PART I. HISTORY, PHYSIOGRAPHY, BOTANY, AND ISLE DESCRIPTIONS

BY

ANGELA K. KEPLER AND CAMERON B. KEPLER
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>B. History of Caroline Atoll</td>
<td>6</td>
</tr>
<tr>
<td>Pre-European History: Tuamotuan Period</td>
<td>6</td>
</tr>
<tr>
<td>Post-European History: 17th to 19th Centuries</td>
<td>6</td>
</tr>
<tr>
<td>The Guano Era</td>
<td>9</td>
</tr>
<tr>
<td>Solar Eclipse Expedition</td>
<td>10</td>
</tr>
<tr>
<td>The Late 19th and 20th Centuries</td>
<td>10</td>
</tr>
<tr>
<td>20th Century Scientific Studies</td>
<td>12</td>
</tr>
<tr>
<td>C. Methods</td>
<td>12</td>
</tr>
<tr>
<td>Field Techniques</td>
<td>12</td>
</tr>
<tr>
<td>Naming Caroline’s Motus</td>
<td>17</td>
</tr>
<tr>
<td>D. Preliminary Structure and Topography</td>
<td>17</td>
</tr>
<tr>
<td>Background Geological Setting</td>
<td>18</td>
</tr>
<tr>
<td>Sea Level Changes</td>
<td>19</td>
</tr>
<tr>
<td>General Account</td>
<td>19</td>
</tr>
<tr>
<td>Reef Flats</td>
<td>20</td>
</tr>
<tr>
<td>Beaches</td>
<td>23</td>
</tr>
<tr>
<td>Lagoon</td>
<td>24</td>
</tr>
<tr>
<td>Lagoon Hydrology</td>
<td>24</td>
</tr>
<tr>
<td>Patch Reefs</td>
<td>25</td>
</tr>
<tr>
<td>Tridacna-Acropora Reefs</td>
<td>25</td>
</tr>
<tr>
<td>Lagoon Reef Flats</td>
<td>27</td>
</tr>
<tr>
<td>Lagoon Reef Fauna: A Brief Summary</td>
<td>27</td>
</tr>
<tr>
<td>Substrata</td>
<td>28</td>
</tr>
<tr>
<td>Hydrology</td>
<td>30</td>
</tr>
<tr>
<td>Climate</td>
<td>30</td>
</tr>
<tr>
<td>Wind and Rainfall</td>
<td>31</td>
</tr>
<tr>
<td>Cyclonic Storms</td>
<td>31</td>
</tr>
<tr>
<td>Sea Conditions</td>
<td>33</td>
</tr>
<tr>
<td>Tides</td>
<td>33</td>
</tr>
<tr>
<td>E. Flora: Vascular Plants and Floristics</td>
<td>34</td>
</tr>
<tr>
<td>Botanical History</td>
<td>34</td>
</tr>
<tr>
<td>Vascular Plants of Caroline Atoll</td>
<td>34</td>
</tr>
<tr>
<td>Plant Collections</td>
<td>34</td>
</tr>
<tr>
<td>Species Lists, Annotated Checklist and Maps of Terrestrial Vascular Plants</td>
<td>35</td>
</tr>
<tr>
<td>Floristics and Ecology of the Motus</td>
<td>64</td>
</tr>
<tr>
<td>Size of the Flora</td>
<td>64</td>
</tr>
<tr>
<td>Numbers of Indigenous Plants</td>
<td>65</td>
</tr>
<tr>
<td>Composition of the Flora</td>
<td>68</td>
</tr>
<tr>
<td>F. Ecological Succession</td>
<td>69</td>
</tr>
<tr>
<td>Basic Seral Stages</td>
<td>69</td>
</tr>
<tr>
<td>Ecological Succession on Motus of Different Size Classes</td>
<td>73</td>
</tr>
<tr>
<td>Species-Area Relationships</td>
<td>86</td>
</tr>
<tr>
<td>Comparisons of Species-Area Relationships with Other Atolls</td>
<td>87</td>
</tr>
</tbody>
</table>
Table of Contents

The Question of Fresh Water

- Motu Size in Relation to the Distribution of Trees, Shrubs and Herbs
- G. Plant Communities
 - General Account
 - Natural Herb Mat
 - Seabird Use
 - Beach Scrub with *Suriana*
 - *Pandanus* Forest
- *Tournefortia* Scrub and Forest
 - General Distribution
 - Species Diversity in *Tournefortia* Woodlands
 - Stature and Area Coverage
 - Ecology
 - Seabird Use
- *Cordia* Forest
 - General Distribution
 - History
 - Abundance and Distribution
 - Seabird Use
- *Pisonia* Forest
 - General Distribution
 - An Historical Perspective
 - Annual Growth Rates
 - Species Diversity in *Pisonia* Forests
 - Ecology
 - Relationships Between *Pisonia* Forest Height and Motu Dimensions
 - *Pisonia*-Seabird Relationships
 - Remnant *Pisonia* Forests in the Pacific
- Coconut Woodlands
 - General Distribution
 - History
 - Distribution and Abundance
 - Seabird Use
- Absent Plant Communities
- H. Description and Ecology of the Motus
- I. Conclusion
- J. Literature Cited
- Appendix I: Reef Information for Navigators
- Appendix II: Weather Data, 1989-1990
List of Figures

Frontispiece Air-mosaic of Caroline Atoll, RNZAF 6569. Reproduced by permission of the Department of Lands and Survey Information, Wellington, New Zealand.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Line Islands: geographic location in the Pacific Ocean</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Caroline Atoll, Republic of Kiribati, with newly-named islets</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Main marae on Nake Island, Caroline Atoll, based on a plan published by the Solar Eclipse Expedition (Holden & Qualtrough 1884)</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Caroline Atoll, as surveyed by John Arundel, 1883, and still used as the standard hydrological chart</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Caroline Atoll, as charted by the Solar Eclipse Party, also in 1883 (Holden & Qualtrough 1884)</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Caroline Atoll, by Bryan (1942), a modified version of the Solar Eclipse Party’s map (1883)</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>A map by Clapp & Sibley (1971a), based on Bryan's 1942 map (Fig. 6)</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Caroline Atoll: survey transects. The distance covered was 13.3 km</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Caroline Atoll: perimeter surveys. The distance covered was 19.3 km</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Relationship between mean annual rainfall and distribution of phosphate islands in the tropical Pacific (reproduced from Stoddart & Scoffin 1983)</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Entire distribution map of rare and/or localized plants on Caroline Atoll: Hibiscus tiliaceus, Lepidium bidentatum, Pandanus tectorius, Phyllanthus amarus, Psilotum nudum, Scaevola taccada, Sida fallax, Tacca leontopetaloides, Thespesia populnea, Tribulus cistoides, Ximenia americana, and Species A</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>Transect distribution map of the fern Phymatosorus scolopendria on Caroline Atoll</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>Transect distribution map of the grass Lepturus repens on Caroline Atoll</td>
<td>45</td>
</tr>
</tbody>
</table>
14 Entire distribution map of the coconut Cocos nucifera on Caroline Atoll.. 45
15 Transect distribution map of Laportea ruderalis on Caroline Atoll.. 47
16 Transect distribution map of Achyranthes canescens............. 47
17 Transect distribution map of Boerhavia repens, Caroline Atoll.. 49
18 Entire distribution map of Pisonia grandis, Caroline Atoll... 50
19 Transect distribution map of Portulaca lutea, Caroline Atoll... 53
20 Transect and perimeter survey distribution map of Suriana maritima.. 53
21 Transect distribution map of Ipomoea macrantha. Entire distribution is shown for South Island.............. 55
22 Entire distribution map of Cordia subcordata...................... 57
23 Entire distribution map of Heliotropium anomalum................ 59
24 Entire distribution map of Tournefortia argentea.................. 60
25 Transect distribution map of Morinda citrifolia. The outlined area on Tridacna Island (northeast of South Island) encloses Tournefortia-Morinda forest.......................... 62
26 Evidence for the indigenous status of Morinda citrifolia on Caroline Atoll: percentage cover on transects within natural and anthropogenic forests.. 62
27 Plant communities and amount of indigenous vegetation on the different size classes of motus, as illustrated by "pie" diagrams... 74
30 Total numbers of plant subcommunities (upper graph) and species (lower graph) in relation to motu area, demonstrating plant succession on the different sized motus encircling Caroline's lagoon. Fine dots indicate trend lines... 84
32 Schematic profile through Arundel Islet, recovering from disturbance over 60 years ago, showing natural herb mats, Tournefortia scrub and forest, and 5 species of breeding seabirds... 95
Maximum heights of *Pisonia* forests in relation to width of the motus..............................102

Maximum canopy heights of *Pisonia* forests in relation to motu area..102

Schematic profile through Long Island, Transect 0. Although Long Island has been formed in the recent past by a merger of 5 smaller islets, this section of the islet is very mature, containing natural herb mats, *Tournefortia* scrub and forest, and tall *Pisonia* forest.........103

Schematic profile through South Island, where >90% of the land surface is covered with *Cocos* forests, primarily in a dying state.................................114

Nake Island: vegetation and physiography.................................121

Long Island: vegetation and physiography.................................124

Long Island: north-south transect showing division into former islets, floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights..125

Long Island: east-west cross-section through Transect C, a former interislet channel, showing floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights.................................126

Long Island: east-west cross-section through Transect B, which passes through mature interior *Pisonia* forest of largest of Long's coalesced motus. Data include floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights..126

Vegetation and physiography of Windward Islet no. 1: Bo'sun Bird Islet..131

Vegetation and physiography of Windward Islets nos. 2, 3 and 4: Windward and Crescent Islets, and Motu Atibu ("Coral Rubble Islet")..133

Vegetation and physiography of Windward Islets nos. 5 through 9: North Pig, Pig, Skull, North Brothers, and Brothers Islets..135

Pig Islet: east-west cross-section through center of islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights..137
Brothers Islet: east-west cross-section through center of islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights..140

Vegetation and physiography of Windward Islets nos. 10 through 12: Noddy Rock, North Arundel, and Arundel Islets..141

Vegetation and physiography of Windward Islet no. 13: Tridacna Islet..144

Tridacna Islet: east-west cross-section through lower center of motu. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights..145

South Island: vegetation and physiography..............................146

South Island: distribution and abundance of plant species along Transect 2, which runs at an angle of 60° from the lagoon to the south shore through the western center of the islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights..149

Vegetation and physiography of the 7 South Nake Islets: Pandanus, Danger, Booby, Coral, and Lone Palm Islets, Motu Kota ("Red-footed Booby Islet"), and Motu Mouakena ("Masked Booby Islet")..152

Vegetation and physiography of Central Leeward Islet no. 1: Motu Mannikiba ("Seabird Islet").................................157

Vegetation and physiography of the Central Leeward Islets nos. 2 through 4: Blackfin Islet, Motu Matawa ("Fairy Tern Islet"), and Emerald Isle.................................160

Vegetation and physiography of the Central Leeward Islets nos. 5 through 11: Shark and Scarlet Crab Islets, Motu Nautonga ("Sea Cucumber Islet"), Azure Isle, Reef-flat, Bird and Fishball Islets..162

Fishball Islet (no. 11, Central Leewards): east-west cross-section through the center of this young motu, which exhibits early stages of geological and biological evolution. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights..166
57 Vegetation and physiography of the 5 Southern Leeward Islets: Motus Raurau ("Blue-gray Noddy Islet"), Eitei ("Frigatebird Islet"), Pisonia Islet, Kimoa ("Rat Islet"), and Ana-Ana ("Anne’s Islet")..........................168

List of Plates

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A dawn view of Caroline, 1988</td>
</tr>
<tr>
<td>2</td>
<td>The main clearing on South Island, 1883</td>
</tr>
<tr>
<td>3</td>
<td>One of 3 European-style houses built on Caroline, 1883</td>
</tr>
<tr>
<td>4</td>
<td>An artist’s rendering of Caroline, 1883</td>
</tr>
<tr>
<td>5</td>
<td>Map of the "settlement," South Island, 1883</td>
</tr>
<tr>
<td>6a,b</td>
<td>Two lagoon views a century ago</td>
</tr>
<tr>
<td>7a</td>
<td>Motu Ana-Ana, in 1883 essentially identical to today</td>
</tr>
<tr>
<td>7b</td>
<td>A Tournefortia tree along South Island’s lagoon edge</td>
</tr>
<tr>
<td>8</td>
<td>The junior author in Ipomoea macrantha thicket, South Island</td>
</tr>
<tr>
<td>9</td>
<td>"Rat City" base camp, Long Island</td>
</tr>
<tr>
<td>10</td>
<td>Black-tipped reef shark, Caroline’s lagoon</td>
</tr>
<tr>
<td>11</td>
<td>Laterally continuous upraised older reefs and wide reef flats, southwest Nake Island</td>
</tr>
<tr>
<td>12</td>
<td>Floating a small boat across the reef flats from "entrance" to "landing."</td>
</tr>
<tr>
<td>13</td>
<td>Beach crest, rubble, seaward "lagoon" and reef flats off southeast Nake Island</td>
</tr>
<tr>
<td>14</td>
<td>Extensive lagoon reef flats south of Arundel Islet</td>
</tr>
<tr>
<td>15</td>
<td>An incipient motu south of Motu Mouakena</td>
</tr>
<tr>
<td>16</td>
<td>Ridges of coral rubble, Nake Island</td>
</tr>
<tr>
<td>17</td>
<td>Channel between the 2 northern islets, Long and Nake</td>
</tr>
<tr>
<td>18</td>
<td>Noddy Rock, windward reef flats</td>
</tr>
<tr>
<td>19</td>
<td>Windward beach with flotsam and jetsam, Long Island</td>
</tr>
</tbody>
</table>
viii

20 Conglomerate platform, Surfana and Russian vessel Akademik Korolev, northwest point, South Island

21 A large coconut crab shelters in a subterranean cavity in the Feo

22 Sandy Inlet, with foraging Bristle-thighed Curlews, extends its mudflat into Nake

23 South Island's Cocos plantation, looking west along the lagoon

24 Submerged reefs adjacent to Emerald Isle

25 A highly productive, cross-lagoon reef of coral and clam shells (Acropora, Tridacna) joins Tridacna Islet with Motu Kimoa

26 Kew (Cordia subcordata) forest, Pig Islet

27 Sand, silt, rubble and hardpan mingle on Long Island's lagoon edge

28 Caroline's sandiest beach lines the lagoon shore of Shark Islet

29 Sheltered bay, Brothers Islet

30 Narrow lagoon beach, Blackfin Islet

31 Recent sand additions to South Island's northeast point

32 An old inter-islet channel, in 1988 filling in with herbs, Toreniafortis scrub and Cocos (Long Island)

33 The same area as Pt. 32 in March 1990, 2 weeks after cyclonic weather

34 A large clearing within dying Cocos-Ipomea forest, South Island

35 Pandanus forest, south Nake

36 The north end wall of an ancient Tuamotuan marae, Nake

37 Mixed forest with Cocos, Nake Island

38 Orange, scarlet and green phalanges of Pandanus, foraged by Coenobits, rest on a clump of Portulaca

39 Inner edge of lagoon, South Island, 1988

40 Inner edge of lagoon, South Island, 1965
41 *Achyranthes canescens* in a clearing adjacent to *Pisonia* forest, Pig Islet..207

42 *Boerhavia* fruits on feathers and bill of a Great Frigatebird..208

43 Inside a mature *Pisonia grandis* forest, Nake Island.............208

44 Fringe of *Suriana*, northeast point, South Island....................209

45 Well-developed natural herb mat..210

46 *Heliotropium anomalum* with tropicbird skull (first evidence of this species), Skull Islet........................210

47 *Tournefortia* scrub, fringed by a natural herb mat, and occupied by a colony of Sooty Terns.........................211

48 Secondary *Tournefortia-Morinda* forest with nesting Brown Noddies, Tridacna Islet.................................212

49 Skull Islet looking east to the windward reef........................213

50 Mature *Pisonia grandis* canopy with incubating Black Noddies and a White Tern, Pig Islet...............................213

51 Azure Isle, an example of a motu containing a single *Pisonia* tree..214

52 Caroline’s single clearing with Tahitian-style huts, Motu Ana-Ana..214

53 Piles of fibrous shavings--coconut crab sign........................215

54 Beachrock, Long Island..215

55 Windward Islets nos. 5-9: North Pig, Pig, Skull, North Brothers and Brothers...216

56 Arundel Islet (foreground), looking south-southwest across Tridacna Islet to South Island.........................216

57 Detail, *Tridacna maxima* reefs, lagoonside of Tridacna Islet..217

58 Pandanus Islet (center)...217

59 Danger Islet...218

60 South Nake Islets nos. 3-6: Booby, Coral, Lone Palm, and Kota...218

61 Lone Palm Islet...219
62 Motu Mouakena..219
63 North end, Motu Mannikiba...220
64 Motu Mannikiba, looking east along Transect 1.....................220
65 Motu Mannikiba, looking east along Transect 2.....................221
66 Mixed Pandanus-Tournefortia forest, Emerald Isle...............222
67 Emerald Isle...223
68 Shark Islet..223
69 Southern Leeward Islets nos. 1-5: Raurau, Etitei, Pisonia, Kimoa and Ana-Ana........244
70 View of Motu Kimoa from Pisonia Islet..............................224
71 Motu Ana-Ana in 1988. Compare with Plate 7, taken in 1883........225
72 The "blind passage," looking west from its inner end to the lagoon..................225

List of Tables

1 Plants reported from Caroline Atoll but considered to be transient or extinct members of the flora..........................36
2 Vascular flora of Caroline Atoll: relative abundance of each species within the major ecosystems, with data on seabird utilization..37
3 Distribution and abundance of plant species on Caroline Atoll..39
4 Sites of Pacific atoll floras, with emphasis on the percentages of indigenous plants.................................66
5 The distribution of plant communities, together with the numbers of plant species on the motus of Caroline Atoll, illustrating seral stages of plant succession................................70
6 Distribution and abundance of plant species in relation to islet area and the primary mode of seed dispersal........71
7 Species-area relationships of 6 Pacific islands with entirely indigenous flora...88
8 Area of plant communities on the islets of Caroline Atoll......91
9 Widths of pioneer herb mats on seaward- and lagoon-facing shores, Caroline Atoll.. 92

10 Stature and extent of *Tournefortia* in the major habitats of Caroline Atoll.. 98

11 Distribution of well-developed (≥10 m height) *Pisonia* forests on the motus of Caroline Atoll..................104

12 Area and dimensions of *Pisonia grandis* on Vostok, Flint, and 5 islets of Caroline Atoll......................105

13 Number of trees and areas planted in *Cocos* on Caroline’s islets during the major planting era (1916-1920), also showing remnant *Cocos* data for 1988.................................106

14 Species diversity in *Pisonia* forests of decreasing maturity, Caroline Atoll..111
PART I. HISTORY, PHYSIOGRAPHY, BOTANY, AND ISLET DESCRIPTIONS

BY

ANGELA K. KEPLER¹ AND CAMERON B. KEPLER²

ABSTRACT

Caroline Atoll (Frontispiece) is situated at 10°00'S latitude and 150°13'W longitude in the south-central Pacific Ocean. Caroline is the southeasternmost of the Southern Line Islands, a group of 3 islands which also includes Vostok and Flint, lying 230 km to its west and southwest, respectively. Although archaeologically and geographically within Polynesia, Caroline is owned by the Republic of Kiribati (formerly Gilbert Islands).

Caroline, 9.7 km long, 2.3 km wide at its widest point, and 26.9 km in circumference, is a crescentic coral ring with 39 islets (motus) centered on a continuous reef enclosing a relatively shallow lagoon. Its total land area above high water is 399 ha., with motus ranging in size from 0.02 to 107.5 ha. Motus extend along 55% of the reef perimeter. The closed lagoon, rich in marine life, contains a maze of patch reefs and impeccably clear water.

The atoll, uninhabited, was "discovered" by de Quiros in 1606. Although traces of an ancient Tuamotuan culture still exist, the atoll apparently never supported a long-term permanent population and has been less affected by man than most Pacific islands. Its European history includes guano export, a multinational expedition to observe a solar eclipse, and copra production. It has been uninhabited since the early 1930s (a factor contributing to its relatively undisturbed ecology), except for the presence of one family from 1987 to 1991. The primary factors responsible for its lack of permanent settlement are remoteness, apparent absence of usable ground water, repeated failure of its coconut plantations (diseases, destruction by coconut crabs, rats and seabirds, smothering by vines), absence of a passage into the lagoon, and a paucity of safe boat anchorages.

Until the 1988 USSR/USA expedition, only an 1883 chart was available, which named 7 islets. We drafted an accurate map based on field work and recent aerial photographs, naming 32 previously unnamed islets, 4 islet groups and an inlet. During 8 days' intensive field work, we surveyed 38 islets, walking 33 km in systematic cross-islet transects and around islet perimeters. This paper presents much new data on Caroline from 3 visits in 1988 and 1990, and attempts to summarize, expand and synthesize previous information in the light of new findings.

¹ 400 Snapfinger Drive, Athens, Georgia, 30605, USA
² National Biological Survey, School of Forest Resources
The University of Georgia, Athens, Georgia, 30602, USA

Manuscript received 8 April 1991; revised 26 October 1993
Soils, principally of coral, mollusc, and algal origin, are categorized into 5 types, from barren coral rubble to rubble mixed with humus and guano. Caroline provides an excellent example of soil development through different age and size classes of motus.

Preliminary descriptions of the atoll’s reef, motu and lagoon morphology are given, including the background geological setting of the Line Islands. Physiographic features include inland upraised reefs (feo) and deep sand deposits, coalesced islets, exposed older reefs, lithified beachrock, a conglomerate platform, a "perched lagoon," a nonfunctional hoa, and changes in motu size and shape during the past century.

Caroline’s lush vegetation supports 26 species of plants organized into 7 plant communities, 6 natural and one anthropogenic. The atoll-wide distribution of each plant species is mapped. Plant species (including 5 new island records) and communities are detailed, emphasizing the atoll’s past history. The atoll’s insular flora, although impoverished due to its geographical location, is 89% indigenous (possibly 92%), an extremely high figure for anywhere in the world. Although Caroline’s motus are covered with extensive tracts of indigenous plant communities, the Pisonia grandis forests, up to 21 m high and covering 22% of the woodlands, are particularly notable as they constitute some of the best groves left in the Pacific. Pisonia is treated in detail, including data on rapid recovery and growth rates during the past 70-odd years. Tournefortia argentea (43% of the woodlands) is abundant, and Cordia subcordata, becoming quite rare elsewhere, occurs on 21 motus (54%). Cocos is present, but only dominates one islet; 22 islets harbor wholly indigenous vegetation.

Motus of varied age and size classes provide excellent examples of substrate and vegetation development, accompanied by an increasing diversity of bird life. On account of its relatively low human disturbance and rapid forest recovery to a more natural state, especially since 1920, Caroline is one of the few Pacific islands that is truly an "outdoor ecological laboratory": many motus have recovered so remarkably they are almost indistinguishable from those that have remained pristine, while others are in different stages of recovery resulting from varied management (or non-management) practices. Exotic plant species are very few: ancient Polynesian-introduced (Cocos, possibly Pandanus), recent Polynesian-introduced (Hibiscus tiliaceus, Thespesia populnea, Tacca leontopetaloides, Ximenia americana), 20th century exotics (Phyllanthus amarus, in one small area). Some garden species, cultivated from 1987-1990 have an uncertain future and are not treated as part of the atoll's viable flora.

An analysis of ecological succession on motus of increasing size reveals that by the time a motu reaches 0.8 ha in size, all the natural plant communities, most plant species, and most species of seabirds are present. This is in striking contrast to species-area relationships on inhabited atolls with more introduced plant species, for example Kapingamarangi.
Each motu is individually mapped and the main physiographic features, known history, vegetation patterns (including species-area relationships), seabirds, and miscellaneous biota (coconut crabs, rats, lizards) are detailed. Appendices provide weather data and describe the practicalities of anchoring boats, landing, and moving small boats around the reefs and lagoon.

