurement exceeds the intrinsic accuracy
with which shower meteors usually emanate
from the mean radiant at a given instant of
time. Hence no greater precision is required
in practice.

Reduction of measurement of meteor trail

The direction cosines, X, n, v, for each of the
above points are given by the formulae,

X=cos a cos S

M=sin a cos 5

y=sin S.

(1)

1 Carried out in part under research contracts with the U. S. Naval Bureau of Ordnance (Task I of NOrd 10449) and the U. S. Office of Naval Research
(Contract No. N5orl-07647). Reproduction in whole or in part is permitted for any purposes of the U. S. Government.

• Smithsonian Astrophysical Observatory.
' Harvard College Observatory.

239



240 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

The direction cosines X,, nP, v, of the pole of
the great circle through any two points a and b
follow from the expressions:

X, sin Cab=iiavb—vanb

Hj, sin Cttb=va\b— \avb

vp sin Cab=Knb—

(2)

where Cab is the great circle distance between
the points a and b. The square of sin Cab is
obtained from the sum of the squares of the
right-hand members of equations (2).

Analysis of a meteor shower
When we begin the identification and analysis
of shower meteors we use, when possible, a
"skeleton" path of the radiant from the photo-
graphic double-station meteors with accurate
radiants, velocities, and orbital elements. These
positions, elements, and velocities—all of which
are similar for any one shower—then furnish
criteria for membership in any particular
shower.

First, we eliminate as possible members of
the stream all extended meteor trails more than
10 degrees from the appropriate point along the
skeleton path of the moving radiant. This
elimination is easily made by quick plotting on
a large globe, or by calculation in case the trail
is short and distant from the assumed radiant.
Second, the apparent velocity of these accurate
double-station meteors fixes the mean velocity
in any one shower, a second criterion of mem-
bership. To find velocities of other double-
station meteors, we use the extremely rapid
approximation developed by McCrosky (in the
third paper of this group)—the so-called "whirl-
wind" reduction technique. This same tech-
nique may also be used to determine approx-
imate velocities for single-station trails with
shutter breaks. We derive the velocity from
quick measurement of breaks in the trail on the
basis of an assumed radiant. If the approx-
imate velocity of a possible member of a shower
differs by more than 15 percent from the mean
velocity determined by the precise techniques,
we then eliminate the suspected member.
When trails of double-station meteors have not
been measured and reduced precisely, we meas-
ure and reduce them by the rapid techniques

used for a single-station meteor. Even though
such reductions may lead to fairly accurate
radiants, we usually prefer to treat the two trails
of these doubles as two single trails in the final
least-squares solution.

Assumed radiant and pole oj radiant motion.
The direction cosines of all radiants or poles of
trial trails must be reduced to a common
equinox. We recommend the method pre-
sented by Bower (Lick Obs. Bull., vol. 16,
No. 445, p. 34, 1932). We then adopt an
assumed preliminary radiant, usually the cor-
rected radiant, aR, SB, of the accurate double-
station meteor nearest to the mean position of
the radiant as shown by these accurate radiants.
The direction cosines \PM, nPU, vPM of the pre-
liminary pole of radiant motion can be ob-
tained by choosing for a second point along the
great circle of radiant motion one of the earlier
(or later) accurate radiants. When the circle
of radiant motion has a small inclination to the
celestial equator we often take, for convenience,
the second point at the same declination as SB.

Next, we establish a rectangular coordinate
system with origin at aR, SB and z-axis coinci-
dent with the great circle of motion of the
radiant, x increasing with a and y with 6.

Formulae jor distance. The position of a
single trail j can be specified conveniently by
the intersection point Xj of the extended trail
with the x-axis, and by the intersection angle
yf/} which is taken from 0° to 180° as indicated
in figure 1. For each single trail j, where X ,̂
MP/, vPj denote the direction cosines of the pole
of the trail, we calculate these positional quan-
tities from the equations

Xj sin ^=XP ,XB+HPJUR+VPJVR, (3)

COS ^j — \pj\pM+ flpjflpM + VpjVpM, (4)

sin $, (from trigonometric tables), (5)

X) sin tyt (in minutes of arc) follows from
(3) and X'} (in minutes of arc) and ^ from
(5) and (4) respectively.

Signs and the quadrant of ^ are determined
from the geometry of the situation for each case.

Zenith corrections. Xj sin ^ gives the near-
est point of each trail j to the assumed radiant
of the shower, and corrections for both diurnal
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Assumed Great Circle
of Radiant Motion

Preliminary
Assumed Radiant

FIGURE 1.—Geometry of single trail and radiant.

motion and zenith attractions must be applied
to correct the position of this point. When we
have approximately 30 or more members of a
meteor shower, we make up tables and graph-
ical curves of corrections which we can then
enter to find the proper corrections for an in-
dividual meteor. If the shower has fewer mem-
bers, we usually apply each correction sep-
arately, without making tables. The basic
formulae used for zenith correction are

and

where

(6)

(7)

Vm = Velocity of meteor outside the atmosphere.
Vc=Vm corrected for rotational motion.
VQ== VC corrected for zenith attraction.
9=Attraction of gravity (the term introduced by the

rotation of the earth is subtracted) at the station.
p=Radius of the earth.
ZR — Zenith distance of an assumed radiant that ap-

proximates the mean value of the apparent radiant.

