Stomatopod Crustacea Collected by the *Galathea* Expedition, 1950–1952, with a List of Stomatopoda Known from Depths below 400 Meters

RAYMOND B. MANNING
Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with *Smithsonian Contributions to Knowledge* in 1848 and continuing with the following active series:

- *Smithsonian Contributions to Anthropology*
- *Smithsonian Contributions to Astrophysics*
- *Smithsonian Contributions to Botany*
- *Smithsonian Contributions to the Earth Sciences*
- *Smithsonian Contributions to the Marine Sciences*
- *Smithsonian Contributions to Paleobiology*
- *Smithsonian Contributions to Zoology*
- *Smithsonian Folklife Studies*
- *Smithsonian Studies in Air and Space*
- *Smithsonian Studies in History and Technology*

In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world.

Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover.

Robert McC. Adams
Secretary
Smithsonian Institution
Stomatopod Crustacea Collected by the *Galathea* Expedition, 1950–1952, with a List of Stomatopoda Known from Depths below 400 Meters

Raymond B. Manning
ABSTRACT

Manning, Raymond B. Stomatopod Crustacea Collected by the Galathea Expedition, 1950-1952, with a List of Stomatopoda Known from Depths below 400 Meters. Smithsonian Contributions to Zoology, number 521, 18 pages, 12 figures, 1991.—Thirty-five species taken by the Galathea expedition are reported, most from shallow water stations. The seventeen species of Stomatopoda known with certainty to live in depths greater than 400 meters are listed. Acaenosquilla, new genus, is recognized for two species previously placed in Heterosquilloides, A. brazieri (Miers, 1880) and A. latifrons (De Haan, 1844). The collection includes a late larva of Bathysquilla crassispinosa (Fukuda, 1909), the first known larva of a bathysquillid. Five species are synonymized: Clorida javanica Moosa, 1974, with C. latreillei (Eydoux and Souleyet, 1842), Clorida merguiensis (Tiwari and Biswas, 1952) with C. verrucosa (Hansen, 1926), Gonodactylus childi Manning, 1971, with G. incipiens Lanchester, 1903, Heterosquilla (Heterosquilloides) zarenkovi Makarov, 1978, with Heterosquilloides insignis (Kemp, 1911), and both Squilloides latus spinosus Blumstein, 1970, and Squilloides espinosus Blumstein, 1974, with Lenisquilla lata (Brooks, 1886).
Contents

Introduction	1
Acknowledgments	1
Superfamily BATHYSQUILLOIDEA Manning, 1967	1
Family BATHYSQUILLIDAE Manning, 1967	1
Bathysquilla crassispinosa (Fukuda, 1909)	1
Superfamily GONODACTYLOIDEA Giesbrecht, 1910	3
Family EURYSQUILLIDAE Manning, 1977	3
Eurysquilla galatheae Manning, 1977	3
Family GONODACTYLIDAE Giesbrecht, 1910	3
Gonodactylus chiragra (Fabricius, 1781)	3
Gonodactylus falcatus (Forskal, 1775)	3
Gonodactylus incipiens Lanchester, 1903	3
Gonodactylus lanchesteri Manning, 1967	4
Gonodactylus mutatus Lanchester, 1903	4
Gonodactylus smithii Pocock, 1893	4
Gonodactylus viridis Serène, 1954	4
Mesacturoides fimbriatus (Lenz, 1905)	4
Family ODONTODACTYLIDAE Manning, 1980	4
Odontodactylus brevirostris (Miers, 1884)	4
Odontodactylus cultrifer (White, 1850)	5
Family PROTOSQUILLIDAE Manning, 1980	5
Chorisquilla spinosissima (Pfeffer, 1888)	5
Protosquilla calypso Manning, 1974	5
Superfamily LYSIOSQUILLOIDEA Giesbrecht, 1910	6
Family LYSIOSQUILLIDAE Giesbrecht, 1910	6
Acanosquilla, new genus	6
Acanosquilla brazieri (Miers, 1880), new combination	6
Heterosquilloides insignis (Kemp, 1911)	6
Lysiosquilla hoevenii (Herklots, 1851)	7
Lysiosquilla maculata (Fabricius, 1793)	7
Family NANNOSQUILLIDAE Manning, 1980	7
Acanthosquilla derijardi Manning, 1970	7
Austrosquilla vercoi (Hale, 1924)	7
Nannosquilloides occultus (Giesbrecht, 1910)	8
Superfamily SQUILLOIDEA Latreille, 1803	8
Family HARPIOSQUILLIDAE Manning, 1980	8
Harpiosquilla harpax (De Haan, 1844)	8
Family SQUILLIDAE Latreille, 1803	8
Anchisquilla fasciata (De Haan, 1844)	8
Carinosquilla multicarinata (White, 1847)	8
Clorida gailardi Moosa, 1986	9
Clorida latreillei (Eydoux and Souleyet, 1842)	9
Clorida verrucosa (Hansen, 1926)	10
Cloridopsis immaculata (Kemp, 1913)	10
Lenisquilla lata (Brooks, 1886)	10
Lophosquilla tiwarii Blumstein, 1974	11
Oratosquilla nepa (Latreille, 1828) .. 12
Oratosquilla turbata Manning, 1978 12
Oratosquilla woodmasoni (Kemp, 1911) 12
Rissoides africanus (Manning, 1974) 13
Squilla biformis Bigelow, 1891 13
Stomatopoda from Depths Greater than 400 Meters 13
Discussion .. 15
Literature Cited .. 16
Stomatopod Crustacea Collected by the *Galathea* Expedition, 1950–1952, with a List of Stomatopoda Known from Depths below 400 Meters

Raymond B. Manning

Introduction

This report is based on the Stomatopoda collected during the voyage of the Danish vessel *Galathea* around the world between 1950 and 1952. Station data for the collections of the *Galathea* have been given by Bruun (1959), who listed the stations from below 400 meters, and by Wolff (1964), who provided data for the shallower stations. Five West African species taken by the *Galathea*, *Eurysquilla galatheae* Manning, 1977, *Lysiosquilla hoevenii* (Herklots, 1851), *Nannosquilloides occultus* (Giesbrecht, 1910), *Protosquilla calypso* Manning, 1974, and *Rissoides africanus* (Manning, 1974), were reported by Manning (1977), and the single Eastern Pacific species taken by the expedition, *Squilla biformis* Bigelow, 1891, was reported by Manning (1974b).

The majority of the stomatopods collected by the *Galathea* were taken in depths shallower than 400 meters. Only two species, *Heterosquilloides insignis* (Kemp, 1911) from 445 to 460 meters and *Squilla biformis* Bigelow, 1891, from 450 to 500 meters, were taken with certainty from below 400 meters. One specimen of the shallow-water *Austrosquilla vercoi* (Hale, 1924), was labelled as having been collected in 875 or 950 meters, but the station data accompanying the specimen are certainly erroneous.

The measurement given after the number of specimens taken at each station is total length (TL) in millimeters (mm), measured from the anterior edge of the rostral plate to a line drawn between the apices of the submedian spines of the telson. In the “Material” section, meters is abbreviated to m. Data given for each station are from the station data in Wolff (1964); if the depth on the specimen label is different, it, too, is given. All specimens are in the collections of the Zoological Museum, Copenhagen. Coordinates added by me are enclosed in parentheses and are from gazetteers of the United States Board on Geographic Names.

Acknowledgments.—I thank Torben Wolff and Poul Chr. Jeppesen, Zoological Museum, Copenhagen, for much help during the course of this study.