Permanent protection of Caroline is currently underway as The Nature Conservancy of Hawaii negotiates with the government of Kiribati for a Southern Line Islands Wildlife Preserve, which includes Caroline, Vostok and Flint.

A. INTRODUCTION

Caroline Atoll\(^1\) (Frontispiece; Figs. 1, 2) is a small, low coral island situated at 10°00'S latitude, 150°13'W longitude in the south-central Pacific Ocean. Its maximum height is less than 3 m above MSL. It lies 2,800 km south of Hawaii, 830 km north of Tahiti, and 1,030 km west of the Marquesas Islands. Its nearest neighbors are Vostok and Flint, 230 km to the west and southwest, respectively.

Recent measurements by the ICBP 1990 Line and Phoenix Islands Expedition, using a compact satellite navigation computer "Magellan" NAV 1000, indicate that the atoll lies one nautical mile east of its previously charted longitude position, 150°14'W. Its range of coordinates are: 09°54' to 10°01'S latitude, 150°12' to 150°14' W longitude. The given coordinates, 10°00'S and 150°13'W, intersect in the lower lagoon just west of the "blind passage."

Although archaeologically and geographically within Polynesia, the Line Group was uninhabited when discovered by Europeans; its islands were variously claimed by the United States and England. With the exception of U.S.-owned Jarvis, Palmyra, Johnston and Kingman Reef, all are now governed by the Republic of Kiribati (formerly Gilbert Islands).

Caroline, 9.7 km long by 2.3 km wide at its widest point, is a crescentic coral ring 26.9 km in circumference. Composed of 39 islets (Fig. 2, Table 9) and three incipient islets, it is centered on a continuous reef flat, submerged at high tide, that encloses a relatively shallow lagoon. Most are well-wooded, but 4 tiny ones, less than 0.1 ha in size, are scarcely more than coral rubble piled on the reef, supporting sparse patches of Tournefortia and Heliotropium. One islet, Noddy Rock (Pl. 18), is a vestige of a former reef segment. The total land area above high water is 399 ha. One of the oceanic islands contributing to Darwin’s theory of atoll formation (Darwin 1842), its

\(^1\)Caroline Atoll is neither physically, geographically, nor politically associated with the Caroline Islands, now part of the Federated States of Micronesia, more than 6,000 km to the northwest. Because of this confusion, we use the name "Caroline Atoll" instead of "Caroline Island."
Figure 1. Line Islands: geographic location in the Pacific Ocean. After map by the Hawaii Geographic Society (1981).
Figure 2. Caroline Atoll, Republic of Kiribati, with newly-named islets. Based on photos by the Royal New Zealand Air Force (RNZAF 1986).
geology, soils, climate, and vegetation are typical of low latitude atolls and are relatively unmodified by man.

This paper presents much new data on Caroline from 3 visits in 1988 (September) and 1990 (March, May) and attempts to summarize, expand and synthesize widely scattered information in the light of new findings. The only significant previous biological information on Caroline was from the Smithsonian's Pacific Island Biological Survey Program's 2-day visit in 1965 (Clapp & Sibley 1971).

B. HISTORY OF CAROLINE ATOLL

Pre-European History: Tuamotuan Period

Centuries before Europeans encountered Caroline, the atoll was inhabited by Polynesians. No oral traditions of this occupation are known, but evidence of former habitation was evident when de Quiros found the atoll in 1606. He noted "an old canoe, lying on her side," and a small grove of coconuts planted on South Island (Bennett 1840, Markham 1904).

No further clues were unearthed until Messrs. Brown, Brothers, and Arundel exposed about 50 ancient Polynesian sites in the 1870s while digging for guano (Holden 1884, Arundel 1890). Polynesian inhabitants at that time called them "marai" (marae). Arundel photographed and drew plans of them (Fig. 3): depicted are a platform of coral and conglomerate rock, surrounded by 10 smaller slabs resembling gravestones, all arranged in a rectangular plan. Although the largest 2 were marked as "gravestones" on Arundel's 1883 map (Fig. 4), no bones, ashes or human remains were found. Their findings were later identified as Tuamotuan marae (Emory 1947). Marae, according to ancient belief, "bound the ancestral spirits and gods of the kindred to the land, putting it under their eternal guardianship" (Emory 1947). The largest marae was on northwest Nake Island, and a smaller one was found near the southern tip of Long Island. Both locations conform to such prerequisites for building marae as nearby shorelines and birds (see Sect. H.1), which Tuamotuans believed housed divine spirits (Emory 1947, p. 123). Although AKK, G. Wragg and R. Falconer located, photographed (Pl. 36), and measured these in 1990 (A. Kepler 1990d), no field work by archaeologists has been conducted. Our data and numerous photographs have been sent to Dr. Jeff Irwin, Auckland University, New Zealand.

Post-European History: 17th to 19th Centuries

On 21 February 1606, the Portuguese explorer Pedro Fernandez de Quiros, employed by Spain, "discovered" Caroline Atoll (Markham 1904, Stevens & Barwick 1930), naming it San Bernardo. Despite its remoteness, Caroline was encountered early in Pacific history, long before Tahiti, Rarotonga, and Hawaii. This is possibly due to its location, for early navigators tended to sail due west from South
Figure 2. Main murus on Rake Island, Caroline Atoll, based on a plan published by the Solar Eclipse Expedition (Hezdon & O'dnell 1884). Figures in the margins show side views of the peripheral blocks shown in the plan. The 2 end walls are represented in ground plan.

Figure 4. Caroline Atoll, as surveyed by John Arundel, 1887. This is still the standard hydrological chart for the atoll (Admiralty Chart No. 979). Though quite accurate, it has never been used in scientific publications.
America along lines of latitude, and 10°S was an obvious choice. De Quiros, the last adventurer in the Spanish age of discovery, was leading his second major trans-Pacific expedition with 3 ships and 150 men obsessed with finding the fabled "Terra Australis Incognita." The descriptions of Caroline by his crew, although at variance with one another, still apply today (Pl. 1). Their first at-sea impression was that it was "divided into four or five hummocks, and all the rest submerged. Its circumference appeared to be ten leagues" (Markham 1904). After landing, they found that

"There was a great number of fish inshore, and, owing to the water being very shallow, they were killed with swords and poles. There were great numbers of lobster and crawfish, and other kinds of marine animals. They found a great quantity of cocoa-nuts in a heap at the foot of the palm trees, many large, and of different sizes. There were a great quantity of sea birds of several kinds, and so importunate that they seemed to want to attack the men. We took plenty of all these things...it seemed to the Captain that on an island where there are so many trees there could not fail to be water" (Markham 1904).

Fresh water was crucial to de Quiros and his crew, who were suffering from lack of food and water. Despite their efforts, however, they failed to obtain water. Disappointed and lacking energy, they continued their voyage the following morning. Their demoralized state may explain one statement that Caroline "consisted of twenty-two islets, uninhabited and without water, trees or scrub for wood."

In 1795, Capt. W. R. Broughton, on the British sloop Providence, rediscovered and named the atoll while voyaging from Tahiti to Hawaii (Broughton 1804):

"The southern extremity was the highest part, covered with trees, most probably cocoa-nut from their appearance, as they stood in detached clumps along the shore. The island... appeared to be low, and covered with trees, and if I am right in its estimated distance, its length will be about five miles in a north and south direction. I named it Carolina Island in compliment to the daughter of Sir P. Stephens of the Admiralty."

Because early navigation techniques and communication were far less sophisticated than today, especially with regards to longitude, Caroline was sighted or "discovered" by several more explorers who were unsure of its identity. By 1821 the atoll had amassed a collection of coordinates and names: San Bernardo, Island of Fish, Thornton, Hurst’s, Clark’s, Independence, and Carolina (which later became Caroline). Some navigators equated Caroline with an island named "San Bernardo" by the Spanish explorer Mendatia in 1595. "San Bernardo" has recently been verified as Puka-Puka, northern Cook Islands (Maude 1968).
The best early description of the atoll comes from an 1835 visit by F. D. Bennett, who was reasonably well versed in natural history (Bennett 1840). He noted that the islets then, as now, were "covered with verdure...surprisingly luxuriant, when compared to the arid soil it covers." Although Bennett had visited many atolls, he was particularly impressed with the quality of Caroline's coral reefs. His party observed "rats of a red-brown color" and various birds but no reptiles (Pt. II). Although he discusses "land lobsters (Coenobita species)," no mention is made of coconut crabs (Birgus latro); perhaps the latter were lumped with the former.

First Occupation: The existence of 2 small coconut groves on Caroline prompted 2 British entrepreneurs, representing the Tahitian firm Collie and Lucett, to establish a stock raising venture there in 1846. This first known settlement was located adjacent to the main coconut grove on the northwest peninsula of South Island; a smaller grove evidently existed "on the south-south-west side" of the same island (Lucett 1851). Tahitian laborers tended pigs, hens, turkeys, and grew many food plants, including pumpkins and melons. They dried and salted fish, planted coconuts, and extracted coconut oil (Maude 1942, Garnett 1983), and were evidently still there in May 1852 (Ellsworth 1990).

Political Annexation: Though inhabited in prehistory by Tuamotuans, officially "discovered" by the Spanish, and visited by British, French, and American ships, it took centuries for Caroline to acquire a political identity. It was formally annexed to Britain by Captain Nares, R. N., who arrived in the H.M.S. Reindeer in 1868, finding 27 residents.

Caroline was under the control of various merchants in the late 19th century: Lionel Brown, Captain Brothers, and later John Arundel, a well-known businessman, trader, and guano merchant in the Pacific. Arundel's 1883 map (Fig. 4) of Caroline is the only reasonably correct chart published prior to this paper.

The Guano Era

Though bonded under the American Guano Act in 1860, no phosphate was dug on Caroline until Arundel was granted a 7-year license in 1874. A few months earlier, a set of moorings were laid off the lee side of South Island, allowing ships of up to 1,000 tons to lie safely during trade wind weather. Guano was the only successful business venture at Caroline: approximately 10,000 tons were shipped to California and Australia between 1873 and 1895, when supplies became exhausted (Young ca. 1922). We have no direct information on which islands were mined except South and Nake. We strongly suspect that Tridacna, Arundel, Mannikiba, and perhaps others also yielded guano. The tonnage extracted from Caroline was small compared to that from dry, barren, more northerly islands with little vegetation, where populations of Sooty Terns, an important guano species (Hague 1862), number in the millions.
Solar Eclipse Expedition

In 1883 Caroline received international publicity when astronomers calculated that it lay directly under the path of a pending solar eclipse. Three parties of astronomers (American, British, French) arrived in the U.S.S. Hartford and set up camp on South Island, making detailed observations of this celestial event (Pl. 2). At that time Caroline was more famous, and housed more people, than before or since: 7 "natives," scientists and crewmen totaled 51 occupants. Legacies from former inhabitants included 3 houses (Pl. 3), 2 sheds, 3 huts on smaller motus, nautical flotsam and jetsam, and 2 shallow wells. To this they added tents, observatory frames, a marble slab, flagpole, and brick "piers" for their telescopes, most of which remained temporarily as technological litter.

This expedition (Dixon 1884, Holden 1884, Holden & Qualtrough 1884, Trelease 1884, Young 1884) also marked the first attempt to describe the topography, climate, flora, and fauna of the atoll. Drawings included an artist's rendering of Caroline, "settlement" map (Pl. 5) and views along South Island's lagoon shore (Pls. 6, 7). An atoll map was drafted but is highly inaccurate. Their biological observations were sketchy (Dixon 1884, Butler & Strecker 1884). For example, Dixon, the zoologist, listed such organisms as "shrimp," "hermit crabs," "gnat." As with Bennett, there was no mention of coconut crabs, even though they were evidently abundant on South Island in 1910 (Young ca. 1922).

The Late 19th and 20th Centuries

In 1875, C. D. Voy, a naturalist from California, visited Caroline, collecting molluscs (Pilbsry & Vanatta 1905a, b) and fish (Fowler 1901).

In 1885, Arundel began to clear land and plant coconuts, but his planned copra industry was unsuccessful. In 1897 he sold his business to the Pacific Islands Company, Ltd., which also failed. The plantations suffered from disease and poor vitality, coconut crabs chewed on seedlings, seabirds destroyed the developing nuts, Ipomoea vines strangled young trees, and populations of Polynesian rats apparently exploded, causing further damage to both intact nuts and drying copra (Young ca. 1922, Maude ca. 1938, 1942). By 1904, when the H.M.S. Icarus visited Caroline, only 6 Polynesians lived there. A few months later they were repatriated to Niue, and Caroline remained uninhabited until 1916, when a new effort was made to develop the coconut plantation by Messrs. S. R. Maxwell and Co., Ltd.

During the uninhabited years, South Island's vegetation and wildlife began to recover from the earlier forest felling (Pls. 2-6). When Mr. J. L. Young, then managing director for S. R. Maxwell and Co., Ltd. (Young ca. 1922), visited the atoll in July 1910, he described it as a wilderness, teeming with Sooty Terns, fish and coconut crabs:
"The ground was covered with nests of seabirds which latter rose like a cloud when disturbed: the noise of their shrieking was so great that one had to shout to enable oneself to be heard by his companions. Hundreds of great Coconut Crabs were seen: 40 large ones were caught by the crew of the schooner in an hour. The reef and the lagoon swarmed with fish and small sharks."

From 1916 to 1929, Caroline was altered more than before or since. All the available land on South was deforested to make room for thousands of palms, and laborers demolished huge numbers of coconut crabs and seabirds (Young ca. 1922). In addition, coconuts were planted on all of the main windward islets, southern Nake, and on Mannikiba. (The windward islets recovered their forests remarkably quickly, see Sect. G). Plantation workers in great part lived off the land, feasting on fresh fish, seabirds, seabird eggs, turtles, and coconut crabs. Most of the leeward islets escaped alteration for plantations.

Copa exports averaged around 14 tons per year from 1929 to 1934, after which the company ran into debt. Concurrently, the French government forbade further recruitment from Tahiti; by 1936 only a few families were left (N.I.D. 1943). In 1941 the atoll carried a price tag of 600 English pounds (Maude, pers. comm.), but was never purchased.

Occupation leases for Caroline were cancelled in 1943, after which the British Western Pacific High Commission repossessioned it (Maude 1953). However, new "queen's leases" were granted to M. P. A. Bainbridge of Papeete, Tahiti, 1951-1964 (Nicholson & Douglas 1969), then to Capt. Omer Darr of Moorea, French Polynesia, from 1964 to 1989. When the British granted independence to the Gilbert and Ellice Islands in 1979, a new country, the Republic of Kiribati, assumed ownership of Caroline, along with most of the Line and Phoenix Islands.

Apart from occasional parties of Tahitians cutting copra and a shipwrecked sailor in the early 1980s, the atoll remained uninhabited for over 50 years. During this time Caroline's vegetation and wildlife recovered to such an extent that, were it not for unpublished manuscripts (Maude ca. 1938, ca. 1942, and no date, Young ca. 1922) and comparisons with Flint and Vostok (St. John & Fosberg 1937, A. Kepler 1990b-d, and Kepler, in prep.), we would have been unaware of the extent of previous human interference or of the rapidity of forest recovery (the fact that 60% of Caroline's motu harbored wholly indigenous vegetation, and the presence of one small patch of one exotic plant aside from a few standard Polynesian-introduced plants, seemed to indicate a relatively pristine atoll).

In 1987, the Office de la Recherche Scientifique et Technique Oure-Mer (ORSTOM, a French scientific research agency) was requested by the Kiribati government to conduct a short study at Caroline on the feasibility of pearl-shell culture (G. Monet, pers. comm.). Their results concluded that the atoll would be inappropriate for this type of development.
Also from 1987 to 1991, a Scotsman, Ron Falconer, his French wife Anne, and 2 small children settled on Caroline. From October 1989 to November 1990 a new lease was under negotiation by Felix Urima, a French businessman, who planned to blast a channel through the reef, construct an airstrip, build a small hotel, cut timber, and engage in various commercial ventures including fishing, a turtle farm and pearl-shell culture. In April 1990, Urima’s workers began commercial fishing, killing turtles and coconut crabs, and clearing land (A. Kepler 1990a). This was a major new insult to the atoll which, in spite of its long history of intermittent human occupation, remains to this day "possibly one of the least spoiled of true atolls in the Pacific" (Stoddart 1976). Reports from our expeditions to Caroline (Kepler & Kepler 1989, A. Kepler 1990a and d) resulted in the short-lived cancellation of Urima’s tentative lease in November 1990 by the government of Kiribati. As of this writing, Urima has returned to unlimited fishing of Caroline’s reefs. Since 1988, conservation efforts have been underway for Caroline to become part of a triple-island wildlife preserve with Vostok and Flint (Pt. II, Sect. G).

20th Century Scientific Studies

In June 1965, a field party from the Smithsonian Institution’s Pacific Ocean Biological Survey Program (POBSP) visited Caroline for 2 days (Clapp & Sibley 1971a). Their survey and specimens added much to the previous botanical and ornithological knowledge of the island. Other quick visits were made by Gilbert and Ellice Island officials and Drs. H. & H. Grossman, ornithologists from Germany, and Mr. W. Cooke, a graduate student in corals from the University of Hawaii, comprising the Line Islands Expedition on 9-10 September 1974, and by Roger Perry, then Wildlife Warden of the Line and Phoenix Islands, on 12-13 November 1977, from which no reports can be found other than a short popular account of the Southern Line Islands (Perry 1978).

In 1990, AKK also visited Caroline twice with the ICBP 1990 Line and Phoenix Islands Expedition (A. Kepler 1990d). These visits were primarily to discuss conservation matters with the Falconers; introduce Caroline to Dr. and Mrs. M. Garnett, representatives from ICBP; confirm the illegal taking of fish, turtles, and coconut crabs; collect invertebrates; and fill in gaps from the 1988 expedition.

C. METHODS

Field Techniques

From 22-29 September 1988, Drs. A. K. Kepler, C. B. Kepler, D. H. Ellis (U.S.A.) and Mr. Katino Teeb’aki (Republic of Kiribati) surveyed all 39 motus at Caroline Atoll (Fig. 2), gathering detailed information on plants, seabirds, land birds, mammals, reptiles, coconut crabs, and human disturbance. Some incidental data have been added from the 2 visits in 1990 (10-13 March, 18-28 May) by Dr. A. K. Kepler,
Capt. G. Wragg, A. Garnett, M. Linsley, J. Phillips (March), and Dr. M. Garnett (May).

Prior to the first expedition, a series of transects and known botanical information were mapped to ensure that 5% of each motu was sampled, and to maximize our chances of encountering all known plant species. Transects on the 3 larger motus were spaced approximately 400 m apart and, with one exception, were perpendicular to the long axes of each islet (Tr. 3 on Nake extended first from east to west, then ran south parallel to the west coast). On motus longer than 400 m, we used 2 transects. Transects on the smaller motus passed through their widest points. Their lengths ranged from 77 m (Azure) to 2,000 m (Tr. 3, Nake).

Considerable modifications were required when we realized that all previous maps (Figs. 4-7) were incorrect. We redrew the transects on Arundel's 1883 map (Figs. 4, 8), secured just prior to the expedition. On South Island, due to impenetrable draperies of Ipomoea vines, Transect 3 was omitted, Transect 5 ran only from the lagoon south to the Ipomoea curtain (75 m), and Transects 4 and 6 ran north and south until we reached an impasse (Pl. 8).

Compass headings were determined by the configuration of each island. Beginning at high water mark, all distances (islet dimensions, widths of reef flats and substrates, and plant communities) were measured using hip chains with biodegradable cotton thread. These parameters were later checked against aerial photographs in stereoscopic pairs (RNZAF 1986), which provided 3-dimensional overviews of most islets. Vegetation maps, reef and islet areas, and areas of plant communities were derived by outlining on graph paper, enlarging, then counting dots.

Data were collected in a 30 m swath along each transect (15 m to each side) and recorded on field forms. Within each plant community we took photographs, assessed the relative abundance of each plant species (see Sect. E), measured notable trees, and recorded plant community width, plants collected, and substrate type. We also estimated the maximum height of the dominant vegetation and percentage of ground area covered by each species. Data on seabirds, land birds, reptiles, mammals and coconut crabs is reported in Part II.

In addition to the linear transects, an additional 19,300 m of perimeter surveys were conducted on 21 islets (Fig. 9). The combined distance for linear and perimeter transects was 32.6 km. Seven tiny islets (Noddy Rock, Skull, Atibu, Bo'sun Bird, Coral, Reef-flat, Fishball) were surveyed completely.

In 1988 we camped on the atoll for 7 nights, establishing base camps (Fig. 8; Pl. 9) on the northwest point of South (22-24 September) and southwest Long (25-28 September). We relocated camps using a Zodiac with outboard motor, and an inflatable Sevylor canoe. All transects were surveyed during daylight hours, beginning at dawn. Walking the interislet channels was relatively easy at low tide, but became
Figure 5. Caroline Atoll, as charted by the Solar Eclipse Party, also in 1883 (Holden & Qualtrough 1884).

Figure 6. Caroline Atoll, a modified version of the Solar Eclipse Party's map (1883) as portrayed by Bryan (1942). Though highly inaccurate, modifications of this map have been used in all publications since Bryan (1942).
Figure 8. Caroline Atoll: survey transects. The distance covered was...
Figure 9. Caroline Atoll: perimeter surveys. The distance covered was 19.3 km.
hazardous at incoming or high tide on account of numerous aggressive black-tipped reef sharks, *Carcharhinus melanopterus* (Pl. 10).

During the 1990 visits, we stayed on Motu Ana-Ana with the Falconers. Work was not intensive, as in 1988. We walked or motored an inflatable Lancer, visiting 20 motus gathering incidental data, locating the *marae*, etc.: Ana-Ana, Kimoa, Pisonia, Eitei, South, North Arundel, Noddy Rock, Brothers, North Brothers, Skull, Pig, North Pig, Bo’sun Bird, Long, Nake, Mouakena, Shark, Scarlet Crab, Bird, and Fishball. Insects were preserved in ethyl alcohol. We used a "Magellan" NAV 1000 to obtain accurate geographical coordinates of Caroline.

Naming Caroline’s Motus

Previous literature has provided vague or incomplete data on Caroline’s constituent motus (Bennett 1840, Markham 1904, Stevens & Barwick 1930, Holden & Qualtrough 1884, Bryan 1942, Clapp & Sibley 1971a, Garnett 1983). This confusion resulted because most previous visits had been brief. The only charts available were a quite accurate survey by Arundel, a guano merchant who mapped the atoll in 1883 (Fig. 4, Admiralty Chart, No. 979, 1965), and a map, greatly in error, drafted by an international Solar Eclipse Party, also in 1883 (Fig. 5). There are no hydrological navigation charts. Unfortunately, the astronomers’ map has been used in all subsequent scientific, historical, military and sociological publications [N.I.D. 1941, Bryan 1942 (Fig. 6), Maude 1968, Clapp & Sibley 1971a (Fig. 7), Garnett 1983]. It shows only 25 of the 39 motus and many shapes are distorted. The 38 motus on Arundel’s map are similar to those in the RNZAF (1986) aerial photographs. Only a few appear to have changed in minor ways since 1883: major discrepancies in Arundel’s map, we believe, are due to difficulties involved in the accurate rendition of small land areas (i.e. the South Nake Islets). Maude (ca. 1938) counted 36 islets, but never published his information.

To aid our survey we named 32 islets and 4 islet groups (Fig. 2). Our names reflect appropriate aspects of islet biology. Etymology is provided in Section H. Gilbertese names are prefixed with *motu* (see next section). Any name not appearing on Arundel’s map (Fig. 4) was given to the islets by us. They have been sent to the British Admiralty and U.S. Hydrographic Office (along with corrections to the Pacific Pilot) for official recognition.

