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 1   ABSTRACT   I  

Vascular-plant hosts, their arthropod herbivores, and associated functional feeding groups are distributed spa- 
tiotemporally into four major herbivore expansions during the past 420 m.y. They are: (1) a Late Silurian to 
Late Devonian (60 m.y.) phase of myriapod and apterygote, hexapod (perhaps pterygote) herbivores on several 
clades of primitive vascular-plant hosts and a prototaxalean fungus; (2) a Late Mississippian to end-Permian (85 
m.y.) phase of mites and apterygote and basal pterygote herbivores on pteridophyte and basal gymnospermous 
plant hosts; (3) a Middle Triassic to Recent (245 m.y.) phase of mites, orthopteroids (in the broadest sense) and 
hemipteroid and basal holometabolan herbivores on pteridophyte and gymnospermous plant hosts; and (4) a 
mid Early Cretaceous to Recent (115 m.y.) phase of modern-aspect orthopteroids and derived hemipteroid and 
holometabolous herbivores on angiospermous plant hosts. These host-plant and herbivore associations are medi- 
ated by seven functional feeding groups: a) external foliage feeding, b) piercing-and-sucking, c) boring (Phase 1 
origins); d) galling, e) seed prédation, f) nonfeeding oviposition (Phase 2 origins); and leaf mining (early Phase 
3 origin). Within about 20 m.y. of each herbivore expansion, there is a biota that expresses the nearly full spec- 
trum of later plant-arthropod associations. These four associational phases may be linked to the paleoclimato- 
logic variables of greenhouse/icehouse cycles and atmospheric O2 and CO2 levels by uncertain causes, although 
some relationship probably is present. The 7 functional feeding groups persist through most of the sampled 
interval but harbor host-plants and arthropod herbivores that are spatiotemporally ephemeral. Poor understand- 
ing of associations in Phases 1 to 3 is attributed to disproportionate focus on the angiosperm and holometabolan 
insect associations of Phase 4. 

KEYWORDS I Plant-insect-associations. Herbivory Fossil-record. Land plants. Insects. Paleoclimate. 

INTRODUCTION vided the basic evolutionary history and ecological struc- 
ture to continental (terrestrial -1- fresh water) ecosystems. 

The major macroscopic source for biodiversity on the Nowhere is the combination of taxonomic diversity and 
planet is land plants and arthropods (Wilson,  1992; ecological richness better demonstrated than the varied 
Schoonhoven et al.,  2005).  These two hyperdiverse plant-insect associations that have been documented for 
clades, and to some extent, fungi, historically have pro- the fossil record during the latest wave of major terrestri- 
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alization that commenced about 420 m.y. ago, during the 
Late Silurian (Labandeira, 2005a). This major invasion of 
terrestrial environments has continued unabated to the 
Recent and has experienced a dramatic expansion in taxo- 
nomic speciosity, major clade diversity, biomass abun- 
dance, biogeographic colonization, and écologie richness 
(Labandeira 2002a). Although these five measures are 
inextricably linked, it is ecological richness that provides 
the single most effective way of assessing how terrestrial 
ecosystems evolve in deep geologic time (Vermeij, 2004). 
In particular, it is an examination of plant-insect associa- 
tions•which provides the paleobiological evidence for 
the fundamental interorganismic links of species within 
food webs, communities, and ecosystems •that is the 
central focus of this study. 

The ecology of plant-insect associations is a signifi- 
cant aspect of modern ecological research, as illustrated 
by sections of ecological journals devoted to this topic. 
However, the intensity and broad scope of the study of 
modern plant-insect associations has not been matched by 
a parallel examination of the fossil record (Labandeira, 
2005b). This disconnect is attributable mainly to an over- 
whelming paleobiological focus on the description, clas- 
sification, and phylogenetic analyses of taxa, rather on the 
paleoecological associations of plants and arthropods. 
Recently, however, there has been a gradual and sus- 
tained, albeit limited, trend toward examination of plant- 
insect associations in the fossil record. These studies are 
characterizable into: (1) studies of a specific host plant 
interaction with an insect herbivore (Amerom and Boers- 
ma, 1971; Zhou and Zhang, 1989; Waggoner and Poteet, 
1996), typically involving one or perhaps a few associa- 
tions; (2) the examination of a particular insect herbivore 
functional feeding group, such as leaf mining, on multiple 
hosts within a flora of interest (Crane and Jarzembowski, 
1980; Lang et al., 1995); or alternatively (3) the compara- 
tively rare assessment of multiple herbivore associations 
on a single host-plant genus or species, such as Early 
Devonian Psilophyton DAWSON 1859 (Trant and Gensel, 
1985; Banks and Colthart, 1993) or Late Pennsylvanian 
Psaronius chasei MORGAN 1959 (Labandeira, 1998c; 
Labandeira and Phillips, 1996a, 1996b); and (4) the com- 
prehensive study typically of an entire flora and all of its 
herbivore associations, replete with a multitude of plant 
hosts and herbivore damage types. This fourth approach 
of evaluating bulk floras has variously focused on general 
qualitative examinations (Straus, 1977; Scott et al. 1985, 
Stephenson and Scott, 1992; Grauvogel-Stamm and Kel- 
ber, 1996; Ash, 1997; Castro, 1997; Glasspool et al., 
2003), quantitative use of presence-absence data such as 
Scott and Taylor (1983) from a comparatively limited 
number of specimens representing a single plant-host tax- 
on, to diverse bulk floras with explicitly described dam- 
age types (Labandeira et al., 2002a; Wilf and Labandeira, 

1999; Wilf et al., 2005) or quantitative assessments of 
herbivorized versus original surface area (Beck and 
Labandeira, 1998; Adami-Rodrigues et al., 2004b), simi- 
lar to examinations of extant plants (Wint, 1983; Coley 
and Barone, 1996). To date, there have been a sufficient 
number of such studies regionally and from the latest Sil- 
urian to the Pleistocene-Holocene boundary that a global 
data set now can be assembled and examined for coarse- 
grained patterns involving vascular plants, herbivorous 
arthropods, and their ecological associations. The results 
of these data provide the broadest view of how plant- 
arthropod associations have appeared, expanded, and con- 
tracted in terrestrial environments, resulting in the bewil- 
dering ecological richness of today (Wilson, 1992). 

Although the data provided herein are comparatively 
coarse, it is my intention to provide a plant-arthropod asso- 
ciational baseline for Phanerozoic terrestrial ecosystems, 
by which finer patterns, involving taxonomically more cir- 
cumscribed plant hosts and arthropod herbivores, can be 
further elucidated. In parts of this temporal-taxonomic- 
associational matrix where preservational potential is high 
and intervals of geologic time are relatively short, more 
taxonomically circumscribed plant-host clades, or lineages, 
can be specified and investigated for the evolution of their 
component communities of arthropod herbivores (Root, 
1973; Futuyma and Mitter, 1996). As an alternative to this 
lineage-by-lineage "vertical" approach, a "horizontal" 
approach would examine the topology of a herbivore radia- 
tion or demise, such as the geochronologically sudden col- 
onization of plant-host lineages by clades of arthropod her- 
bivores, leading to particular types of stereotyped 
associations or specified lineages of insect gallers or leaf 
miners (Farrell, 1998; Wilf et al., 2000; Cook et al., 2002; 
Farrell and Sequeira, 2004). Fossil studies have the poten- 
tial to provide paleobiological ground-truthing, such as 
calibration rates of colonization or extinction by comparing 
occurrences of taxa to known time intervals, or tests of evo- 
lutionary hypotheses regarding the origin and evolution of 
plant-insect associations (Fox, 1988; Boucot, 1990; Jermy, 
1993; Farrell and Mitter, 1993; Thompson, 1994; Price, 
1997; Vermeij, 2004; Schoonhoven et al., 2005). It should 
be noted that historically the plant host (paleobotanical), 
arthropod herbivore (paleoentomological), and association- 
al (paleoecological) fossil records have been considered 
separate (Labandeira, 2002a), and have had minimal cross 
links for understanding how plants and arthropods actually 
have interacted in deep geologic time. 

METHODS, DATA STRUCTURE, AND RATIONALE 

This is the first compilation of published or otherwise 
personally observed associational data from the fossil 
record to provide plant hosts, types of associations, and 
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insect herbivores that are partitioned into discrete slices of 
time. The associational part of these data is expressed by 
the major types of feeding, known as functional feeding 
groups (Coulson and Witter, 1984; Labandeira, 1998a; 
Wilf and Labandeira, 1999). The plant-host taxa generally 
are provided at the conventionally accepted ordinal rank 
and the inferred arthropod herbivores are delimited by 
ordinal and superordinal ranks. The 7 functional feeding 
groups of plant-arthropod associations are a) external 
foliage feeding, b) piercing-and-sucking, c) boring, d) 
leaf mining, e) galling, f) seed prédation, and g) oviposi- 
tion. The first six are distinctive feeding strategies; the 
last one is not a feeding type, but rather a distinctive egg- 
laying strategy that involves endophytic insertion of eggs 
into plant tissues by a lancet-like device, the ovipositor 
(Wesenberg-Lund, 1913), and thus is included for com- 
pleteness since it has a significant fossil record of plant 
damage (Béthoux et al., 2004). This examination of the 6 
functional feeding groups and oviposition is supplement- 
ed by an earlier, separate study of palynivory and nec- 
tarivory (Fig. 1; Labandeira, 2000). The additional func- 
tional feeding groups of palynivory and nectarivory 
(surface fluid feeding) are not considered further in this 
study. The plant taxa and phylogenetic framework to 
which the 7 associations were assigned is based mostly 
on the recent work of Anderson et al. (in press) and 
Hilton and Bateman (2006). 

A context for this contribution is provided by several 
studies of both plant diversity (Knoll and Niklas, 1987; 
Niklas et al., 1985) and insect diversity (Labandeira and 
Sepkoski, 1993; Jarzembowski and Ross, 1996; Dmitriev 
and Ponomarenko, 2002) through time that provide broad 
patterns of major clade origination, turnover and extinc- 
tion during the past 420 m.y., based on taxa that are 
assumed to be or are monophyletic from then-current 
evaluations (See Labandeira [2005a] for the validity and 
indispensability of the taxic approach in understanding 
major patterns of insect diversity through time). Although 
there has been discussion regarding the more specific and 
focused associational relationships of these two hyperdi- 
verse and interacting clades through time (Howe and 
Westley, 1988; Jolivet, 1998; Shcherbakov, 2000; Ver- 
meij, 2004; Schoonhoven et al., 2005), modest attempts 
have demonstrated mostly anecdotal evolutionary patterns 
(Willemstein, 1987; DiMichele and Hook, 1992; Scott et 
al. 1992; Labandeira, 2002a; Zherikhin, 2002a, 2002b). 
This contribution adds to these studies by providing: (1) 
documentation of the major plant lineages through time 
and identification of particular, ecologically dominant 
host-plant clades; (2) a record of major arthropod herbi- 
vore lineages through time (myriapods and especially 
mites and hexapods), including their intervals of domi- 
nance; (3) determination of the temporal distribution of 
the basic functional feeding groups based principally on 

arthropod-mediated damage on plants; (4) a temporal 
framework in which these three records are geochrono- 
logically related, including recent absolute-age calibra- 
tions of the geologic time scale and stage-level correla- 
tions of relevant strata; and (5) a preliminary assessment 
of the role between global phases of herbivory and envi- 
ronmental variables such as atmospheric oxygen abun- 
dance and surface temperature. 