A visit to the Zoological Museum in 1988 was supported by the Suzanne Liebers Erickson Exchange Program of the Smithsonian Institution. This research also was supported in part by the Smithsonian through the Scholarly Studies Program and former Secretary S. Dillon Ripley’s Fluid Research Fund; that support is gratefully acknowledged.

I thank Roy K. Kropp, Battelle Ocean Sciences, Rafael Lemaitre, Smithsonian Oceanographic Sorting Center, Marjorie L. Reaka, University of Maryland, and especially David K. Camp, Florida Marine Research Institute, for reviewing the manuscript; Camp caught many inconsistencies and errors in a late draft of the manuscript, and his efforts materially improved this report.

The illustrations were prepared by my wife Lilly.

Superfamily BATHYSQUILLOIDEA Manning, 1967

Family BATHYSQUILLIDAE Manning, 1967

Bathysquilla crassispinosa (Fukuda, 1909)

Figures 1, 2

Lysiosquilla crassispinosa Fukuda, 1909:61; 1910:146, pl. 10: fig. 4.—Kemp, 1913:117.

Bathysquilla crassispinosa.—Moosa, 1986:371, pl. 1: fig. a,b.—Bruce,
FIGURE 1.—Bathysquilla crassispinosa (Fukuda, 1909); lateral view of larva, TL 40 mm, sta 200.

MATERIAL.—Sta 200, off Natal, South Africa, 29°39’S, 37°01’E, dip net at lantern light in about 5000 m, 18 Feb 1951: 1♂ larva, 40 mm.

REMARKS.—This is the first record of the larva of a bathysquillid. The presence of four pairs of marginal teeth on the telson and the pectinate propodus of the raptorial claw allow its identification as a bathysquillid. The specimen has the broad telson characteristic of Bathysquilla rather than the elongate telson found in Indosquilla. It is identified with B. crassispinosa as that is the only member of the genus known to occur in the area as an adult.

The specimen is a late larva, probably in the last pelagic larval stage preceding the molt to postlarva; the buds of the copulatory tubes are present. Among the features shown by this specimen are two dorsal spines on the carpus of the claw, the proximal very small, nine teeth on the dactylus of the claw, only one exposed thoracic somite, and an unsegmented

FIGURE 2.—Bathysquilla crassispinosa (Fukuda, 1909); larva, TL 40 mm, sta 200: a, carapace; b, raptorial claw; c, sixth abdominal somite, telson, and uropods; d, uropod; e, uropod, ventral view.
uropodal exopod. Adults of *B. crassispinosa* have 9 to 11 teeth on the claw.

Perhaps the most striking feature of this specimen is the unsegmented uropodal exopod, a characteristic of the fossil family Sculiddae (see Manning, Kropp, and Dominguez, 1990), which possibly strengthens the hypothesis that the bathysquillids comprise a very old stock of stomatopods. However, in at least some stomatopod larvae the uropodal exopod is unsegmented in the last larval stage, as shown by the last larva of the lysiosquillid *Heterosquilla tricarinata* (Claus, 1871) (Greenwood and Williams, 1984, fig. 4P). In the last larval stage of squillids the uropodal exopod also may be unsegmented or the two segments are separated by an indistinct suture, as shown by Alikunhi (1952) for various species.

The original account of this species was published by Fukuda in Japanese in 1909, not in 1910 as often cited; the 1910 version is an English translation of the original account.

DISTRIBUTION.—Indo-West Pacific, from scattered localities between Japan and South Africa, including Madagascar (Manning, Kropp, and Dominguez, 1990) and in the Coral Sea, off Australia (Bruce, 1988); in slope depths between about 200 and about 400 (350-420) meters.

Superfamily Gonodactyloidea Giesbrecht, 1910

Family Eurysquillidae Manning, 1977

Eurysquilla galatheae Manning, 1977

MATERIAL.—Sta 116, Loanda-Lobito, Angola, 12°13'S, 13°27'E, 100 m, clayey sand, 20 Dec 1950: 1q, 31 mm (holotype).

DISTRIBUTION.—West Africa, from off Angola and off Gambia; sublittoral, in 18-100 meters.

Family Gonodactylidae Giesbrecht, 1910

Gonodactylus falcatus (Forskal, 1775)

Cancer falcatus Forskal, 1775:4.

MATERIAL.—Sta 255, Mombasa, Kenya, 4°05'S, 39°54'E, coral reef, 0 m, 22 Mar 1951: 1q, 37 mm.

REMARKS.—This specimen has a median tubercle on the sixth abdominal somite, sharp central carinae on the telson, and a bilobed knob. It is clearly referable to *C. falcatus*.

This is the second record for this species in the Indian Ocean outside of the Red Sea proper and indicates that this species can be expected to occur elsewhere in the western Indian Ocean. Moosa (1984) reported it from Mauritius.

Moosa (1989) also reported this species from Japan, but as broad distribution patterns in this group of species appear to be the exception rather than the rule (Manning and Lewinsohn, 1986:9), his range extension for this species must be accepted with caution.

This species was taken with *G. smithii* at sta 255.

DISTRIBUTION.—Western Indian Ocean, from Mombasa, Kenya, Mauritius, the Red Sea, and, possibly, in the Pacific, from Japan; shore.

Gonodactylus incipiens Lanchester, 1903

DISTRIBUTION.

Figure 3

Gonodactylus chiragra var. *incipiens* a Lanchester, 1903:451, pl. 23: fig. 10.

Gonodactylus incipiens—Manning, 1967b:18, fig. 7.—Budiman and Moosa, 1983:399, 400.

Gonodactylus childi Manning, 1971:75, fig. 1 [new synonymy].

MATERIAL.—Sta 682, Makaha’a at Nukualofa, Tonga Islands, 21°07'S, 175°10'W, 0.5-1 m, coral reef, 8 Mar 1952: 1q*, 20 mm.

REMARKS.—*Gonodactylus incipiens* is one of the most common shore stomatopods in the central Pacific and, like *G. affinis* De Man, 1902, shows a wide range of variation in surface sculpture of the telson (see Moosa and Cleva, 1984a, fig. 2).

Gonodactylus childi Manning, 1971, originally described from Eniwetok Atoll, is a synonym of *G. incipiens*. A second, similar species also described from Eniwetok, *Gonodactylus micronesica* Manning (1971:77, fig. 2) is a distinct species that lives in deeper water, 100 ft (about 30 m) as opposed to shore, and that has much longer accessory median carinae on the telson. In *G. micronesica* the accessory median carinae extend anteriorly beyond the posterior slope of the anterior submedian carinae; in *G. incipiens* they barely reach the posterior edge of the anterior submedian carinae.

DISTRIBUTION.—Known with certainty from several localities in the central Pacific, including Guam, Eniwetok, the Ellice Islands, the Tuamotu Archipelago, and Australia, and in the Indian Ocean from Sri Lanka; shore.
Gonodactylus incipiens Lanchester, 1903; male, TL 20 mm, sta 682: a, rostral plate and ocular scales; b, lateral processes of sixth and seventh thoracic somites, right side; c, sixth abdominal somite, telson, and uropod; d, submedian teeth of telson, ventral view; e, uropod, ventral view.

Gonodactylus lanchesteri Manning, 1967b:11, fig. 4.—Manning and Lewinsohn, 1986:10.

MATERIAL. Sta 224, Bay at Cape Diego (12°15'S, 49°20'E), Diego Suarez, Madagascar, 0.3 m, rocks with corals, 3 Mar 1951: 29, 15 and 22 mm.

REMARKS. There is also a male of this species, TL 27 mm, from the Red Sea at Abu Sardaf, Hurghada (as Ghardaqa, 27°14'N, 33°50'E), Egypt, in the collection of the Zoological Museum, Copenhagen.