D. PRELIMINARY STRUCTURE AND TOPOGRAPHY

Our geological terminology is based on Tracey et al. (1955) as cited by Wiens (1962), to which we add *motu* (Polynesian for "islet"), now a technical term for detrital reef islands (Danielsson 1954, Stoddart & Steers 1977). In this paper the terms *motu* and islet are used interchangeably.
Background Geological Setting

Caroline is the southeasternmost of the Line Group (Fig. 1), a major volcanic lineament in the Pacific, comparable in size to the Hawaiian-Emperor chain to the north and the Marshall-Gilbert-Ellice chain to the west. This quasi-linear chain, 4200 km long, is composed of dozens of simple and complex seamounts and linear ridges, 6 atolls, 5 islands, and 2 submerged reefs. The Line Islands are now considered to include Johnston Atoll (Duncan 1983, Schlanger et al. 1984), and thus lie between 17°N and 12°S latitude, and 169° and 150°W longitude. The name, Line Group, reflects its equator-straddling location.

The geological complexities of the East Pacific in general and Line Islands in particular were poorly understood until a few years ago. However, recent remote-sensing technologies, deep-drilling techniques, improved sea-floor mapping and multidisciplinary studies of sea-level changes have clarified much previous speculation (Jarrard & Clague 1977, Orwig & Kroenke 1980, Montaggioni & Pirazzoli 1984, Schlanger et al. 1984, Pirazzoli & Montaggioni 1988, Spencer 1989).

The Line Islands are now known to exhibit changing geomorphology from north to south: elongated submarine ridges and coalesced seamounts merge into a broad central high plateau, then progress to scattered isolated seamounts in the south (Duncan 1983, Schlanger et al. 1984).

This long chain of geologically related and unrelated islands exhibits a complex history of volcanism involving activity from multiple "hotspots" and overprinting events dating as far back as 93 million years (Jarrard & Clague 1977, Orwig & Kroenke 1980, Crough & Jarrard 1981, Haggerty 1982, Duncan 1983, Schlanger et al. 1984). Furthermore, although numerous studies, using high technology, have been conducted from oceanographic vessels, very little data has been gathered from the islands themselves (M. O. García & J. A. Haggerty, pers. comm.), and a clear understanding of the myriad interacting processes which formed the Line Islands has not yet emerged. This is particularly true of the central and southern Line Islands.

However, recent palaeoecological research in the Tuamotu Archipelago includes generalities which are applicable to the Line Islands (Montaggioni & Pirazzoli 1984, Pirazzoli & Montaggioni 1988).

The known geological history of the Line Islands can be summarized as follows:

1) During the Cretaceous period (140-65 m.y. B.P.), ridge-building volcanic events occurred, giving rise to scattered volcanoes, older in the north. This period of mountain-building was a worldwide phenomenon, in the eastern Pacific supported by hotspot activity in the vicinity of Easter Island.

2) A second eruptive phase during the Palaeocene-Eocene period (65-38 m.y. B.P.), and age-progressive from north to south, overprinted
earlier volcanoes. This was either a result of "hotspot" activity along the Line-Marquesan Swell or part of Pacific-wide volcanism.

3) The history of reef growth and subsidence is complex and has not been studied in detail. The Line chain was in latitudes amenable to reef growth throughout its history from the Late Cretaceous (100 m.y. B.P.) to the present (Schlanger et al. 1984). A general pattern for the northwest Tuamotus, close to the southern Line Islands, shows primarily Holocene reefs 6000-3000 years old (Pirazzoli & Montaggioni 1988). However, a few older reefs do exist, and dredge hauls near Caroline (Schlanger et al. 1984) recovered reef limestones of Eocene through Pleistocene age (54 m.y. to 10,000 years B.P.).

We found no visible fragments of Caroline's volcanic heritage, summarized above.

Sea Level Changes

Data on the history of sea levels for the Southern Line Islands is lacking. However, studies in French Polynesia (Pirazzoli & Montaggioni 1988), and which appear to have been a general phenomenon in the South Pacific, indicate that:

1) A stable sea level occurred, slightly less than 1 m above its present level, from 5000-1500 B.P. This peaked at approximately +1.0 m between 2000 and 1500 years ago.

2) Since then the level has been dropping gradually to its present position, reached only recently (Pirazzoli & Montaggioni 1988).

General Account

No geomorphological or geophysical studies have been carried out at Caroline. However, 2 deep undersea dredge hauls near the atoll uncovered reef limestones dated at Eocene through Plio-Pleistocene (Schlanger et al. 1984), and recent studies in the northwestern Tuamotus date the exposed coral reefs in the Holocene around 6000 to 3000 years B.P. (Pirazzoli & Montaggioni 1988). There is much scope for research within Caroline's reef matrix, varied shorelines and upraised reefs.

Caroline's overall shape resembles a flattened crescent, 9.7 km long on its north-south axis (Fig. 2), with outer perimeter 26.9 km and greatest breadth 2.3 km. The longest islet, Long, extends 4.23 km north-south, while South Island, extending 1.2 km east-west, claims the widest stretch of land.

The motus, lying upon a wide, continuous reef flat which encloses an elongated, relatively shallow lagoon, fall naturally into groupings of 3 large islands (South, Nake, Long) and 4 groups of smaller islets (13 Windwards, 5 Southern Leewards, 11 Central Leewards, 7 South Nakes).
There are 4 basic motu shapes, molded by the prevailing easterly winds and currents, periodic storms, overall atoll shape, etc:

1) long, linear, and parallel to the reef axis, e.g. Long Island.

2) small, linear or oval, and perpendicular to the reef axis, e.g. Southern Leeward Islets.

3) triangular or crescentic, with the apex facing the seaward reef, e.g. most of the Windward Islets.

4) large and quadrangular, occupying the ends of the atoll, e.g. South, Nake.

Caroline’s motus have similar length-width ratios as those elsewhere (Stoddart & Steers 1977) and are similarly situated on the inner half of the reef flat, having their lagoon beaches close to the lagoon reef slope. Individual motus are discussed in detail in Section H.

It is hoped that the following preliminary observations of Caroline Atoll will inspire further research. As well as exhibiting features similar to many atolls, its 39 islets also present individual details that pose interesting questions which may help in deciphering sea-level changes in the Eastern Pacific and in unraveling the somewhat speculative geological history of the Line Islands (Jarrard & Clague 1977, Schlanger et al. 1984). Examples include the presence of an inland, vegetated reef substrate on Long; deep inland sand on Nake; conglomerate rock on South; hardpan on Mannikiba, Nake and Long; an emergent reef platform (Noddy Rock); and exposed older reefs of uniform height (Nake). Aerial photographs have indicated that Long Islet has been formed most recently from the coalescence of 5 former islets, which show even older subdivisions. Nake, previously at least 2 islets, has changed shape on both its north and south ends by the addition of gravel ridges and silt, respectively, in the past 100 years. Brothers Islet has incorporated a small motu within its confines since 1883; several other motus have also added bars and spits, and the lagoon has filled in further during that short time period. The questions of phosphatic hardpan beneath Pisonia forest and the extent of ground water lenses need attention.

Reef Flats

Caroline’s peripheral reefs, which completely surround the lagoon, and upon which the motus rest, are consistently wide (average 562 m, range 396-759 m, \(N = 100 \)). The windward and leeward reefs differ in structure and dimensions. Neither are entirely dry, even at the lowest tides. They consist primarily of barren calcareous rock, frequently smooth, which on other atolls generally represents the erosional surface of an older reef. Jagged "mushrooms" of exposed newer (but dead) reef framework dot the Leeward reefs, forming an open platform off southwestern Nake (Pl. 11). Their structure and uniform height (-0.3 m)
are similar to those on Hikueru Atoll, Tuamotus, which have been dated as 2565 ± 55 years B.P. (Pirazzoli & Montaggioni 1988). There are no passes from ocean to lagoon, a typical feature of central Pacific atolls (Wiens 1962). In the Southern Hemisphere, reef flats tend to be widest in the southwest sector and narrowest in the northeast (Wiens 1962), a generality which Caroline fits (Pls. 12, 13).

The reef rim, irregularly dentate and 26.9 km in circumference, is surmounted by motus for 55% of its length. On 72% of all Pacific atolls, less than half the reef circumference is occupied by land (Wiens 1962); Caroline lies within a 28% minority in which one-half to two-thirds of the reef rim contains land. Corresponding values for 2 Tuamotuan atolls, Rangiroa and Raroia, are 33% and 35% (Stoddart & Sachet 1969). Where motus exist, the reef flat is divided into the seaward reef flat (Pl. 12), motu, and lagoon reef flat (Pl. 14).

At low tide all reef flats can be waded. Black-tipped reef sharks were highly aggressive in 1988 but by 1990 dozens had been killed. The South Nake and Central Leeward channels were particularly hazardous, reflected in motu names such as Blackfin, Shark, and Danger.

Windward Reef Flats: Constantly pounded by surf, the windward reefs are typically narrower than those to leeward, averaging 519 m (range 396-759 m), though this is less evident from a map than in the field.

The windward reef is 13.5 km long, surmounted by 16 motus that total 63% of its length. This fits a recurrent pattern on central Pacific and Tuamotuan atolls where motus are more frequent along windward reef rims (Thomas 1961, Wiens 1962), due to active movement of debris associated with the prevailing easterly winds, waves and storms. The longest islets are Nake (1,980 m) and Long (4,226 m), both formed from the coalescence of 2 or more smaller islets. The rest vary from 18 m to 858 m in length.

The character of these reef flats differs, depending on the presence or absence of land, interisland distances, lagoon depth, and recent weather conditions. In February 1990, severe cyclonic weather rearranged tons of sediments, especially to windward, uprooting *Tournefortia* scrub, obliterating extensive sections of herb mats, exposing beachrock, depositing storm blocks, and altering the shape and slope of the beach crests. Since Caroline has been essentially uninhabited for 60 years, no data exists on the frequency of such storms, although it is well-known that windward beaches worldwide are undergoing erosion and retreat, and are thus characterized by beachrock outcrops and other lithified sediments (Stoddart & Steers 1977).

Reef Rim with Motu: The width of the seaward flats is quite uniform, averaging 307 m (range 193-396 m), occupying 57% of the rim width. It consists of a slightly raised algal ridge bearing the brunt of incessant wave action, and a rubbly reef flat, partly drying at low water, which sweeps up to the motu’s beach (Pl. 13).
The motus differ considerably in width, ranging from the narrow tip of Long, merely 30 m wide, to Windward, 290 m wide. Nake and South Islands, forming "caps" to the atoll at its upper and lower ends, respectively, exhibit characteristics more typical of windward than leeward motus. Whenever atoll reefs turn sharply, debris-loaded waves become deflected around the points, thus depositing more gravel than on a straight shoreline. Hence, these 2 motus are the widest on the atoll (Pl. 16). A comparison of maps a century apart (Figs. 2, 4) indicates that several layered ridges of coral debris have accumulated on northern Nake since 1883.

Reef Rim without Motu: Zonation within the reef flat is less marked where there is no land. Within these interislet reef flats, however, areas of high water transport have carved surge channels and erosional grooves, and tidal fans extend into the lagoon, especially at its northern end where sedimentation is most active. Caroline has no deep pass or navigable channels into the lagoon, nor a ship anchorage beyond the reef, though small boats may anchor within the close lee of South Island during normal trade winds and low seas. Landing in an inflatable is best made across the reef slightly north of the "boat entrance," marked by an upright anchor (App. I).

The reef flat between Tridacna and South Island, serrated with 6 erosional grooves, one labelled "blind passage," is of particular importance to navigators (App. I). The blind passage, the most southerly channel, is a narrow diverticulum 380 m long within a reef 430 m wide. On all previously published maps this passage is drawn as though it completely connects ocean and lagoon (Figs. 4-7). However, it is a nonfunctional hoa or tairua, an erosional channel cut only partly across a continuous atoll rim. Its lagoon end (Fig. 50, Pl. 72) serves as a sheltered anchorage for motored yachts, but it can only be entered or exited during high winds or moderate-to-high surf. Chevalier (in Stoddart & Steers 1977, p. 77) has suggested that hoa features are partly a result of sea-level changes altering the balance of sedimentation and erosion.

Leeward Reef Flats: These are wider, flatter, gentler, more consolidated, and less filled with rubble than the windward reefs (Pl. 11). An orange, semi-transparent alga, blanketing the coralheads, chunks of upraised coral (Pl. 11), carbonate rock, and giant clams, is abundant. This alga is found on many atolls, for example Enewetak and Rangiroa (U.S. Department of Energy 1987, Stoddart & Sachet 1969). Living coral is sparse.

Surge Channels: These occur in a variety of shapes and sizes, depending on the distances between motus, the extent and buildup of reef flats adjacent to land, and lagoon depth. Surge channels and reef grooves are deeper on the windward side. The vigorous currents washing daily into Caroline's lagoon have created larger debris fans between windward motus than between those to leeward (Frontispiece).
Beaches

Caroline's beaches—the zones lying between low water mark and the inland limit of wave-deposited debris—are entirely of reef origin. There is, however, considerable variation in their composition. The windward beaches and surge channels, in a constant state of erosion or deposition, support the greatest variety of sediments: well sorted sands (indicated by grain-size distribution); gravels of coralline, algal (including Halimeda) and molluscan origin; and a wide assortment of coral fragments. The atoll's prime stretch of sand (Shark Islet) is thickly overlain with pink granules, possibly Foraminifera tests, which are abundant in the Tuamotus (Stoddart & Steers 1977).

Almost all exposed rubble on Caroline is colored gray, a consequence of penetration by cyanobacteria. Typically the oldest rubbles, highest up the beach and extending into the interior, are darkest. A marked beach crest rises, gently or abruptly, from the windward beaches, at the crest of which is deposited an assortment of flotsam and jetsam: bottles, plastic, wood, coconuts, etc. (Pl. 19). No storm blocks were found in 1988, but in 1990 many littered the windward reefs and shores, the result of recent cyclonic weather. Similarly, in 1990, thick deposits of coarse sand had overlain the rubbly windward beaches and interislet channels of 1988 (Pl. 33).

Alterations to Caroline's beaches provide the major changes in motu shape. Aggradation occurs principally on the lagoonward points of the larger windward islets, for example, Brothers (which is now joined with a separate islet mapped by Arundel), and Windward and Tridacna (which have added more sediments to their southwest points during the last century).

Beachrock: These elongated strata of eroded reef, brown consolidated sands and reef detritus, from one to a few meters wide, are not abundant on Caroline. Occurring as seaward dipping strips at the low water mark, they flank the windward beaches of Nake, Long and South (Figs. 37, 38, 50; Pl. 54) and a few of the leeward islets. Beachrock results from lithification of tropical intertidal sediments by calcium carbonates, in part due to seawater evaporation during low tide (Scoffin & Stoddart 1983). Beachrock outcrops become more exposed after storms, indicating that some cementation may occur beneath a shallow sediment cover. A coarser conglomerate platform (Pl. 20), possibly a relic of a former, high sea level, occurs on the northwest point of South Island, creating the "landing" (Pl. 20). This appears to be of similar age to the remnant reefs of southwest Nake, which are less consolidated (Pl. 11). Although the platform's upper surface rests slightly above high water level, we do not know if it represents a former reef exposed by a recent fall in sea level. The origins of such platforms are controversial (Stoddart & Steers 1977).

Upraised Reef: In a few areas, jagged, eroded upraised reef (feto) comprises some of the islet's interior—for example, the lower quarter of Long. A thin soil cover supports a forest of lower stature than would otherwise be expected. The rocky substrate is pitted with
cavities and undermined with subterranean tunnels in which at least 2 species of land crabs (Birgus latro, Cardisoma spp.) shelter (Pl. 21). Noddy Rock (Pl. 18), the smallest motu (0.02 ha), and many jagged coralline "mushrooms" found on the reef flats (Pl. 11) are probably remnants of former reef flats formed when sea levels were several feet higher than present. It is hoped that further investigation will determine whether these older limestones are from the Holocene or Pleistocene.

Lagoon

Caroline’s lagoon, 8.9 km long, is closed; its total area is less than that of the combined reef flats. The lagoon is relatively shallow, tapering in shape and depth at each end, containing both reticulate and patch reefs of living coral. Its bathymetry is unknown.

In the north the lagoon is more sheltered, as the presence of continuous vegetated land buffers the easterly trades, and silty sediments increase. At its northern extremity, merging reef flats squeeze the lagoon until it disappears east of Pandanus Islet. A filled-in portion of the former lagoon penetrates Nake for 300 m as a fishhook-shaped mudflat, Sandy Inlet (Fig. 37, Pl. 22), before succumbing to encircling vegetation. At the lagoon’s southern end, where winds whip through the "blind channel," it is choppy, having more sediment and slightly less visibility. However, within the lee of South Island’s north-central curve the lagoon is frequently quiet and reflective (Pl. 23).

Lagoon Hydrology

Although Caroline’s hydrology has not been studied, the south end of the lagoon and "blind passage" (Fig. 50, Pl. 72) were closely observed for 2 years by Ron Falconer. He noticed that the lagoon is typically "perched" at a level above that of all but the daily high tides. High tide water flows rapidly over the reef flats into the lagoon, but is held back by the reefs as the tide lowers. Lagoon water at low tide is about 0.3 m higher than water in the "blind passage." Water moves out of the lagoon through a few channels that, although deep in places, form broad, shallow troughs over the reef flats. A major channel with a current flowing west at several knots passes along the northwest point of South Island, although water passage is impeded by the reef flats west of South Island. If a channel were to be blasted through the reef flats, as has been proposed, this delicate hydrology would be disrupted. For example, the high tide water is never more than 20 cm above the coral heads and reefs in the lagoon. A man-made reef channel for vessels could lower water levels 30-40 cm, thereby exposing and killing the extensive Acropora-Tridacna reefs within the lagoon.

The "blind passage" is sustained by a powerful northward flow of water along the east coast of South Island and a strong southward flow of water along the seaward reefs of Tridacna Islet. The South Island
Flow is augmented by water draining from a large shallow basin on its windward reef flats. Water spills into the "blind passage" and drains east at about 4 knots against the prevailing trade winds and surf. There is minimal current at the west (inner) end of the passage, where less water is collected, and throughout the passage at low tide when there is essentially no water flow out of the lagoon.

Patch Reefs

Darwin (1842) recognized 3 basic reef types (fringing and barrier reefs, atolls). A fourth type, patch reef, is now widely accepted. Patch reefs are smaller than the other 3 reef types, lack a lagoon but are located within lagoons, are submerged up to low tide level, and, unlike other oceanic reefs, have foundations of sediments or sedimentary rocks. They are subcircular to irregular in shape when viewed from above, and in their smaller sizes merge with coral knolls, coral thickets, or coral heads (Ladd 1977, Fagerstrom 1987).

A complex series of patch reefs and coral knolls (primarily Acropora spp.), circular and elongated, flank the smaller motus and crisscross much of Caroline's lagoon (see Frontispiece). They are particularly evident in the southern two-thirds of the lagoon. Coral limestone bedrock, surmounted by abundant living coral, molluscs, and other invertebrates, provides their basic structure (Sirenko & Koltun, in press). The atoll's perimeter reefs provide shelter from storms, surf, and excessive erosion. In shallow areas they tend to be curvilinear (Central Leeward Islets), while in deeper water, coral knolls and pinnacles are more characteristic (Pl. 63).

Caroline's lagoon is gradually filling in with ever-expanding patch reefs and debris washed in from the fringing reefs. Since Arundel's time, the effects of detrital deposition can be discerned as changes in the shapes of islets such as Nake, Danger, and Arundel (compare Figs. 2 and 4).

Such change is typical of atoll evolution. Geologically, Caroline is a few steps behind one of its "neighbor" Line Islands, Christmas, where sediments and coral growth have converted the original lagoon into a maze of supersaline, mini-lagoons and tiny islets, mostly cut off from the sea. Further steps in evolution are exemplified by completely filled-in atolls such as Jarvis and Vostok, where not even salty pools remain.

Tridacna-Acropora Reefs

Though the giant clam (Tridacna maxima) is an abundant component of Caroline's lagoonside reefs, exceptional aggregations flank the most southerly windward motus (Brothers through Tridacna, Figs. 44 to 48). Two especially outstanding reefs extend across the lagoon from Tridacna to Ana-Ana (Fig. 10, Pl. 25) and Tridacna to Kimoa (Fig. 48), where Tridacna attach to Acropora spp. corals, a favored substrate (Braley
Figure 10. Relationship between mean annual rainfall and distribution of phosphate islands in the tropical Pacific (Fig. 13.1, Stoddart & Scoffin 1983).
1987). Abundant inshore Tridacna on all these islets suggest that their density is similar to that on the main reef: up to 20/0.25 m² (i.e. 80/m²), averaging 35/m² for the entire area surveyed (Sirenko & Koltun, in press). This density exceeds the highest known aggregations of Tridacna: up to 60/m² at Reao Atoll, Tuamotu Archipelago (Richard 1985). Densities of 6-20 clams per square meter, as found at Takapoto Atoll (Tuamotus), are considered high. Throughout Caroline, the clams averaged 18 x 10 cm in size. Several species of Indo-Pacific Tridacna have suffered greatly from poaching and overharvesting, leaving few undisturbed populations (Braley 1987). Caroline is thus a special refuge for T. maxima.

Lagoon Reef Flats

These vary considerably but are narrower and more gently sloping than the seaward reef flats. They are typically covered with fine coral gravel and coarse sand. In sheltered areas (lower Long, Windward, Crescent, South, upper end of lagoon) lush shrubbery--Cordia, Tournefortia, Pisonia, Cocos--overhangs the lagoon. Here fine silt, sand and/or an algal slime are common (Pl. 27). In 1988, narrow, sandy beaches were limited to northern South (Pl. 23) and eastern Shark (Pl. 28), but in 1990, sand occurred throughout Caroline.

Where the lagoon shorelines are less sheltered and vegetation does not overhang the lagoon, unvegetated rubble and sparse herb mats are typical. Here, lagoonside rubble averages less than 2 m wide (Pl. 30). This contrasts with their seaward reef flats, which average 21 m wide (Pl. 11).

Lagoon Reef Fauna: A Brief Summary

Caroline's marine environment is rich yet essentially undocumented: knowledge is limited to preliminary lists of fish, invertebrates and lagoon plankton (Dixon 1884; Fowler 1901; Pilsbry & Vanatta 1905a, b; Tsyban & Smith 1988, Sirenko & Koltun, in press). All early travelers remarked on the beauty, abundance and variety of Caroline's reefs (Markham 1904, Bennett 1840); today they are still relatively untouched.

The usual assemblage of reef invertebrates--echinoderms, molluscs (Turbo, Nerita, Cypraea), crustaceans, porifera, tunicates, etc.--are present. Corals include several important Holocene reef-constructors: Acropora, Pocillopora, Porites, and Montipora. Calcareous algae include Halimeda, Porolithon and Lithothamnion (Sirenko & Koltun, in press). Large numbers of black sea cucumbers (Ludwigothuria sp.), about 20 cm long, are particularly abundant lagoonward of the southern windward islands (Pl. 10). Conspicuous fish families include parrot fish (Scaridae), butterfly fish (Chaetodontidae), surgeonfish (Acanthuridae), damselfish (Pomacentridae), pufferfish (Tetraodontidae), and wrasses (Labridae).
Substrata

Throughout the atoll, substrates reflect a reef origin. There is little "soil" in the accepted sense. Various grades of jagged, eroded coral and molluscan rubble (from fist-sized to tiny pebbles), together with sand, coralline algae, and relatively small proportions of organic litter, humus and guano, are present. Such accumulations of reef and terrestrial debris are similar to those of other low, coral atolls (Fosberg 1953, Stone 1953, Wiens 1962, Niering 1963, Stoddart & Sachet 1969, Garnett 1983, Reese 1987, Gessel & Walker 1992).

