Correction to "Origin of Periodically Spaced Wrinkle Ridges on the Tharsis Plateau of Mars" by Thomas R. Watters

In the paper "Origin of Periodically Spaced Wrinkle Ridges on the Tharsis Plateau of Mars" by Thomas R. Watters (Journal of Geophysical Research, 96(E1), 15,599-15,616, 1991), equation (9) should read as follows:

$$4\eta l \frac{\partial^2 w}{\partial x^2 \partial t} + P \frac{\partial^2 w}{\partial x^2} + \left(\frac{k}{n}\right) \frac{\partial w}{\partial t} + \frac{\rho g w}{n} = 0$$

(9)

Also, the shading on Figures 6, 7, and 8 did not reproduce. New versions of these figures are shown here.

Fig. 6. The critical wavelength of buckling λ_c as a function of thickness of the ridged plains material h over a range in thickness of the substrate h_0 of 1000-5000 m, a ratio in Young's modulus between the surface layer(s) and substrate $E/E_0 = 10$ (dark), 100 (medium), and 1000 (light) for number of layers n of (a) 1, (b) 2, and (c) 3. The curves bounding the shaded areas are the solutions for the given model parameters. The shaded areas define a family of curves for solutions for h_0 between 1000 and 5000 m for the given parameters.

This paper is not subject to U.S. copyright. Published in 1991 by the American Geophysical Union.

Paper number 91JE02856.
Fig. 6. (continued)
Fig. 7. The critical stress σ_c to achieve buckling as a function of thickness h for a range in thickness of the substrate h_0 of 1000–5000 m, a ratio in Young's modulus between the surface layers and substrate $E/E_0 = 10$, 100, and 1000 and $n = 2$ layers. The difference between the maximum horizontal and vertical stress is plotted as a function of depth. The dashed line represents the maximum compressive strength of a basalt-like material ($\rho = 2900$ kg m$^{-3}$) on the surface assuming no pore fluid pressure (dry rock). Critical stresses that fall above this line, in the shaded zone, exceed the maximum compressive strength of the material, and gross fracturing is expected over buckling.

Fig. 8. The critical wavelength of buckling λ_c as a function of thickness of the ridged plains material h over a range in thickness of the substrate h_0 of 1000–5000 m, a ratio in viscosity between the surface layers and substrate $\eta/\eta_0 = 10$ (darkest), 100 (dark), 1000 (medium), and 5000 (light) for number of layers n of (a) 1, (b) 4, and (c) 8.
Fig. 8. (continued)

(Received October 17, 1991.)