Initial evaluation of the data was done by recording 
only those publications that had explicit and compelling 
photographic documentation. Personal observation by the 
author of unpublished plant-insect associational data also 
was included. Published and observational data included 
in the data base (see Appendix at www.geologica- 
acta.com) required demonstration of herbivory, often 
using multiple criteria, as opposed to detritivory (Laban- 
deira, 1998a; Scott and Titchener, 1999). For most func- 
tional feeding groups, one or more of the following four 
criteria were present (Labandeira, 1998a). First, the pres- 
ence of callus or other types of reaction tissue induced by 
trauma to a live plant should be demonstrated (Tovar et 
al., 1995). A second line of evidence, particularly for 
external foliage feeding, is the presence of micromorpho- 
logical structures such as veinal stringers, necrotic tissue 
flaps, and contiguous cuspules within larger excisions 
that are caused by mandibulate chewing, or other features 
that indicate active feeding (Gangwere, 1966; Kazikova, 
1985; Araya et al., 2000). Third is the presence of stereo- 
typed feeding patterns that are consistent with known 
modern feeding types (Bodnaryk, 1992; Puplesis, 1994; 
Heron, 2003). The resulting plant-host damage types 
involve both a single, unique pattern by a host-specialist 
clade as well as a pattern that is convergently arrived at 
by different, often host-generalist, clades (see discussion 
in Labandeira et al. 2002a). Last, within diverse floras, 
distinctive plant-host specificity patterns and the targeting 
of particular tissue types can reveal herbivory that would 
not be expected from physically induced leaf injury such 
as wind damage or particle impact abrasion (Katterman, 
1990; Vincent, 1990). In certain instances, criteria includ- 
ed links to known, highly distinctive, extant damage types 
(Opler, 1973), sometimes involving both conspecific lar- 
val and adult instars on the same host-plant species (Wilf 
et al., 2000). Collectively or singly, these four criteria 
effectively segregated herbivory from detritivory in 
almost all cases. Only in the case of boring in wood, was 
there often an absence of evidence for consumption of 
live tissue. However, since many holometabolous insect 
wood-borers live in live cambial tissue but also bore 
through dead secondary xylem, borings were included 
whose diameters indicate production by beetles or other 
holometabolous larvae. Excluded were borings attributed 
to detritivorous arthropods, such as termite galleries and 
all small diameter oribatid mite borings (Hueber and 
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Galtier, 2002), unless there was separate evidence for 
plant response tissues. Some groups of termites and mites 
are herbivorous (Krantz and Lindquist, 1979; Waller and 
La Fage, 1987), although their activities are more appro- 
priately registered in the fossil record from the evidence 
of plant damage attributed to external foliage feeders or 
as identifiable contents of coprolites. 

After herbivory was established by scrutiny of illus- 
trated examples from the paleoecological literature, as 
well as personally examined material, these data were 
included in the Appendix (www.geologica-acta.com). The 
Appendix was partitioned into four subsets, each defined 
by the temporal ranges of major host-plant and plant- 
feeding arthropod clades. In particular, these separations 
into four principal intervals were based on a combination 
of: (1) temporal ranges of major dominant plant-host and 
arthropod-herbivore clades in the fossil record, (2) extinc- 
tion or other major turnover events, whether of many 
individual clades or entire biotas, and (3) occasional inter- 
vals of ecologically distinctive associations not present in 
earlier or later biotas (Knoll and Niklas, 1987; Labandeira 
and Sepkoski, 1993; Stewart and Rothwell, 1993; Laban- 
deira, 2002a). 

The relevant literature on fossil plant-insect associa- 
tions was extensively but not exhaustively surveyed. In 
those instances where there were multiple duplicative lit- 
erature citations documenting the same association or set 
of associations, only the most comprehensive or recent 
source, or both, were used. Occurrence data from this 
search (Appendix; www.geologica-acta.com) represents a 
420 m.y. interval from the latest Silurian to the latest 
Pleistocene, and resulted collectively in 181 biotas pos- 
sessing 424 separate associations. These biotas were allo- 
cated to 54 distinct, five-million-year bins of time based 
on age dates or stage-level correlations of each biota. 
These biotas range from a single association between a 
plant host and its arthropod herbivore (Karpiñski, 1962; 
Amerom, 1966; Opler, 1982) to a few extensively studied 
biotas that contain numerous clades of damaged plant 
hosts, several types of associations, and a variety of 
inferred insect herbivores (Grauvogel-Stamm and Kelber, 
1996; Ash, 1997; Wilf and Labandeira, 1999; Scott et al., 
2004). However, for those specific host-plant taxa that 

harbored five or more functional feeding groups, a cutoff 
of four was used per cell for graphical clarity in figures 3- 
6. Collectively, most of the data qualitatively occurred 
between the two end-members of single occurrences and 
descriptions of multitudinous associations from a single, 
diverse biota. 

The data (Appendix; www.geologica-acta.com) repre- 
sent 60 major clades of tracheophyte plants that have 
been considered typically at an ordinal taxonomic rank, 
with the exception of higher-ranked Devonian plant lin- 
eages (Rothwell and Serbet, 1994; Hilton and Bateman, 
2006). For reasons of completeness, particularly as it 
relates to the origin of the borer functional feeding group, 
a "woody" Devonian clade of massive, lignified fungi 
iPrototaxites) was added to the host list. For arthropod 
herbivores, which are dominantly insects, 18 major clades 
were included, which traditionally have been allocated to 
ranks from order to superorder. These clades of plant 
hosts and insect herbivores interacted with each other 
through 7 plant-arthropod functional feeding groups. The 
quality of assignments for these three elements was best 
for functional feeding groups, whose assignments were 
obvious; of high but somewhat lesser reliability was iden- 
tification of the plant hosts; and the least reliable overall 
were the inferred insect herbivores, which occasionally 
lacked diagnostic plant-damage evidence that would con- 
fidently assign the potential culprit to a particular myria- 
pod, mite, or insect clade. 

TEMPORAL PATTERNS OF HERBIVORY 

The temporal distribution of plant hosts, associations, 
and arthropod herbivores resulted in four distinctive her- 
bivore expansion phases, paralleling in timing the previ- 
ously identified "evolutionary assemblages" for paly- 
nivory and nectarivory (Labandeira, 2000; Fig. 1). 
Defining features of these assemblages are: (1) a tempo- 
rally constrained and taxonomically distinctive suite of 
plant host-clades typically at the ordinal rank, (2) a simi- 
larly juxtaposed assemblage of arthropod herbivore clades 
that consumed or otherwise interacted with plant-host 
clades, and (3) the presence of a diverse, abundant, 
preservationally exceptional and associationally rich biota 

FIGURE 11 A matrix of vascular plants, insects, and their associations for palynivory and pollination, placed in geochronological context. This matrix 
details the four evolutionary assemblages of palynivores, nectarivores, pollinators, and their host plants that are distinct at the highest taxonomic lev- 
els, discussed in Labandeira (2000). Fossil plant and animal taxa at top are those that display evidence for plant-insect associations, based on direct 
or indirect evidence from dispersed coprolites, gut contents, plant reproductive biology, insect mouthpart structure, plant damage, and modern taxo- 
nomic affiliation. Thin horizontal connectors are well-supported associations from identified insects with known plant palynomorphs as gut contents. 
Plant taxa with asterisks (*) are spores or pollen; a few Paleozoic taxa refer to form-genera of plant organs with known whole-plant taxonomic attribu- 
tions. Taxa persisting to the present are indicated by bold vertical links, solid for Assemblages 3 and 4, respectively. The arthropod culprits of Assem- 
blage 1 remain unknown and probably include arthropods other than insects, such as myriapods. This compilation includes the most prominent stud- 
ies and is not complete. Modified from Labandeira (2000) to conform to recent changes of the geologic time scale (Gradstein et al., 2004); the two, 
topmost intervals of time of the Neogene are, from oldest to youngest, Pliocene and Pleistocene. Abbreviations: Miss.: Mississippian (or Early Car- 
boniferous); Penn.: Pennsylvanian (or Late Carboniferous). 
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early within the development of each of the four expansion 
phases. These biotas provide excellent examples of associ- 
ational richness within each expansion phase, and can be 
considered as a "flagship" biota to which others within the 
same expansion phase can be compared (Table 1). 

Herbivory in the Earliest Terrestrial Ecosystems 

A controversial issue regarding the trophic structuring 
of early land-based ecosystems is the role of detritivores 
versus herbivores in channeling the primary production of 
land plants into the food web. An early view was that ear- 
ly land ecosystems were scaled-down or otherwise simple 
versions of extant ecosystems, containing the full compli- 
ment of major trophic groups, including herbivores. An 
alternative view is that the earliest ecosystems either 
lacked herbivores or the consumption of live plant tissues 
was insignificant (Shear and Seiden, 2001; Habgood et 
al., 2004). Given the evidence, principally from coprolites 
and plant damage from several major Late Silurian-Mid- 
dle Devonian biotas, the truth is somewhere in between, 
with detritivory and palynivory dominant and herbivory 
and carnivory subordinate. The earliest herbivory was a 
consequence of a few modes of feeding, but qualitatively 
much less than that of the subsequent Carboniferous 
(Labandeira, 2002a). This conclusion is based on the 
sparse occurrence of insect-mediated plant lesions or bor- 
ings during the Late Silurian and Devonian (Labandeira, 
1998a). The tracking of plant organs and the first instance 
of herbivory on them has a bimodal distribution (Fig. 2), 
suggesting a geologically earlier targeting of stems and 
spores but a delayed attack on roots, leaves, wood and 
seeds that was launched during the Late Missi- 
ssippian-Middle Pennsylvanian (lannuzzi and Laban- 
deira, unpubl. data). Although many recognize herbivory 
in the early land plant record, a dissenting view holds that 
some of these damaged tissues were either mediated by 
abiological agents or may not constitute herbivory (Shear 
and Seiden, 2001). There have been a significantly greater 
number of relevant studies of Pennsylvanian-age, when 
compared to Mississippian-age, floras (DiMichele and 
Hook, 1992), in addition to the fact that the Pennsylvan- 
ian is about one-third the duration of the Mississippian. 
Both of these factors may account for an intrinsically 
deficient record of herbivory during the Mississippian. 

Another issue is what constitutes 'herbivory?' The 
long-standing view of insect ecologists is that herbivory is 
the '...consumption by animals of any plant parts, includ- 
ing foliage, stems, roots, flowers, fruits or seeds' 
(Schowalter, 2000). An alternative concept of herbivory is 
that only consumption of the vegetative parts of the plant 
constitutes herbivory, and that seeds, spores and pollen 
and possibly roots are an exception because they are 
either too nutritionally rewarding or too difficult to access 

for digestion (Shear and Seiden, 2001). However, vegeta- 
tive parts of a plant also represent continua between less 
digestible tissues (e.g. vascular strands) to tissues with 
greater nutritional value (e.g. mesophyll). Additionally, 
pollen and spore protoplasts are accessible by a variety of 
insects that extract their contents by a range of processes 
without subjecting the exterior grain walls to physical 
breakage (Scott et al., 1985; Oliveira et al., 2002). Thus, 
consumption of all live plant tissues is considered as her- 
bivory, whereas the feeding on dead plant, fungal, and 
animal tissues is considered detritivory. It is this latter 
definition, proposed by ecologists, which provides the 
context for the initial herbivory on land (Figs. 1 to 3), as 
represented by Herbivore Expansions 1 and 2. 

Temporal Lags between the Origin of Plant 
Tissues and their Herbivory 

The Paleozoic fossil record of arthropod use of vascu- 
lar plant tissues is one of plant-host histological diversifi- 
cation up to the Pennsylvanian, with minor to major tem- 
poral lags between the time of anatomical origin of 
particular tissues and the time of origin of their herbivore 
consumption (Fig. 2). In some cases during the Late Sil- 
urian to Early Devonian there was relatively sudden and 
early colonization by palynivorous herbivores of sporan- 
gia and their spores (Figure 1; Edwards et al., 1995; Hab- 
good et al., 2004) by piercer-and-suckers of stems (Figure 
2; Kevan et al., 1975; Banks and Colthart, 1993), and 
wood precursor tissues in the form of borings within the 
hardened basidiomycete fungus Prototaxites DAWSON 

1859 (Hotton et al., 1996.). By contrast, subsequently 
derived tissues, occurring in organs such as roots, leaves, 
and seeds, originate from the later Early to Late Devon- 
ian, yet do not exhibit evidence for earliest herbivory until 
the Late Mississippian, representing lags from ~ 50 to 
100 m.y. This latter herbivory event initiates Herbivore 
Expansion Phase 2, which includes folivory (lannuzzi and 
Labandeira, unpubl. data), a second expansion of boring 
into the true wood of lignophyte vascular plants (Dunn et 
al., 2003), seed prédation (Jennings, 1974), and roots 
(Labandeira, 2001). A similar lag also is evident at the 
commencement of Herbivore Expansion 3, in which the 
earliest example occurs from the early Middle to early 
Late Triassic, postdating the prior presence of relevant 
plant-host clades by several million years, especially true 
for the Karoo Basin of South Africa (Scott et al., 2004; 
Labandeira and Anderson, 2005.). Similarly, but perhaps 
more muted, was herbivore response that has been noted 
for the aftermath of the end-Cretaceous extinction within 
Herbivore Expansion 4, in which herbivore levels and 
richness during the latest Cretaceous were not reached 
until the Paleocene/Eocene boundary, some 10 m.y. after 
the extinction event (Wilf et al., 2001; Labandeira et al., 
2002b). The existence of these lags between the initial 
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TABLE 1 1 Salient featuresof the four phases of herhivore expansion (excluding palynivory and nectarivory). 