DISTRIBUTION. Western Indian Ocean, from the Red Sea to South Africa; shore.

Gonodactylus mutatus Lanchester, 1903

Gonodactylus chiragra var. mutatus Lanchester, 1903:450.

Gonodactylus mutatus. Manning, 1978a:7, figs. 4, 5, 11.—Budiman and Moosa, 1983:399, 400.

MATERIAL. Sta 415, Tubajon Bay, Philippines, 10°20'N, 125°32'E, coral reef, tidal zone, 17-19 Jul 1951: 3d, 31 mm, 29, 26-50 mm.

REMARKS. This species was taken with **G. chiragra** and **G. viridis** at sta 415.

DISTRIBUTION. Previously reported from Phuket Island, Thailand, in the Andaman Sea, and in the Pacific from Vietnam, Indonesia, the Philippines, and the Ryukyu Islands, Japan; shore.

Gonodactylus smithii Pocock, 1893

Gonodactylus Smihii Pocock, 1893:475, pl. 20B: fig. 1.

Gonodactylus smithii.—Budiman and Moosa, 1983:399, 400.

MATERIAL. Sta 255, Mombasa, Kenya, 4°05'S, 39°41'E, coral reef, 0 m, 22 Mar 1951: 1♂, 32 mm.

REMARKS.—This specimen lacks the sharp, spiniform anterolateral angles of the rostral plate characteristic of **G. acutirostris** De Man, 1898 (see Manning and Lewinsohn, 1986, fig. 2a), and so is herein referred to **G. smithii**. Both species occur in the western Indian Ocean.

This species was taken with **G. falcatus** at sta 255.

DISTRIBUTION.—Western Indian Ocean to Vietnam, Indonesia, and Australia; shore.

Gonodactylus viridis Serène, 1954

Gonodactylus chiragra var. viridis Serène, 1954:7, 10, 74, 75, 76, fig. 13-3.

MATERIAL. Sta 415, Tubajon Bay, Philippines, 10°20'N, 125°32'E, coral reef, 17-19 Jul 1951: 3♂, 21-33 mm, 2♀, 26-50 mm.

REMARKS.—**Gonodactylus viridis** was taken with **G. chiragra** and **G. mutatus** at sta 415.

DISTRIBUTION.—Previously reported from Phuket Island, Thailand, in the Andaman Sea, and in the Pacific from Vietnam, Indonesia, the Philippines, and the Ryukyu Islands, Japan; shore.

Mesacturoides fimbriatus (Lenz, 1905)

Gonodactylus fimbriatus Lenz, 1905:388, pl. 47: fig. 11.—Kemp, 1913:175.—Manning, 1962:8.

Mesacturoides raymondi Tirmizi and Kazmi, 1980:61, figs. 1, 2.

Mesacturoides fimbriatus. Manning, 1990:99.

MATERIAL. Sta 256, Mombasa, Kenya, 4°05'S, 39°41'E, 1-2 m, corals, 22 Mar 1951: 1♂, 17 mm, 1♀, 12 mm.

REMARKS.—Manning (1990) showed that **M. raymondi** Tirmizi and Kazmi was a synonym of **M. fimbriatus**.

This species was taken with **Chorisquilla spinosissima** at sta 256.

DISTRIBUTION.—Western Indian Ocean, from Zanzibar, the Seychelles, Pakistan, and now from Mombasa, Kenya; shore.

Family ODONTODACTYLIDAE Manning, 1980

Odontodyactylidae Manning, 1980:366.

Odontodactylus brevirostris (Miers, 1884)

Gonodactylus brevirostris Miers, 1884:567, pl. 52: fig. C.

Odontodactylus brevirostris.—Kemp, 1913:143.—Manning, 1967c:22, figs. 6-8.

MATERIAL. Sta 675, Raoul Island, Kermadec Islands, 29°13'S, 177°57'W, 60 m, stones, 3 Mar 1952: 1♂, 29 mm.

DISTRIBUTION.—Western Atlantic and Indo-West Pacific, from the western Indian Ocean to Hawaii; sublittoral, in about 40 to 73-424 meters, usually in less than 100 meters. Juveniles have been taken at the surface.
Odontodactylus cultrifer (White, 1850)

Gonodactylus cultrifer White, 1850:96, pl. 16: figs. 1, 2.

Odontodactylus cultrifer.—Kemp, 1913:137.—Manning, 1967c:18, fig. 5.

MATERIAL.—Sta 428, Candos Bay, Mindanao, Philippines, 9°36′N, 125°46′E, dip net at lantern light in 22 m, 30 Jul 1951: 1♀, 74 mm.

DISTRIBUTION.—Western Pacific Ocean, from Australia and New Guinea northward to Japan; shallow sublittoral.

Family PROTOSQUILLIDAE Manning, 1980

Protosquillidae Manning, 1980:366.

Chorisquilla spinosissima (Pfeffer, 1888)

Gonodactylus spinosissimus Pfeffer, 1888:35.—Kemp, 1913:191, pi. 10: figs. 124, 125.

MATERIAL.—Sta 256, Mombasa, Kenya, 4°05′S, 39°41′E, 1–2 m, corals, 22 Mar 1951: 1♂, 22 mm.

REMARKS.—There are also two males, one TL 20 mm, taken at Dana sta 3742 (anchorage at Biaro, Indonesia, 2°08.6′N, 125°21.7′E, 11 m, 6 Jul 1929), and a second, TL 21 mm, taken from reefs at the Murray Islands (9°55′S, 144°05′E) in 1888, in the Zoological Museum, Copenhagen.

This species was taken with *Mesacturoides fimbriatus* at sta 256.

DISTRIBUTION.—Indo-West Pacific, from the western Indian Ocean to Japan; shore to about 90 meters, usually in shallow water.

Protosquilla calypso Manning, 1974

Protosquilla calypso Manning, 1974a:8, fig. 1; 1977:50, figs. 10, 11, 53.

MATERIAL.—Sta 50, Islas das Rolas, São Tomé, 06°32′E, 5–8 m, coral, 29 Nov 1950: 3♂, 17–20 mm, 8♀, 11–23 mm.

DISTRIBUTION.—West Africa, from the offshore islands of the Gulf of Guinea; shore to about 69 (9–69) meters.

FIGURE 4.—*Acanthosquilla laeifrons* (De Haan, 1844); female, TL 63 mm, Nagasaki, Japan (specimen in collection of the National Museum of Natural History, Smithsonian Institution): a, front; b, rostral plate, lateral view; c, eye; d, basal antennal segment, lateral view; e, raptorial claw; f, lateral processes of exposed thoracic somites; g, sixth abdominal somite, telson, and uropod; h, telson, ventral view; i, uropod, ventral view, inner stiff setae omitted.
Superfamily LYSIOSQUILLOIDEA Giesbrecht, 1910

Family LYSIOSQUILLIDAE Giesbrecht, 1910

LYSIOSQUILLINAE Giesbrecht, 1910:148.

Acaenosquilla, new genus

DEFINITION.—A lysiosquillid of moderate to large size, maximum length about 100 mm. Cornea bilobed. Rostral plate broader than long, with subapical ventral keel fitting between separate ocular scales. Antennal protopod with 1 ventral papilla. Claw with 6 or 7 (usually 6) teeth on dactylus and 4 movable teeth on propodus. Mandibular palp and 5 epipods present. Telson with 3-spined median elevation and 3 pairs of dorsal carinae; marginal armature consisting of row of small submedian denticles, 1 movable submedian tooth, 4 intermediate denticles, 1 intermediate tooth, 1 lateral denticle, and 1 lateral tooth. Ventral surface of telson with strong postanal tooth. Uropodal endopod lacking strong proximal fold on outer margin.