Generally speaking, atoll soils are calcareous and extremely immature, a consequence of their limited age and frequent disturbance by storms. Barely modified beyond the reef that spawned their presence, they are rich in calcium and magnesium carbonates. Water retention, if any, is due to accumulated organic matter and its associated chemical changes. Accumulations of guano react with the calcium carbonate of reef sands and elevated limestones to form nitrogen-rich "soils" and phosphatic hardpan (Hutchinson 1950, Fosberg 1953, Stoddart & Scoffin 1983).

Reese (1987) categorizes atoll "soils" into 5 types, all of which occur, in different proportions, at Caroline. The degree of organic matter, decomposition, amount of humus, and the depth of the "soil" strata are directly correlated with age and size of Caroline’s motus.

1) Accumulations of coral rubble, mainly of stone size. These youngest of "soils" are most evident around the edges of the motus, acting as a substrate for natural herb mats. Often extending well inland, they can support surprisingly lush Tournefortia scrub.

2) Unaltered coral sand and gravel. Although exposed sand was uncommon at Caroline in 1988, this substrate occurred intertidally where the lagoon was filling in and on actively growing sandbars, primarily in the upper lagoon (Pls. 22, 27), northeast and northwest South (Pls. 23, 31), and the lagoonward edge of Shark (Pl. 28). In 1990, a single storm deposited tons of sand on Caroline.

3) Soils with a weakly developed A-horizon, with color only slightly darker than the unaltered sand below, but with no evidence of structural development. Especially evident in 1988 within the ancient interislet channels that compose Long Island (Pl. 32), much of this substrate is now storm-eroded and overlain by fresh sand (Pl. 33).

4) Soils with a more developed A-horizon, deeper and darker than above, with some structural development. This stage defines areas where the rubbly/sandy substrate approaches a true, but poor, "soil." As such, it represents older, more stable parts of each island. It is common within the islet interiors where Pisonia is (or was) present. Its composition may be likened to a coarse mixture of gravel, sand, bones, humus, eroded coral and shells, all mixed with sparse amounts
of partly-decomposed litter. Land crabs are particularly numerous, further breaking down organic matter into finer particles.

5) Soils with an accumulation of raw humus on the surface and with a relatively deep A-horizon. During this stage, phosphatic hardpan may develop. These true soils, though somewhat depleted by guano diggers, cover significant areas on South and Nake. Cocos and/or Pisonia debris heightens their dark coloration and moisture content. This earthy substrate is composed primarily of rotted Cocos fronds and nut fibers shredded by coconut crabs. Patches of blackish muck on South Island support local patches of Tacca leontopetaloides.

On Caroline, we noticed a type of hardpan (Pl. 67) in several areas (primarily South, Nake, Long, Emerald, and Mannikiba). In each case it resembled a flat sheet of old asphalt road, present within, or adjacent to, herb mats and peripheral Tournefortia scrub. Since hardpan forms when phosphatic derivatives from guano interact with permeable, reef-derived carbonate sediments (Stoddart & Scoffin 1983), it is possible that these barren clearings represent areas of high guano concentration. Worldwide, the major guano-producing seabirds are boobies, terns and frigatebirds (Hutchinson 1950). Adjacent to, or nesting on, these areas of hardpan which we observed were Red-footed Boobies (all motus), Great Frigatebirds (all except South), Lesser Frigatebirds (Nake), Masked Boobies (Long), and Sooty Terns (only 1990 on Long, but recorded from open areas of Emerald and Mannikiba, June 1965 and July 1990, see Pt. II, Fig. 11).

We did not take soil profiles within Pisonia forests to ascertain the presence of subsurface phosphatic hardpan. However, AKK and John Phillips found both surface and subsurface phosphatic hardpan on nearby Vostok, having the typical "pepper-and-salt," coloration and crumbly texture characterized by the Jemo soils found in the Marshall Islands (Fosberg, 1954 and pers. comm.).

Caroline provides an excellent example of the progression of soil development through islets of different age and size classes (see Sect. F). From a wave-washed mound of coral rubble, barely above sea level (Fig. 5), the substrate gradually improves in texture and fertility as the emerging islet ages and organic matter accumulates. Pioneer plants are hardy, salt-tolerant, low-lying mats consisting primarily of Heliotropium, and later, Tournefortia. Increasing numbers of shrubs provide shade and branches for nesting seabirds. Larger trees (Pisonia, Cordia, Morinda) add more shade and thereby increase humidity, as well as provide opportunities for additional organic "fallout": leaves and bird remains (nests, eggs, chicks, droppings, regurgitated food, dead adults).

Each stage of substrate development accelerates the accumulation of organic material and helps to define an emerging, deeper A-horizon. Soil maturity is indicated by more organic matter, improved soil texture, and a lowered volume of coralline and molluscan debris. Caroline’s soils barely exceed several centimeters in depth and are
always intermingled with coral fragments. As a result, they are unsuitable for burrowing seabirds such as petrels and shearwaters.

Hydrology

Hydrological information is essentially lacking. No standing fresh water exists. The quality, extent, and salinity of the freshwater lenses, as well as their variability according to tide, season, and rainfall, are unknown. At the time of Caroline’s "discovery" (1606), de Quiros and his party were desperate for fresh water. After noting how lush and green Caroline was, they expected to find good water supplies, but there was "nothing but salt water in the holes they dug" (Markham 1904). Maude (1968) suggested, in hindsight, that had they waited longer the salt water in their shallow wells might have run fresh, as has been his experience on some other atolls. During the 19th century, 3 wells were used--one on Nake and 2 on South (Holden & Qualtrough 1884). One South Island well contained fresh water at 1.5 m depth in 1974 (Barnett 1983). We saw no wells, but located 2 concrete cisterns, one built in 1937 near the "landing" and rebuilt by the Falconers in 1989, and another uncovered one (dating from 1938) within a Cocos-Pisonia grove along Transect 2, about 200 m east of the southwest corner of Nake.

Caroline’s paucity of fresh water may be partly responsible for the lack of a permanent population. The annual rainfall in 1989 (App. II) was 1,242 mm (48.9"). However, like the similarly lush Nikumaroro and Orona (Phoenix Islands), Caroline’s rainfall may vary greatly from year to year, resulting in undependable water supplies. Residents always relied on rainfall catchment for fresh water (Maude ca. 1938; R. Falconer, pers. comm.).

The relationships between fresh water and Pisonia forests are uncertain (see Wiens 1962 and Sect. F).

Climate

Meteorological records for Caroline were sparse until 1989, when Ron Falconer began daily records of rainfall and wind direction (App. II). Some data is available from the plantation years 1916-1920 (Young ca. 1922) and during the 1883 Solar Eclipse Expedition (20 April - 8 May) (Upton 1884), when 203.2 mm (8") fell. Generalizations on regional weather conditions are found in N.I.D. (1943), Seelye (1950), Fosberg (1956), Newell (1956), Wiens (1962), Taylor (1973), Stoddart & Scoffin (1983), and various papers on the Tuamotus (Stoddart & Sachet 1969, Sachet 1983). Islands in the Line Group experience a wide range of climates. In general, those near the equator are dry, with rainfall increasing with increasing latitude north or south (Fig. 10).

Caroline experiences a tropical oceanic climate with little annual variation. Temperatures are uniformly warm to hot, normally tempered by
trade winds from the southeast to northeast. Falconer (pers. comm.) did not record daily temperatures but estimated an annual average of 29°C (range 26°-31°C). Mean annual temperatures for the Central Equatorial Islands lie between 24° and 29°C. Surface temperatures increase rapidly in early morning and remain hot throughout the day. Forest interiors are humid. The daily range of temperatures exceeds the annual fluctuation in the daily mean.

Atmospheric pressure, sunshine, and cloud cover are probably similar to the northern Tuamotus, uniform except during storms.

Wind and Rainfall

Caroline is dominated by trade winds. As on all low atolls, land topography has very little appreciable effect on weather. Although it lies within an area primarily influenced by southeast trades, there is a small annual oscillatory movement northward and southward. Appendix II indicates that, at least for 1989 and 1990, winds blow primarily from the north and northeast, and rarely from the southeast (April - August).

The atoll lies within a belt of variable rainfall, along with Vostok, Flint, and the Northern Tuamotus. Young (ca. 1922) measured rainfall for 1919 (2,172 mm) and 1920 (1,854 mm), noting that Caroline’s rainfall is "certainly less than that of Flint." He estimated "probably not more than 50" (1270 mm)" during 1916, 1917 and 1918, figures extrapolated from Flint (1,600, 1,346, 1,295 mm, respectively). Falconer measured 1,242.1 mm (48.9") in 1989 and 2,209.8 mm (87") in 1990. An unusually wet February in 1990 brought 640 mm (25.2") of rain, due to cyclones "Peni" (centered near Vostok) and "Ofu" (centered further west). Rainfall distribution isohyets (Taylor 1973, Stoddart & Scoffin 1983) assign Caroline an approximate annual precipitation of 1,500 mm (60"), a perfect average of the above 6 years (x = 1,513 mm). In general, "winter" (May - October) corresponds roughly to a dry season, and "summer" (November - April) to a wet season.

Cyclonic Storms

Atoll motus are active structures, undergoing repeated death and rebirth. Violent storms contribute to ongoing erosional and rebuilding processes. Storms deposit debris along windward shores (Pls. 17, 19), into the lagoon and often far inland.

Although the south-central Pacific is relatively free of cyclonic storms (cyclones, typhoons, hurricanes), they occur with enough frequency and devastating force that any discussion on climate should include them. Although detailed records of hurricanes and tropical storms exist for the inhabited Tuamotus since European discovery, we know little of those that have affected Caroline. The following evidence suggests that Caroline experienced 3 major hurricanes since the 1820s and that periodic violent storms modify the atoll substantially.
1) Between 1822 and 1825. When de Quiros visited Caroline in 1606, the northwesterly Cocos plantation on South Island was healthy. When Bennett arrived in 1834, he noted that all the palms were "of dwarf stature," and that "amidst the original groves, the number of vigorous seedlings fully confirmed Captain Stavers' statement [who had visited the atoll in 1828] that these palms had increased greatly since his last visit to the spot" (Bennett 1840).

A few years before 1828, therefore, something had affected the palms. By 1834 they were all of an even height and quite short, yet bore nuts. French records indicate that 2 devastating storms whipped through the Tuamotus during this time—in 1822 and 1825 (Sachet 1983). At least one of these could have affected Caroline.

2) The 1878 cyclone. The first unambiguous record of major devastation at Caroline comes from the letter of a certain J. M. Salmon, dated 1883 and reproduced in Holden (1884). Speaking of the time when Messrs. Brown and Brothers took possession of Caroline (somewhere between 1865 and 1872), he stated that "it seemed as if there had been a storm or hurricane at some short period previous, which had desolated the place." Arundel (1890) attributed this to a tidal wave that swept across the Pacific from South America to New Zealand and Australia in 1868 (Arundel 1890), but atolls do not generally suffer greatly from tsunamis because they lack focusing relief. The Hydrographer of the Navy (1931, Vol. III, p. 154), however, referring to Caroline, clearly states that in "1878 a cyclone passed over the islands, destroying most of the coconut trees."

The Great Britain Naval Intelligence Division (N.I.D. 1943, p. 490), in reference to Caroline, also states that "in 1878 a hurricane wrought great destruction." This was possibly the violent storm of 6-7 February 1878, which killed 117 persons on Kaukura Atoll, 750 km southeast of Caroline in the Tuamotus (Sachet 1983).

3) The 1906 hurricane. Serious storms occurred in the Tuamotus during 1903 and 1906 (T. Spencer, pers. comm.). There is no record of the effects of the latter storm on Caroline. However, it affected Flint Island (Campbell 1908, p. 2), hence must have passed over Caroline as it passed westward from the Tuamotus. Campbell, leader of the Solar Eclipse Expedition to Flint (1907-1908) states that "the great hurricane of 1906 February or March drove water to (the manager's residence, native huts and copra warehouses, all located 22 feet ASL and slightly inland) and the water threw the warehouses off their post foundations."

Ten or more coconut palms on Flint were struck by lightning in March of 1917 and 1918 (Young ca. 1922).

4) The 1990 storms. Our second visit to Caroline was 2 weeks after cyclone "Peni," centered near Vostok (February 1990), affected the atoll. Violent winds, torrential rain, and high seas had defoliated and uprooted vegetation in some windward areas (Pl. 33) and greatly altered Caroline's shorelines, interislet channels, tidal fans, and incipient islets from our 1988 visit. Tons of sand and rubble were rearranged on
both windward and leeward islets, Motu Atibu virtually disappeared, and the main interislet channel that divides Long Island lost its herb mats and many *Tournefortia* shrubs, becoming smothered with fresh sand.

We note here that nothing is known of the effects of the 1982-83 El Niño Southern Oscillation at Caroline. This phenomenon is characterized by the appearance and persistence, for 6 to 18 months, of anomalously warm water in the equatorial waters of Peru and Ecuador. Its biological consequences are dramatic and large-scale, extending far into the central Pacific Ocean: diminished plankton production, reduced fish stocks, starvation and mass breeding failure of seabirds, heavy rainfall, growth of vegetation and disappearance of nest sites (Barber & Chavez 1983, Cane 1983, Stoddart & Scoffin 1983, Schreiber & Schreiber 1984). Our only comments are that our seabird population figures were either similar to or greater than those in 1965 (Pt. II) and that the only dead birds we saw were in March 1990, victims of the cyclonic weather described above.

Because islets on coral atolls rarely exceed 5 m in elevation, the tidal surges associated with Class IV or Class V hurricanes, often exceeding 5 m in depth, can overwhelm them, not only altering or destroying the vegetation, but in extreme cases completely removing them from the coral rim (Frisbie 1944). It is essential to consider the ephemeral nature of Caroline's motus in the discussions that follow.

Sea Conditions

Because the most extensive coral rubble deposits occur around northern Nake and southern South Island, and because the Cocos plantation of northwest South was so badly hit by storms last century, the following Tuamotuan generalities (Newell 1956) probably also apply to Caroline:

1) Prevailing trade winds from the east give heavy seas on the northeast or windward side;

2) Southern ocean swells generated in the sub-Antarctic break heavily on the south or seaward side; and

3) Occasional hurricanes or tropical storms strike in the northwest or stormward quarter.

Tides

Only scanty data are available. In May 1883 (Holden & Qualtrough 1884), the greatest daily variation ranged from 475 mm (1'7") to 125 mm (5"), i.e. 350 mm (1'2"). The standard hydrological chart (Fig. 4) states 1.5 feet (0.5 m), which we use in the schematic profiles (Figs. 32, 35, 36) as the difference between low and high spring tidal levels. For Flint, W. Campbell (1908) guesses "about two feet" (0.6 m), while Ward (1974) estimates 1.5 feet (0.5 m). Tidal fluctuations are
similar to those occurring in the Tuamotus, around 0.7 m (2') (Newell 1956, Stoddart & Sachet 1969).

E. FLORA: VASCULAR PLANTS AND FLORISTICS

Botanical History

All early visitors to Caroline described a well-wooded atoll with numerous islets whose vegetation extended to the shoreline. It has changed little in the 384 years since its Western discovery. The first botanical collection and notes were those of Bennett in 1835 (Bennett 1840), who recorded 10 flowering plants and a fern, and planted Tahitian chestnut, sweet potato, and Polynesian arrowroot. He noted that "some of the loftier trees" on South Island and the Southern Leewards, were 20 feet high, perhaps a consequence of cyclonic weather in the 1820s. The location of his plant collection, if it still exists, is unknown (Clapp & Sibley 1971a).

The only indication of tall, native forests is given by Arundel (who mined guano and later cleared land for coconuts) in an unpublished manuscript to shipowners, where he states that "the trees on the extreme northern and southern islets (i.e. Nake, South) are about 80 to 100 feet high" (Arundel 1875). Beginning in 1885, coconuts were planted on about half of the motus, but the copra industry failed twice, and from 1929 to 1987 the atoll was essentially uninhabited.

Dixon made the first true botanical collection in 1883 during the Solar Eclipse Expedition (in Trelease 1884). All specimens were from South Island except Laportea ruderalis. His collection included several ornamentals and vegetables grown by early settlers (Lucett 1851) but not reported since, an important point as these temporary introductions have since been cited in the literature as part of Caroline's 35 plant species. Many were not found by the POBSP party, yet because no scientific investigations had been conducted for 80 years, they were counted as part of the atoll flora (Clapp & Sibley 1971a). Two more visits to Caroline, plus periodic searching by the Falconers, have also failed to uncover most of these ornamentals.

Vascular Plants of Caroline Atoll

Plant Collections

To avoid duplicating Long's plant collection (Clapp & Sibley 1971a), we collected only 5 specimens in 1988 and 33 in 1990. Dr. D. Herbst assisted with identification, prepared and deposited the specimens with Long's in the Bernice P. Bishop Museum, Honolulu, Hawaii. Collection numbers preceded by 'K' were collected by A. Kay Kepler; those preceded by 'L' are those of the late C. R. Long. Earlier
collections of Bennett in 1835 (Bennett 1840) and Dixon in 1883 (in Trelease 1884) are noted by date only.

Working with Long's location records for some species has proven difficult. He was working with an incorrect map (Fig. 7), which showed only 25 islets instead of thirty-nine. Much of his work was done at night, which in some places would have made it hard for him to determine his exact location. His references to South, Long, and Nake are undoubtedly correct, and presumably the following: "second islet south of Long" = Crescent; "islet northeast of South Island" = Tridacna; and "fourth islet north of Bird Islet" = Emerald. Long records Pandanus on the "second islet south of Nake Island," which lacked Pandanus when we surveyed the island. Moreover, the first islet south of Nake supports an extensive grove of large Pandanus trees on its eastern (lagoon) shore, and we feel confident in ascribing Long's specimen to this island, which we had named "Pandanus" because of this grove. To be consistent, we have ascribed all his other "second islet" specimens to Pandanus Islet as well, and assume he made no collections on the actual second islet (Danger). However, Sibley (pers. comm.), the ornithologist, told us that the party visited every islet.

Species Lists, Annotated Checklist and Maps of Terrestrial Vascular Plants

Following recent authors (Lamberson 1987, Sachet & Fosberg 1983), we do not consider Caroline's transient or extinct vascular species (Table 1) or the vegetables and ornamentals in the Falconer's garden as part of Caroline's viable flora. Table 2 summarizes the current flora, detailing the relative abundance of each species within each plant community. These tables are based on sight records supplemented by all collections, past and present. No beach drift seeds are known from Caroline apart from those species already represented. English and Gilbertese names in Tables 1 and 2 are from Thaman (1987), St. John (1973), and Perry & Garnett (n.d.). If no common name is available, the Hawaiian name, familiar to many students of Pacific botany, is used.

Table 3 lists the distribution and abundance of plant species (with subdivisions into tree, shrub and herb components) on all motus. Figs. 11-25 map the entire atoll distribution of each species according to data from transects and aerial maps.

Families are arranged phylogenetically, according to Fosberg & Sachet (1987), with species arranged alphabetically within each family. The taxonomy of vascular plants follows W. Wagner et al. (1990), and ferns H. Wagner (pers. comm.). "% cover" means the percentage of the ground area covered by a particular plant species. In all text and tables the following symbols apply:

* New record for Caroline

* Indigenous--plants native but also occurring elsewhere (I)
Table 1. Plants reported from Caroline Atoll, but considered to be transient or extinct members of the flora.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>English and Gilbertese Names</th>
<th>Date Last Reported</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS ANGIOSPERMAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Gramineae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinochloa inodora (L.) Gaertn.</td>
<td>goosegrass, te ueta</td>
<td>1884</td>
<td>Introduced weed</td>
</tr>
<tr>
<td></td>
<td>lovegrass, te ueta</td>
<td>1884</td>
<td>Introduced weed</td>
</tr>
<tr>
<td>Family Cyperaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyllinga brevifolia Rottb.</td>
<td>kyllinga</td>
<td></td>
<td>One clump by cistern, South Is., on recently disturbed ground</td>
</tr>
<tr>
<td>Family Bromeliaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ananas comosus L.</td>
<td>pineapple, te bainaburo</td>
<td>1884</td>
<td>Introduced for cultivated fruit</td>
</tr>
<tr>
<td>Family Liliaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crinum sp.</td>
<td>lily, te kiebu</td>
<td>1884</td>
<td>Presently cultivated</td>
</tr>
<tr>
<td>Family Moraceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficus carica L.</td>
<td>common fig, te hiku</td>
<td>1884</td>
<td>Not yet established, 2 trees on South and Ana-Ana</td>
</tr>
<tr>
<td>Family Basellaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boussingaultia garciae Miers</td>
<td>Madeira vine</td>
<td>1884</td>
<td>Introduced 'vine climbing over portico’ (Trelease 1884)</td>
</tr>
<tr>
<td>Family Leguminosae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inocarpus falcatior</td>
<td>Tahitian or Pacific chestnut, mapo (Tahiti), te in</td>
<td>1840</td>
<td>Unsuccessful introduction in 1834. Food plant</td>
</tr>
<tr>
<td>(= I. fasciculatus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viros marina (?)</td>
<td>beach pea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Euphorbiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbia hirta</td>
<td>garden spurge, sleeping plant, te kaimatu</td>
<td>1884</td>
<td>Introduced weed, unsuccessful</td>
</tr>
<tr>
<td>(= E. pilulifera)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Gutiferae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calophyllum inophyllum L.</td>
<td>Alexandrian laurel, kanaga (Tahiti), te rai</td>
<td>1884</td>
<td>In the 1940s, a “few taller Calophyllum and Pisonia” (N.I.D. 1943). No other reference; did observer confuse Calophyllum with Cordia?</td>
</tr>
<tr>
<td>Family Caricaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carica papaya</td>
<td>Papaya, panaw, te bataia, te oonuua</td>
<td>Presently cultivated</td>
<td>Cultivated for fruit in 1884, not seen in 1965, in garden on Ana-Ana, one on South Is. by cistern</td>
</tr>
<tr>
<td>Family Cucurbitaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita pepo L.</td>
<td>Pumpkin, te baukin, te banakin</td>
<td>Presently cultivated</td>
<td>Cultivated in 1884, not found in 1985</td>
</tr>
<tr>
<td>Family Convolvulaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipomoea batatas L.</td>
<td>Sweet potato, te kemara</td>
<td>Presently cultivated</td>
<td>Introduced in 1840, not reported again until this expedition (tubers brought in 1988). Collection nos. K-159, -160</td>
</tr>
<tr>
<td></td>
<td>beach morning glory, pohuehue (Hawaii), te rau</td>
<td></td>
<td>Found in 1965 by copra shed; extensive searching on 3 expeditions in 1986 and 1990 failed to find it</td>
</tr>
<tr>
<td>Family Scrophulariaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruscus sanguifolius Schlecht.</td>
<td>Coral plant, te kaibauaun ('golden plant')</td>
<td>1884</td>
<td>Unsuccessful introduction in 19th century</td>
</tr>
</tbody>
</table>

Since 1888, the Falconers have added more vegetables and ornamentals to their ever-expanding garden: green beans, lemon grass, peppermint, okra, banana, Tahitian gardenia (Eugenia), tomato, breadfruit, red hibiscus, etc.