Herbivore 

expansion 

phase, interval, 
and duration 

Major 
host-plant- 

clades^ 

Major 
arthropod 
herbivore 
clades^ 

Early 
flagship 
biotas 

Functional      Number 
feeding        of asso- 
groups        dations 

Number 
of biotas 
investi- 
gated 

Number 
of 5 m.y. 
intervals 

1.420-360 Ma 
(-60 m.y.) 

protracheo- 
phytes, 

trimerophytes, 
rhyniopsids, 
lycopsids, 

zosterophylls, 
pteridophytes, 
prototaxales^ 

myriapods, 
apterygotes 

Rhynie 3                  10 5 5 

2. 335-251 Ma 
(~ 85 m.y.) 

pteridophytes, 
stem 

spermatophytes, 
(crown 

spermatophytes) 

myriapods, 
mites, 

apterygotes, 
palaeo- 

dictyopteroids'^ 
"prot-orthopteroids" 

Calhoun 7                   57 31 14 

3. 245 Ma-present 
(245 m.y.) 

pteridophytes, 
crown 

spermatophytes, 
(stem 

spermatophytes) 

mites, 
orthopteroids, 
hemipteroids, 

early or 
plesiomorphic 
holometabolan 

clades 

Molteno 8                   95 56 33 

4.115 Ma-present 
(115 m.y.) 

angiosperms, 
(pteridosperms), 

(conifers) 

orthopteroids, 
hemipteroids, 

late or 
apomorphic 

holometabolan 
clades 

Dakota 8                 263 88 22 

^See text for listing of subclades within these groups; parentheses indicate a subdominant clade of plant hosts; groups in quotes are para- 
phyletic. 
^A columnar basidiomycete fungus (Hueber, 2001). 
~^A monophyletic clade united by unique mouthpart construction and consisting of the subclades Palaeodictyoptera, Megasecoptera, 
Diaphanopterodea and Dicliptera (Grimaldi and Engel, 2005). 

appearance of available tissues and their initial consump- 
tion by arthropod herbivores may be a general feature of 
the plant-arthropod associational record. 

Herbivore Expansion 1: Late Silurian to IVIid- 
Carboniferous 

Records of Herbivore Expansion 1 (Fig. 3), which 
persisted for about 60 m.y., originate from the coastlines 
of Euramerica (Appendix; www.geologica-acta.com). 
This phase consists of 5 examined biotas, each occurring 
in a five-million-year interval, but clustered toward the 
latest Silurian and Early Devonian. Three functional feed- 
ing groups (excluding palynivory; see Labandeira, 2000) 
and 10 discrete associations are present (Figs. 1 and 3; 
Table 1). Dominant host plants consist of basal clades of 

vascular plants, namely protracheophytes, trimerophytes, 
rhyniopsids, lycopsids, zosterophylls and pteridophytes, 
but also the massive basidiomycete Prototaxites (Hueber, 
2001). Herbivorous arthropods probably were myriapods 
(diplopods and arthropleurids), mites, and to a lesser 
extent apterygote hexapods and possibly true insects. 
Four plant-arthropod associations are represented. These 
associations are external feeding (Trant and Gensel, 1985) 
and piercing-and sucking (Kevan et al., 1975; Banks and 
Colthart, 1993), both on photosynthetic tissues of stems; 
boring in the cortical and medullary tissues of the indurat- 
ed axial organs of Prototaxites and piths of land plants 
(Kidston and Lang, 1921; Hueber, 2001); and palynivory 
of spores and sporangia (Edwards et al., 1995; Habgood 
et al., 2004; Figs. 1 to 3). The dominantly targeted plant 
host appears to be the Rhyniopsida. The dominant herbi- 
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vore group may have been subgroups of myriapods. The 
most pervasive association is external feeding on photo- 
synthetic tissues. These sparse data document the relative- 
ly early origin of herbivory in terrestrial habitats within 
predominantly    detritivore   ecosystems    (Labandeira, 

2005a), and provide a reasonable spectrum of feeding 
types involved in the consumption of several available tis- 
sue types from primitive vascular-plants. Tissues or parts 
of organs that originated later during the Devonian, such 
as leaves for folivorous external feeders, wood for borers 
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FIGURE 2 I Occurrence data provided for the first appearance and initial herbivore colonization of six organ or tissue types. Colonization of Herbivore 
Expansion 1 includes consumption of spores (Edwards et al., 1995; Edwards, 1996; Habgood et al., 2004); consumption of stem tissues by both 
external feeders (Kevan et al., 1975; Tränt and Gensei, 1985; Banks and Colthart, 1993) and by piercer-and-suckers (Kevan et al., 1975; Banks and 
Colthart, 1993); and borers of "woody" tissues in the form of lignified cortical and medullary tissues, depicted in Fig. 7. Borings occurred initially in 
vegetative portions of the massive basidiomycete fungus Prototaxites OKNsm 1859 (Hueber, 2001) that bear borings (Arnold, 1952; Hotton et al., 
1996; Hueber, 2001 ; Labandeira pers. observ.), shown by the finely stippled Devonian pattern, and later as Late Mississippian and Pennsylvanian 
borings in plant hosts (Dunn et al., 2003), shown in the coarsely stippled pattern. These three latter functional feeding groups, and their plant hosts 
and inferred insect herbivores, are shown in Fig. 3. Note that Prototaxites is a fungus (Hueber, 2001), but served as an initial host for borers of ligni- 
fied tissues, a functional feeding group that later may have independently re-evolved on lignophyte plants by a different arthropod clade. Herbivore 
Expansion 2 commences during the later Mississippian, and contains a second invasion of borings in indurated tissues (Dunn et al., 2003), this time 
on lignophytic seed plants (Kenrick and Crane, 1997). Additionally, there is evidence for the initial herbivory on leaves, or external foliage feeding 
(lannuzzi and Labandeira, unpubl. data), initial seed prédation (Jennings, 1974), and initial root feeding (Labandeira, 2001). Root feeding is very 
poorly documented in the fossil record, and is not included in any figure as a distinct functional feeding group. 
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FIGURE 3 I Herbivore Expansion 1. Illustrated is 
the distribution of functional feeding groups 
witbin specified biotas (at rigbt), on accompa- 
nying plant bests witbin specified five-million- 
year intervals (at left). Inferred insect berbi- 
vores are provided in a middle panel tbat link 
functional feeding groups with plant bests with- 
in each binned interval. Color symbols for func- 
tional feeding groups (basic associations) are 
at upper-left, and apply throughout tbe chart to 
inferred insect herbivores and plant hosts for 
each successive 5-million-year interval ranging 
from the Late Silurian to Late Devonian. Arrow 
indicates the "flagship" associational biota for 
Expansion Phase 1, the silica permineralized 
Rhynie and Windyfield Cherts of Scotland; Unit- 
ed Kingdom. See Fig. 1 for the distribution of a 
fourth functional feeding group, palynivory, not 
displayed herein. Plant-host clades are from 
Kenrick and Crane (1997); arthropod-herbivore 
clades are from Wheeler et al. (2004). Geolog- 
ic time scale is after Gradstein et al. (2004). 
See Appendix at www.geologica-acta.com. 
Table 1, and text for additional details. Abbrevi- 
ation: C: Carboniferous; uppermost stage of the 
Silurian is PTídolí. 

on more massive plant trunks, or seeds for seed predators, 
were not consumed until the beginning of Herbivore 
Expansion 2. 

The early "flagship" biota for Herbivore Expansion 1 
is the permineralized Rhynie and Windyfield Cherts from 
southern Scotland, of Early Devonian (Pragian) age 
(Trewin and Rice, 2004). These deposits are part of the 
Dryden Flags Formation, and are interpreted as preserved 
siliceous hot springs within a region of lacustrine and flu- 
vial sedimentary environments (Trewin, 1994; Habgood 
et al., 2004). The associated biota consists of early land 
plants, a relatively diverse assemblage of freshwater and 
especially terrestrial arthropods, and a modest number of 
plant hosts and arthropod associations. 

Herbivore Expansion 2: Mid Carboniferous to 
the Permo-Triassic Boundary 

The earliest expression of Herbivore Expansion 2 
(Fig. 4) is documented from two occurrences during the 
Late Mississippian. The older example is the earliest 
occurrence of external foliage feeding (lannuzzi and 
Labandeira, unpubl. data), about 6 million years prior to 
the sudden and major increase in the taxonomic diversity 
of winged insects at the Mississippian-Pennsylvanian 

boundary (Brauckmann et al., 1995). The other consists 
of borings in plant axial tissues from slightly younger 
strata (Dunn et al., 2003). Notably, both occurrences are 
on pteridosperm taxa. Documentation for Phase 2, which 
lasted approximately 85 m.y., principally originates from 
Euramerica during the Early Pennsylvanian to mid Early 
Permian, particularly the interior peat-bearing basins in 
the eastern United States and western Europe and from 
Gondwanaland during the mid Early Permian to the latest 
Permian, especially the Karoo Basin of South Africa, the 
Sydney and Bowen Basins of Australia, and the Paraná 
Basin of east-central South America (Appendix; 
www.geologica-acta.com). This phase of distinctive her- 
bivory documents 6 functional feeding groups (only leaf 
mining is absent), representing 57 separate associations 
from 31 biotas that occur among 14 five-million-year 
intervals. Palynivory is not included in this tabulation 
(Labandeira 2000). The dominant host plants consist of 
pteridophytes, mostly stem spermatophytes (seed plants), 
and to a lesser extent crown spermatophytes (sensu Hilton 
and Bateman, 2006) (Table 1; Figs. 1 and 4). Herbivorous 
arthropods are significantly more varied than those of 
Phase 1, and consist principally of myriapods, mites, and 
particularly paleopterous and neopterous insects, the lat- 
ter two of which predominantly consist, respectively, of 
the monophyletic paleodictyopteroids and the paraphyletic 
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"protorthopterans." The plant-host clades that were most 
targeted overall by herbivorous arthropods were medul- 
losan pteridosperms during the Pennsylvanian and Early 
Permian in Euramerica, and glossopterid pteridosperms 
throughout the Permian in Gondwana. Subordinately, 
Euramerican lyginopterid pteridosperms were attacked 
during the Pennsylvanian and cordaites in biogeographi- 
cally disparate sites during the Late Pennsylvanian and 
Early Permian. One of the major trends of Herbivore 
Expansion 2 during the Pennsylvanian and Early Permian 
is the launching of herbivory on meduUosan pteri- 
dosperms in Euramerica, which exhibits by far the great- 
est amount of herbivore-mediated damage, especially 
external foliage feeding, of any contemporaneous plant 
clade, both in terms of herbivorized pinnule area and fre- 
quency of attack (Greenfest and Labandeira, 1997; Beck 
and Labandeira, 1998; Labandeira, 2001). This phenome- 

non occurs both in compression floras, representing flu- 
vial subenvironments, and peat-substrate wetland envi- 
ronments (Labandeira, 2001). In a similar way glos- 
sopterids were preferentially targeted during the Permian 
in Gondwana (Plumstead, 1963; Holmes, 1995; Adami- 
Rodrigues et al., 2004a). An interesting pattern is the rela- 
tively balanced distribution of all 6 associations (Fig. 4), 
with the exception of overall dominance by external 
foliage feeding. 

The Calhoun Coal, from southeastern Illinois, U.S.A., 
of early Late Pennsylvanian (Kasimovian) age, is a mem- 
ber of the Mattoon Formation, and is a calcite permineral- 
ized coal-ball deposit representing a peat-swamp forest 
dominated by marattialean tree-ferns and subordinately 
by medullosan seed ferns (Labandeira, 2001). No known 
arthropod fauna has been found from this deposit, attri- 
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hosts within specified five-million-year intervals (at left). Inferred insect herbivores are provided in a middle panel that link functional feeding groups 
(basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout the 
chart to inferred insect herbivores and plant hosts for successive 5-million-year intervals ranging from the Late Mississippian (Early Carboniferous) 
to Late Permian. Arrow indicates the "flagship" associational biota for Expansion Phase 2, the carbonate permineralized Late Pennsylvanian (Late 
Carboniferous) Calhoun Coal of Illinois, U.S.A. See Fig. 1 for the distribution of an additional functional feeding group, palynivory, not displayed here- 
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sense that the group is used herein. The Palaeodictyopteroidea is considered to be monophyletic, united with distinctive mouthpart characters, and 
consists of the subclades Palaeodictyoptera, Megasecoptera, Diaphanopterodea and Dicliptera (Grimaldi and Engel, 2005). Geologic time scale is 
after Gradstein et al. (2004). See Appendix at www.geologica-acta.com, Table 1 and text for additional details. Abbreviation: T: Triassic. 
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butable to the apparent lack of chitin preservation. Never- 
theless, the superb anatomical preservation of plant tis- 
sues in the Calhoun Coal has resulted in the most diverse 
assemblage of plant-insect associations for any known 
deposit of Herbivore Expansion 2 (Labandeira and 
Phillips, 1996a, 1996b, 2002). Evidence for insect-medi- 
ated herbivory is principally from varied types of anatom- 
ically preserved endophytic and exophytic plant damage 
that reveal details such as mouthpart stylet tracks, callus 
and other types of reaction tissue such as those from 
stylet tracks and galls, and diverse populations of copro- 
lites whose contents preserve pollen, spores, and vegeta- 
tive tissues assignable to both plant-host tissues and taxa. 
This evidence allows identification at the species level of 
almost all interacting host plants (Labandeira, 1998a, 
1998c). 