If there is no correlation between time and
velocity, we adopt the mean Vm and the mean
Vo of the accurate double-station meteors. We
find the mean Vc from equation (6).

The zenith distance, ZR, may be obtained
quickly from the navigation tables of the U. S.
Hydrographic Office, H. O. 214. In these
tables declination arguments in whole and half
degrees head the main columns of each page,

while hour-angle arguments in whole degrees
appear at the side; we enter the tables, there-
fore, with different values of hour angle and
with a declination as close to the radiant as
possible. Then with the interpolation tables of
H. O. 214, we find the altitude of the radiant
and hence the zenith distance ZB for any hour
angle of the radiant at any specific station.
The interpolation tables are convenient when
the latitude of the station is not a whole num-
ber of degrees.

A third formula determines, by means of the
sine law, the sine of the angle v at the "radiant
vertex" in the pole-zenith-radiant triangle:

sin i>=cos iXs in (H. A.)/sin ZB. (8)

From formulas (7) and (8), the relations

Aa cos S=AZB sin v (9)
and

AS=AZR COS v (10)

give the zenith corrections in Ax and Ay for any
one trail. The signs of these corrections appear
from the geometry of the situation in each case.

Diurnal-motion corrections. The diurnal-mo-
tion corrections require a knowledge of the
station's rotational velocity Vs, given by the
equation

Vs=
2 T

86,164
p COS <f>'. (11)
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where p and 4>' are, respectively, the radius of
the earth and the geocentric latitude of the
station; time is measured in seconds of mean
solar time. We have used the following specific
values of Vs for various Harvard Meteor Sta-
tions :

Station
Cambridge, Mass. 1
Agassiz Station, Mass.]
Arequipa, South America
Bloemfontein, South Africa
Dofia Ana, N. Mex.l
Soledad, N. Mex. J

V, (km/sec)

0.344

0.447
0.406

0.392

The following equations in Ax and Ay suffice
for the diurnal-motion correction:

Aa cos S=Aa sin 0+Ba cos 6, (12)

Ah=At sin 6+Bt cos 0, (13)

where 0 is the local sidereal time and the co-
efficients are functions of the velocity Vm and
of the position of the radiant aR and 5B (which
can be the assumed mean radiant for single-
station meteors). The above coefficients are
given by the formulae

Aa= — (VslVJ) sin aB,
Ba=-(Vs/V-)co8aB,
At= — (Vs/V*,) cos aR sin 5B,
B,= + (Vs/Vm) sin aB sin SB. (14)

Finally, the sums of (9) and (12) and of (10)
and (13), respectively, provide the total correc-
tions for zenith correction and diurnal motion.
The corrections may range from only a minute
of arc to several degrees, depending largely upon
the velocities of the meteors and the altitudes
of the radiants for the respective showers.

Corrected (X} sin ^j). The corrected quan-
tity, X) sin tyj, designated by A}, is given by the
formula

AJ=(X) sin sin c o s

If the path of radiant motion roughly par-
allels the celestial equator, Ax}— total Aa} cos it\
and Ayj=total Adj with sufficient accuracy.

General formulae for Ax} and Ay}. When, on
the other hand, the inclination (smallest angle)
fi of the path of radiant motion to the celestial

equator is large over a long time interval, more
accurate formulae are

Axj=\Aaj\ cos Sj cos sin 0, (16)
and

COS 8J sin /S+|A5j COS /3. (17)

Formulae for double-station meteors. The date
of the meteor is taken as tt for a double-station,
or as tj for a single-station meteor, and is meas-
ured in degrees of true longitude of the sun at
the time of observation and referred to a fixed
equinox. The daily motion of the radiant can
now be determined for double-station meteors
from the observational equations

Az+Bzti=xt-\-Axi and A,+BtU=yt+6yti (18)

where the coefficients Ax, Bx, A9) and Bv are to
be found by least squares.

For any radiant Rt, xt and yt can be computed
from the formulae

and
(19)

sin xi=\pxXBi-\-npInBi+vPxvBh (20)

where Px is the pole of a great circle though the
assumed radiant orthogonal to the great circle
of radiant motion. When the path of radiant
motion is nearly parallel to the celestial equator,
we take, for convenience, a j . ^ a s + 9 0 0 and
SPx=0} with sufficient accuracy.

For single-station meteors, the distance D of
the calculated radiant xc), yti from the great
circle of the meteor trail is to be minimized by
a least-squares solution; i. e., D} is to be con-
sidered as a final residual. As seen from figure 1,
Dj is given by the equation,

sin cos (21)

A substitution of the corrected xt and y< from
equations (18) into equation (21) leads to the
following equations of condition for a least-
squares solution to determine the six constants
and to minimize Dt:

sin fj+A, cos
=XJ sin

sin Vj+Jtfytj cos Yj

sin yj/j+Ay, cos ^ . (22)
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Least-squares equations of condition. The co- the radiant motions over many years can easily
efficients Ax and Ay, after the least-squares be introduced into the least-squares solution,
solution, provide corrections to be applied to No such effect has yet become detectable be-
the assumed radiant, while Bx and By provide cause of the limited span of precise photo-
the daily motion of the best radiant path graphic observations. When such secular ef-
through the calculated radiant, with minimized fects become measurable, most investigators
distances of extended meteor trails to the mean would probably prefer to divide the material
radiant of the corresponding instant. into groups of about two or more epochs and

Terms to include possible secular changes in investigate each group separately.