Not previously reported from Caroline Atoll.
Table 2. Vascular flora of Caroline Atoll: relative abundance of each species within the major ecosystems, with data on seabird utilization.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common & Gilbertese Names</th>
<th>Natural Ecosystems</th>
<th>Anthrophogenic Ecosystems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seabird Utilization</td>
<td>Coastal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>E</td>
</tr>
</tbody>
</table>

1 Excludes transient and extinct species (Table 1). Species arranged according to their overall abundance on the atoll.
2 New records for Caroline. Not seen on this expedition, last seen 1965 (Clapp and Sibley 1971a).
** Aboriginal introduction--useful plants brought by Polynesians in pre-historical times (AI)

Recent introduction--plants of accidental or deliberate introduction after Western discovery of the atoll (RI)

Abundant--the major or dominant species in a given area

Very common--often seen but not quite as abundantly as above

Common--generally distributed in large numbers

Uncommon--observed uncommonly but >10 times in a given area

Occasional--here and there, often widely scattered but not forming a major component of the vegetation

Rare--observed 2-10 times in a given area

Single--only one specimen observed

Local--found only or principally in one or more restricted areas

Drift seedling--plant derived from a water-borne seed

+ Not seen 1988-1990 but probably still present

PSILOTACEAE

* Psilotum nudum (L.) Beauv

Formerly Known Distribution: L-3233 from Nake.

Present Distribution: Cosmopolitan, common on remote islands, rare on Caroline. K-90-15 from South. In 1965 common on wet base of Cocos only on Nake. In 1988 and 1990 a few clumps found similarly on South in shady, damp locations, close to lagoon, under 18 m canopy, northwest sector.

POLYPODIACEAE

* Phymatosorus scolopendria (Burm. f) Pichi-Sermolli

Formerly Known Distribution: Recorded 1840, collected 1884; L-3244, L-3250, L-3287 from Nake, Long and South Islands.
Table 3. Distribution and abundance of plant species on Caroline Atoll.1

Motus are arranged geographically from north to south (windward), then similarly on the leeward side.

<table>
<thead>
<tr>
<th>Windward Motus</th>
<th>South Make Motus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>L</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>M</td>
</tr>
</tbody>
</table>

TREES (7 spp.)

- Pisonia grandis: A VC A A A A A A A A VR R R VC A VC UC R R R R
- Morinda citrifolia: UC UC UC D R UC R D UC VC R A C R R R R
- Cocos nucifera: LA LA LA LA LA LA LA LA LA
- Cordia subcordata: UC UC C LA C VC C VC C UC R LA
- Pandanus tectorius: LA LA
- Hibiscus tiliaceus: LA
- *Theophrastia populina*

SHRUBS (4 spp.)

- Tournerfortia argentea: A A A VC A A A A A A A A A A A A A A A A
- *Scaevola taccada*
- *Eremia americana*

HERBS (15 spp.)

- Heliotropium annulatum: C VC UC C C UC UC UC R UC C O UC VC C C O UC UC UC UC UC R
- Boerhavia repens: C LC C C C C UC C C A UC C VC C O R R R R R R
- Portulaca lutea: C C C UC C C C C A A A A C C C C C C C C C C C C C
- Ipomoea pudorialis: C VC UC UC UC UC R R R R R R R R
- *Achyranthes canescens*
- *Lepturus repens*
- *Ipomoea macrantha*
- *Tacca leontopetaloides*
- *Psilotum nudum*
- *Phyllanthus anus*
- *Tribulus cistoides*
- *Sida fallax*
- *Lepidium rigidum*
- *Digitaria sp.*
<table>
<thead>
<tr>
<th>Central Leeward Motus</th>
<th>Southern Leeward Motus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Continued.

- **Trees (7 spp.):**
 - *Pisonia grandis* 32
 - *Morinda citrifolia* 32
 - *Cocos nucifera* 17
 - *Cordia subcordata* 23
 - *Pandanus tectorius* 9
 - *Philippus liliaceus* 1
 - *Theopropopsis populnea* 1

- **Shrubs (4 spp.):**
 - *Tournefortia argentea* 3
 - *Suriana maritima* 10
 - *Scaevola taccada* 1
 - *Timenia americana* 2

- **Herbs (15 spp.):**
 - *Heliocarpum anomalous* 38
 - *Borussia reginae* 34
 - *Portulaca bacea* 37
 - *Lepeolodes ruderaria* 32
 - *Schyzochrysis raddiana* 29
 - *Lepturus reginae* 27
 - *Phayatoxys scapularis* 13
 - *Ipsures macranta* 7
 - *Icaca leaogetalaides* 1
 - *Disolatum oculatum* 3
 - *Phyllanthus amarus* 1
 - *Tribulus cistoides* 1
 - *Sida fallax* 1
 - *Lepidium bidentatum* 2

Species arranged according to frequency of occurrence. List excludes transient and extinct members of the flora (Table 1).

New records for Caroline.

Not seen on 3 visits but possibly still present.
Figure 11. Entire distribution map of rare and/or localized plants on Caroline Atoll: diplotaxis tenuifolia, Lepidium bidentatum, Pandanus tectorius, Phyllanthus amarus, Pisonia nodiflora, Jussiaea venosa, Sida xilostoma, Funaria leucophylla, Thespesia populnea, Tribulus cistoides, Strophanthus americanus, and species A. Psilotum may still exist on Wake.

Figure 12. Transect distribution map of the fern Phymatosorus ecolopendria on Caroline Atoll.
Present Distribution: Range extension from 3 to 11 motus. Rarely a continuous ground cover, locally rare to abundant. Commonest on Nake, 10-80% cover. Well represented on South, especially in open areas of the interior, where soils are moister. On other motus local distribution varied from less than 1 to 80%; accurate mapping is difficult. Absent from motus less than 0.6 ha in size, where habitats cannot provide appropriate cover, moisture, and substrate.

Ecology: Hardy. Leaves burn in sun but can withstand very dry conditions. Primarily in Tournefortia scrub, mixed forests with Pisonia and Pandanus, or Cocos plantations. Associated with Cordia, Morinda, Suriana. In open clearings within dying Cocos forests occurs in dense mats intermingled with Boerhavia, Ipomoea, and Portulaca. Sometimes gathers in thick bands at the interface of Tournefortia and Pisonia forests. Prefers shelter from winds, high humidity, "soil," and relative lack of wind, but absent from deeply shaded forests. Rhizomes never exposed on ground surface or epiphytic on trunks, as in wetter islands such as Hawaii or Samoa (pers. obs.) or in the moister Line Islands (Wester 1985), indicating that Caroline's habitats are suboptimal. Although most ferns are not halophytic, this species grew (rather stunted) in 1988 amongst sparse herb mats (1% cover) on older beach sands of an ancient reef channel on Long Island (Tr. C), where rainfall provides the sole fresh water, but was (temporarily ?) obliterated in February 1990. Rare to uncommon in outer beach strand, and beach scrub with Suriana (South, Arundel, Shark).

Substrata: Dry coral rubble, sand and gravel, rubble with sparse humus, lagoon mud, relatively fertile humus, older beach sands.

PANDANACEAE

* *? Pandanus tectorius Park.

Formerly Known Distribution: Recorded 1840, unidentified Pandanus; L-3227, Pandanus Islet, seen on Nake by Long.

Present Distribution: A minor plant community (Sect. G), Pandanus is primarily associated with Tournefortia or Pisonia on the leeward motus. Most common on Nake. Range extension from 2 to 7 motus.

Phenology: Flowers and fruit in October, March, and May.

Substrata: Variable. Prefers lagoon mud, pure sand and rubble-humus, but survives in almost pure rubble.
GRAMINAE

* +? Digitaria species

Collected 1883 and recorded as ?Panicum (Digitaria) marginata. Examined by Long, who believes it a Digitaria identical to his L-3235. Not found by the authors.

* Lepturus repens (Forst. f.) R. Br. Fig. 13, Pl. 2

Formerly Known Distribution: Collected 1883; L-3211, 3221, 3236, 3238, 3247, 3259, 3286 from Windward, Tridacna, Nake, Long, Emerald, Crab and South Island, respectively.

Present Distribution: Many Pacific atolls. K-88-4, 5; 90-1, 2, 19 to 21, 25 from South, Tridacna, and Ana-Ana. On Caroline, range extension from 6 to 26 motus.

Ecology: Patchy, rare to locally common. Usually in exposed herb mats with Heliotropium, Laportea, Portulaca, and low Tournefortia scrub. Abundance 1-5% cover where not in thick patches. Occasionally inland under Tournefortia, Cordia or Cocos, persisting as forest undergrowth. Tufts tiny (few centimeters), dry and scrappy in exposed areas, but to 3 dm where shaded. Never in tall, upright clumps, as turf, or in the same abundance as on the drier, filled-in equatorial atolls or islands with sandier habitats (Christopherson 1927, Fosberg 1953, pers. obs.).

Substrata: Able to survive in coral rubble of varying coarseness, down to high water mark, but preferred habitat is part sand. L-3286 was from "numerous clumps under Suriana scrub on South Island," perhaps the low, sandy portion of the northwest point (Pl. 45), our best Lepturus site. Comparison of Arundel's chart (1883), recent aerial surveys, and earlier photographs indicate that several motus have altered shape since 1883. The amount of open area on South Island has also decreased markedly since 1883. The distribution of Lepturus parallels these changes; there is clearly much less on South Island, and more in newly-created islet fringes.

Since 1965 the lagoon shore of South Island has become overgrown by Cocos, so much that both Suriana and Lepturus are much less common than previously (Pls. 39, 40). However, sand and debris will always be shifting, so that Lepturus will move from place to place, establishing wherever conditions permit. In the second situation, a comparison of Plates 2 and 23 from 1883 and 1988, respectively, shows that a century ago the lagoon-facing shores of South Island were far more open than the dense Cocos plantations of today. The clumped grass in the foreground of Plate 2 is undoubtedly Lepturus, probably mixed with introduced grasses not seen since that time (Eleusine indica, Eragrostis plumosa), and the dubious Digitaria sp.
** PALMAE **

** # Cocos nucifera L. ** #

Formerly Known Distribution: Recorded 1840, 1884; L-3285 from South Island, extensive groves on South and Nake, scattered on north portion of Long.

Present Distribution: Range extension from 3 to 15 motus. Planted groves on South, Nake, and Long; the rest derived from drift.

Phenology: Flowers and fruit year-round.

Ecology: Forms a major vegetation type (Sect. F). Primarily South and Nake, where closed canopy forests average 21 m high.

** TACCACEAE **

** Tacca leontopetaloides (L.) O. Kuntze **

Formerly Known Distribution: Normally an aboriginal introduction on Pacific islands, but on Caroline is first mentioned as planted in 1834 (Bennett 1840); L-3213, 3219, and K-90-7, 16 from moist muck, South Island. L-3234, common under Cocos and numerous patches found in muck, south end, Nake.

Present Distribution: Common in northwest South. None in flower; each plant had 2-3 leaves, possibly dying back. None found on Nake, despite searching the south end. Has large underground tubers, dies back, and though cultivated, still occurs spontaneously in Cocos groves on many atolls. Harvested by the Falconers.

Ecology: Needs fine, moist soil and shade. Though its seeds float for months (Guppy 1906), it has not established itself on other motus in 150 years, probably due to the prevalence of rubbly substrates.

Phenology: Flowers and fruit in March and May, dies back in October.

** URTICACEAE **

* Laportea ruderalis (Forst. f.) Chew **

Formerly Known Distribution: Reported 1840, collected 1884. L-3215 common in shady areas South Island; L-3229 scattered on exposed coral and sand, west side Crescent Islet. L-3253 under shade of Cocos and Pisonia on north side of Long Island.
Figure 13. Transect distribution map of the grass Lepturus repens on Caroline Atoll. Arrows indicate areas of highest density.

Figure 14. Entire distribution map of the coconut Cocos nucifera on Caroline Atoll. Note that the dying Cocos-Ipomoea forest covers approximately two-thirds of the original plantation.
Distribution and Abundance: K-88-3 South Island, Transect 1, elevation 0.3 m, under old Cocos plantation, in humus and rubble. Range extension from 3 to 32 islets (Table 3). Commonest and most widespread ground cover, patchily distributed. Rare to locally abundant, percentage cover from less than 1% in herb mats of tiny motus to 60% in tall Pisonia forest. Best represented on Nake, Long, Brothers, South, Pisonia, Eitei and Mannikiba, where coverage exceeded 50% in appropriate habitats. To 1.1 m tall on Kimoa.

Ecology: Largest (to 0.5 m) specimens found under Tournefortia, Pisonia, Cocos, or Pandanus. Tiny (1-2 cm) and tougher in sunny, exposed sites. Halophytic, pioneering in herb mats on islets less than 0.75 ha in size (e.g. Fishball). Optimum habitat is Tournefortia scrub, in sunny clearings or belts behind beach scrub. Uncommon in Pisonia forest. Occurs in both windward and leeward sites, but in greater density leeward. Will persist through several stages of plant succession if given adequate shade.

Phenology: Flowers and fruit in October, March, and May.

Substrata: Primarily beach gravel or coarse rubble. Also rubble-sand mixtures; not lagoon silt.

OLACACEAE

* ({#?}) Ximenia americana L. Fig. 11

Never previously collected. K-90-170 South Island, 50-100 m north of cistern, elevation 0.3 m, 10-20 m from coastal Tournefortia fringe, within Cocos plantation. Collected by crew of the yacht Amanita and posted by Anne Falconer to AKK. K-90-23 and 24, single sterile shrub 2.5 m tall, southwest Motu Mannikiba, leathery leaves, arching stems 4-5 m long. Found by John Phillips, collected by JP and AKK, identified by D. Herbst and R. Fosberg.

Distribution and Abundance: Locally abundant in one location, about 50 bushes (3-4 m high, 2-3 m wide) spread over about 100 m. Adjacent to indigenous scrub, on edge of Cocos plantation near old settlement.

Phenology: Flowering in July 1990.

Substrata: Moist soil (South), coarse strand rubble (Mannikiba).

AMARANTHACEAE

* Achyranthes canescens R. Br. Fig. 16, Pl. 41

Never previously collected. K-88-1 South Island, Transect 5, to 0.7 m, elevation 0.3 m, in Tournefortia fringe, coral rubble.
Figure 15. Transect distribution map of *Laportea ruderalis* on Caroline Atoll. Arrows indicate areas of highest density.

Figure 16. Transect distribution map of *Achyranthes canescens*. Arrows indicate areas of highest density.
Distribution and Abundance: Quite widespread, primarily in interior scrub and forest of 19 motus (Table 3), from tiny, barely vegetated Fishball (0.73 ha) to the largest, South (106 ha). Density variable: from less than 1% in Tournefortia scrub to 50% local ground cover in mixed Pandanus forest. Primarily associated with Tournefortia. May be locally abundant in clearings in Pisonia forests, pure or mixed. Often in a zone dividing Tournefortia and Pisonia trees, especially on Pig, Brothers, and Nake.

Ecology: Never in natural herb mats. Needs shade but requires some direct sun; rare in pure stands of Cocos and Pisonia. Prefers small, sunny openings in forest or scrub. Drought-resistant and probably partly halophytic. Dies back annually in the dry season and reappears with winter rains (Anne Falconer, pers. comm.). To 1.5 m tall. Little or no capacity for dispersal by sea. On other islands, seeds carried by birds, especially fruit pigeons (Guppy 1906), but pigeons are absent from the Line Islands. Perhaps dispersed by the Long-tailed Cuckoo (Ellis et al. 1990).

Phenology: Flowers and fruit present in October, March, and May.

Substrata: Lushest growth in humus soils of forest interiors. Often grows in pure rubble.

NYCTAGINACEAE

* Boerhavia repens L.
 Boerhavia diffusa L.
 Boerhavia hirsuta: sensu Bennett 1840
 Boerhaavia species: Dixon 1884

Formerly Known Distribution: Reported 1840, collected 1884; L-3210, 3324, 3239, 3225, 3252, 3262, 3289, 3291 from Windward, Tridacna, Nake, Long, Emerald, and South, respectively.

Present Distribution: Cosmopolitan, widespread in the Pacific. K-90-164 and 165 from Ana-Ana. Range extension on Caroline from 6 to 33 motus (Table 3).

Abundance: Present in every habitat, leeward and windward, ranging from less than 1 to 80% cover. Often in large patches. Best locations (>50% cover) on Nake, Long, Windward, Pig, Brothers, Arundel, Tridacna, South, Ana-Ana, Pisonia, and Pandanus Islets.

Ecology: Mostly found beneath Tournefortia, either in pure scrub or mixed with Pisonia, Cordia, Morinda, Suriana, or Cocos. Not in deep Pisonia shade; rarely in herb mats. Thick ground cover in indigenous scrub (Shark) or within clearings in old Cocos-Ipomoea forest (South), where it mingles with Phymatosorus, reaching a high density (Pl. 34) and large size (rooting at nodes, vines exceeded 1 m long).
Figure 17. Transect distribution map of *Boerhavia repens*, Caroline Atoll. Arrows indicate areas of highest density.
Figure 18. Entire distribution map of *Pisonia grandis*, Caroline Atoll. Arrows indicate forests from 10 to 21 m tall.
BIORDS: Bristle-thighed Curlews fed within the Boerhavia mat in old Cocos forests, South. Sticky fruits (3 mm long) found entangled in preened down and adhering to contour feathers of a juvenile Great Frigatebird (Pl. 42). Species is customarily dispersed around large oceanic areas and within atolls by tree-nesting seabirds (Guppy 1906, Ridley 1930).

Phenology: Small mauve flowers and seeds present in October, March, and May.

Substrata: Coral rubble with sand or humus, rarely pure beach rubble. Lushest growth in humus-and-guano-laden rubble clearings where Pisonia forest once grew.

* Pisonia grandis R. Br.
Formerly Known Distribution: Collected 1884; L-3280 4 m tree, north shore, South. Small grove, north end, Long.

Present Distribution: Indo-Pacific. Caroline range extension from 2 to 29 motus (Table 3).

Abundance: A major plant community (Sect. G), of special conservation value.

Substrata: Occupies, and contributes to, best soils on atoll: mixture of rubble, humus, and guano.

PORTULACACEAE

* Portulaca lutea Solander ex Forster F.
Formerly Known Distribution: Reported 1840 and 1884; L-3233 and 3292, 3231, 3237, 3255, 3257, from South, Pandanus, Nake, Long, and Emerald, respectively, in open coral, rubble, gravel and exposed areas, to 1.5 dm high.

Present Distribution: Range extension from 5 to 33 islets (Table 3).

Abundance: Along with Heliotropium anomalum is a component of the plant community, Natural Herb Mat (Sect. G). Widespread, predictable on coast and former reef channels but local inland. Covered from one to 60% of land area on almost every transect, windward and leeward, especially facing lagoon. Best areas are Long, Transect 4 (36 m wide meadow); South, north end of Transect 6 (50 m wide); Brothers, lee, almost pure mat covering 20% ground (6 m wide); Kimoa, north side (8 m wide), 10 cm high; Eitei, north side, 5 cm high.

Ecology: Primarily occurs along edges of motus in rubble mat and open Tournefortia scrub, averages 12 cm high. Prominent in sparsely vegetated areas, extending seaward to high tide level. Halophytic; highly tolerant of sun. A flat mat in exposed areas but lusher inland,
rising to 2 dm tall. Generally found with Heliotropium, Lepturus, Boerhavia, or Laportea, but may form pure mats. Uncommon in Tournefortia scrub, patchy in clearings within Pisonia forests up to 13 m high. Exceptionally common in old Cocos groves with Boerhavia, etc. (Pl. 34); otherwise rare or absent from closed canopy Cocos plantations. Pinker stems found in sunny sites. BIRDS: Provides nesting cushion for Masked Booby, Sooty Tern, Brown Noddy. On Noddy Rock, Brown Noddies nest on a thick mat of pure Portulaca. Feeding location for shorebirds.

Phenology: Flowers and fruit October, March, and May.

Substrata: Coral rubble and gravel, fine to very coarse. Healthier on older sands and coral-humus.

ZYGOXYLLACEAE

* Tribulus cistoides L. Fig. 11

Formerly Known Distribution: Collected 1884. L-3245 in open sandy area among Tournefortia shrubs, Long Island. Not seen elsewhere on atoll.

Present Distribution: Not seen on our surveys, but present in 2 sites on west-central Long Island. K-90-161 (collected by Anne Falconer), probably from one of same sites as 1965 collection. Flowers in March.

SURIANACEAE

* Suriana maritima L. Fig. 20; Pls. 20, 39, 40, 44

Formerly Known Distribution: Collected 1884. L-3220, shrub to 1.8 m, east edge of Tridacna Islet.

Present Distribution: K-90-5, 6 from South Island. Range expansion from one to 9 motus (Table 3).

Abundance: Occasional. Forms a vegetation unit, Beach Scrub with Suriana (Sect. G).

Phenology: Flowers in March and May.

Substrata: Best sites in sand but also on coral rubble.

EUPHORBIACEAE

Phyllanthus amarus Schum. and Thonn. Fig. 11

Formerly Known Distribution: Collected 1884. L-3283, herb Phyllanthus niruri L. (Trelease 1884) to 4 dm, common on north side of South Island.
Figure 19. Transect distribution map of *Portulaca lutea*, Caroline Atoll. Arrows indicate pure *Portulaca* flats.

Figure 20. Transect and perimeter survey distribution map of *Suriana maritima*. Arrows indicate areas of highest density.
Present Distribution: K-90-10-13, herb, 2 small patches, South Island. Limited to a few square meters in the atoll's only weedy area, less than 10 m² in 2 small clearings by the recently-renovated cistern, South. A fairly common weed in the Society and Tuamotu Islands, probably arriving with 20th century copra-cutters and perhaps again within the last 2 years. Caroline's only established "weed" (excluding Polynesian introductions such as Cocos).

MALVACEAE

* * (**) (#?) Hibiscus tiliaceus L. Fig. 11

Never previously collected. K-90-8, 9 from South Island, northwest peninsula, in Cocos plantation near old settlement and "landing," in coral rubble and humus, 0.6 m in elevation.

Present Distribution: Two or 3 large spreading trees in heavy Cocos shade, 10 m tall, with recumbent branches forming an impenetrable thicket, similar in size and form to specimens in Flint's settlement. Since Flint was evidently first settled in 1872 (i.e. no aboriginal population was present, see Kepler, in prep.), Caroline's trees, restricted to the old settlement area, are most likely recent Polynesian introductions.

* * (**) (#?) Thespesia populnea (L.) Soland. ex Correa Fig. 11

Never previously collected. K-90-22, 154, 155 from South Island, in Cocos plantation and in lagoon strand, northwest peninsula, near "landing."

Present Distribution: Two trees (10 m tall), one near the cistern, the other in a fringe of native vegetation bordering the lagoon. The history of this species is probably the same as Hibiscus tiliaceus.

* Sida fallax Walp. Fig. 11

Formerly Known Distribution: Collected by Dixon, 1884, who found one specimen.

CONVOLVULACEAE

* Ipomoea macrantha R & S

Ipomoea tuba (Schlecht.) G. Don

Formerly Known Distribution: L-3228 and 3293, 3242, 3251 on South, Nake, and Long, respectively. Trailing vines, white flowers, stems to 25 m long climbing over Tournefortia, Morinda, and Cocos.
Figure 21. Transect distribution map of *Ipomoea macrantha*. Entire distribution is shown for South Island. Arrows indicate areas having significant amounts of this vine.
History: Not collected last century, though plantation records indicate that it was a major reason for the abandonments of the coconut plantations: "The Pohue Vine", which is the worst pest on the island, was reported in 1921 to be under control" (Young ca. 1922). Today it strangles about 54 ha, two-thirds of South Island's plantation.

Present Distribution: Range extension from 3 to 7 motus, 5 Windward and 2 Southern Leeward Islets (Table 3).

Abundance: Forms part of a vegetation subunit, Dying Cocos-Ipomoea Forest (Pl. 34, Sect. F). An indigenous, nonparasitic vine, abundant in disturbed areas. Rampant growth over most of the interior of South Island, where it forms dense tangles up to 25 m high. Less dense thickets on southern Nake drape Pandanus, Tournefortia, Morinda, and Cocos to 10 m. Coverage 2-5% elsewhere, except in 2 Pisonia sites, where its coverage was 20% (Long Island, Tr. B; Windward Islet, Tr. 1).