TYPE SPECIES.—Lysiosquilla latifrons De Haan, 1844 (Figure 4). The genus includes Acaenosquilla latifrons from Japan and A. brazieri (Miers, 1880) from Australia and New Zealand (see accounts of these species in Stephenson, 1962:38, 39).

ETYMOLOGY.—From the Greek, akaina (thorn) and the generic name Squilla, alluding to the postanal spine present in members of the genus. The gender is feminine.

REMARKS.—The combination of the ventrally-keeled rostral plate and the postanal spine will distinguish this genus from all other genera in the family.

Heterosquilloides insignis (Kemp, 1911)

FIGURE 5

Lysiosquilla insignis Kemp, 1911:94; 1913:126, pl. 9: figs. 99-102.
Heterosquilla (Heterosquilloides) zarenkovi Makarov, 1978:179, fig. 2 [new synonymy].
Heterosquilloides insignis.—Moosa, 1986:386, pl. 1: fig. c.

MATERIAL.—Sta 196, off Durban, South Africa, 29°55'S, 30°20'E, 445-460 m, sandy mud, 13-14 Feb 1951: 1♂, 42 mm.

REMARKS.—I can see no differences between H. zarenkovi Makarov from Vietnam and H. insignis, which has been recorded from the Philippines by Moosa (1986), so I consider Makarov's species to be a synonym of the latter. Even the sculpture of the telson in Makarov's species appears to be identical with that shown here.

DISTRIBUTION.—Indian Ocean, from South Africa and the Andaman Islands, and Pacific Ocean from the Philippines and Vietnam; in depths between 275 and 415-510 meters.
Lysiosquilla hoevenii (Herklots, 1851)

Squilla Hoevenii Herklots, 1851:17, 26, pl. 1: fig. 11.

Lysiosquilla hoevenii.—Manning, 1977:74, figs. 20, 21, 26a-c, 54.

MATERIAL.—Sta 48, São Tomé, 00°22'N, 06°46'E, 10 m, anchorage, 28 Nov 1950: 3♂, 106-118 mm.

DISTRIBUTION.—West Africa, from the Cape Verde Islands to Angola; shallow water to 30 meters.

Lysiosquilla maculata (Fabricius, 1793)

Squilla maculata Fabricius, 1793:511.

Lysiosquilla maculata.—Kemp, 1913:111, pl. 8: figs. 86-91.—Manning, 1978b:3, figs. 1-3, 9.

MATERIAL.—Sta 269, Port Victoria (4°37'S, 55°27'E), Mahé, Seychelles, anchorage, dip net at lantern light in 28 m, 29 Mar 1951: 2♂, 146-167 mm, 1♀, 140 mm.

DISTRIBUTION.—Widely distributed in the Indo-West Pacific, from the western Indian Ocean to Japan; shallow water.

Family NANNOSQUILLIDAE Manning, 1980

NANNOSQUILLIDAE Manning, 1980:368.

Acanthosquilla derijardi Manning, 1970

FIGURE 6

MATERIAL.—Sta 454, Java Sea, 5°23'S, 116°02'E, 60 m, coral-clay, 25 Aug 1951: 1♀, 21 mm.

REMARKS.—This species was taken with *Lenisquilla laia* at Sta 454.

Moosa and Cleva (1984) questioned their record of this species from the Seychelles as their specimen was in poor condition.

DISTRIBUTION.—Known from scattered localities between the Red Sea and the Caroline Islands, including Madagascar and the Seychelles in the Indian Ocean, and from Borneo, Indonesia, the Philippines, and the Caroline Islands in the Pacific; shore to 60 meters.

Austrosquilla vercoi (Hale, 1924)

FIGURE 7

Lysiosquilla vercoi Hale, 1924:499, fig. 383, pl. 33: fig. 2
FIGURE 7.— Austrosquilla vercoi (Hale, 1924); female, TL 22 mm, sta 555: a, front; b, sixth abdominal somite, telson, and uropod.

Heterosquilla (Austrosquilla) vercoi.—Manning, 1966:130, fig. 10.

Material.—Sta 555, Great Australian Bight, 37°31'S, 138°44'E, 875 m (950 m on label), sand, a little clay, 6 Dec 1951: 1♂, 22 mm.

Remarks.—This small specimen is clearly referable to *A. vercoi* but differs from adults in several features: the eye is broader, the antennal papillae are scarcely visible, the rostral spine is longer, the distal segment of the uropodal exopod is longer, and there are fewer stiff setae on the inner margin of the proximal segment of the uropodal exopod.

Distribution.—Australia and Tasmania; shore and shallow sublittoral.

Nannosquilloides occultus (Giesbrecht, 1910)

Nannosquilloides occultus.—Manning, 1977:91, figs. 27, 54.

Material.—Sta 89, off Congo River, 06°26'S, 11°01'W, 100 m, 9 Dec 1950: 1♂, 15.5 mm.

Sta 115, Loanda-Lobito, Angola, 12°14'S, 13°25'E, 200 m, clayey sand, 20 Dec 1950: 1♀, 15 mm.

Distribution.—Mediterranean Sea and off West Africa, from Senegal to Angola; sublittoral.

Superfamily Squilloidea Latreille, 1803

Family Harpiosquillidae Manning, 1980

Harpiosquilla harpax (De Haan, 1844)

Squilla harpax De Haan, 1844: atlas, pl. 51: fig. 1; 1849:222.—Tiwari and Harpiosquilla harpax.—Manning, 1969b:25, figs. 28-38.—Moosa, 1986:390.

Material.—Sta 305, Bay of Bengal, Ceylon-Calcutta, 20°51'N, 87°58'E, 43-52 m, mud, 26 Apr 1951: 5♂, 70-105 mm, 3♀, 77.5-98 mm.

Remarks.—This species was taken with *Lophosquilla tiwarii* at sta 305.

Distribution.—Widely distributed in the Indo-West Pacific region, from the western Indian Ocean to Japan; sublittoral, in depths of less than 100 m.

Family Squillidae Latreille, 1803

Squillares Latreille, 1803:36.

Anchisquilla fasciata (De Haan, 1844)

Squilla fasciata De Haan, 1844: atlas, pl. 51: fig.4; 1849:224.—Kemp, 1913:34, pl. 1: figs. 21-23.

Material.—Sta 451, Makassar Strait, 01°25'S, 117°05'E, 50-60 m, mud with shells, 23 Aug 1951: 2 damaged specimens.

Sta 531, 1 sea mile S of Port Moresby, New Guinea (9°30'S, 147°07'E), 30 m, mud, gravel, 25 Oct 1951: 1♂, 24 mm.

Distribution.—Known from scattered localities in the Indo-West Pacific, from the Red Sea to Japan; sublittoral, usually in depths shallower than 100 m.

Carinosquilla multicarinata (White, 1847)

Squilla multicarinata White, 1847:144, pl. 6: fig. 1.—Kemp, 1913:86, pl. 6: figs. 73-76.

Material.—Sta 360, 300 m W of Sultan Shoal Lighthouse (Sultan Shoal = 1°15'N, 103°39'E), Singapore, 25 m, muddy sand with fragments of corals and shells, 31 May 1951: 1♀,
Clorida gaillardi Moosa, 1986

Figure 8.—Clorida gaillardi Moosa, 1986; female, TL 41 mm, sta 380: a, front; b, eye; c, raptorial claw; d, lateral processes of fifth to seventh thoracic somites; e, sixth abdominal somite, telson, and uropod; f, uropod, ventral view.