Although this account is concerned principally with 
plant-herbivore associations, the pattern of Paleozoic 
detritivore associations also expresses a significant expan- 
sion coincident with the second phase of herbivory. Com- 
mencing during the Middle Mississippian (Visean), par- 
ticularly in Euramerican floras, there is a major increase 
of oribatid mite detritivory in a variety of host-plant and 
environmental settings (Rex, 1986; Scott, 1977; Scott et 
al., 1992; Labandeira et al., 1997; Tomescu et al., 2001), 
mixed with limited evidence for herbivory (Dunn et al., 
2003). This degradation of a wide variety of Middle Mis- 
sissippian plant tissues continued throughout the Paleo- 
zoic and was extensively supplemented during the later 
Mesozoic by clades such as termites and wood roaches 
(Labandeira et al., 1997; Nalepa et al., 2001). 

Herbivore Expansion 3: IVliddIe Triassic to Recent 

The lower boundary of Herbivore Expansion 3 (Fig. 
5) is probably the end-Permian event, coupled with major 
floral turnover during the Late Permian. The earliest evi- 
dence for Herbivore Expansion 3 is found in three princi- 
pal regions during the Middle Triassic, but continues 
through the early Late Triassic. They are the southwestern 
United States (Walker, 1938; Ash, 1997, 2000, 2005), 
Western Europe (Linck, 1949; Roselt, 1954; Grauvogel- 
Stamm and Kelber, 1996), and the Karoo Basin of South 
Africa (Anderson and Anderson, 1989; Scott et al., 2004). 
This worldwide pattern extends into the Mesozoic and is 
supplemented with deposits from all continents. Herbi- 
vore Expansion 3 contains the full modern compliment of 
7 functional feeding groups (Figs. 1 and 5; Table 1) that 
provide 95 distinct associations from 56 biotas that repre- 
sent 33 five-million-year intervals. (Palynivory and sur- 
face fluid feeding are excluded from Fig. 5; Labandeira, 
2000). Notably, unlike the other three major assemblages 
of plant-insect associations. Herbivore Expansion 3 has 
the longest persistence in geologic time, lasting for about 

245 m.y. from the Middle Triassic to the Recent. It is like- 
ly that many of the Late Cretaceous to Neogene associa- 
tions of Herbivore Expansion 4 were laterally transferred 
from angiosperm hosts onto the gymnospermous hosts of 
Herbivore Expansion 3, and thus are temporally distinct 
from the more ancient, Mesozoic associations such as 
those detailed by Farrell (1998). 

The dominant host plants of Herbivore Expansion 3 
are pteridophytes, crown spermatophytes, and, to a lesser 
extent, stem spermatophytes, the latter of which were 
experiencing replacement by more derived gymnosper- 
mous clades. Herbivorous arthropods comprise principal- 
ly mites, orthopteroids (Orthoptera, Holophasmatodea), 
hemipteroids (Lophioneurida, Thysanoptera, Auchenor- 
rhyncha, Sternorrhyncha) and early or otherwise ple- 
siomorphic holometabolan clades (such as Archostemata, 
Nemonychidae, Belidae, Symphyta, Aneuretopsychina 
(sensu Rasnitsyn and Kozlov, 1991), Nemestrinidae, 
Archaeolepidae, Micropterygidae and Agathiphagidae). 
There is a distinctive evolution of major host-plant use by 
herbivores within Phase 3, beginning with a variety of 
ginkgoopsids, peltasperms, broadleaved voltzialean (e.g. 
Heidiphyllum) and podocarpalean (Podocarpaceae + 
Araucariaceae) conifers, and perhaps pteridophytes that 
were colonized during the Middle to early Late Triassic 
by all functional feeding groups (Anderson and Anderson, 
1985; Grauvogel-Stamm and Kelber, 1996; Ash, 1997). 
This diversification was followed during the Jurassic to 
Early Cretaceous by a shift to a variety of cycads, non- 
voltzialean conifers, bennettitaleans and pentoxylaleans 
that were colonized by borers and subordinately by seed 
predators. Probable culprits for some of these associations 
include principally beetles (Crepet, 1974), such as the 
Obrieniidae (Klavins et al., 2005) and Nitidulidae (Nishi- 
da and Hayashi, 1996). Late Cretaceous to Neogene 
occurrences emphasize the conifer order Piñales (includ- 
ing "cupressoid" families) in which boring and seed pré- 
dation virtually are the only remaining major associations 
(Fig. 5). The dominant insect herbivore taxon throughout 
Herbivore Expansion 3 is the Coleóptera, early Triassic 
occurrences of which emphasize external leaf mining, 
external foliage feeding, and especially boring on many 
broadleaved gymnospermous clades. Subsequently, there 
was the re-emergence of seed prédation, and especially 
wood boring by saproxylic coleopterans during the Lower 
Cretaceous on pinaceous conifers (Jarzembowski, 1990; 
Falder et al., 1998; Ratzel et al., 2001). These clades, par- 
ticularly the Curculionoidea, were involved in the recolo- 
nization of xylic substrates in pinaceous conifers and 
included invasion of cambial tissues. During the Neogene 
the emergence of galling Diptera, principally Cecidomyi- 
idae (Labandeira, 2005c), supplemented existing associa- 
tions. Throughout Phase 3, odonatopterans evidently 
oviposited in pteridophytes and a restricted variety of 
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FIGURE 5 I Herbivore Expansion 3. Illustrated is the distribution of functional feeding groups within specified biotas (at right), on accompanying plant 
hosts within specified five-million-year intervals (at left). Inferred insect herbivores are provided in a middle panel that link functional feeding groups 
(basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout the chart to 
inferred insect herbivores and plant hosts for successive 5-million-year intervals ranging from the early Middle Triassic to the Recent. Arrow indicates 
the "flagship" associational biota for Expansion Phase 3, the compression Late Triassic Molteno Formation of South Africa. See Fig. 1 for the distribution 
of additional feeding groups, palynivory and nectarivory, not displayed herein. Plant-host clades are from Rothwell and Serbet (1994), Anderson et al. (in 
press) and especially Hilton and Bateman (2006); arthropod-herbivore clades are from Coddington et al. (2004) and especially Willmann (2004), with 
"Orthopteroidea" synonymous with his "Polyneoptera". Geologic time scale is after Gradstein et al. (2004); the two, topmost intervals of time of the Neo- 
gene are, from oldest to youngest. Pliocene and Pleistocene. See Appendix at www.geologica-acta.com. Table 1 and text for additional details. 
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gymnospermous seed plants. Evidence for piercing-and- 
sucking is rare. 

The Molteno Formation is of Late Triassic (Early 
Carnian) age that yields compression fossils of diverse 
plants and insects that geographically span much of the 
Karoo Basin of South Africa, and has been extensively 
examined since the late 1960's (Anderson and Anderson, 
1983, 1985, 1989, 2003; Scott et al., 2004). This "flag- 
ship" deposit for Herbivore Expansion 3 contains about 
100 anthropogenically unbiased and censused localities 
representing an estimated 180,000 plant-organ specimens 
(overwhelmingly leaves and seeds), many of which pro- 
vide clear and abundant evidence for external foliage 
feeding, piercing-and-sucking, leaf mining (earliest 
known occurrence), galling, seed prédation, and oviposi- 
tion (Anderson and Anderson, 1989, 2003; Scott et al., 
2004; Labandeira and Anderson, 2005). The major plant- 
host clades include sphenophytes, filicalean ferns, 
voltzialean conifers, peltasperms, cycads, subclades of 
ginkgoopsids that include ginkgoaleans, as well as pen- 
toxylaleans, and gnetopsids (Anderson and Anderson, 
2003; Anderson et al., in press; Hilton and Bateman, 
2006). Several major habitats have been reconstructed 
from the floristic data: Dicroidium riparian forest (two 
types), Dicroidium woodland, Sphenobaiera woodland, 
Heidiphyllum thicket, Equisetum marsh, and a iera-Kan- 
naskoppifolia meadow (Anderson et al., 1998; Anderson 
and Anderson, 2003). These taxonomic and community- 
level data indicate a diverse, ecologically heterogeneous 
ecosystem of several million years duration with exten- 
sive associations among insect herbivores (Scott et al., 
2004; Labandeira and Anderson, 2005). The Molteno For- 
mation overwhelmingly contains the most diverse associ- 
ations of any deposit from Herbivore Expansion 3, and 
was present within 20 m.y. of commencement of the 
phase. The absence of any subsequent Jurassic or earliest 
Cretaceous biota with equivalent levels of associations as 
the Molteno is anomalous, and may be attributable to a 
poor fossil record or an intrinsic decrease in associational 
complexity in most ecosystems. 

Herbivore Expansion 4: IVlid Lower Cretaceous 
to Recent 

The most recent and intensively studied phase of 
arthropod herbivory on vascular plants is Herbivore 
Expansion 4 (Fig. 6). This phase is synonymous with the 
angiosperm radiation, and their herbivore associations are 
predominantly with more apomorphic clades of hemi- 
pteroid and holometabolous insect orders. The 115 m.y. 
duration of this phase parallels the last half of Herbivore 
Expansion 3, although their temporal overlap suggests 
evolutionary host switching of herbivores to and from 
plant-host clades of both major expansions. This phase of 

herbivory contains 7 functional feeding groups represent- 
ing 262 associations from 89 biotas among 22 five-mil- 
lion-year intervals. Palynivory and surface fluid feeding 
are excluded from the listed functional feeding groups 
(Labandeira, 2000). The primary data documenting Her- 
bivore Expansion 4 is worldwide in origin, although the 
greatest concentrations of localities are in Western Europe 
and North America, primarily because of greater paleon- 
tological examination rather than a necessarily richer 
record. The relatively compact but even distribution of 
taxa and associations during this phase resembles that of 
Herbivore Expansion 2 of the late Paleozoic rather than 
that of the earlier and contemporary phase of Herbivore 
Expansion 3, the latter of which is twice as long-lived and 
displays a more open matrix of colonized plant-hosts, their 
herbivores and associations (Figs. 5 to 7). Interpretations of 
this latter pattern are that it either reflects a real biological 
signal, or alternatively represents an absence of investiga- 
tion, particularly for the Jurassic and Early Cretaceous. 

Twenty-eight orders of angiosperms, including a sig- 
nificant number of unassignable taxa, constitute the plant 
hosts for Herbivore Expansion 4. Nine identifiable plant- 
host orders have the most occurrences (Fig. 6), all of 
which bear the full or almost full spectrum of functional 
feeding groups and colonization by the major groups of 
arthropod herbivores. However, there is a threefold, suc- 
cessive pattern of insect colonization of families within 
each of these orders. First, the Laurales (Lauraceae, Chlo- 
ranthaceae) and Proteales (Platanaceae, Trochoden- 
draceae) have among the earliest occurrences but also 
have the most persistent record of colonization, well into 
the late Neogene. Second, the Saxifragales (Cercidiphyl- 
laceae, Hamamelidaceae) represents a subsequent, later 
Cretaceous to mid-Eocene colonization. Third, the 
remaining six orders•Malpighiales (Malpighiaceae, 
Euphorbiaceae, Salicaceae), Tabales (Fabaceae sensu 
lato). Rosales (Rosaceae, Ulmaceae, Celtidaceae, 
Moraceae), Fágales (Fagaceae, Betulaceae, Juglandaceae, 
Myricaceae), Sapindales (Sapindaceae, Anacardiaceae, 
Rutaceae), and Ericales (Ericaceae, Theaceae, 
Sapotaceae) •have late Paleocene to Recent patterns of 
exploitation by arthropod herbivores that are represented 
by all functional feeding groups. The principal arthropod 
clades of interacting herbivores are orthopteroids 
(Orthoptera, Phasmatodea), crown-group hemipteroids 
(especially Sternorrhyncha and Heteroptera), and princi- 
pally crown-groups of holometabolous insects (Polypha- 
ga, Formicidae, Apoidea, Ditrysia, Cyclorrhapha). 
Notably, the density of functional feeding groups is more 
intense for Herbivore Expansion 4 than any of the three 
preceding or contemporaneous phases, and no particular 
dietary mode is dominant. Additionally, there is more par- 
titioning of individual plant clades by multiple functional 
feeding groups and arthropod herbivores. For individual 
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FIGURE 6 I Herbivore Expansion 4. Illustrated is the distribution of functional feeding groups within specified biotas (at right), on accompanying plant 
hosts within specified five-million-year intervals (at left). Inferred insect herbivores are provided in a middle panel that link functional feeding 
groups (basic associations) with plant hosts within each interval. Color symbols for functional feeding groups are at upper-left, and apply throughout 
the chart to inferred insect herbivores and plant hosts for successive 5-million-year intervals ranging from the mid Early Cretaceous to the Recent. 
Arrow indicates the "flagship" associational biota for Expansion Phase 4, the compression latest Early Cretaceous Dakota Formation of Kansas, 
U.S.A. See Fig. 1 for the distribution of additional functional feeding groups, palynivory and nectarivory, not displayed herein. Plant-host clades are 
from Soltis and Soltis (2004); arthropod herbivore clades are from Coddington et al. (2004) and especially Willmann (2004), with "Orthopteroidea" 
synonymous with his "Polyneoptera". Geologic time scale is after Gradstein et al. (2004); the two, topmost intervals of time of the Neogene are, from 
oldest to youngest. Pliocene and Pleistocene. See Appendix at www.geologica-acta.com. Table 1 and text for additional details. 
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functional feeding groups, external foliage feeding 
(Straus, 1977), leaf mining (Kozlov, 1988; Labandeira et 
al., 1994), galling (Scott et al., 1994) and oviposition 
(Hellmund and Hellmund, 2002b) have the greatest 
throughput and are present from the beginning of the 
angiosperm radiation. Curiously, piercing-and-sucking, 
boring and seed prédation are relatively delayed, collec- 
tively appearing from the later Late Cretaceous to the 
middle Eocene. These patterns also occur on the unas- 
signed plant hosts, which could represent a random sam- 
ple of available plant hosts because of their uncertain and 
variable taxonomic affinities. 