Ecology: Lush in dying Cocos forests and mixed forest with Pandanus, aided by relatively fertile soils, moisture, humidity, and partly sunny clearings. Strangles all but the tallest Pisonia and Cordia. Typically sea-dispersed to atolls (seeds germinate after floating up to 1 year in seawater), crawls inland, progressively dropping seeds, to attain full size in interior forests (Guppy 1906, Ridley 1930). Seeds of I. pescaprae are known to be ingested by White Terns in the Marshall Islands, perhaps as gizzard stones (Fosberg 1953). Possibly these same terns, abundant at Caroline, once aided the seed dispersal of I. macrantha. Also characteristic of Cocos plantations elsewhere in the Pacific (Lamberson 1987, Stoddart & Sachet 1969, Fosberg 1965).

Substrata: Prefers humus-laden rubble, but can grow in coarse rubble and sand, especially in leeward areas.

BORAGINACEAE

* Cordia subcordata Lam.

Formerly Known Distribution: Collected in 1884. L-3213 and 3261a, 3228, 3246, and 3261b on South, Pandanus, Long, and Emerald, respectively; flowering trees to 4.5 m high in leeward coral rubble or along lagoon.

Present Distribution: Africa to Polynesia. K-90-3 from South Island, lagoon edge. Range expansion on Caroline from 5 to 23 motus (Table 3).

Phenology: Peak flowering November through April, fruits collected in March and May.

misidentified as Tuumfetta [= Triumfetta] procumbens.
Figure 22. Entire distribution map of *Cordia subcordata*. Arrows indicate small, but monotypic, stands.
Abundance: A separate, though minor, plant community (Sect. F). Although groves are small and mixed with other emergents, individual trees attain 13 m tall. Cordia has special conservation value.

* Heliotropium anomalum H. & A. Fig. 23; Pls. 16, 32, 45-47

Formerly Known Distribution: Recorded (mistakenly as H. curassavicum) in 1840, collected in 1884. L-3222 and 3288, 3240, 3248, 3256, 3288 on South, Danger, Long, and Emerald, respectively.

Present Distribution: Central and Eastern Pacific. K-90-17 from Ana-Ana. In coral gravel, leeward and windward shores. Range extension on Caroline from 4 to 34 motus (Table 3).

Abundance: Forms part of a major vegetation unit, Natural Herb Mat (Sect. G), often associated with Laportea, Lepturus, or Boerhavia. Area coverage ranges from less than 1% to 50%. Widespread, predictable on wind- and salt-blown, low flats where vegetation does not overhang edge of motu. Also in ancient reef channels and newly evolving and connecting islets. Covers major areas of islets, that is those less than 1.0 ha (e.g. Fishball, Skull, and Bo'sun Bird). Best developed on Skull, Tridacna, South, Emerald, and Mannikiba (50% coverage, western seaward rim).

Phenology: Flowers and fruits year-round.

Substrata: Primarily coral rubble and rubbly sand. Marginal habitats extend down to high tide line in areas of coarse coral chunks, where it is tiny and leathery.

* Tournefortia argentea L. Fig. 24; Pls. 9, 37, 47, 48

Messerschmidia argentea (L.f.) Johnston

Formerly Known Distribution: Collected 1884. L-3216, 3226, 3241, 3249, 3258 from South, Tridacna, Nake, Long, and Emerald Isle; shrub to 3 m high, edge of lagoon and above high tide, with white flowers.

Present Distribution: Range extension from 5 to 38 motus (Table 3). Widespread in the Pacific, especially on small islets, but rarely inland. Reaches Ducie Atoll, the most southeasterly island in Polynesia. Caroline's large tracts are excellent examples of relatively undisturbed, pure Tournefortia scrub and forest.

Abundance: Dominates the atoll woodlands, forming the major vegetation type (Sect. G). On almost every motu ranging from a spattering of exposed shrubs within herb mats, through scrublands and taller forests to 14 m high.
Figure 23. Entire distribution map of *Heliotropium anomalum*. Arrows indicate areas of highest density.
TOURNEFORTIA ARGENTEA

Figure 24. Entire distribution map of *Tournefortia argentea*. Because this shrub dominates Caroline's woodlands, there are no individual arrows to indicate areas of high density.
Ecology: Supports 7 species of breeding seabirds; provides feeding habitats for Reef Herons (Egretta sacra), shorebirds, land crabs, and rats.

Phenology: Flowers and fruits year-round.

Substrata: Pure coral clinker; mixtures of rubble, gravel, sand, and humus.

BRASSICACEAE

* Lepidium bidentatum Montin

Formerly Known Distribution: Reported in 1825: "a boat load of pepper-grass and pursley" (Paulding 1831) and in 1835, "a Lepidium of luxuriant growth" (Bennett 1840). Collected by Dixon as L. piscidium Forst in 1883.

Present Distribution: Widely distributed throughout the North and South Pacific. K-90-169 and 171 (collected by Alexandre Falconer), on Tridacna and Pisonia, most probably in coastal *Tournefortia* scrub. Entire and serrated leaf forms present, which have also been collected on Flint (St. John & Fosberg 1937).

RUBIACEAE

* Morinda citrifolia L.

Formerly Known Distribution: Reported 1840, collected 1884. L-3214, 3217 and 3282; 3232; 3254 on South, Nake, and Long, respectively.

Present Distribution: K-90-4, 18 from South’s lagoon edge and Ana-Ana, respectively. Range extension on Caroline from 3 to 30 motus (Table 3).

Abundance: Coverage 2% to 50%. Basically an inland species, widespread and predictable in scrub and forest understory. Rarely a canopy component, except on Raurau, where 12 m tall in a 13 m *Pisonia* forest. Associated with established *Tournefortia* woodlands on motus greater than one hectare in size. Quite common on South despite major disturbance, occurring within beach strand, *Cocos*, and dying *Cocos-Ipomoea* interior. Best locations (40-60% coverage): Nake, Transect 3; Tridacna, both transects; Long, Transect 8; Raurau and Ana-Ana.

Ecology: Appears early in plant succession: in *Tournefortia* scrub as an early pioneer (Stage I), then from Stages II to IV, progressively becoming more common and robust. Not in pure *Pisonia* forest (Stage V). Much less common in *Pandanus* stands. Thrives in light to heavy shade, preferably growing in moist substrata.

Biogeographical Note: *Morinda* is generally considered a naturalized aboriginal introduction in the Pacific. Although possibly introduced to
Fig. 25. Transect distribution map of *Morinda citrifolia*. The outlined area on Tridacna Islet (northeast of South Island) encloses *Tournefortia*-*Morinda* forest. Arrows indicate areas of highest density.

Fig. 26. Evidence for the indigenous status of *Morinda citrifolia* on Caroline Atoll: percentage cover on transects within natural and anthropogenic forests. *Morinda* occurs on 30 (77%) motus, never in a "planted" situation.
Caroline by early Tuamotuan settlers, its present distribution strongly suggests that it is indigenous, as theorized for the northern Line Islands (Wester 1985). Throughout the atoll Morinda occurs in the greatest densities on motus with no anthropogenic forests or in areas distant from historical settlements (Fig. 26). Furthermore, it is present on (30) 77% of the motus, virtually all those larger than 0.4 ha in size, and many of which are presumed virgin. On Nake, Morinda occurs frequently--in places abundantly--within the interior indigenous forests, yet its coverage is only 5-10% in the mixed Cocos forests of the southern sector. It also appears to be part of natural biological succession (Table 6). However, on nearby Flint, which was probably never settled in prehistoric times and where our 1990 surveys found Morinda in all habitats (mixed woodland, native coastal scrub, Cocos plantations, and abandoned settlement), the largest tree and highest abundance was close to the old settlement (Kepler, in prep.).

Originating in southeast Asia, Morinda has been widely dispersed by man, but has spread, unaided by man "widely by sea in the Malayan and Polynesian Islands" (Ridley 1930). Fosberg (1974) notes that it is always difficult to determine its true status. Its air-filled, buoyant pyrenes can float for at least 53 days and "its seeds are almost certainly disseminated by birds and bats" (Guppy 1906). It could also be disseminated by Coenobita crabs and rats within and between motus, as has been found elsewhere by Ridley.

Phenology: Flowers and fruits year-round.

Substrata: Coral rubble, gravel, sand, and humus. Rarely found in coarse clinker. On larger motus, prefers moist soils under tall forests.

GOODENIACEAE

Never previously collected. K-88-2, Windward Islet, central-windward side, elevation 0.3 m.

Distribution and Abundance: One wind- and salt-sheared "hedge," found by K. Teeb’aki on Windward Islet, was growing on a coarse rubble beach. "The saltbush..., being recorded for the first time too from the island...covered approximately 3% of the islet’s land area,3 occupying the mid-windward side. The patch grew very low--only up to 2' high with its foliage forming an extended raised mat canopy all along the area it occupied" (Teeb’aki 1988). We have been unable to return to this spot to observe and photograph it directly.

3This probably translates as "3% of the area covered at that location on the transect," as we understood from Teeb’aki’s description that it was small.
Because *Scaevola* is hardy, halophytic, and widespread in the Pacific, it is surprising that it is so rare on Caroline. However, none occur on Vostok, and only one clump is known from Flint (St. John & Fosberg 1937). Fosberg (1953) noted that *Scaevola* seeds are transported by Bristle-thighed Curlews (*Numenius taitensis*) in the Marshall Islands: curlews are common on Caroline (Pt. II) and could have brought seeds from elsewhere.

Substrata: Coarse rubble, windward beach.

* *Scaevola taccada tuamotensis* St. John

Scaevola sericea var. tuamotensis (St. John) Fosb.

Present Distribution: One individual, of unknown size, with *Suriana* and *Heliotropium*, northeast peninsula, South Island, facing the inner side of the "blind passage."

Floristics and Ecology of the Motus

Size of the Flora

Atoll floras characteristically lack diversity. Numbers of species range from 1 (Ducie Atoll) to around 150 in the Pacific and 284 in the Indian Ocean. Tiny gravel banks such as Kingman Reef (Line Islands) and Motu-One (Marquesas) have no vascular flora at all (Fosberg 1974). The flora of the Southern Line Islands is particularly impoverished because of 1) their easterly location (far from the major source areas of Australasia), 2) low profiles (most only rise a few meters above sea level), 3) lack of topographic diversity (most have a very limited range of habitats), 4) low to medium rainfall (approximately 1,500 mm p.a.), and 5) edaphic factors such as salinity, highly calcareous soils, etc. Long-distance dispersal and hardiness are important factors in establishing a flora, especially since the closest high island, Tahiti, is 830 km away, and the ultimate source of its flora, the Malayan-Melanesian region, is over 8,000 km away. South America, the closest continent, is approximately 9,000 km distant. The motus of Aitutaki, for example, at a similar latitude but further west and wetter, are considered depleted with 45 species. Fanning, at a similar longitude but wetter, has 123 species. Tarawa, 3,900 km to the northwest, receives a similar rainfall but supports 109 species.

Where an atoll’s potential flora is larger, the increased shade and greater protection from wind, salt spray, and storms result in a greater number of natural plant species on its larger motus. However, such atolls are generally inhabited and alterations by both aboriginal and modern man have modified their original flora. Caroline’s isolation, variety of motu areas, and minimal human disturbance all contribute to its excellence for the study of atoll evolution.
The number of species presently established on Caroline’s 39 motus is 26 (Tbs. 2, 3). The previous expedition in 1965 (Clapp & Sibley 1971a) collected 20 species, of which 4 were new to the atoll. Their total of 35 species, however, incorporating reports and collections from the 1800s, is misleading. Our total, 5 of which were new records, would have brought the atoll total to 43 (plus about 15 more unestablished, mostly garden, plants). However, following recent custom (see Sect. E), we have listed transient or extinct members of the flora separately (Table 1).

The 1883 drawings of the South Island settlement, inhabited when most of Caroline’s species were catalogued, shows that the island was vastly different then (compare Pls. 2, 3 and 23). A century ago homes were set amidst large grassy clearings; now the site is completely obliterated beneath shady 21-m-tall coconut palms. Nine exotic species have not been seen for over a century (Table 1). Evidently most ornamentals and domestic vegetables perished during uninhabited periods. The Falconers struggled to keep garden plants alive because of poor soils, irregular rainfall, and foraging land crabs. This situation has been noted for other atolls (Fosberg 1949). A few native species might also have been eliminated during the guano and copra-harvesting years.

Numbers of Indigenous Plants

A comparison of the percentage of indigenous species between different island groups (Table 4) shows that Caroline, with 85% (N = 23)4 indigenous, is unusually high. Only 12 of 45 Pacific islands reviewed have more than 75% of their species indigenous. Of these, 9 (including Caroline) are remote and lack permanent human occupation. Vostok, Caroline’s nearest neighbor (243 km west), is one of only 2 islands in the world which have less than 4 species (Fosberg, pers. comm.).

The Tuamotu Islands (149° to 134°W) lie east and south of Caroline, yet they harbor considerably larger floras. Rainfall is similar. Three of them average 121 species (Table 4), averaging 42 indigenous species. When the variables rainfall and distance from a colonization source to the west are considered, the proximity of the Tuamotus to the diverse high islands of the Societies seems to play a major part in determining their indigenous flora. A similar situation exists in the southern Cook Islands. Caroline and other remote Line and Phoenix Islands are sufficiently isolated from high volcanic and raised reef (makatea) islands that they exhibit a much simpler flora. Tahiti, the closest high island (830 km south), is in the wrong direction for prevailing currents, winds, or vagrant birds to bring seeds to Caroline.

4 Perhaps as high as 92%; the Digitaria sp., if still extant, is of unknown identity and origin.
Table 4. Sizes of Pacific atoll floras, with emphasis on the percentages of indigenous plants. Islands in bold have more than 75% of plant species indigenous.

<table>
<thead>
<tr>
<th>Island Group</th>
<th>Atoll</th>
<th>Total(^2) No. Species</th>
<th>No. Species Indigenous</th>
<th>% Indigenous</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caroline Is.</td>
<td>Kapingamarangi</td>
<td>98</td>
<td>38</td>
<td>39</td>
<td>Niering 1962</td>
</tr>
<tr>
<td>(Fed. States of Micronesia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook Is. (New Zealand)</td>
<td>Aitutaki (motus)</td>
<td>45</td>
<td>38</td>
<td>50</td>
<td>Stoddart & Gibbs 1975</td>
</tr>
<tr>
<td></td>
<td>Rarotonga (motus)</td>
<td>49</td>
<td>47</td>
<td>=60</td>
<td>Stoddart & Fosberg 1972</td>
</tr>
<tr>
<td>Gilbert Is. (Rep. of Kiribati)</td>
<td>Onotoa</td>
<td>60</td>
<td>50</td>
<td>83</td>
<td>Moul 1957</td>
</tr>
<tr>
<td></td>
<td>Tarawa</td>
<td>109</td>
<td>28</td>
<td>26</td>
<td>Catala 1957</td>
</tr>
<tr>
<td>Line Is. (Kiribati)</td>
<td>Caroline (Kiritimati)</td>
<td>26</td>
<td>23(24?)</td>
<td>89(92?)</td>
<td>This paper</td>
</tr>
<tr>
<td></td>
<td>Christmas</td>
<td>69</td>
<td>19</td>
<td>28</td>
<td>Garnett 1983</td>
</tr>
<tr>
<td></td>
<td>Fanning</td>
<td>123</td>
<td>23</td>
<td>19</td>
<td>Wester 1985</td>
</tr>
<tr>
<td></td>
<td>Flint</td>
<td>43</td>
<td>18</td>
<td>42</td>
<td>Kepler (in prep.)</td>
</tr>
<tr>
<td></td>
<td>Malden</td>
<td>9</td>
<td>9</td>
<td>100</td>
<td>Garnett 1983</td>
</tr>
<tr>
<td></td>
<td>Palmyra</td>
<td>58</td>
<td>21</td>
<td>36</td>
<td>Wester 1985</td>
</tr>
<tr>
<td></td>
<td>Starbuck</td>
<td>7</td>
<td>4</td>
<td>57</td>
<td>Garnett 1983</td>
</tr>
<tr>
<td></td>
<td>Vostok</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>Kepler 1990c</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td>91</td>
<td>25</td>
<td>27</td>
<td>Wester 1985</td>
</tr>
<tr>
<td>Marshall Is.</td>
<td>Ailuk</td>
<td>56</td>
<td>26</td>
<td>46</td>
<td>Fosberg 1955</td>
</tr>
<tr>
<td>(Fed. States of Micronesia)</td>
<td>Arno</td>
<td>125</td>
<td>40</td>
<td>32</td>
<td>Hatheway 1953</td>
</tr>
<tr>
<td></td>
<td>Eniwetak</td>
<td>128</td>
<td>55</td>
<td>43</td>
<td>Lamberson 1987</td>
</tr>
<tr>
<td></td>
<td>Jaluit</td>
<td>288</td>
<td>55</td>
<td>21</td>
<td>Fosberg & Sachet n.d.</td>
</tr>
<tr>
<td></td>
<td>Jemo</td>
<td>34</td>
<td>17</td>
<td>50</td>
<td>Fosberg 1955</td>
</tr>
<tr>
<td></td>
<td>Kwajalein</td>
<td>89</td>
<td>25</td>
<td>28</td>
<td>Fosberg 1955, 1959</td>
</tr>
<tr>
<td></td>
<td>Lae</td>
<td>61</td>
<td>35</td>
<td>57</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Likiep</td>
<td>91</td>
<td>31</td>
<td>34</td>
<td>"</td>
</tr>
<tr>
<td>Island Group</td>
<td>Atoll</td>
<td>Total No. Species</td>
<td>No. Indigenous Species</td>
<td>% Indigenous</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Marshall Is. (cont.)</td>
<td>Taka Ujiae</td>
<td>23</td>
<td>18</td>
<td>78</td>
<td>Fosberg 1955</td>
</tr>
<tr>
<td></td>
<td>Ujelang</td>
<td>50</td>
<td>29</td>
<td>58</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Utirik</td>
<td>55</td>
<td>26</td>
<td>47</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Wotho</td>
<td>40</td>
<td>28</td>
<td>70</td>
<td>"</td>
</tr>
<tr>
<td>Phoenix Is. (Kiribati)</td>
<td>Kanton (Abariringa)</td>
<td>164</td>
<td>14</td>
<td>9</td>
<td>Degener & Gillaspy 1955, Garnett 1983</td>
</tr>
<tr>
<td></td>
<td>Birnie</td>
<td>129</td>
<td>18</td>
<td>14</td>
<td>Fosberg & Sachet (n.d.)</td>
</tr>
<tr>
<td></td>
<td>Enderbury</td>
<td>23</td>
<td>18</td>
<td>78</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Nikumaroro</td>
<td>35</td>
<td>17</td>
<td>49</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Orona</td>
<td>29</td>
<td>19</td>
<td>66</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>McKean</td>
<td>7</td>
<td>7</td>
<td>100</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Phoenix</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Manra</td>
<td>18</td>
<td>14</td>
<td>77</td>
<td>"</td>
</tr>
<tr>
<td>Society Is.</td>
<td>Tetiaroa</td>
<td>95</td>
<td>47</td>
<td>49</td>
<td>Sachet & Fosberg 1983</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td>Ontong Java</td>
<td>150</td>
<td>58</td>
<td>39</td>
<td>Bayliss-Smith 1973</td>
</tr>
<tr>
<td>Tokelau Is. (N.Z.)</td>
<td>Nukunono</td>
<td>55</td>
<td>35</td>
<td>64</td>
<td>Parham 1971</td>
</tr>
<tr>
<td>Tuamotu Is. (France)</td>
<td>Rangiroa</td>
<td>121</td>
<td>39</td>
<td>32</td>
<td>Stoddart & Sachet 1969</td>
</tr>
<tr>
<td></td>
<td>Raroia</td>
<td>135</td>
<td>54</td>
<td>40</td>
<td>Doty 1954</td>
</tr>
<tr>
<td></td>
<td>Takapoto</td>
<td>106</td>
<td>33</td>
<td>31</td>
<td>Sachet 1983</td>
</tr>
<tr>
<td>Outlyers</td>
<td>Clipperton (U.K.)</td>
<td>31</td>
<td>14</td>
<td>45</td>
<td>Sachet 1962</td>
</tr>
<tr>
<td></td>
<td>Ductie</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>Rehder & Randall 1975</td>
</tr>
<tr>
<td></td>
<td>Oeno</td>
<td>17</td>
<td>14</td>
<td>82</td>
<td>St. John & Philipson 1960</td>
</tr>
<tr>
<td></td>
<td>Wake</td>
<td>94</td>
<td>20</td>
<td>21</td>
<td>Fosberg & Sachet 1969</td>
</tr>
</tbody>
</table>

1 An updated version of Table 11, p. 105, Stoddart and Gibbs (1975).
2 Number of species of those indigenous are not always comparable. Ferns are usually included, but certain ornamentals may not be. *Artocarpus*, *Morinda*, and *Pandanus* may be indigenous, aboriginal introductions, or both. Without its full scientific name, a species has an unknown biogeographical status.
Composition of the Flora (Tbs. 2, 3)

Caroline's botanical affinities lie with other Southern Line Islands and the Tuamotus. Although the strand and inland floras consist of pan-Pacific or pan-tropical species, there are several widespread species and communities that are notably absent (see below). Those that survive have withstood the atoll tests of time--poor soils, scarcity of fresh water, periodic inundation by salt water, intermittent cyclonic storms and hurricanes, harsh climate, high seedling mortality, and human impacts. Caroline provides an excellent ecological laboratory in which floristic correlations with variations in habitat, motu size, vegetational zonation, and leeward/windward aspect may be studied. Fosberg (1985) and Sachet (1967) have noted the importance of such details in understanding the biogeography and taxonomy of Pacific plants.

Caroline's present established flora includes very few introduced species: ancient Polynesian introductions (Cocos, possibly Pandanus and Morinda), recent Polynesian introductions (Hibiscus tiliaceus, Thespesia populnea, Tacca leontopetaloides, Ximenia americana), and 20th century exotics (Phyllanthus amarus). This latter is restricted to one tiny patch <2 sq m in area.

The number of indigenous plants is complicated by the fact that 3 species most likely introduced by recent Polynesians (Hibiscus, Thespesia, Ximenia) could also be indigenous, as is the case with Pandanus and Morinda. In Table 4 we have counted these 5 as indigenous until later research proves otherwise. The unknown Digitaria sp. accounts for the query in Table 4.

Trees: Seven species present. Only 3--Pacific-wide natives--are widespread: Pisonia grandis, Morinda citrifolia, and Cordia subcordata. Cocos nucifera and Pandanus tectorius are locally abundant, while Thespesia populnea and Hibiscus tiliaceus are rare and limited to the old settlement site. The absence of typical Pacific species such as Calophyllum inophyllum and Guettarda speciosa is notable, as they are both present on nearby Flint (with a similar plantation history to Caroline) and occur naturally on more easterly atolls such as Rangiroa (Stoddart & Sachet 1969).

Shrubs: Four species present, at least 4 indigenous. Only Tournefortia argentea is abundant; its most abundant size class is under 4 m. Scaevola and Suriana, tough and widespread elsewhere, are poorly represented on Caroline. It is noteworthy that 2 varieties of Scaevola taccada are present. Ximenia americana is represented by a single, large patch and one individual on South and Mannikiba, respectively. Pemphis acidula, though common on atolls of similar latitude and climate, is typically absent from most of the Line and Phoenix Groups (Stoddart & Gibbs 1975, Fosberg & Sachet n.d.). This may be due to the paucity of its preferred habitats: low rocky substrates (reef or conglomerate rock) and sand-gravel ridges.
Herbs: Fifteen species present, at least 12 indigenous. Of these only 7 are common: *Heliotropium anomalum*, *Boerhavia repens*, *Portulaca lutea*, *Laportea ruderalis*, *Achyranthes canescens*, *Lepturus repens*, and *Phymatosorus scolopendria*. *Ipomoea macrantha* and *Tacca leontopetaloides* are locally abundant, while *Phyllanthus amarus*, *Tribulus cistoides*, *Lepidium bidentatum*, and *Psilotum nudum* are rare and localized. *Digitaria* sp. may be extinct. The fact that *Sida fallax* has only been recorded twice in 106 years is curious.