Remarks.—Naiyanetr (1983:399) has provided keys to the species of Carinosquilla.

Distribution.—Pacific Ocean, from Japan to Australia; sublittoral.

Clorida gaillardi Moosa, 1986

Clorida gaillardi Moosa, 1986:396, fig. 9.

Material.—Sta 380, off Kerteh, Trengganu, Malaysia, 04°43'N, 103°43'E, 48 m, 7 Jun 1951: 19, 41 mm.

Remarks.—This specimen agrees well with the original account of this species by Moosa. This species could easily be confused with *Clorida latreillei* (Eydoux and Souleyet, 1842), also taken by the *Galathea*, but differs in having a much larger lateral process on the fifth thoracic somite, more spines on abdominal carinae, less ornamentation on the telson, and a larger lobe between the spines of the basal prolongation of the uropod. *Clorida gaillardi* was taken with *C. verrucosa* at sta 380.

Distribution.—Previously known only from the Philippines and now from Malaysia; sublittoral, in 36-37 and 41 meters.

Clorida latreillei (Eydoux and Souleyet, 1842)

Clorida latreillei Eydoux and Souleyet, 1842:265, pi. 5: figs. 2- 5.

Material.—Sta 225, Bay at Cape Diego (12°15'N, 49°20'E), Diego Suarez, Madagascar, 6–8 m, sand with mud and stones, 3 Mar 1951: 19, 57 mm.

Remarks.—I believe that the features of *Clorida javanica* Moosa fall within the range of variation of characters of *C. latreillei* and that these taxa are synonymous. Moosa (1974:79) noted that *C. javanica* keyed out to *C. latreillei* in the key given by Manning (1968a:4–5). He also noted that *C. javanica* differed from *C. latreillei* in several features, as follows: the shape of the lateral process of the fifth thoracic somite; the lack of spines on the marginal carinae of the abdomen, except for that on the fifth somite; the absence of a postanal keel; and the color pattern.

The shape of the lateral process of the fifth thoracic somite and the numbers of spined marginal carinae on the abdomen are both variable features; the latter may differ from side to side in this species. Color pattern in preserved specimens may also be variable and is dependent at least in part on method of preservation.

This leaves the presence or absence of a postanal keel as the main character separating these two species. When present, the keel may be well developed and rather long or it may be low and short (Manning, 1969a:8). Numerous features of members of *Clorida* have proven to be variable, including presence or absence of a structure within a given species (see below, under *C. verrucosa*), and variability may be the rule rather than the exception in *Clorida*.

Distribution.—Widely distributed in the Indo-West Pa-
specific, from the western Indian Ocean to Japan; sublittoral.

Clorida verrucosa (Hansen, 1926)

FIGURES 10, 11

Squilla microphthalmalma.—Kemp and Chopra, 1921:299 [part; not *S. microphthalmalma* H. Milne Edwards, 1837].

Squilla verrucosa Hansen, 1926a, pl. 1: fig. 1.—Manning, 1968b:124.

Squilla merguiensis Tiwari and Biswas, 1952:350, fig. 1a.—Manning, 1968b:124 [new synonymy].

Clorida verrucosa.—Manning, 1968a:5 [key].—Anonymous, 1972:27.—Blumstein, 1974:116, fig. 5.—Manning, 1976:10, fig. 5.—Makarov, 1979:42, fig. 2.

Clorida merguiensis.—Manning, 1968a:5 [key].—Blumstein, 1974:116, fig. 4.—Manning, 1976:8, fig. 4.—Makarov, 1979:44, fig. 3.—Moosa, 1986:400 [new synonymy].

MATERIAL.—Sta 294, off Tranquebar, India, 11°10'N, 79°59'E, 50 m, coarse sand and mud, 22 Apr 1951: 1♀, 32 mm.

Sta 380, off Kerteh, Trengganu, Malaysia, 4°43'N, 103°43'E, 48 m, 7 Jun 1951: 1♂, 16 mm.

Sta 381 IX, Gulf of Thailand, 7°00'N, 103°18'E, 55 m, mud, a little sand and shells, 8 Jun 1951: 1♂, 17 mm.

REMARKS.—These three specimens exhibit so much variability in characters that until now were considered to be diagnostic in members of this genus that I am convinced that *Clorida verrucosa* and *Clorida merguiensis* are synonyms. The two smaller specimens lack a mandibular palp, but it is clearly present in the larger female, as reported by Makarov (1979) in material from the Bay of Tonkin. The rostral carina is absent in two specimens, present in the male from the Gulf of Thailand. The postanal keel is well developed in the larger specimen, indistinct in the smaller ones. The larger specimen lacks submedian abdominal carinae, but they are present on the fifth and sixth somites in the adult male from sta 381 IX. The submedian carinae are spined only on the sixth somite in all specimens. I can find no characters that can be used to separate *C. merguiensis* from *C. verrucosa.*

Clorida verrucosa was taken with *C. gaillardi* at sta 380.

DISTRIBUTION.—Indo-West Pacific, from Malaya, Indonesia, the Philippines, Vietnam, and the Gulf of Siam in the Pacific, and from the Mergui Archipelago and southern India in the Indian Ocean; sublittoral, in depths between 13-31 and 70-140 meters.

Cloridopsis immaculata (Kemp, 1913)

Squilla scorpio var. immaculata Kemp, 1913:45, pl. 2: fig. 31.

MATERIAL.—Sta 344, Singapore Island (1°22'S, 103°48'E), traps in prawn ponds in mangrove swamps, tidal zone, mud, 22 May 1951: 3, 82-86 mm.

DISTRIBUTION.—Indo-West Pacific, from Pakistan and India, and now from Singapore; shore.

Lenisquilla lata (Brooks, 1886)

FIGURE 12

Squilla lata Brooks, 1886:34, pl. 3: figs. 1-3.—Kemp, 1913:37, pl. 2: fig. 24.

Squilloides lata.—Manning, 1969a:13, fig. 4.
FIGURE 10.—Clorida verrucosa (Hansen, 1926); female, TL 32 mm, sta 294: a, front; b, eye; c, raptorial claw; d, lateral processes of fifth to seventh thoracic somites; e, sixth abdominal somite, telson, and uropod; f, uropod, ventral view.

Squilloides latus spinosus Blumstein, 1970:223, figs. 4, 5 [new synonymy].
Squilloides espinosus Blumstein, 1974:121, fig. 7 [new synonymy].
Lophosquilla tiwarii—Moosa and Cleva, 1984b:78 [error for *Lenisquilla lata*].

MATERIAL.—Sta 454, Java Sea, 05°23'S, 116°02'E, 60 m, coral-clay, 25 Aug 1951: 1 damaged, carapace length 6.4 mm.

REMARKS.—In his account of this species, Kemp (1913:38) reported on material from Burma, pointed out differences between that material and Brooks’ original description, and suggested that his Burmese specimens might belong to a distinct species. The differences discussed by Kemp included the apparent lack of a distal spine on the basal segment of the uropods and the presence of more spines on the abdominal carinae in Brooks’ material. Blumstein (1970) considered material from the Gulf of Tonkin to be conspecific with Kemp’s material from Burma and subspecifically distinct from Brooks’ species.

I examined the types of *Squilla lata* Brooks at The Natural History Museum, London (formerly British Museum (Natural History)), a male TL 74 mm (Figure 12) and a female TL 75 mm. The differences pointed out by Kemp are due to errors in Brooks’ original account. The types have a distinct distal spine on the basal segment of the uropod (not illustrated here), and have the following abdominal carinae armed with spines: submedian 6, intermediate 3–6, lateral 2–6, and marginal 1–5.