The Dakota Fm, the "flagship" biota for the Herbivore 
Expansion 4, spans the Early to Late Cretaceous bound- 
ary (late Albian to mid Cenomanian), and encompasses 
fluvial, deltaic and other terrestrial deposits bordering the 
east and west sides of the midcontinental seaway that 
extended from the Arctic Ocean to the Gulf of Mexico 
(Brenner et al., 2000; Wang, 2002). Sites from Kansas 
and Nebraska, U.S.A., of late Albian age (~103 Ma) rep- 
resent coastal swamp, flood plain lake, and ox-bow chan- 
nel deposits, and contain the earliest, highly diverse, 
abundant, and well preserved associations with 
angiosperms during their initial ecological radiation 
across a variety of lowland environments (Doyle and 
Hickey, 1976). The Dakota Formation probably has in 
excess of 300 species of vascular plants (Wang 2002) and 
many remain undescribed. Plant-insect associations from 
this important deposit have only recently been investigat- 
ed (Stephenson, 1991; Scott et al., 1994; Labandeira et 
al., 1994; Labandeira, 1998b), but contain the earliest 
occurrences of leaf mines and among the earliest galls 
and external foliage feeding of any early angiosperm flo- 
ra. There are virtually no insect body fossils. 

Synchronicity of Herbivore Expansion Phases 
with Environmental Change? 

An obvious issue is whether the temporal distribution of 
the four herbivore expansion phases (Fig. 7) matches major 
cycles or otherwise aperiodic intervals of environmental 
change, such as paleoclimatologic shifts (Fig. 8). Three evi- 
dent phenomena•greenhouse/icehouse cycles and associat- 
ed global temperature and fluctuations in both atmospheric 
O2 and CO2 content•may have possible links with the four 
phases of herbivore expansion. These possible relationships 
could be mediated by an effect on underlying vegetation as a 
resource for arthropod herbivores. Data for establishing a 
greenhouse/icehouse world are from Frakes et al. (1992) and 
global temperatures are from Scotese (2005). Atmospheric 
O2 levels are based on the sediment abundance model (Ber- 
ner et al., 2000, 2003; Falkowski et al., 2005; see also 
Lenton, 2001). Atmospheric CO2 levels are inferred from the 
data of Cornette et al. (2002), based on the ratio of historical 

CO2 to recent CO2, presented in Berner and Kothavala 
(2001). These data and their relationship to the four herbi- 
vore expansion phases are plotted in Fig. 8. 

Herbivore Expansion 1 occurs from the Late Silurian 
to the Early Mississippian and is linked to a distinct com- 
bination of primitive, terrestrial vascular plant and arthro- 
pod clades. The earlier part of Phase 1 is associated with 
a greenhouse world that was gradually transformed mid- 
way to an icehouse world. Additionally, there are initially 
stable, high O2 levels (22.5% to 25%) during the Late Sil- 
urian and Early Devonian that subsequently plummet to 
13% by the early Late Devonian, compared to present 
value of 21%. Very elevated but highly fluctuating CO2 
levels characterize Phase 1 during the early to middle 
Devonian, but are followed by a sharp decline to modern 
levels during the Early Mississippian. 

After an Early Mississippian hiatus occurring prior to 
Herbivore Expansion 2 (Ward et al., in press), there is a 
resurgence of herbivory during the Late Mississippian to the 
Permo Triassic boundary, similar to the previous phase by 
occupying a strong greenhouse world. Moreover, Phase 2 
occurs during a broad, unimodal distribution of elevated 
atmospheric O2 levels, starting with relatively depressed 
concentrations (~ 17 %), reaching an unprecedented peak of 
31% during the Early Permian (but see Lenton, 2001), and 
decreasing to approximately current levels at the Permian- 
Triassic boundary. This decrease may explain major 
turnover of Permian plant clades. Atmospheric CO2 was 
consistently low, comparable to modern levels throughout 
the Carboniferous and Permian, but experienced a sharp rise 
during the Triassic, in which there may have been a reorga- 
nization of the global carbon cycle, and thus resetting the 
CO2 level at higher values (Berner, 2002). 

Herbivore Expansion 3, from the Middle Triassic to 
the Recent, originates during an icehouse world and 
evolves into the anomalous greenhouse world of the 
Jurassic to mid Cretaceous, in which there evidently is 
latitudinal cooling but no polar icecaps. Atmospheric O2 
content during Phase 3 reaches its lowest levels of the 
past 420 m.y., fluctuating from 12.5 to 19% for Early Tri- 
assic to Middle Jurassic, only to remain flat (17% to 
19%) for about a 100 m.y. interval from the Late Jurassic 
to mid Cretaceous, and rising during the past 50 m.y. to 
somewhat higher than present levels (23% to 21%). By 
contrast, atmospheric CO2 levels are elevated at ~ 5% 
throughout the Triassic (Berner, 2002), followed by a 
modest increase to higher levels of ~ 9% during the Mid- 
dle Jurassic, and thenceforth steadily declining to approx- 
imately the 0.035% preindustrial value of today. 

Herbivore Expansion 4 occurs from the mid Early 
Cretaceous to the Recent. Unlike the initial part of Phase 
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3, Phase 4 commences during a greenhouse world, and 
similarly evolves into a subsequent icehouse world of the 
Paleogene and Neogene. Unlike Phase 3, however, earlier 
Phase 4 associations occurred during somewhat depressed 
but stable O2 levels (18% to 17%), peaking at 23% at 30 
Ma (early Oligocène), and then declining but remaining 
high, reaching levels of 21% O2 today. Atmospheric CO2 
levels begin with levels of ~ 7% during the Early Creta- 
ceous, followed by a steady decline to the preindustrial 
values of 0.035%. 

There is limited evidence that these three paleocli- 
matologic indicators have a rational, predictive combi- 
nation of a greenhouse/icehouse switch that is linked to 
values of atmospheric O2 and CO2 (Veizer et al., 2000). 
However, it is not clear what the proximal cause is 
between the apparent synchrony of these three paleocli- 
matologic variables and each of the four herbivore 
expansion phases (Fig. 8). For example, the role of pale- 
ogeography remains unknown. It is known, though, that 
all phases except for Phase 3 began during periods of 
globally warm temperatures. One possibility is that 
these atmospheric variables have direct physiologic con- 
sequences on the selection and turnover of particular 
plant clades globally, which in turn elicit an association- 
al response from selected clades of insect herbivores. 
The Early Cenozoic Thermal Maximum may be more a 
temporally restricted example of this phenomenon (Wilf 
et al., 2001). It remains untested whether a unique, com- 
bined signal of these three (or perhaps other) paleocli- 
matologic variables is explainable by plant or insect 
physiology (Lincoln et al., 1993; Graham et al., 1995), 
and if there is a trigger which resulted in phases of 
unique or augmented plant-insect associations. Modern 
studies from the experimental physiology of plants (Gra- 
ham et al., 1995; Whittaker, 2001) and insects 
(Bartholomew and Casey, 1977; London, 1988; Nicolas 
and Sillans, 1989; Hagner-HoUer et al., 2004) that are 
subjected to fluctuating levels of O2 and CO2 may be 
relevant. 

DISCUSSION 

This compilation and the resulting matrices depicting 
the ecological associations of host plants and their insect 
herbivores in the fossil record have provided some basic 
macroevolutionary patterns. One is the presence of sever- 
al fixed and persistent functional feeding groups of 
arthropod herbivores since they originated during the Late 
Paleozoic, or Triassic in the case of leaf mining. By con- 
trast, the specific plant and arthropod occupants of these 
associations are ephemeral in time and space. Member- 
ship volatility is attributable to clade turnover of plants 
and their herbivore arthropods, as well as associated fun- 
gi, and perhaps other interacting organisms. This turnover 
provides a dynamic context to the evolution of not only 
associations among specific biotas within each of the four 
herbivore expansions, but also among each of the four 
major phases. Additionally, comparisons of the biogeog- 
raphy of these associations within and among penecon- 
temporaneous floras of each phase may record the emer- 
gence and evolutionary radiation of arthropod herbivore 
clades. A potential example of hemispherical extent 
would be Gondwanan floras occurring in the same paleo- 
continental and similar basinal settings from Southern 
Africa, South America, Australia, India and Antarctica 
during the end of pteridophyte- and glossopterid dominated 
Herbivore Expansion 2, and the beginning of more diverse 
floras that were dominated by ginkgoopsid, voltzialean 
conifer, cycadophyte and gnetopsid taxa of Herbivore 
Expansion 3 (Fig. 7). It remains unknown whether similar 
plant hosts across the broad supercontinent of Gondwana 
shared similar herbivores in distant basins within each of 
these two phases, or if they evolved geographically distinc- 
tive suites of herbivores. A related issue is whether there is 
persistence of taxonomically conservative lineages of plant 
hosts and their insect herbivores through time, particularly 
among the preangiospermous portion of Herbivore Expan- 
sion 3 to the Recent. Such associational longevity may 
address whether some associations of today are truly 
ancient in origin (Farrell, 1998; Powell et al., 1998). 

FIGURE 7 I Summary of herbivore expansion phases in Phanerozoic continental environments. This figure is a condensation of, from left to right, 
plant host, plant-insect associational, and inferred insect herbivore patterns provided in figures 3 to 6. At left are major plant-host clades, based on 
classifications from Kenrick and Crane (1997), Rothwell and Serbet (1994), Judd et al. (1999), Soltis and Soltis (2004), Pryer et al. (2004) and 
Anderson and Anderson (2003). At right are the dominant arthropod herbivore clades that are based on classifications from Wheeler et al. (2004), 
Coddington et al. (2004), and Willmann (2004). An exception is the major fungal clade, Prototaxales, at far left. At center are the four, major 
expansion phases, based on associations from the literature, each of which has a "flagship" biota early in its development (Table 1). They are, from 
bottom to top: the first is Herbivore Expansion 1, with an axis of the rhyniopsid Rhynia gwynne-vaughanii Yimsim and LANG 1917 containing a stem 
boring, from the Rhynie Chert (Early Devonian, Early Pragian) of Scotland (Kevan et al., 1975). Second is Herbivore Expansion 2, with a gall in the 
rhachis tissues of the marattialean fern Psaronius cAase/MORGAN 1959, from the Calhoun Coal (Late Pennsylvanian, Kasimovian) of the Illinois 
Basin, Illinois, U.S.A. (Labandeira and Phillips, 2002). Third is Herbivore Expansion 3, with external foliage feeding on the matatiellalean ginkgoop- 
sid Dejerseya lunensis (JOHNSTON) ANDERSON and ANDERSON 1989, from the Molteno Formation (Late Triassic, Carnian) of the Karoo Basin of South Africa 
(Scott et al., 2004). Last and fourth is Herbivore Expansion 4, with a leaf mine on the protealean (platanoid) Sapindopsis beekeria WANG 2002 from 
the Dakota Formation (Early Cretaceous, late Albian) of Kansas, U.S.A. (Labandeira et al., 1994; Wang, 2002). The absolute widths of each bubble 
do not necessarily conform to the absolute diversity of associations, but the relative distributions of widths among the four phases indicate relative 
importances. At right are major groups of interacting arthropod herbivores, namely clusters of clades that consist of myriapods, mites, and several 
insect lineages (Labandeira, 1994; Rasnitsyn and Quicke, 2002). Geologic time scale after Gradstein et al. (2004); the two, topmost intervals of 
time of the Neogene are, from oldest to youngest, Pliocene and Pleistocene. 
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One observation that contextualizes this study involves 
the overwhelming focus by biologists on associations 
between angiosperms and holometabolous insects. This sin- 
gular emphasis involves documentation of numerous associa- 
tions and co-radiations between these currently hyperdiverse 
clades (Grimaldi, 1999; Grimaldi and Engel, 2005). This 
predilection is reasonable, as the overwhelming majority of 
extant associations available for study involve angiosperms 
and holometabolous insects from Herbivore Expansion 4. 