F. ECOLOGICAL SUCCESSION

We have attempted to trace the development of Caroline's flora from the smallest to largest motus, using field data and aerial photos, which reveal past geological processes of unknown dates or duration. The general processes involved in motu formation are treated in Stoddart & Steers (1977, p. 95).

Three tables provide our analysis of ecological succession: Table 5 presents Caroline’s motus in order of ascending size, together with the numbers of plant species and major plant communities. Since the atoll's total land area is small, our data provides relatively complete floristic lists for each islet and detailed maps of their plant communities (Figs. 37-57). The number of species varied from 3 growing on 4 tiny islets (0.02 ha each) to 23 on South (104.41 ha). Because the total number of species for the entire atoll (27) is also small, the addition of one or 2 rare species contributes significantly to the total flora. Such additions must be kept in perspective when evaluating plant succession.

Table 3 provides a summary of plant species distribution by islet, and Table 6 is a summary of plant species distribution and relative abundance with respect to islet area and the primary mode of seed dispersal.

Basic Seral Stages

Islets appear, grow, mature ecologically or vanish in violent storms. Many interacting factors, including geographical (islet area, atoll shape, distance from high islands and continents), geological (changes in sea level, reef growth and destruction), chemical (nitrites from bird droppings, leaf fall, etc.), climatological (wind, droughts, storms, microclimates), and biological (seabirds, rats, land crabs, reef bioerosion, and man, both aboriginal and modern) constantly interact to change conditions. The relative influence of some of these factors is evident when comparing the floras on motus of different sizes.

Seed-dispersal mechanisms (Table 6) and the presence of underground fresh water are also vital. Unfortunately, the relationships between groundwater salinity, species distribution, and vegetation patterns on atolls are poorly understood (Fosberg 1985). The presence and relative salinity of permanent water depends on
Table 5. The distribution of plant subcommunities, together with the numbers of plant species on the motus of Caroline Atoll. Motus are arranged according to increasing area, illustrating sereal stages in plant succession.

<table>
<thead>
<tr>
<th>Motu Category</th>
<th>Motu Area (ha)</th>
<th>Number of Plant Species¹</th>
<th>Coastal</th>
<th>Inland</th>
<th>Anthropogenic Plant Subcommunities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motu Area</td>
<td></td>
<td>Total</td>
<td>Shrubs</td>
<td>Trees</td>
<td>Natural Herb Scrub</td>
</tr>
<tr>
<td>Noddy Rock</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Skull Islet</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Motu Atibu</td>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Reef-flat Islet</td>
<td>0.99</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Azure Isle</td>
<td>0.20</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Motu Nautonga</td>
<td>0.34</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Scarlet Crab</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Fishball Islet</td>
<td>0.57</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Motu Koa</td>
<td>0.64</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Booby Islet</td>
<td>0.84</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bo'sun Bird Islet</td>
<td>0.86</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>North Arundel Islet</td>
<td>0.91</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Motu Maukena</td>
<td>1.00</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Motu Eite</td>
<td>1.41</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Coral Islet</td>
<td>1.70</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Motu Matawa</td>
<td>1.71</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>North Brothers Islet</td>
<td>1.71</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Motu Kimma</td>
<td>1.80</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Lone Palm Islet</td>
<td>1.99</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Motu Ana-ana</td>
<td>2.16</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Pisonia Islet</td>
<td>2.45</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Blackfin Islet</td>
<td>2.62</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Danger Islet</td>
<td>2.71</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Crescent Islet</td>
<td>3.10</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Motu Raurau</td>
<td>3.48</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Bird Islet</td>
<td>4.05</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Brothers Islet</td>
<td>4.31</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>North Pig Islet</td>
<td>5.44</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Pandanus Islet</td>
<td>7.20</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Pig Islet</td>
<td>7.25</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Arundel Islet</td>
<td>7.34</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Shark Islet</td>
<td>7.98</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Emerald Islet</td>
<td>8.34</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Tridacna Islet</td>
<td>9.08</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Windward Islet</td>
<td>11.42</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Motu Mamakiba</td>
<td>21.49</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Long Island</td>
<td>75.98</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>South Island</td>
<td>104.41</td>
<td>7</td>
<td>3</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Hake Island</td>
<td>107.45</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

¹Excludes transient and extinct species.
Table 6. Distribution and abundance of plant species in relation to motu size. Species are arranged according to their dispersal mechanisms: sea, bird, wind, man (aboriginal) and “recent”. Within these categories, species are further subdivided in order of decreasing frequency on the motus.

<table>
<thead>
<tr>
<th>Size of Motu (ha)</th>
<th>< 0.2</th>
<th>0.2 - 0.7</th>
<th>0.8 - 2.5</th>
<th>3.1 - 5.0</th>
<th>4.1 - 7.0</th>
<th>7.8</th>
<th>8.1 - 10.0</th>
<th>9.1 - 12.0</th>
<th>11.0 - 22.0</th>
<th>> 22.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02</td>
<td>0.09</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>INDIGENOUS SPECIES</td>
<td></td>
</tr>
<tr>
<td>SEA DISPERSED</td>
<td></td>
</tr>
<tr>
<td>Ipomoea pandorea</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>UC</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heliotropium anomalum</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Peracca lutea</td>
<td>UC</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>D</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Acacia abyssinica</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Lepturus rugosus</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Paspalum subsecundum</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sarcina marilimai</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Pandanus hexagonus</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Scoparia hexagona</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Sida fallax</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BLIND DISPERSED</td>
<td></td>
</tr>
<tr>
<td>Boerhavia regna</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Pisonia grandis</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Tricholoma exilis</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>WIND DISPERSED</td>
<td></td>
</tr>
<tr>
<td>Phyllanthus squamosus</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>INTRODUCED SPECIES</td>
<td></td>
</tr>
<tr>
<td>MAN DISPERSED</td>
<td></td>
</tr>
<tr>
<td>Aboriginal Introductions</td>
<td></td>
</tr>
<tr>
<td>Cocos nucifera</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td></td>
</tr>
<tr>
<td>'Recent' Introductions</td>
<td></td>
</tr>
<tr>
<td>Jacaranda megapotamica</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td>LR</td>
<td></td>
</tr>
</tbody>
</table>

1: List excludes transient and extract members of the flora (Table 1).
2: ‘Recent’ covers the time period 1834 to an unknown date in the 20th century.
3: Possibly also an aboriginal introduction.
4: Dispersal method unknown.
5: Number in parentheses refers to the number of motus in this area category.
6: Not seen but possibly still present.
Ghyben-Herzberg lenses of varying thickness on different islets, and this in turn depends upon island dimensions (especially width), soil porosity, rainfall, tidal fluctuation, and other hydrological factors. Though groundwater supplies have been studied on many atolls (Wiens 1962, Maude 1953), each island group is so unique that it is unwise to extrapolate information from one to the other.

Caroline's 39 motus fall naturally into 4 size classes: motus with areas of: a) <0.2 ha, b) 0.2 to 0.7 ha, c) 0.8 to 25.0 ha, and d) >25.0 ha. These size groupings harbor all 5 of the seral stages identified on Enewetak Atoll (Lamberson 1987), tailored to reflect Caroline's particular geography, geology, and impoverished flora. Each stage may be the sole example of ecological succession on an islet or may occur as one of several stages. Typically the early stages cover the peripheral rubble and scrubby outer zones, while the later ones appear as a series of roughly concentric bands progressing inland.

Stage I Early pioneers on sandbars, spits or small rubbly islets subject to storm damage and washover. Harsh conditions, intense sun, drying winds, salt spray. High salt concentration in the substrate. Lack of fresh water and nutrients. Plant genera present include Heliotropium, Portulaca, Lepturus, Boerhavia, and seedling or open Tournefortia scrub. No Cocos. This stage covers many small motus (Noddy Rock, Fishball) and former interislet channels (e.g. Long Island) or occurs peripherally on larger motus.

Stage II Thick scrub of mixed genera, often impenetrable. Its protective barrier allows for the development of vegetation on the larger islets. Seabirds begin to contribute to the soil (guano, eggs, regurgitated fish, decaying nesting material). Plant genera include Tournefortia, Suriana, Cordia, and Laportea. If Cocos present, accompanied by coconut crabs. Very common around the periphery of most motus just inland of the natural herb mats or flanking sheltered shores adjacent to the lagoon (South, Kota).

Stage III Trees larger, seabirds add further to soil fertility. Open grassland may develop in sunny clearings (Tridacna Islet). Added plant communities are Cordia-Tournefortia, Tournefortia-Morinda, and Pisonia-Tournefortia forests. Occurs in the next inner concentric zone of vegetation to Stage II on larger motus (Nake, Long) or, more commonly, the entire interior of smaller ones (Pandanus, Southern Leeward Islets).

Stage IV Pisonia dominates the older mixed forest. Morinda and Tournefortia mature. Forests are more open. Undergrowth mostly a ground cover of Laportea, Boerhavia, Lepturus and Portulaca. Covers the main portion of larger islets. If Cocos and Pandanus present, forms a mixed forest with vines (southern Nake, Shark). Coconut crabs common. A widespread
stage in the center of most motus (Central Leeward, Windward Islets).

Stage V *Pisonia* takes over. Other trees are confined to the forest edges. Always in the deep interior of the larger islets. Little or no ground cover. Abundant nesting Black Noddies (*Anous minutus*). A more restricted stage (Brothers, Raurau, central Nake, Pig).

Ecological Succession on Motus of Different Size Classes

To assist discussions of succession on Caroline's motus, see individual vegetation maps and graphs (Figs. 27-57) and photographs (Pls. 13-70). Figures 27-30 summarize the amounts of each islet's surface covered by each major plant community and provide the numbers and percentages of indigenous species for each islet.

1) **Motus with Areas <0.2 ha**
Figs. 27, 31; Pl. 49; Tbs. 5, 6

Caroline has 4 motus in this category, 3 windward and one leeward, whose combined area totals 0.15 ha. There are also 3 incipient islets which, because of their temporary character, have not been counted in Caroline's overall total (Fig. 2, Pl. 15). With the exception of Noddy Rock, a jagged, upraised limestone plateau, all consist predominantly of coarse coral rubble (75-98% coverage). These tiny motus are the simplest ecosystems on the atoll, representing early Stage I in plant succession. The number of plant species per motu averages 3, all hardy, sea-dispersed and salt-tolerant pioneers (*Heliotropium, Portulaca, Lepturus, Tournefortia*). The sole plant community is a natural herb mat of varying thickness and extent. *Tournefortia*, though stunted and scattered, is not sufficiently common to form a separate scrub habitat. Indigenous vegetation covers 2 to 25% of the islet areas. Seabirds, especially Brown Noddies and Red-tailed Tropicbirds, may attempt to nest.

2) **Motus with Areas 0.2 to 0.7 ha**
Figs. 28, 31; Tbs. 5, 6

There are 5 leeward motus in this category, whose combined areas total 2.21 ha. Their vegetative cover is more extensive and diverse than in size class a, with herb mats and *Tournefortia* scrub and forest, but open rubble is still abundant (30-55% cover). Plant succession corresponds to late Stage I and Stage II. The average number of species is 8.2 (range 6-11), one-third of Caroline's total. All vegetation is indigenous except for a few Cocos palms. Seeds are dispersed by sea, wind and birds.

With the appearance of shrubs, the number of species increases markedly, and woodlands, primarily of *Tournefortia*, form and expand to create dense thickets averaging 5 m tall and covering 25% of the land area. Canopies of 10 m occur on Motus Nautonga and Kota. Seabird colonies of up to 6 species (Brown and Red-footed Boobies, Great Frigatebirds, Black and Brown Noddies, White Terns) are present.
Fig. 27. Plant communities and amount of indigenous vegetation on motus less than 0.1 ha, Caroline Atoll. The left “pie” depicts the relative amount of a motu’s total surface area covered by each plant community; numbers indicate actual area in hectares. The right “pie” depicts the numbers and percentages of indigenous and anthropogenic species per motu. Data is based on the vegetation maps for each motu (Figs. 37-57) and Tables 2 and 9.
Fig. 28. Plant communities and amount of indigenous vegetation on motus 0.2 to 0.7 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
BOOBY ISLET
0.84 ha
0.12 (14%)
0.27 (32%)
0.04 (5%)
0.41 (49%)

BO'SUN BIRD ISLET
0.86 ha
0.41 (47%)
0.20 (23%)
0.25 (30%)

NORTH ARUNDEL ISLET
0.91 ha
0.33 (36%)
0.19 (21%)
0.12 (13%)
0.27 (30%)

Fig. 29a. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 29b. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 29c. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha. Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 29d. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 29e. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 29f. Plant communities and amount of indigenous vegetation on moors 0.8 to 25.0 ha, Caroline Aitoll. See Fig. 27 for explanation of the figure.
Fig. 29g. Plant communities and amount of indigenous vegetation on motus 0.8 to 25.0 ha, Caroline Atoll. See Fig. 27 for explanation of the figure.
Fig. 30. Plant communities and amount of indigenous vegetation on morus over 25.0 ha. See Fig. 27 for explanation of the figure.
Figure 31. Total numbers of plant communities (upper graph) and species (lower graph) in relation to motu area, demonstrating plant succession on the different sized motus encircling Caroline's lagoon. Roman numerals refer to size classes of the motus: I = < 0.2 ha, II = 0.2 to 0.7 ha, III = 0.8 to 25.0 ha, IV = > 25.0 ha. The break between II and III marks a substantial increase in the diversity, area coverage, and height of the forest ecosystems. Data is based on Table 5.
A low herb mat, dominated by *Heliotropium*, *Portulaca*, *Boerhavia*, and, more rarely, *Lepturus*, develops first, after which *Tournefortia* quickly becomes established. Shade, producing locally humid conditions, and better "soils" derived from guano, decomposing leaves, and the activities of land crabs and rats, provides appropriate habitat for *Laportea* and occasional *Phymatosorus* and *Achyranthes*. The major tree species--*Pisonia*, *Morinda*, *Cordia*, and *Cocos*--subsequently appear, but are relatively rare. *Pisonia*, typically an inland species assumed to need underground water (Spicer & Newbery 1979, Wiens 1962), could well be salt tolerant as it occurs on motus as small as 0.2 ha (Tbs. 5, 6). In this size class *Pisonia* occupies only 2-6% of the total islet areas.

3) **Motus with Areas from 0.8 to 25.0 ha**

All 27 motus in this category share a similar complement of species and plant communities (Tbs. 5, 6). Their combined area totals 124.35 ha. They are well-wooded (Fig. 29), although the leeward motus have a higher proportion of rubble and herb mats, and forests are higher to windward. Unvegetated rubble covers less land area (21%) than in size classes a and b (87% and 39%, respectively). Within the woodlands of these motus, substrates mature from basic rubble to primitive "soils" with small, but significant, structural development. Their flora shows increasing diversity with size, and almost the full complement of seabirds may nest.

All natural ecosystems are firmly established; canopy heights range from 4 to 21 m. On small Booby Islet (0.84 ha), *Pisonia* is very common, and the *Pisonia* forests on North Brothers (1.71 ha) and Pig (7.25 ha), at 21 m, are the tallest on Caroline. As rich guano and dead foliage accumulate, a layer of phosphate-rich humus enables those species already present but poorly represented on the small motus (*Pisonia*, *Morinda*, *Boerhavia*, *Laportea*, *Achyranthes*) to increase in abundance and stature (Table 5). Additional species are *Suriana*, *Pandanus*, *Ipomoea*, *bepidiurn*, and *Ximenia*.

Plant succession, ranging from Stage III to Stage V in the interior, primarily involves forest maturity rather than the addition of large numbers of species. On the larger islets, the number of plant species increases by relatively small increments, filling out the subcanopy layers and, in the cases of *Cordia* and *Pandanus*, adding variety to the canopy.

The average number of plant species is 11.0, ranging from 4 to 15. If we divide the motus into smaller size classes, we find that their species numbers show a slight overall increase with increasing size: 8.0 species for areas 0.8-1.0 ha, 9.8 species for areas 1.1-2.0 ha, 11.5 species for areas 2.1-4.0 ha, 11.3 species for areas 4.1-10.0 ha, and 12.0 for areas 10.1-22 ha. An increase in herbs (range 3-9) is primarily responsible for these higher averages (Table 5).

Despite the large range of motu sizes in this category, plant communities are essentially natural (Table 5). Their overall species composition is 96% indigenous. Seventeen of the motus lack *Cocos*, the
only introduced species in this area category, which is represented by small, isolated clumps or individual palms.

On the larger motus, and within the taller forests, more species of birds, especially Red-footed Boobies, Great Frigatebirds, White Terns, and Black Noddies, nest in increasingly large colonies, furnishing more minerals to the developing soils, especially where Pisonia covers large areas.

In summary, by the time a motu on Caroline has reached 0.8 ha in size, all the natural plant communities, most species of trees, shrubs and herbs, and most species of seabirds are present, assuming no major intervening disturbances (for example, hurricanes) have occurred. In Caroline’s depauperate flora there are few species left to increase floral diversity on the larger islets, regardless of their size. This is very different from the inhabited atolls such as Kapingamarangi (see next section).

Although we do not know when true freshwater lenses develop, they may occur in motus of this size class. If we assume that Pisonia is not specially salt-tolerant, limited fresh water must be available on motus as small as 0.2 ha, and actual freshwater lenses may begin forming at ca. 0.7 ha, as indicated by the sudden proliferation of Pisonia forest (Tbs. 5, 6). However, the Falconers were unsuccessful in locating underground fresh water on Motu Ana-Ana (2.16 ha), which suggests that Pisonia may be somewhat salt-tolerant.

4) Motus with Areas >25.0 ha
Figs. 30, 31; Tbs. 5, 6

On Caroline no motus fall between 22 and 75 ha in size. Thus the 3 motus in this category (Nake, South, Long) cover a limited range: 75.98 to 107.50 ha. They average 18.0 plant species. The floral components and forest heights of these larger motus (Figs. 33, 34; Table 5) are essentially the same as for class c. There are no additional natural ecosystems (mangrove swamps, salt flats, grasslands, etc.) or understory layers. One additional plant community (3 subcommunities) exists, dominated by the introduced coconut palm. Ten species, all rare or uncommon, are present only on the larger motus (Table 3): Scaevola, Tribulus, Hibiscus, Thespesia, Ximenia, Psilotum, Tacca (introduced in 1834), Phyllanthus, Sida, and the dubious Digitaria. Four, possibly as many as 8, are indigenous. In 1965, one vine of the indigenous Ipomoea pes-caprae was also found, but 3 subsequent surveys failed to locate it.

Species-Area Relationships

The relationship between the numbers of plant species and island size has long attracted interest (Fosberg 1949, Wiens 1962, MacArthur & Wilson 1967, Whitehead & Jones 1969), yet data from uninhabited islands is scant. The studies from Kapingamarangi (Niering 1956, Wiens 1956) and Aitutaki (Stoddart & Gibbs 1975) treat atolls with long histories of human occupancy. Some of the villages on Kapingamarangi’s 23 motus date
to 1200 A.D. Aitutaki's 16 uninhabited motus lie adjacent to a westernized volcanic island in an "almost-atoll." People on both these atolls have profoundly influenced their flora.

Caroline provides an opportunity to compare the numbers of species on motus of different sizes in an uninhabited atoll, then to compare the results with Kapingamarangi, Aitutaki, and uninhabited islands in the Line and Phoenix Groups that have no introduced species and have experienced minimal human contact (Table 8). Comparison of Caroline with remote, uninhabited Oeno and Ducie Islands, also having entirely indigenous flora (Fosberg et al. 1989) would also be beneficial (T. Spencer, pers. comm.).

Comparisons of Species-Area Relationships with Other Atolls

Studies of Kapingamarangi (Niering 1956) contributed greatly to theories of island biogeography (MacArthur & Wilson 1967). Because its motus cover the same range of sizes as Caroline, the 2 atolls might be expected to exhibit similar patterns. However, their species-area relationships are completely different. On Kapingamarangi, islets less than 1.4 ha showed a constant, small number of species, after which islets up to 100 ha showed a direct correlation of area with numbers of species. On Caroline, a motu of 1.4 ha supports almost two-thirds of the total number of species, and plant diversity on islets up to 107 ha shows only a slight, but not necessarily steady, increase (Table 5).

Species-area relationships on the motus of Aitutaki (Stoddart & Gibbs 1975, Figs. 33 and 34 of that paper) conformed to the Caroline model: the number of species increased only slightly on motus from 4 to 71 ha. Unfortunately, Aitutaki had only one motu less than 1.4 ha, so comparisons for smaller islets cannot be made. The floras of all 3 atolls have been impacted by man, but Caroline far less so than the others. Much of the floral diversity on larger islets at Kapingamarangi is derived from plants introduced by man and cannot be considered natural.

Six islands in the Line and Phoenix Groups (Malden, Starbuck, McKean, Phoenix, Vostok, Birnie) are uninhabited, with entirely native flora. All are Caroline's "neighbors" in an oceanic sense, and all except Vostok are dry, receiving about 750 mm (30") of rain p.a. They are old, essentially filled-in atolls, containing hypersaline central lagoons or no lagoon at all. Although the largest island (Malden) has the greatest diversity, there is only a very small linear increase in plant species with increasing area (Table 7). Plant diversity is more a function of climate (hot and dry) and distance from source areas, than size, similar to the situation on Caroline.

The Question of Fresh Water

The Kapingamarangi data were analyzed with availability of fresh water in mind (Wiens 1962, Whitehead & Jones 1969). These authors
Table 7. Species-area relationships of six Pacific islands with entirely indigenous flora.

<table>
<thead>
<tr>
<th>Island</th>
<th>Area</th>
<th>No. Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malden</td>
<td>39.3 sq km</td>
<td>9</td>
</tr>
<tr>
<td>Starbuck</td>
<td>16.2 sq km</td>
<td>6</td>
</tr>
<tr>
<td>McKean</td>
<td>57 ha</td>
<td>7</td>
</tr>
<tr>
<td>Phoenix</td>
<td>49 ha</td>
<td>6</td>
</tr>
<tr>
<td>Vostok</td>
<td>24 ha</td>
<td>3</td>
</tr>
<tr>
<td>Birnie</td>
<td>20 ha</td>
<td>4</td>
</tr>
</tbody>
</table>

Islands are arranged according to decreasing area. Data is from Garnett (1983), Fosberg and Sachet (n.d.), Clapp and Sibley (1971b), and pers. obs.

suggested that 1.4 ha is the threshold at which a freshwater lens can develop. Below this size only halophytes can survive. They argue that as there are only a limited number of salt-tolerant species, the floral composition on islets below 1.4 ha is relatively constant. On larger islets, species numbers increase in direct proportion to land area, because permanent groundwater promotes the survival of an increasing variety of nonhalophytic plants.

The groundwater vs. plant model does not apply to depauperate Caroline for a number of reasons: first, the number of plant species is not constant on islets below 1.4 ha: in fact, species are added faster on motus from 0.02 to 1.4 ha than between any other size range.

Second, on Kapingamarangi, the number of species increased in direct relation to islet size from 1.4 ha to 100 ha. On Caroline, species numbers increased only slightly from 1.4 to 22 ha and exhibited another minor increase from 70 to 108 ha (see Fig. 31; Tbs. 5, 6; and Sect. F, Ecological Succession). Thus, Caroline’s data do not support the area-diversity theory.