I consider *Squilloides latus spinosus* Blumstein, 1970 to be a synonym of *Lenisquilla lata* (Brooks, 1886). Moosa (1986:404) already pointed out that *Squilloides espinosus* Blumstein, 1974, is based on a juvenile of *Lenisquilla lata*.

The synonymy given under the first reference to *Lophosquilla tiwarii* in Moosa and Cleva (1984b) makes it clear that they were dealing with *Lenisquilla lata*.

Lenisquilla lata was taken with *Acanthosquilla derijardi* at Sta 454.

DISTRIBUTION.—Indo-West Pacific, from the Arafura Sea, the Java Sea, Indonesia, Vietnam, Mozambique, and the Red Sea; sublittoral, in 60 to 150 meters.

Lophosquilla tiwarii Blumstein, 1974

Squilla castata—Kemp, 1913:84, pl. 6: figs. 70–72 [part, specimen from Burma; not *Squilla castata* De Haan, 1844].

MATERIAL.—Sta 305, Bay of Bengal, Ceylon-Calcutta, 20°51'N, 87°58'E, 43–52 m, mud, 26 Apr 1951: 1♂, 50 mm, 1♀, 51.5 mm.

REMARKS.—This species was taken with *Harpiosquilla*...
Oratosquilla nepa (Latreille, 1828)

Squilla nepa Latreille, 1828:471.—Kemp, 1913:60, pl. 4: fig. 49.

Material.—Sta 341, Singapore (1°20'N, 103°50'E), bought in market, 21 May 1951: 1♀, 101 mm.
Sta 373, off Kerteh, Trengganu, Malaysia, 4°30'N, 103°28'E, dip net at lantern light in 10 m, 6/7 Jun 1951: 1 broken specimen.

Distribution.—Indo-West Pacific, from the western Indian Ocean to Hong Kong, Malaysia, and Vietnam; shallow sublittoral.

Oratosquilla turbata Manning, 1978

Oratosquilla woodmasoni (Kemp, 1911)

Squilla wood-masoni.—Kemp, 1911:99; 1913:74, pl. 5: figs. 63-65.

Material.—Sta 347, 1 kilometer E of Tanjong Rhu (1°18'N, 103°52'E), off Singapore, 3 m, gravel and sand with mud, 23 May 1951: 1♀, 80 mm.
DISTRIBUTION.—Widely distributed in the Indo-West Pacific, from the western Indian Ocean to the Philippines; shallow sublittoral.

Rissoides africanus (Manning, 1974)

Meiosquilla africana Manning, 1974a:16, fig. 5; 1977:117, figs. 38, 56.

MATERIAL.—Sta 122, NW of lighthouse, Lobito, Angola, 12°20'S, 13°40'E, 20 m, mud with sand and clay, 20 Dec 1950: 1♀, 27 mm.

DISTRIBUTION.—West Africa, from Mauritania to Angola; sublittoral, in 15–100 meters.

Squilla biformis Bigelow, 1891

Squilla biformis Bigelow, 1891:94; 1894:532, fig. 20, pl. 21.—Manning, 1974b:108.

MATERIAL.—Sta 741, Gulf of Panama, 07°28′N, 79°36′W, 450 m (500 m on label), 15 May 1952: 3♀, 51–57 mm.

DISTRIBUTION.—Eastern Pacific, from the Gulf of California, Gulf of Panama, and off Peru.

Stomatopoda from Depths Greater than 400 Meters

Records of stomatopods reported from depths exceeding 400 meters that I have been able to find are summarized below. The depth of 400 meters is not considered to be any kind of natural boundary but was chosen to match the depth selected by the editors of the *Galathea Reports* as the upper limit of the deep-sea fauna (see Wolff, 1964).

Not included here are Chopra’s (1939) records of *Gonodactylus chiragra* (Fabricius, 1781) and *Natosquilla investigatoris* (Lloyd, 1907) from 1295 meters and the record given above of *Austrosquilla vercoi* from 875 meters, as both of these depths are well beyond the known depth ranges of these species. *Gonodactylus chiragra* and *A. vercoi* are both shore species and *N. investigatoris* is a pelagic species (Losse and Merrett, 1971).

The depth given in brackets following the species name is the overall depth range of the species.

BATHYSQUILLIDAE

Altosquilla soelae Bruce, 1985 [396–402 to 456–458 m]

396–402, 404, 416–420, and 456–458 m

Bruce, 1985:469

Bathysquilla crassispinosa (Fukuda, 1909) [170–200 to 350–420 m]

350–420 m

Manning, Kropp, and Dominguez, 1990:312

Bathysquilla microps (Manning, 1961) [604–769 to 1245–1519 m]

720–926 m

732 and 915–952 m

Takeda, 1983:171

732–860 m

Manning, 1961:693; 1969c:96; Bullis and Thompson, 1965:13

604–769, 681–769, 723, 731–786, and 1281 m

Bullis and Thompson, 1965:13; Manning, 1969c:96

750–925 and 865–866 m

Manning and Struhsaker, 1976:443

622, about 640, 1042–1070, 1245–1519, and 1235–1272 m

Moosa, 1986:371, 373

Indosquilla manihinei Ingle and Merrett, 1971 [420 to 458–586 m]

420 m

458–586 m

Ingle and Merrett, 1971:193

*Manning, Kropp, and Dominguez, 1990:314

EURYSQUILLIDAE

Eurysquilla chacei Manning, 1969 [419 m]

419 m

Manning, 1969c:257

Eurysquilla sewelli (Chopra, 1939) [695 m]

695 m

Chopra, 1939:166
LYSOSQUILLIDAE

Heterosquilloides insignis (Kemp, 1911) [275 to 415–510 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>430 m</td>
<td>Kemp, 1913:128; Ghosh and Manning, 1988:655</td>
</tr>
<tr>
<td>415–510 m</td>
<td>Moosa, 1986:386</td>
</tr>
<tr>
<td>445–460 m</td>
<td>herein</td>
</tr>
</tbody>
</table>

ODONTODACTYLIDAE

Odontodactylus brevirostris (Miers, 1884) [35 to 426–439 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>426–439 m</td>
<td>Bigelow, 1931:150, as O. hansenii (Pocock, 1893); Manning, 1967c: 23, as 424–73 m, in error</td>
</tr>
</tbody>
</table>

PSEUDOSQUILLIDAE

Parasquilla ferussaci (Roux, 1828) [100 to 505–650 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>252–550 m</td>
<td>Figueiredo, 1962:5</td>
</tr>
<tr>
<td>505–650 m</td>
<td>Arena and Li Greci, 1973:166</td>
</tr>
</tbody>
</table>

SQUILLIDAE

Fennerosquilla heptacantha (Chace, 1939) [105 to 458 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>395–404 m</td>
<td>Manning, 1969c:171</td>
</tr>
<tr>
<td>421 m</td>
<td>Bullis and Thompson, 1965:13; Manning, 1969c:171</td>
</tr>
<tr>
<td>439 m</td>
<td>Bullis and Thompson, 1965:13; Springer and Bullis, 1956:22; Manning, 1969c:171</td>
</tr>
<tr>
<td>458 m</td>
<td>Bullis and Thompson, 1965:13; Manning, 1969c:173</td>
</tr>
</tbody>
</table>

Kempina mikado (Kemp and Chopra, 1921) [58 to 753–804 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>490–588, 740–785, and 753–804 m</td>
<td>Manning, 1981:298, as Kempina zanzibarica (Chopra, 1939)</td>
</tr>
</tbody>
</table>