Those that may have survived from Herbivore Expansion 3 
occur on conifers, cycads and possibly gnetaleans (Burdick, 
1961; Norstog, 1987; Kato and Inoue, 1994) that have geo- 
graphically unique or relictual distributions. Apparently, there 
are no extant associations from herbivore Expansions 1 and 2. 
This "angiocentrism" has clouded our understanding of the 
deeper history of plant-insect associations by limiting our under- 
standing of how extinct host-plants and their insect herbivores 
have associated at deeper macroevolutionary timescales. 
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FIGURE 8 I Ttie relationstiip of Late Silurian to Recent ptiysical variables•atmospheric O2 and CO2 content, and average global temperatures•with 
that of the four herbivore expansion phases, as determined by the fossil history of plant-insect associations. Atmospheric CO2 ratios are from Berner 
and Kothavala (2001); atmospheric O2 percentages from Falkowski et al. (2005) and Ward et al. (in press); average global temperature from Scotese 
(2005); and greenhouse/icehouse cycles are from Frakes et al. (1992). 
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Current ecological studies of plant-arthropod associa- 
tions thus focus overwhelmingly on plant-host taxa that are 
crown spermatophytes (angiosperms) and on insect herbi- 
vore taxa that are clades of crown-group Holometabola 
("phytophagan" beetles, cyclorrhaphan flies, ditrysian 
moths, and aculeate hymenopterans) and to a lesser extent 
Hemipteroidea (especially sternorrhynchans and phy- 
tophagous bugs such as Lygaeidae, Coreidae, and Miridae; 
Fig. 7). Paleobiologically, this is a rather atypical situation, 
historically confined to the last fourth of the history of 
plant-arthropod associations. A retreat to Herbivore Expan- 
sion 3 would reveal taxa in which the crown spermato- 
phytes of the time were various gymnospermous clades 
(several lineages of ginkoopsids, voltzialean and cheirolep- 
idaceous conifers, peltaspermaleans, pentoxylaleans, ben- 
nettitaleans) and their arthropod herbivores were more 
basally positioned clades of holometabolous insects 
(polyphagan coleopterans, brachyceran flies, aneuretopsy- 
chid mecopterans, micropterygid to monotrysian lepi- 
dopterans, symphytan hymenopterans) and hemipteroids 
(thysanopterans, lophioneurids, sternorrhynchans, auchen- 
orrhynchans). Would the partitioning and use of plant-host 
taxa be the same as those for Herbivore Expansion 4? 
Retreat yet one more phase to that of Herbivore Expansion 
2, and the landscape of host plants then consisted of pteri- 
dophytes (especially marattialean ferns) and stem sper- 
matophytes (dominantly medullosan and glossopterid 
pteridosperms and cordaitalean conifers), and the dominant 
phytophagous clades of arthropod herbivores were mites, 
apterygotes, paleodictyopteroids and a diverse assemblage 
of primitive "protorthopteroid" insects. How would the her- 
bivore component community on a host plant dominant within 
Phase 2 compare ecologically with a component community 
of today's Phase 4? More specifically, could the varied associ- 
ations seen among the Herbivore Expansion 4 be an ecologi- 
cally similar or repackaged version of those from Herbivore 
expansions 2 or 3, but with different players? 

biota of exceptional associational richness that establishes 
most of the broad limits for subsequent associations and 
their modifications. This early expression, represented by a 
"flagship" biota, can be considered ecologically either as a 
rebound from an earlier event characterized by the demise of 
the previous herbivore expansion phase, or alternatively the 
origination of a fundamentally new major clade of host 
plants and insect herbivores without linkage to a causative 
environmental perturbation. 

3. There are qualitative links between each of the her- 
bivore expansion phases and three paleoclimatologic vari- 
ables (greenhouse or icehouse world and atmospheric O2 
and CO2 levels). However, no consistent or predictive pat- 
tern emerges that can explain the specific relationship 
between these paleoclimatologic variables and a particu- 
lar herbivore expansion phase. 

4. Associations persist through geologic time whereas 
the occupants of those associations are spatiotemporally 
constrained. This suggests that the several modes of 
arthropod feeding on vascular plant tissues are fixed, con- 
strained possibly by plant tissue architecture and arthro- 
pod mouthpart structure, and thus displays extensive taxo- 
nomic and functional convergence. 

5. An "angiocentric" focus on Herbivore Expansion 4 
(angiosperms vs. crown holometabolans and hemipteroids) 
has had the effect of de-emphasizing patterns and processes 
of plant-arthropod associations during the preceding 300 
million years. In particular, more understanding of herbivore 
expansions 1 through 3 is needed to comprehend the full 
breadth of how vascular plants and their arthropod herbi- 
vores historically have monopolized life on land. 
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APPENDIX 

Register of biotas for Figures 3 to 6 

Herbivore Expansion 1 

Biota   Locality 

1 Ludford Lane, Perton 
Lane, Welsh Borderland 
U.K. 

2 Brown Clee Hill, Welsh 
Borderland, Wales, U.K. 

3 Rhynie Chert, Aberdeen- 
shore, Scotland, U.K. 

4       Gaspé, Quebec, Canada 

5       Kettle Point, Ontario, 
Canada 

Stratigraphie placement Time interval Major references 

Downton Castle Limestone Silurian, Prídolí Edwards et al. 
1995; Edwards 
1996 

Old Red Sandstone, micr- Devonian, Edwards et al. 
ornatus-newportensis Spore Lochkovian 1995; Edwards 
Biozone 1996 
Dryden Flags Formation Devonian, Kidston and Lang, 

Pragian 1921;Kevanetal. 
1975; Shear and Seiden 
2001;Habgoodetal. 2004 

Battery Point Formation Devonian, Trant and Gensel 1985; 
Emsian Banks and Colthart 

1993; Hotton et al. 
1996; Hueber 2001; 
Labandeira, pers. observ 

Huron Shale Devonian, Arnold 1952; Hueber 
Famennian 2001 

Herbivore Expansion 2 

Biota   Locality 

1 Sydney Basin, New 
South Wales, Australia 

2 White River, Washing- 
ton Co., Arkansas, U.S.A. 

3 Jackson Co., Illinois, 
U.S.A. 

4 Northumberland, 
England, U.K. 

5 North-central England, 
U.K. 

6 Méricourt, Arras, France 

7 Zwickau, Germany 

8 Saline and Gallatin Cos., 
Illinois, U.S.A. 

9 Mazon Creek, north- 
central Illinois, U.S.A. 

Stratigraphie placement 

Mclnnes Formation 

Fayetteville Formation 

Caseyville Formation 

Coal Measures, below the 
Ashlington Marine Band 

Coal Measures, below and 
above the Catharina Seam 
"Assise de Bruay" unit 

"Hellgrauer Schieferton" 

Carbondale Formation, 
(Herrin Coal) 
Carbondale Formation, 
(Francis Creek Shale) 

Time interval 

Mississippian, 
earliest 
Serpukhovian 
Mississippian, 
Serpukhovian 
Pennsylvanian, 
Bashkirian 
Pennsylvanian, 
late Bashkirian to 
early Moscovian 
Pennsylvanian, 
Moscovian 
Pennsylvanian, 
middle Moscovian 
Pennsylvanian, 
late Moscovian 
Pennsylvanian, 
late Moscovian 
Pennsylvanian, 
late Moscovian 

Major references 

lannuzzi and Laban- 
deira, unpubli. data 

Dunn et al. 2003 

Jennings 1974 

Thomas 1969; 
Amerom 1973 

Holden 1910, 1930; 
Chaloner et al. 1991 
Amerom and Boersma 
1971 
Müller 1982 

Labandeira and Phillips 
2002 
Scott and Taylor 1983; 
Labandeira and Beall 
1990; Scott et al. 1992 
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10       Berryville, Lawrence 
Co., Illinois, U.S.A. 

11 La Magdalena Coalfield, 
León, Spain 

12 Graissessac, Hérault, 
France 

13 Saar-Nahe Basin, 
Germany 

14 Chunya, Siberia Russia 

15 Pingquan, Hebei 
Province, China 

16 Faxinal and Morro do 
Papaleo, Rio Grande do 
Sul, Brazil 

17 Coprolite Bone Bed, 
Archer Co., Texas, 
U.S.A. 

18 Chemnitz, Erzgebirge 
Basin, Sachsen, Germany 

19 Gaines Co., Texas, 
U.S.A. 

20 Ranigang Coalfield, 
West Bengal, India 

21 Taint, Baylor Co., 
Texas, U.S.A. 

22 Chubut, Argentina 
23 Minas do Leao, Rio 

Grande do Sul, Brazil 

24 Taiyuan City, Shanxi, 
Province, China 

25 King Co., Texas, U.S.A. 

26 Vereeniging, Gauteng, 
South Afi-ica 

27 Cooyal, Sydney Basin, 
Australia 

28 Ranigang Coalfield, 

29 Northern Prince Charles 
Mountains, East 
Antarctica 

30 Bowen Basin, Queens- 
land, Australia 

31 Clouston Farm, Kwa- 
Zulu-Natal, South Africa 

Mattoon Formation 
(Calhoun Coal) 

[formation not reported] 

".. .between the Grand Pas 
and Burelle Coal Seams..." 
Lower Rotliegende 

[formation not reported] 

Taiyuan Formation 

Rio Bonito Formation 

Nocona Formation 

Leukersdorf Formation, 
"Zeisgwald-Tuff-Horizontes" 
Clear Fork Group 

Barakar Formation 

Waggoner Ranch Formation 

Rio Genoa Formation 
Irati and Serra Alta 
Formations 

Shihhotse Formation 

Blaine Formation 

Vryheid Formation 

Upper lUawarra Coal 
Measures 
Ranigang Formation 

Bainmedart Coal Measures 

Rangal Coal Measures, 
Bandanna Formation 
Estcourt Formation 

Pennsylvanian, 
Kasimovian 

Pennsylvanian, 
Gzehlian 
Pennsylvanian 
late Gzhelian 
Carboniferous- 
Permian boundary 

latest Carboni- 
ferous 
Permian, 
Asselian 
Permian, Artin- 
skian/Kungurian 

Permian, 
Sakmarian 

Lower Permian 

Permian, late 
Artinskian 
Permian, Artins- 
kian/Kungurian 
Permian, 
Artinskian 
Lower Permian 
Permian, Kun- 
gurian/Roadian 

Permian, Kungurian 
/Roadian 
Boundary 
Permian, 
?Roadian 
Permian, 
?Roadian 
Late Permian 

Late Permian 

Late Permian 

Permian, 
Wuchiapingian 
Permian, 
Changhsingian 

Lesnikowska 1990; 
Labandeira and Phillips 
1996a, 1996b, 2002; 
Roßler 2000; Laban- 
deira, pers. observ. 
Amerom 1966; Castro 
1997 
Béthoux et al. 2004 

Florin 1945; Meyen 
1984; Kerp 1988; 
Zherikhin, 2002a 
Sharov 1973; Zherikhin 
2002a 
Hilton et al. 2001,2002 

Guerra-Sommer 1995; 
Adami-Rodrigues et al. 
2004a, 2004b 
Greenfest and Laban- 
deira 1997 

Roßlerl996 

DiMichele et al. 2000 

Srivastava 1987 

Beck and Labandeira 
1998 
Cúneo 1987 
Adami-Rodrigues and 
lannuzzi 2001 ; Adami- 
Rodrigues et al. 2004a 
Glasspool et al. 2003 

DiMichele et al. 2004 

Plumstead 1963; 
Amerom 1966 
Holmes 1995 

Srivastava 1996; 
Banerjee and Bera 1998 
Weaver et al. 1997 

McLoughlin 1994a, 
1994b 
Labandeira and Prevec, 
unpubl. data 
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Herbivore Expansion 3 