Kempina stridulans (Wood-Mason, 1894 in Alcock, 1894) [122 to 439 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>439 m</td>
<td>Kemp, 1913:80; Ghosh and Manning, 1988:659</td>
</tr>
</tbody>
</table>

Squilla biformis Bigelow, 1891 [156 to 474 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 m</td>
<td>Manning, 1974b:108; herein</td>
</tr>
<tr>
<td>474 m</td>
<td>Bigelow, 1894:534</td>
</tr>
</tbody>
</table>

Squilla caribaea Manning, 1969 [190 to 366–439 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>366–439 m</td>
<td>Manning, 1969c:235</td>
</tr>
</tbody>
</table>

Squilla intermedia Bigelow, 1893 [291 to 659–824 m]

<table>
<thead>
<tr>
<th>Depth</th>
<th>Reference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>410, 428–473, 464–491, and 546 m</td>
<td>Manning, 1969c:229</td>
</tr>
<tr>
<td>458 m</td>
<td>Springer and Bullis, 1956:22; Bullis and Thompson, 1965:13; Manning, 1969c:229</td>
</tr>
<tr>
<td>619 m</td>
<td>Bigelow, 1894:530; Manning, 1969c:228</td>
</tr>
</tbody>
</table>
DISCUSSION.—Only 17 of about 400 species of Stomatopoda (see Reaka and Manning, 1986) are known to occur in depths exceeding 400 meters, but 13 of the 17 have been taken in depths of less than 400 meters; most of the 17 species are sublittoral species that frequent the outer shelf and upper slope. All four bathysquillids have been taken in depths of more than 400 meters, but even one of these, *B. crassispinosa*, occurs in shallower water, too.

At the family level, representatives of only 6 of the 13 recognized families have been taken in more than 400 meters, the shore-dwelling gonodactylids, protosquillids, and nanosquillids being conspicuously absent from slope habitats. Other than the bathysquillids, 2 of 25 eurysquillids (8%), 1 of 26 lysiosquillids (4%), 1 of 5 odontodactylids (20%), 1 of 20 pseudosquillids (5%), and 8 of 149 squillids (5%) have been found in more than 400 meters. The low numbers of species living in such deep waters is reflected also at the generic level. Whereas all three bathysquillid genera (100%) are represented in these deep habitats, only 1 of 5 eurysquillid genera (20%), 1 of 5 lysiosquillid genera (20%), 1 of 4 pseudosquillid genera (25%), and 4 of 27 squillid genera (15%) even occur there. As one species of *Odontodactylus* has been taken below 400 meters, 100% of odontodactylid genera are found there.

There appears to be no clear geographic pattern to the occurrence of stomatopods in outer slope habitats. Only 1 of 30 eastern Atlantic (3%), 5 of 77 western Atlantic (6%), 1 of 50 eastern Pacific (2%), and 11 of about 250 Indo-West Pacific (4%) species occur in such depths, reflecting the shallow-water characteristics of the group.
Literature Cited

Alcock, A.

Alikunhi, K.H.

Anonymous

Bigelow, R.P.

Bruce, A.J.

Budiman, A., and M.K. Moosa

Bulis, H.R., Jr., and J.R. Thompson

Chace, F.A., Jr.
1939. Preliminary Descriptions of One New Genus and Seventeen New Species of Decapod and Stomatopod Crustacea; Reports on the Scientific Results of the First Atlantis Expedition to the West Indies, under the Joint Auspices of the University of Havana and Harvard University. Memorias de la Sociedad Cubana de Historia Natural, 13(1):31–54.

Chopra, B.

Claus, C.

Eydoux, F., and L.F.A. Souleyet

Fabricius, J.C.

Figueiredo, M.J.

Fortikl, P.

Fukuda, T.

Ghosh, H.C., and R.B. Manning

Giesbrecht, W.

Greenwood, J.G., and B.G. Williams

Haan, W. de
1833–1850. Crustacea. In P.F. von Siebold, Fauna japonica sive description animalium, quae in insinis per japoniam, jussu et auspiciis superiorum, qui sumnum in India habuas imperium tenent, suscepto, annis 1823–1830 colligui, notis, observationibus et adumbrationi-
1911. Preliminary Descriptions of New Species and Varieties of Crustacea
Additamenta ad faunam carcinologicam Africae Occidentalis, sive
descriptiones specierum novarum e crustaceorum ordine, quas in
Guineo collegit vir strenuus H.S. Pel, praefectus residentiis in littore
Guineos, 28 pages, 2 plates. Lugdrumi-Batavorum [Leiden].

Hofhuis, L.B.
1975. Acanthosquilla demijardi Manning, 1970, a Stomatopod New to the

Ingle, R.W., and N.R. Merritt
1971. A Stomatopod Crustacean from the Indian Ocean, Indosquilla
manihinei gen. et sp. nov. (Family Bathysquillidae) with Remarks on

Kemp, S.
1911. Preliminary Descriptions of New Species and Varieties of Crustacea
Stomatopoda in the Indian Museum. Records of the Indian Museum,
6(2):93–100.

1913. An Account of the Crustacea Stomatopoda of the Indo-Pacific
Region, Based on the Collection in the Indian Museum. Memoirs of

Kemp, S., and B. Chopra

Lancaster, W.F.
1903. Marine Crustaceans, VIII: Stomatopoda, with an Account of the
Varieties of Gonodactylus chiraegre. In J.S. Gartner, The Fauna and
Geography of the Maldives and Laccadive Archipelagoes; Being the
Account of the Work Carried on and of the Collections Made by an
Expansion during the Years 1899 and 1900, 1:444–459.

Latreille, P.A.
1803. Histoire Naturelle, Générale et Particulière, des Crustacés et des

1828. Squille, Squilla. Entomologie ou histoire naturelle de crustacés,
arachnides et des insectes. In Encyclopédie Méthodique, 10:467–

Lenz, H.
1905. Ostfriesische Dekapoden und Stomatopoden gesammelt von
Herrn Prof. Dr. A. Voeltzow. In A. Voeltzow, Wissenschaftliche
Ergebnisse der Reisen in Madagaskar und Ostafrika in den Jahren
1889–95, volume 3. Abhandlungen der Senckenbergischen Natur-

Lloyd, R.E.
1907. Contributions to the Fauna of the Arabian Sea, with Descriptions of

Losse, G.F., and N.R. Merritt
1971. The Occurrence of Oratosquilla investigatior (Crustacea: Stomatopa-
da) in the Pelagic Zone of the Gulf of Aden and the Equatorial
Western Indian Ocean. Marine Biology, 10(3):244–253.

Makarov, R.R.
1978. New Data on Crustaceans of the Families Lysiosquillidae and
Gonodactylidae (Crustacea, Stomatopoda) from the Tonkin Bay
(Vietnam). Zoologicheskij Zhurnal (Moscow), 57:176–189. [In
Russian.]

Eydoux & Souleyet, 1842, from Tonkin Bay, Vietnam. Crustacea,

Man, J.G., de
1898. Bericht über die von Herrn Schiffscaptän Storm zu Atjeh, an den
westlichen Küsten von Malakka, Borneo und Celebes sowie in der
Java-See gesammelten Decapoden und Stomatopoden, sechster
(sluss-) Theil. In Zoologische Jahrbücher, Abteilung für Sys-
tematik, Geographie und Biologie der Thiere, 10:677–708, plates
28–38.

1902. Die von Herrn Professor Kükmahl im Indischen Archipel gesam-
metenen Dekapoden und Stomatopoden. In Kükmahl, Ergebnisse
einer zoologischen Forschungsreise in den Molukken und Borneo.
Abhandlungen der Senckenbergischen Naturforschenenden Ge-

Manning, R.B.
1961. A New Deep-Water Species of Lysiosquilla (Crustacea, Stomatopa-
da) from the Gulf of Mexico. Annals and Magazine of Natural

1962. Stomatopod Crustacea Collected by the Yale Seychelles Expedition,

1966. Notes on Some Australian and New Zealand Stomatopod Crustaceas,
with an Account of the Species Collected by the Fisheries
Investigation Ship Endeavour. Records of the Australian Museum,
27(4):79–137.

1967a. Preliminary Account of a New Genus and a New Family of

1967b. Notes on the demawn Section of Genus Gonodactylus Berthold with
Descriptions of Three New Species. Proceedings of the United

1968b. A Revision of the Family Squillidae (Crustacea, Stomatopoda), with
the Description of Eight New Genera. Bulletin of Marine Science,

Smithsonian Contributions to Zoology, 1:17 pages.

1969b. A Revision of the Genus Harpiosquilla (Crustacea, Stomatopoda),
with Descriptions of Three New Species. Smithsonian Contributions
to Zoology, 36: iii + 41 pages.

1969c. Stomatopod Crustaceae of the Western Atlantic. Studies in Tropical
Oceanography, Miami, 8: viii + 380 pages.

du Museum National d'Histoire Naturelle, Paris, series 2,

1970b. Two New Stomatopod Crustaceans from Australia. Records of the

1971. Two New Species of Gonodactylus (Crustacea, Stomatopoda) from
Eniwetok Atoll, Pacific Ocean. Proceedings of the Biological

1974a. Campagne de la Calypso dans le Golfe de Guinée et aux Des
Principe, São Tomé et Annobon (1956), et campagne aux Iles du
scientifiques de les campagnes de la "Calypso," fascicule 10. Annales

1976. Redescriptions of Oratosquilla indica (Hansen) and Clorida
verrucosa (Hansen), with Accounts of a New Genus and Two New

1978a. Notes on Some Species of the Falcatus Group of Gonodactylus
(Crustacea: Stomatopoda: Gonodactylidae). Smithsonian Contribu-
tions to Zoology, 25: ii + 15 pages.

REQUIREMENTS FOR SMITHSONIAN SERIES PUBLICATION

Manuscripts intended for series publication receive substantive review (conducted by their originating Smithsonian museums or offices) and are submitted to the Smithsonian Institution Press with Form SI-36, which must show the approval of the appropriate authority designated by the sponsoring organizational unit. Requests for special treatment—use of color, foldouts, case-bound covers, etc.—require, on the same form, the added approval of the sponsoring authority.

Review of manuscripts and art by the Press for requirements of series format and style, completeness and clarity of copy, and arrangement of all material, as outlined below, will govern, within the judgment of the Press, acceptance or rejection of manuscripts and art.

Copy must be prepared on typewriter or word processor, double-spaced, on one side of standard white bond paper (not erasable), with 1 1/4" margins, submitted as ribbon copy (not carbon or xerox), in loose sheets (not stapled or bound), and accompanied by original art. Minimum acceptable length is 30 pages.

Front matter (preceding the text) should include: title page with only title and author and no other information, abstract page with author, title, series, etc., following the established format, table of contents with indents reflecting the hierarchy of heads in the paper; also, foreword and/or preface, if appropriate.

First page of text should carry the title and author at the top of the page; second page should have only the author's name and professional mailing address, to be used as an unnumbered footnote on the first page of printed text.

Center heads of whatever level should be typed with initial caps of major words, with extra space above and below the head, but no other preparation (such as all caps or underline, except for the underline necessary for generic and specific epithets). Run-in paragraph heads should use period/dashes or colons as necessary.

Tabulations within text (lists of data, often in parallel columns) can be typed on the text page where they occur, but they should not contain rules or numbered table captions.

Formal tables (numbered, with captions, boxheads, stubs, rules) should be submitted as carefully typed, double-spaced copy separate from the text; they will be typeset unless otherwise requested. If camera-copy use is anticipated, do not draw rules on manuscript copy.

Taxonomic keys in natural history papers should use the aligned-couplet form for zoology and may use the multi-level indent form for botany. If cross referencing is required between key and text, do not include page references within the key, but number the keyed-out taxa, using the same numbers with their corresponding heads in the text.

Synonymy in zoology must use the short form (taxon, author, year:page), with full reference at the end of the paper under "Literature Cited." For botany, the long form (taxon, author, abbreviated journal or book title, volume, page, year, with no reference in "Literature Cited") is optional.

Text-reference system (author, year:page used within the text, with full citation in "Literature Cited" at the end of the text) must be used in place of bibliographic footnotes in all Contributions Series and is strongly recommended in the Studies Series. (Jones, 1910:122) or "... Jones (1910:122)." If bibliographic footnotes are required, use the short form (author, brief title, page) with the full citation in the bibliography.

Footnotes, when few in number, whether annotative or bibliographic, should be typed on separate sheets and inserted immediately after the text pages on which the references occur. Extensive notes must be gathered together and placed at the end of the text in a notes section.

Bibliography, depending upon use, is termed "Literature Cited," "References," or "Bibliography." Spell out titles of books, articles, journals, and monographic series. For book and article titles use sentence-style capitalization according to the rules of the language employed (exception: capitalize all major words in English). For journal and series titles, capitalize the initial word and all subsequent words except articles, conjunctions, and prepositions. Transliterate languages that use a non-Roman alphabet according to the Library of Congress system. Underline (for italics) titles of journals and series and titles of books that are not part of a series. Use the parentheses/colon system for volume (number), pagination: "10(2):5-9." For alignment and arrangement of elements, follow the format of recent publications in the series for which the manuscript is intended. Guidelines for preparing bibliography may be secured from Series Section, SI Press.

Legends for illustrations must be submitted at the end of the manuscript, with as many legends typed, double-spaced, to a page as convenient. Illustrations must be submitted as original art (not copies) accompanying, but separate from, the manuscript. Guidelines for preparing art may be secured from Series Section, SI Press. All types of illustrations (photographs, line drawings, maps, etc.) may be intermixed throughout the printed text. They should be termed Figures and should be numbered consecutively as they will appear in the monograph. If several illustrations are treated as components of a single composite figure, they should be designated by lowercase italic letters on the illustration; also, in the legend and in text references the italic letters (underlined in copy) should be used: "Figure 9b." Illustrations that are intended to follow the printed text may be termed Plates, and any components should be similarly lettered and referenced: "Plate 9b." Keys to any symbols within an illustration should appear on the art rather than in the legend.

Some points of style: Do not use periods after such abbreviations as "mm, ft, USNM, NNE." Spell out numbers "one" through "nine" in expository text, but use digits in all other cases if possible. Use of the metric system of measurement is preferable, where use of the English system is unavoidable, supply metric equivalents in parentheses. Use the decimal system for precise measurements and relationships, common fractions for approximations. Use day/month/year sequence for dates: "9 April 1976." For months in tabular listings or data sections, use three-letter abbreviations with no periods: "Jan, Mar, Jun," etc. Omit space between initials of a personal name: "J.B. Jones."

Arrange and paginate sequentially every sheet of manuscript in the following order: (1) title page, (2) abstract, (3) contents, (4) foreword and/or preface, (5) text, (6) appendixes, (7) notes section, (8) glossary, (9) bibliography, (10) legends, (11) tables. Index copy may be submitted at page proof stage, but plans for an index should be indicated when manuscript is submitted.