Biota   Locality 

1 Grès-à-Voltzia, northern 
Vosges Mtns., France 

2 Wasselonne, Bas-Rhine, 
France; Schleerieth and 
Ochsenfurt, Franconia, 
Germany 

3 Karoo Basin: KwaZulu- 
Natal, Eastern Cape and 
Northern Cape Provinces, 
South Africa 

4 Sydney Basin, New 
South Wales, Australia 

5 Petrified Forest National 
Park, Arizona, U.S.A. 

6 Xiniguá, Rio Grande 
do Sul, Brazil 

7 Kijfner, Bavaria, 
Germany 

8 Yima, Henan Province, 
China 

9 Murlipahar, Bihar, 
India 

10 Yorkshire, northern 
England, U.K. 

11 Jaramillo, Santa Cruz 
Province, Argentina 

12 Mikhailovka, Chayan 
District, Kazakhstan 

13 Steiner, Mt. Ellen, and 
East McElmo Creek 
localities. Western 
Interior, U.S.A. 

14 Clack Island, northern 
Queensland, Australia 

15 Crowborough, East 
Sussex, England, U.K. 

16 Przenosza, Limanowa 
District, Poland 

17 Makhtesh Ramon, 
Negev, Israel 

18 Chunakhal and Hiran- 
duba, Jharkhand State, 
India 

19 Amarjola, Bihar State, 
India 

Stratigraphie placement 

Bundsandstein Formation 

Lettenkohle and Lower 
Keuper Formations 

Molteno Formation 

Blackstone Formation 

Chinle Formation 

Santa Maria Formation 

"Pflanzensandstein" 

Yima Formation 

Dubrajpur Formation 

Scarborough Formation 

La Matilde Formation 

Karabatsu Formation 

Morrison Formation 

Battle Camp Formation 

Waldhurst Clay or 
Ashdown Formation 

?Verovice Shale 

Hatira Formation 

Rajmahal Formation 
(Intertrappean Beds) 

[formation not reported] 

Time interval Major references 

Triassic, Grauvogel-Stamm and 
Lower Anisian Kelber 1996 
Triassic, Linck 1949; Roselt 
Upper Ladinian 1954; Geyer and Kelber 

1987; Kelber 1988; 
Grauvogel-Stamm and 
Kelber 1996 

Triassic, Anderson and Anderson 
Carnian 1989; Scott et al. 2004; 

Labandeira and Ander- 
son 2005 

Triassic, Tillyard 1922; Roze- 
Carnian felds and Sobbe 1987 
Triassic, Walker 1938; Ash 1997, 
Norian 1999, 2000, 2005; Ash 

Savidge 2004; Creber 
and Ash 2004 

Triassic, Minello 1994 
Norian 
Jurassic, Weber 1968; Van Kon- 
Hettangian ijnenburg-Van 

Gittert and Schmeißner 1999 
Jurassic, Toarcian Zhou and Zhang 1989 

to Aalenian 
Jurassic, Vishnu-Mittre 1957; 
Aalenian Sharma and 

Harsh 1989 
Jurassic, Harris 1942; Alvin et al. 
Bajocian 1967; Scott et al. 1992 
Jurassic, Callovian Genise and Hazeldine 
to Oxfordian 1995 
Jurassic, Rasnitsyn and Krassilov 
Kimmeridgian 2000 
Jurassic Tidwell and Ash 1990; 
Tithonian Tidwell and Medlyn 

1992; Day vault and 
Hatch 2003 

Latest Jurassic to Rozefelds 1988a 
earliest Cretaceous 
Cretaceous, late Jarzembowski 1990 
Berriasian to mid- 
dle Valanginian 
Cretaceous, Reymanówna 1960, 
?Barremian 1991 
Lower Aptian Krassilov et al. 2004b 

Cretaceous, Banerji 2004 
Aptian/Albian 
boundary 
Lower Cretaceous Bose 1968 
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20 Glen Rose, Somervell 
Co., Texas 

21 Yuleba, Queensland, 
Australia 

22 Hokodz, northwestern 
Caucasus Region, Russia 

23 Blackhawk, Black Hills 
South Dakota, U.S.A. 

24 Valcheta, Rio Negro, 
Argentina 

25 Nammoura, Mont-Liban 
District, Lebanon 

26 Shuparo Lake, Hokkaido 
Japan 

27 Ohyubari, Hokkaido 
Japan 

28 Brannen Lake, Vancou- 
ver Island, British 
Columbia, Canada 

29 Big Cedar Ridge, 
Wyoming, U.S.A. 

30 Williston Basin, 
southwestern North 
Dakota, U.S.A. 

31 Republic, Ferry Co., 
Washington, U.S.A. 

32 Baltic amber; Baltic 
Region, northern Europe 

33 Geodetic Hills, Axel 
Heiberg Island, Nunavut, 
Canada 

34 Dynów, Skole Nappe, 
Outer Carpathians, 
Poland 

35 Klepzig, Germany 

36 Rott, Schwaben, 
Germany 

37 Freilendorf, Hessen, 
Germany 

38 Southern Limburg, 
Netherlands 

39 Szentgal, Hungary 

40 Konin, Poland 

41 Duren, Nordrhein- 
Westfalien, Germany 

42 Bohemia, Czech 
Republic 

Glen Rose Formation 

Mooga Sandstone 

Diadochoceras nodosocos- 
tatum and Acanthoplites 
bigoureti Zone 
"Sandstones" 

[formation not reported] 

"Namoura Plattenkalk" 

Yezo Group 

Yezo Group 

Haslam Formation 

Meeteetsee Formation 

Hell Creek Formation 

Klondike Mountain 
Formation 
Prussian Formation 

Buchanan Lake Formation 

Kliwa Sandstone 

"lignite" 

"porcellanite" 

"lignite" 

[formation not reported] 

"lignite" 

"lignite" 

"lignite" 

[formation not reported] 

Aptian/Albian 
boundary 
Lower Cretaceous 

Cretaceous, upper 
Albian 

Lower Cretaceous 

Late Cretaceous 

Cretaceous, 
Cenomanian 
Cretaceous, Ceno- 
manian to early 
Santonian 
Cretaceous, Late 
Turonian to Early 
Campanian 
Cretaceous, lower 
Campanian 

Cretaceous, early 
Maastrichtian 

Cretaceous, late 
Maastrichtian 

Paleogene, 
Ypresian 
Paleogene, 
Lutetian 
Paleogene, 
Lutetian 

Paleogene, 
Rupelian 

Paleogene, 
middle Oligocène 
Paleogene, 
Chattian 
Paleogene 
Chattian 
Neogene, late 
Miocene 
Neogene, 
Tortonian 
Neogene, 
Tortonian 
Neogene, ?early 
Miocene 
Neogene, ?early 
Miocene 

Watson 1977 

Tidwell and Rozefelds 
1991 
Falderetal. 1998; 
Ratzeletal. 2001 

Wieland 1906; Dele- 
voryas 1968; Crepet 
1974; Crowson 1976 
Andreiset al. 1991; 
Genise 1995 
Krassilov and Bacchia 
2000 
Saiki and Yoshida 1999 

Nishida and Hayashi 
1996 

Stockey and Rothwell 
2003 

Wing et al. 1993; 
Labandeira et al. 1995 

Labandeira et al. 2002a, 
2002b 

Labandeira, pers. 
observ. 
Conwenz 1890 

Labandeira et al. 2001 

Rajchel and Uchman 
1998 

Linstow 1906 

Hellmund and Hell- 
mund 1991 
Roselt and Feustel 
1960 
Süss 1979, 1980 

Dudich 1961 

Madziara-Borusiewicz 
1970 
Mohn 1960 

Engelhardt 1876 
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43 Wieliczka, Poland 

44 Clarkia, Latah Co., 
Idaho, U.S.A. 

45 Emerald Creek 1, Bene- 
wah Co., Idaho, U.S.A. 

46 Emerald Creek 2, Sho- 
shone Co., Idaho, U.S.A. 

47 Oviatt Creek, Clearwater 
Co., Idaho, U.S.A. 

48 Juliaetta, Nez Perce 
Co., Idaho, U.S.A. 

49 Jasper Creek, Yellow- 
stone National Park, 
Wyoming, U.S.A. 

50 Guntramsdorf, Austria 

51 Königsbruck, Alsace, 
France 

52 Peary Land, northern 
Greenland, Denmark 

53 Scarborough, Ontario, 
Canada 

54 Washington, District 
of Columbia, U.S.A. 

55 Santa Cruz Island, 
California, U.S.A. 

56 Near Fairbanks, Alaska, 
U.S.A. 

Salzstocke Formation 

Latah Formation 

Latah Formation 

Latah Formation 

Latah Formation 

Latah Formation 

[formation not reported] 

"Congeriensand" 

[formation not reported] 

Kap K0benhavn Formation 

interglacial clays 

unconsolidated sediment 

Santa Cruz Island Formation 
(alluvial deposits) 
Goldstream Formation 

Neogene, ?early 
Miocene 
Neogene, middle 
Miocene 
Neogene, middle 
Miocene 
Neogene, middle 
Miocene 
Neogene, middle 
Miocene 
Neogene, middle 
Miocene 
Neogene, 
Messinian 

Neogene, lower 
Pliocene 
Neogene, middle 
to upper Pliocene 
Neogene, Plio- 
cene/Pleistocene 
Boundary 
Neogene, 
Pleistocene 
Neogene, 
Pleistocene 
Neogene 
Pleistocene 
Neogene, late 
Pleistocene 

Zablocki 1960 

Lewis 1985, Lewis et al. 
1990b 
Lewis et al. 1990b 

Lewis et al. 1990b 

Lewis et al. 1990b 

Lewis et al. 1990a 

Braes 1936 

Abel 1933 

Geissert et al. 1981 

Böcher 1995 

Scudder1900 

Berry 1924; Gagné 
1968 
Chaney and Mason 
1934 
Péwé et al. 1997 

Biota   Locality 

1 Kiowa Co., Kansas, 
U.S.A. 

2 Stump Neck, Maryland, 
U.S.A. 

3 Quantico, Virginia, 
U.S.A. 

4 Rose Creek, Hoisington, 
Linnenberger Ranch, and 
Acme localities, Kansas 
and Nebraska, U.S.A. 

5 Cumberland, Lincoln 
Co., Wyoming, U.S.A. 

6 Tumbler Ridge, east- 
central British 
Columbia, Canada 

Herbivore Expansion 4 

Stratigraphie placement Time interval 

Cheyenne Formation 

Patapsco Formation 

Potomac Group, unassigned 

Dakota Formation 

Frontier Formation (lower) 

Dunvegan Formation 

Cretaceous, lower 
to middle Albian 
Cretaceous, 
middle to upper 
Albian 
Cretaceous, 
middle to upper 
Albian 
Cretaceous, late 
Albian 

Cretaceous, early 
Cenomanian 
Cretaceous, early 
Cenomanian 

Major references 

Stephenson 1991 

Hickey and Doyle 1977; 
Larew, 1992 

Upchurch et al. 1994 

Stephenson 1991; 
Labandeira et al. 1994; 
Labandeira 1998b; 
unpubl. data 
Stephenson 1991 

Crabtree 1987 
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7 Vyserovice, Lidice, 
Kounice and other 
localities, Bohemia, 
Czech Republic 

8 Karatau, Kzyl Dzhar 
Region, Kazakhstan 

9 Gerofit, Negev, Israel 

10 Cumberland, Lincoln 
Co., Wyoming, U.S.A. 

11 "Oilfield Coulee", Madi- 
son, Co., Montana, 
U.S.A. 

12 Gaillard, Crawford 
Co., Georgia, U.S.A. 

13 Big Cedar Ridge, north- 
west Wyoming, U.S.A. 

14 Bisti Badlands, New 
Mexico, U.S.A. 

15 Valcheta, Rio Negro, 
Argentina 

16 Williston Basin, south- 
western North Dakota, 
U.S.A. 

17 Williston Basin, south- 
western North Dakota, 
U.S.A. 

18 Various localities, north- 
ern Western Interior, 
Wyoming, Montana, 
Utah, U.S.A. 

19 Cold Ash, Berkshire, 
U.K. 

20 Damalgiri, Meghalaya 
State, India 

21 Almont, North Dakota, 
U.S.A. 

22 Foster Gulch, Carbon 
Co., Montana, U.S.A. 

23 Puryear, Henry Co., 
Tennessee, U.S.A. 

24 Sourdough Flora, Sweet- 
water Co., Wyoming, 
U.S.A. 

25 Laguna del Hunco, 
Chubut Province, 
Argentina 

26 Dubois, Park Co., 
Wyoming, U.S.A. 

27 Bonanza, Uintah Co., 
Utah, U.S.A. 

Perucer Formation 

Beleutinskaya Formation 

Gerofit Formation 

Frontier Formation (upper) 

Two Medicine Formation 

Gaillard Formation 

Meeteetsee Formation 

Fruitland Formation 

[formation not reported] 

Hell Creek Formation 

Fort Union Formation 
(lower) 

Fort Union Formation 
(upper) 

Woolwich and Reading 
Beds 
Tura Formation 

Sentinel Butte Formation 

Fort Union Formation 
(upper) 
Wilcox Formation 

Wasatch Formation 

La Huitrera Formation 

Wind River Formation 

Green River Formation 

Cretaceous, 
middle 
Cenomanian 

Cretaceous, 
Turonian 
Cretaceous, 
middle Turonian 
Cretaceous, 
late Turonian 
Cretaceous, lower- 
most Campanian 

Cretaceous, late 
Santonian 
Cretaceous, early 
Maastrichtian 

Cretaceous, late 
Campanian 
Late Cretaceous 

Cretaceous, late 
Maastrichtian 

Paleogene, 
Danian 

Paleogene, 
Selandrian to 
Thanetian 

Paleogene, 

Paleogene, 
Thanetian 
Paleogene, 
Thanetian 
Paleogene, early 
Ypresian 
Paleogene, 
Ypresian 
Paleogene 
Ypresian 

Paleogene, 
Ypresian 

Paleogene, late 
Ypresian 
Paleogene, 
Lutetian 

Fric 1882, 1901; 
Stephenson 1991 

Kozlov 1988 

Krassilov et al., 2004a 

Knowlton 1917; 
Crabtree 1987 
Crabtree 1987 

Lupia et al. 2002 

Wing et al. 1993; 
Labandeira, pers. 
observ. 
Tidwelletal. 1981 

Andreiset al. 1991; 
Genise 1995 

Wilfet al. 2000; Laban- 
deira et al. 2002a, 2002b 

Labandeira et al. 2002a, 
2002b 

Wilf and Labandeira 
1999; Wilfet al. 2001 

Crane and Jarzem- 
Thanetian bowski 1980 
Srivastava et al. 2000 

Grane et al. 1990 

Lang 1996 

Berry 1923; Brooks 
1955; Wittlake 1969 
Wilfet al. 2000,2001, 
2005 

Wilf et al. 2005 

Hickey and Hodges 
1975 
Wilf and Labandeira 
1999; Wilfet al. 2001, 
2005 
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28       Darmstadt, Hessen, 
Germany 

Messel Formation Paleogene, 
Lutetian 

29 Geiseltal, Halle, 
Sachsen-Anhalt, 
Germany 

30 Republic, Ferry Co., 
Washington, U.S.A. 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

Bonanza, Uintah Co., 
Utah, U.S.A. 
Eckfeld, Manderscheid, 
Rheinland-Pfalz, 
Germany 
Baltic amber; Baltic 
Region, northern Europe 
Prineville, Crook Co., 
Oregon, U.S.A. 
Holley, Crook Co., 
Oregon, U.S.A. 
Bournemouth, East 
Dorset, England, U.K. 

White Lake Basin, 
British Columbia, Canada 
Kennedy Range, West 
Australia, Australia 
Amethyst Mountain, 
Park Co., Wyoming, 
U.S.A. 
Comstock, Douglas Co., 
Oregon, U.S.A. 
Florissant, Park Co., 
Colorado, U.S.A. 

Anglesea, Victoria, 
Australia 

43 Vargem, Grande do Sul, 
Sao Paulo, Brazil 

44 La Porte, Plumas Co., 
California, U.S.A. 

45 Seifhennersdorf, 
Sachsen, Germany 

46 Wind brickyard, 
Baromállás, Hungary 

47 Ruby River, Madison 
Co., Montana, U.S.A. 

48 Rott, Schwaben, Bayern, 
Germany 

Mittelkohle Formation 

Klondike Mountain 
Formation 

Green River Formation 

Maar Formation 

Prussian Formation 

Clarno Formation 

Eugene Formation 

Branksome Sand Formation 
(including Bournemouth 
Fresh Water Beds) 
[unreported formation] 

Merlinleigh Sandstone 

[formation not reported] 

Comstock Formation 

Florissant Formation 

[formation not reported] 

Tremembé Formation 

?Ione Formation 

"Kuclin" diatomite 

[formation not reported] 

Rénova Formation 

Köln Formation 

Paleogene, 
Lutetian 

Paleogene, 
Lutetian 

Paleogene, 
Lutetian 
Paleogene, 
Lutetian 

Paleogene, 
Lutetian 
Paleogene, 
Rupelian 
Paleogene, 
Bartonian 
Paleogene, 
Bartonian 

Paleogene, 
Bartonian 
Paleogene, 
?Priabonian 
Paleogene, 
?Priabonian 

Paleogene, 
Priabonian 
Paleogene, 
Priabonian 

Paleogene, 
Priabonian 
Paleogene, 
Rupelian 
Paleogene, 
Rupelian 
Paleogene, middle 
Oligocène 
Paleogene, 
Chattian 
Paleogene, 
Chattian 
Paleogene, 
Chattian 

Kinzelbach 1970; Straus 
1976; Barthel and 
Rüffle 1976; Colhnson 
1990; Schaarschmidt 
1992; Hellmund and 
Hellmund 1998 
Mai 1976 

Wolfe and Wehr 1987; 
Lewis 1992; Lewis and 
Carroll 1991; Pigg et al. 
2001; Labandeira 2002b 
Wilfetal. 2001,2005 

Wilde and Franken- 
häuser 1998 

Wappler and Engel 
2003 
Chaney 1927; Gregory 
1969 
Gregory 1968 

Stephenson 1991; 
Lang et al. 1995 

Freeman 1965 

McNamara and 
Scott 1983 
Suss and Miiller- 
Stoll 1980 

Sanbom 1935 

Cockerell 1908a, 1908b, 
1910; Opler 1982; 
Meyer 2003 
Rozefelds 1988b 

Martins-Neto 1989, 
1998 
Potbury 1935 

Hellmund and Hell- 
mund 1996 
Ambrus and Hably 1979 

Becker 1965, 1969; 
Lewis 1976 
Heyden 1862; Sittig 
1927; Hellmund and 
Hellmund 1991 
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49 Simojovel, Chiapas, 
Mexico 

50 Most, Czech Republic 

51 Duren, Nordrhein- 
Westfalien, Germany 

52 Mainz and Petersburg, 
Rheinland-Pfalz, 
Germany 

53 Osieczow, Poland 

54 Oeningen, Baden, 
Switzerland 

55 Berzdorf (Sachsen), 
Germany 

56 Ribesalbes, Castellón, 
Spain 

56a      Bellver de Cerdaña 

57 Rubielos de Mora, 
Teruel, Spain 

58 Seed site 64, Sioux Co., 
Nebraska, U.S.A. 

59 Salhausen, Hessen, 
Germany 

60 Randecker Maar, Stutt- 
gart, Baden-Wiirttemburg, 
Germany 

61 Stinking Water Harney 
Co., Oregon, U.S.A. 

62 Gilliam Springs, Washoe 
Co., Nevada, U.S.A. 

63 Linqu, Shandong, 
China 

64 Upper Goldyke, Cedar 
Mtns., Nevada, U.S.A. 

65 Trout Creek, Oregon, 
Stewart Valley and 
Buffalo Canyon, 
Nevada, U.S.A. 

66 Clarkia, Shoshone Co., 
Idaho, U.S.A. 

67 Albertine Rift Valley, 
Uganda 

68 Aldrich Station, 
Nevada, U.S.A. 

69 Southern Idaho, U.S.A. 

70 Wüstensachsen, Hesse, 
Germany 

Baluntun Formation 

"Main Brown Coal Seam" 

"Flöz Garzweiler" 

Hydrobia Limestone 

"Quadersandstein formation" 

"Stinkschiefer" 

Toneisensteinblock 
Formation 

[formation not reported] 

[formation not reported] 

[formation not reported] 

Sheep Creek Formation 

Braunkohle Formation 

Dysodil Formation 

Astoria Formation 

[formation not reported] 

Shanwang Formation 

[formation not reported] 

Buffalo Canyon Formation 
and others of similar age 

Latah Formation 

Nkondo Formation 

[formation not reported] 

Trapper Creek Formation 

Lettengraben Formation 

Neogene, 
Aquitanian 
Neogene, 
Aquitanian 
Paleogene, 
Aquitanian 
Neogene, 
Aquitanian 

Neogene, 
Aquitanian 
Neogene, ?early 
Burdigalian 
Neogene 
Burdigalian 

Neogene, 
Lower Miocene 

Neogene, 
Upper Miocene 
Neogene, 
Lower Miocene 
Neogene, 
Burdigalian 
Neogene, late 
Burdigalian 
Neogene, late 
Burdigalian 

Neogene, 
Langhian 
Neogene, early 
Langhian 
Neogene, 
Langhian or 
Serravallian 
Neogene, 
Langhian 
Neogene, 
Langhian 

Neogene, 
Tortonian 
Neogene, 
Tortonian 
Neogene, late 
Serravallian 
Neogene, 
Tortonian 
Neogene 
Tortonian 

Poinar and Brown 2002 

Mikulás et al. 1998 

Schmidt et al. 1958 

Schmidtgen 1938 

Karpiñski 1962; 
Radwanski 1977 
Heer 1853; Mädler 1936 

Hellmund and Hell- 
mund 2002a, 2002b 

Peñalver and Martinez- 
Delclös 1997; Peñalver 
and Martinez-Delclos 
2004 
Martinez-Delclos 1996 

Peñalver and Martinez- 
Delclos 1997 
Thomasson 1982 

Hellmund and Hell- 
mund 2002a, 2002b 
Hering 1930; Hellmund 
and Hellmund 2002b 

Opler 1973; Waggoner 
1999 
Waggoner and Poteet 
1996 
Guo 1991 

Opler 1973 

Opler 1973 

Knowlton, 1926; Opler 
1973; Lewis 1985 
Nel 1994 

Opler 1973 

Liebhold et al. 1982 

Müller-StoU 1989 
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71 Table Mountain, Tuo- 
lumne Co., California, 
U.S.A. 

72 Paris Basin, France 

73 La Cerdaña, Lérida, 
Spain 

74 Nagano and Gumma 
Prefectures, Japan 

75 Douglas Co., Washing- 
ton, U.S.A. 

76 Eg weil, Württemburg, 
Germany 

77 Mikófalva, Hungary 

78 Willershausen, Thuringia, 
Germany 

79 Chuizbaia, Maramure§ 
northwestern Romania 

80 Brun-Vösendorf and 
Laaer Berg, Austria 

81 Neu-Isenburg, Hessen, 
Germany 

82 Wetterau, Hesse, 
Germany 

83 Santa Rosa, Sonoma 
Co., California, U.S.A. 

84 Vitosov, Czech Republic 

85 Beceite, Teruel, Spain 

86 Königsburg, Alsace, 
France 

87 Birtley, Durham, 
England, U.K. 

88 Rancho La Brea, Los 
Angeles Co., California, 
U.S.A. 

Mehrten Formation 

[formation not reported] 

"Unit C of lower Neogene 
unit" 
"Kabutiowa Plant Bed" 

[formation not reported] 

"Sußwassermolasse" 

[formation not reported] 

"lacustrine clay sediments" 

Diatomit-Schiefer 

[formation not reported] 

"Tonscholle" 

"lignite" 

Sonoma Formation 

"karst breccia" 

travertine deposits 

"lignite" 

unconsolidated peat 

asphaltum 

Neogene, 
Tortonian 

Neogene, late 
Miocene 
Neogene, late 
Miocene 
Neogene, late 
Miocene 
Neogene, late 
Miocene 
Neogene, late 
Miocene 
Neogene, 
Messinian 
Neogene, early 
Pliocene 

Neogene, early 
Pliocene 
Neogene, early 
Pliocene 
Neogene, 
Pliocene 
Neogene, 
Pliocene 
Neogene, middle 
Pleistocene 
Neogene, 
Pleistocene 
Neogene, 
Pleistocene 
Neogene, middle 
to late Pliocene 
Neogene, late 
Pleistocene 
Neogene, late 
Pleistocene 

Condit 1944 

Brues 1936 

Diéguez et al. 1996; 
Barrón et al. 1999 
Kuroko 1987 

Hoffman 1932 

Selmeier 1984 

Suss and Miiller- 
Stoll 1975 
Kernbach 1967; Heie 
1967; Steinbach 1967; 
Straus 1967, 1977 
Givulescu 1984 

Berger 1949, 1953 
Straus 1967, 1977 
Rietschel 1983 

Greiling and Schneider 
1973 
Axelrod 1944 

Mikulás et al. 1998 

Peñalver et al. 2002 

Geissert et al. 1981 

Heslop-Harrison 1926 

Larew 1987 
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