Third, Whitehead and Jones (1969) argue that the flora on "small" motus lacking a freshwater lens (i.e. <1.4 ha) consists only of salt-tolerant strand species. This is not true on Caroline (Table 6). In addition to harboring the usual strand species (Tournefortia, Portulaca, Laportea, Heliotropium, Boerhavia, Lepturus), Caroline’s "small" motus also support inland species that are generally considered non-halophytic (Pisonia, Morinda, Achyranthes, Cordia, Phymatosorus). Either these latter 5 species are moderately salt tolerant, or on Caroline the minimum islet size with a freshwater lens is much less than 1.4 ha, or both.

Fourth, Whitehead and Jones (1969) postulate that the non-halophytic species are those that control overall species-area
associations. This may be a good generalization for less remote islands, but does not hold up for atolls with depauperate floras (Table 6). For example, on Caroline the halophytic Ipomoea macrantha, I. pes-caprae, Scaevola taccada, Sida fallax, Lepidium bidentatum, Hibiscus tiliaceus, Thespesia populnea, and Tribulus cistoides, which theoretically should only occur as strand species on the smaller islets, occur only on larger islets.

Fifth, the authors do not mention bird-dispersal of seeds, which is probably a factor that needs to be taken into account on remote islands: at Caroline, Pisonia and Boerhavia occur on islets from 0.2 ha to 108 ha. In addition, the numbers and diversity of seabirds and migrant shorebirds are much greater on unoccupied islets/ atolls than on inhabited ones, strongly affecting the distribution of certain plant species.

Sixth, Caroline does not have an assemblage of nonstrand plants that only occur on larger motus; the only naturally occurring, nonstrand plant is Psilotum.

Seventh, the greatest factor complicating our understanding of Kapingamarangi’s natural evolutionary processes is the presence of numerous exotics: of its 98 vascular plants, only 38 (39%) are indigenous. Its exotics include numerous weedy herbs and food plants which occupy gardens, abandoned house sites, taro patches, and plantations (Cocos, Pandanus, Artocarpus). These man-made habitats are particularly prevalent on larger islands. Such an abundance of exotics, both in species and area covered, renders a discussion of natural processes on Kapingamarangi almost impossible. Relatively undisturbed habitats such as those on most of Caroline’s motus, and on other uninhabited Pacific islands such as Ducie and Oeno, whose quota of indigenous plants exceeds 75%, provide far better data on species-area relationships.

Motu Size in Relation to the Distribution of Trees, Shrubs and Herbs

As one progresses from small to large islets (Table 5), the number of tree species rises from zero to 7, the number of shrubs from one to 4, and the number of herbs from 2 to 12. Caroline’s trends are similar to those at Aitutaki (Stoddart & Gibbs 1975), where the numbers of trees and shrubs are relatively constant over a wide range of motu sizes (3.8-71 ha), while the number of herbs shows a slight increase. There are too many recent exotics on Kapingamarangi for comparisons to be valid. We believe that if Niering’s data were reanalyzed, using only indigenous species, similar generalizations would be found, viz: most species on atolls establish rapidly on small motus, after which a few additions occur on motus of increasing size until the maximum number of potentially available species is reached. Cursory examination of Niering’s Figure 31, detailing the breakdown of total species numbers into indigenous and non-indigenous components, bears out this hypothesis.
G. PLANT COMMUNITIES

General Account

The total area covered by vegetation on Caroline is 357.55 ha, 90% of the combined areas of all the motus. Of this, two-thirds (289.82 ha) is woodland. Substantial areas of Caroline's native woodlands and herb mats are relatively pristine, and 89% (possibly 92%) of its plant species are indigenous. Twenty-three (60%) of its 39 motus harbor wholly indigenous vegetation (Figs. 27-30). Atolls supporting substantial areas of native forest are typically remote and uninhabited. Where people are present, native vegetation is usually confined to the smallest motus or the extremities of larger ones--areas with marginal human usefulness.

Overall vegetation patterns strongly support the theory that the original vegetation of many atolls is arranged in concentric or parallel belts according to salinity and ground water gradients, drainage, and exposure to salt spray (Fosberg 1976). Because of its impoverished flora, Caroline has no mixed broadleaf forest per se but is rich in pure stands or simple combinations of 2 or 3 species (Figs. 17, 21, 23, 26-29). Monotypic stands of shrubs and trees are common on atolls, but unusual for the continental tropics, where species diversity is considerably larger.

The present vascular flora of Caroline, 26 species, is organized into 7 plant communities (11 subcommunities) defined principally by dominant species (Fosberg 1953, 1976), whose areas are given in Table 8. Eight subcommunities are natural, 3 are anthropogenic (Table 5). The subcommunities include a mix of dominant species, which are discussed in the major community sections below.

NATURAL COMMUNITIES:
Natural Herb Mat
Beach Scrub with Suriana
Pandanus Forest
Tournefortia Scrub and Forest
Cordia Forest
Pisonia Forest

ANTHROPOGENIC COMMUNITY:
Coconut Woodlands

Natural Herb Mat (67.73 ha) Figs. 19, 23; Pls. 19, 32, 34, 45, 46, 47

Widespread and predictable on wind- and salt-blown coastal coral rubble and incipient motus, these mats are composed primarily of Heliotropium and Portulaca. They are pioneers on newly emergent motus, cover most of the ground area of small motus, extend inland along ancient reef channels, and typify newly evolving land which connects or augments established islets. Natural herb mats may persist through all
Table 8. Areas of plant communities on the islets of Caroline Atoll.

<table>
<thead>
<tr>
<th></th>
<th>% of Total Land Area</th>
<th>Total Area (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unvegetated Habitats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coral Rubble and Sand</td>
<td>10.37</td>
<td>41.39</td>
<td></td>
</tr>
<tr>
<td>Natural Plant Communities</td>
<td></td>
<td>261.41</td>
<td>65.53</td>
</tr>
<tr>
<td>Natural Herb Mats</td>
<td>16.98</td>
<td>67.73</td>
<td></td>
</tr>
<tr>
<td>Beach Scrub with Suriana</td>
<td>0.37</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Pandanus Forest</td>
<td>0.85</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>Tournefortia Scrub and Forest</td>
<td>31.40</td>
<td>25.25</td>
<td></td>
</tr>
<tr>
<td>Cordia Forest</td>
<td>0.35</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>Pisonia Forest</td>
<td>15.58</td>
<td>62.17</td>
<td></td>
</tr>
<tr>
<td>Anthropogenic Community</td>
<td></td>
<td>96.14</td>
<td>24.10</td>
</tr>
<tr>
<td>Coconut Woodlands</td>
<td>24.10</td>
<td>96.14</td>
<td></td>
</tr>
<tr>
<td>Total Area Above High Water</td>
<td></td>
<td>398.94</td>
<td></td>
</tr>
</tbody>
</table>

1) Pure *Pandanus* only. Also mixed with *Pisonia*, *Tournefortia*, and *Cocos*.
2) *Cordia*, where mixed with *Pisonia* and *Tournefortia*, is included in totals for those forest communities.

5 stages of plant succession as long as sunny openings occur. Caroline’s motus illustrate 2 general principles: 1) the smaller the area the more extreme is the strand character of its vegetation, and its corollary, 2) as areas enlarge, strand flora becomes less important (Fosberg 1949).

The following species are present (see Table 2 for abundance indices):

Trees: *Morinda citrifolia* (1 drift seedling on 1 motu);

Shrubs: *Tournefortia argentea*, *Suriana maritima*, *Scaevola taccada*; and

Herbs: *Heliotropium anomalum*, *Portulaca lutea*, *Boerhavia repens*, *Lepturus repens*, *Laportea ruderalis*, *Lepidium bidentatum*, *Ipomoea macrantha*.

Near the high water mark, the herbs are recumbent, leathery, and somewhat desiccated. As environmental conditions improve further inland, they spread more laterally and average up to 7 cm tall. Their rubbly habitat, often sprinkled with *Tournefortia*, resembles a low
savannah. Although these prostrate herbs can tolerate intense sunlight, they grow optimally in slight shade, sandy soils, and higher relative humidity, when they may reach 22 cm tall, forming a fairly thick mat (Pl. 45). With too much shade the mats disappear or their species proportions and abundance changes according to the presence or absence of sunny clearings. Thus, natural herb mats may be found in patchy clearings within forests up to 13 m tall. They are common in the abandoned Cocos plantations of South Island, where Boerhavia proliferates into thick mats which completely cover the substrate, vying with Phymatosorus and Ipomoea for "lebensraum" (Pl. 34). A thick, exposed mat of succulent herbs, primarily Portulaca, is found on Noddy Rock.

Herb mats occurred on almost every transect, windward and leeward, ranging from 1% to 60% coverage (Figs. 19, 23), predominating in sparsely vegetated areas. The most extensive areas (coverage 35-50%) were on Skull, Tridacna, interior South, Emerald, and Mannikiba. Their widths varied according to the age, shape, exposure, and geographic position of the motu but were widest on seaward-facing shores. Wide bands of herb mats may encircle an entire motu; to windward they average 36 m (Table 9), while, bordering the relatively placid and intermittently shaded lagoon, they shrink to a mere 0.9 m. On leeward motus, the corresponding figures are 18.5 m and 4.2 m.

Table 9. Widths of natural herb mats on seaward- and lagoon-facing shores, Caroline Atoll.

<table>
<thead>
<tr>
<th></th>
<th>Average Width of Herb Mat (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seaward Lagoonward</td>
</tr>
<tr>
<td>Leeward Motus</td>
<td>18.5 (3-81)</td>
</tr>
<tr>
<td>Windward Motus</td>
<td>36.0 (24-69)</td>
</tr>
</tbody>
</table>

Although reef flats widen where islets turn sharply, it is not unexpected that these perimeter bands are the most extensive on the extremely exposed shores of northern Nake (Pl. 16) and southern South Island. On the latter, they are up to 59 m wide. Similarly, on small exposed motus (e.g. Skull, Noddy Rock), they carpet most of the area (Fig. 27). Under such conditions, Portulaca and Boerhavia develop much redder stems, possibly due to the presence of a chemical "sunscreen" or introgression with P. oleracea (Fosberg, pers. comm.).
Seabird Use

Whether bordering the edges of established islands or composing the entire ground cover of tiny motus and ancient reef channels, herb mats are nesting sites for Red-tailed Tropicbirds, Masked and Brown Boobies, Sooty Terns, and Brown Noddies. They provide sites for the development of phosphatic hardpan (Sect. D, Substrata). Herb mats also provide foraging grounds for shorebirds.

Beach Scrub with Suriana (1.49 ha) Fig. 20; Pls. 23, 39, 44

Uncommon on Caroline, Beach Scrub with Suriana is typically found on sand or sandy rubble bordering Tournefortia or Cocos. On Caroline, it is evidently limited by the paucity of low-lying sand and gravel sheets, with which it is normally associated elsewhere (Fosberg 1953, Wiens 1962, Stoddart & Gibbs 1975).

The following species are present (see Table 2 for abundance indices):

Shrubs: Tournefortia argentea, Suriana maritima; and

Herbs: Heliotropium anomalum, Boerhavia repens, Portulaca lutea, Laportea ruderalis, Phymatosorus scolopendria, Lepturus repens.

This plant community was found on 9 motus (Fig. 20), either in thick bands or as scattered shrubs. Suriana is most robust on sandy substrates, especially fringing the lower lagoon on South Island (Fig. 36; Pls. 23, 39) and on windward Tridacna. The fringe, repeatedly interrupted by other species, grows to 12 m wide and 1.8 m high. Here the shrubs are closely appressed and slightly entangled, forming dense shade which supports a sparse understory. On South, where its roots are submerged at high tide, it is being shaded out by overhanging Cocos (compare Pls. 39 and 40), having retreated since 1965. Suriana also occurs as scattered individuals or in open bands in coarse rubble. Beach strand up to 60 m wide, containing herb mats, Tournefortia, and scattered Suriana, were found on South (Tr. 1, Pl. 20), Long (Tr. C), Brothers, Matawa, Long, and the Southern Leeward Islets.

Pandanus Forest (3.38 ha) Fig. 11; Pls. 17, 35-38

Although several species of Pandanus are native to the Line Islands, and their seeds are common components of Pacific sea-drift (Ridley 1930, Stone 1968), it is possible that the groves of P. tectorius on Caroline represent both natural forests and cultivars transported by early Polynesians. However, we have no data to verify

5This figure is pure Pandanus forest. Mixed forests containing Pandanus account for a further 14.96 ha.
this, except that its present and past distribution on Flint Island suggests that it is indigenous there (Kepler, in prep.). Its largest acreages are on 2 islands that contained historical settlements (Nake, South). However, its presence within the interior forests of a few motus lead us to conclude that it may have experienced a dual introduction. On Emerald, 3.20 ha (38% of the islet) supports a mixed forest of Tournefortia, Pisonia, and Pandanus. Similarly, Shark's interior woodlands of Tournefortia, Pisonia, and Cordia (5.52 ha, 70% of the islet's area) also contain a substantial amount of Pandanus, but there was possibly a hut on Shark last century. The occurrence of Pandanus groves or lone trees on other islets (Fig. 11) is easily attributable to drift seedlings. Dried Pandanus phalanges are the most conspicuous litter along Caroline's lagoon beaches (Pl. 38); its seeds last for months in seawater (Guppy 1906) and are probably distributed locally by rats and land crabs, as noted elsewhere (Ridley 1930). Phalanges from Nake's southern mixed woodlands undoubtedly established the grove on Pandanus Islet.

The mixed forest with Pandanus on south Nake (with Cocos, Cordia, Pisonia, and Tournefortia) contains up to 50% Pandanus attaining heights of 12 m (Fig. 37).

Many Pandanus trees were felled on South Island during the coconut planting era (ca. 1873-1925), as we know that they were "somewhat numerous" in 1834 (Bennett 1840), but only "one or more of the screw pines were found growing in various parts of the island" in 1883 (Trelease 1884). A drawing in this latter paper depicts a grove from South, where today Pandanus is uncommon in the beach scrub bordering the Cocos plantation.

Trees were fruiting abundantly in September 1988. The green phalanges, 17.5-20 cm in diameter, ripen to yellow and orange when they fall, to be eaten by hermit crabs, Coenobita perlatus (Pl. 38).

Tournefortia Scrub and Forest (125.25 ha) Figs. 24, 32; Pls. 7, 9, 19, 29, 47

General Distribution

Characteristic of many Pacific islands, Tournefortia, a broadleafed evergreen, dominates the wooded motus of Caroline, forming 40% of its vegetative cover and 31% of the total land area (Fig. 24, Table 8). Its pale foliage and hemispherical canopies (to 14 m tall) typically surround the taller, darker canopies of Pisonia and Cordia.

A hardy halophyte, Tournefortia occurs on every motu and in every habitat except pure Pisonia forest. It is tallest, widest and lushest on the windward motus, particularly on those where Pisonia is also best developed. Without direct sun though, as under dense Pisonia or Cocos, it withers (Pl. 23).
Figure 32. Schematic profile through Arundel Islet, recovering from disturbance over 60 years ago, showing natural herb mats, *Tournefortia* scrub and forest, and 5 species of breeding seabirds. Vertical height is exaggerated.
On other atolls *Tournefortia* forms a narrow or interrupted belt inland of the beach, or is a component of mixed scrub (Fosberg 1953). However, given the floristic poverty on Caroline, especially of shrubs and trees, *Tournefortia* not only has expanded into niches which might elsewhere be occupied by combinations of Scaevola, Pemphis, Suriana, Terminalia, Hernandia, Thespesia, Hibiscus, etc., but frequently occurs in pure stands (113.03 ha) that extend well inland. It thus occupies a much higher percentage of the islet areas on Caroline than on atolls with greater biodiversity. For example, Nake, the largest islet, has the greatest amount of *Tournefortia* (79.68 ha): 28.9 ha of pure scrub and forest, 18.28 ha of "savannah," 17.48 ha with Cordia, 8.99 ha with Pisonia, and 6.03 ha mixed with Cocos, Pandanus, and Pisonia.

Overall, we classify *Tournefortia* as a shrub (Stoddart & Gibbs 1975). However, following Mueller-Dombois et al. (1981, p. 58), we also distinguish between its shrub (scrub) and tree communities. Because they intergrade, we may lump them together (vegetation maps and schematic profiles of the motus), or treat them separately (Tbs. 2, 5, 10 and ecological discussions):

1) *Tournefortia* Scrub: \leq5 m high ($x = 2$ m), <60% canopy coverage (Pls. 19, 29, 32, 47). This open scrub growth is typically confined to islet perimeters or emergent reef channels and covers much of the vegetated rubble on smaller islets. Its species composition is similar to that of the taller forest, except that herbs are more prominent.

2) *Tournefortia* Forest: >5 m high ($x = 8$ m), >60% canopy coverage (Pl. 48). This taller, closed forest, with maximum height 15 m, develops as a second belt of woody vegetation approaching the interior of the larger islets. Figure 32 depicts a schematic profile through pure *Tournefortia* scrub and forest, while Figure 35 diagrams a profile of a larger islet where *Tournefortia* is represented only on its periphery.

Species Diversity in *Tournefortia* Woodlands

The following species occur in both scrub and forest. Those marked "*" occur primarily in the scrubland (Table 2).

Trees: *Pisonia grandis*, *Morinda citrifolia*, *Pandanus tectorius*, *Cocos nucifera*, *Cordia subcordata*;

Shrubs: *Suriana maritima*, *Tournefortia argentea*, *Scaevola taccada*, *Ximenia americana*; and

Caroline's tallest *Tournefortia* stands (12-15 m) occur on Nake. On all other windward motus, the *Tournefortia* canopies vary between 6
and 9 m tall, shorter than expected if their forests were virgin. This has historical significance: we do not know the extent of forest felling (if any) on the Windward Islets (Crescent through Tridacna) during the guano era, but we do know that 4,587 coconut palms were planted during 1919-20, and that "misses" (dead seedlings) were fastidiously replaced over the following 2 years (Young ca. 1922). Thus, their forests, though weed-free today, comprise secondary growth around 60 years old. It is not surprising that Achyranthes canescens and Lepturus repens, both weedy (though indigenous), are particularly common inland on some windward motus (Figs. 13, 16). Tournefortia's rapid recovery illustrates that ecosystems in the pioneer stage generally recover their original condition rapidly when left alone (Fosberg 1983).

Stature and Area Coverage

Forming an umbrella-like canopy, a typical Tournefortia forest is very simple. Its twisted branches and gnarled trunks stretch untidily over an open understory. The lower branches die off as the trees increase in stature. Sometimes a scant herbaceous cover develops in localized pockets of better soil, such as a clearing where a dead tree fell or a semishaded spot beneath a colony of seabirds.

Tournefortia is abundant throughout the atoll. Areas with 90%-100% canopy cover were found on Nake (Tr. 4), Long (Trs. B, C, 4, 6, 10, 12), North Pig, Pig, North Brothers, Brothers, Crescent, Arundel (Fig. 32), Tridacna (Trs. 1, 2), South (Trs. 1, 4), all 5 Southern Leeward Islets, all Central Leewards over 0.5 ha, and Pandanus Islet. Tournefortia is present across the entire width of some small motus, e.g. Fishball (144 m wide). Even on larger motus such as Mannikiba (280 m wide). Tournefortia blankets nearly all the land (Pl. 63). Long (75.98 ha) is a composite motu: long, narrow, and derived from the coalescence of at least 5 former islets. Because Tournefortia encircled the perimeters of these ancient islets, it is now present in 5 sets of concentric circles, connected by herb mats, down the length of the island (Fig. 39).

In the herb mats, Tournefortia is small (x = 1.4 m) and widely scattered (Table 10). It may be of typical hemispherical shape or irregularly windshorn (Pls. 13, 45). On windward coasts they typically form a tight wind barrier, one or 2 trees thick. Moving inshore from the seaward fringe, the trees become progressively taller (x = 6 m) with a more open understory. Cordia often mixes with Tournefortia, either as scattered individuals in the understory or canopy, or as small groves. On the Southern Leeward Islets such belts border the seaward scrublands.

Although still widespread in the Pacific, Tournefortia is far less abundant than formerly. On inhabited islands it exists primarily in relict patches or as edging around anthropogenic forests. It rarely covers most of the land area of islets; exceptions are Taongi and Bikini (Marshall Islands), Gaferut (Caroline Islands), and Ducie Atoll (Pitcairn Islands) (Fosberg 1956, Wiens 1962). The finest quality
Table 10. Stature and percentage cover of Tournefortia in the major habitats of Caroline Atoll.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Av. Hgt. (m)</th>
<th>Av. Width (m)</th>
<th>% Tournefortia Cover</th>
<th>No. Motus</th>
<th>No. Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Herb Mat</td>
<td>1.4</td>
<td>49</td>
<td>25</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Tournefortia Scrub & Forest</td>
<td>6 (0.3 - 15)</td>
<td>55 (2 - 287)</td>
<td>81</td>
<td>38</td>
<td>71</td>
</tr>
<tr>
<td>Tournefortia-Pisonia Forest</td>
<td>9.5 (5 - 15)</td>
<td>98 (8 - 284)</td>
<td>47</td>
<td>18</td>
<td>27</td>
</tr>
</tbody>
</table>

Tournefortia on Caroline (15 m tall, 80% cover) occupy central and northern Nake (Fig. 37), but even this islet was completely felled for Cocos (Table 13). These 15-m Tournefortia compare favorably with 18 m specimens found at Jemo Island by Fosberg (1956). Perhaps Jemo's trees are at the upper size limit for the species, as Tournefortia is generally recorded as 3 to 6 m tall (Wiens 1962).

Ecology

Tournefortia is an integral part of the atoll's evolution and ecology. Bearing seeds capable of floating for at least 4 months in the sea (Guppy 1906), it is the first woody plant to establish on Caroline's tiny motus (<0.1 ha), appearing immediately after the native herbs have begun to germinate in the coarse coral rubble. It is the only plant species on tiny Ducie Atoll (Fosberg et al., 1989). Requiring little or no soil and adequate rainfall, it can grow up to 2 m a year (Fosberg 1959). Tournefortia's leaves contribute to soil development, paving the way for plant succession from Stages I through IV, for it only persists in soils that are conducive to the growth of its mesophytic competitors (Fosberg 1953). The most mature trees ($x = 9.5$ m) occur at the Tournefortia-Pisonia interface, but die off as Pisonia expands. When Tournefortia has reached its maximum height, most of its lower branches have fallen, leafage is reduced, and flowers and fruits are few. Tournefortia usually drops out after one generation. Seedlings are rarely seen in heavy shade, and fallen trees are fairly common on the edge of the interior forests where Pisonia replaces it.

An example of complete replacement of Tournefortia by Pisonia is illustrated by nearby Vostok. It has heretofore been assumed that Vostok's sole tree species was Pisonia grandis (Fosberg 1936, Bryan...
1942, Clapp & Sibley 1971b, Garnett 1983). However, Young (ca. 1922) stated that when Capt. J. Larsen, of the schooner Papeete, planted 100 coconuts there on 31 May 1922, he found "Pukatea and Tauhinu trees, etc. 60 to 80 feet high," that is, Pisonia grandis and Tournefortia argentea, but no "Tou" trees (Cordia subcordata). By 1935 only Pisonia remained (Fosberg 1936); hence, the last Tournefortia must have been eliminated naturally by Pisonia.

Along some coasts (Long, Nake, South), Tournefortia overhangs the water, its roots immersed at high tide. We found floated debris up to 20 m inland within dense Tournefortia forest, indicating that this hardy shrub can withstand periodic storms and high tides. If a rosette of Tournefortia leaves is placed in fresh water, it droops within an hour, indicating that its tissues require a high salt concentration in order to maintain turgidity (pers. obs.). Perhaps decreased salinity in the ground water, coupled with reduced light intensity in advanced seral stages, contribute to the eventual disappearance of Tournefortia in the center of coral islands.

Seabird Use

Tournefortia is a favored roosting and breeding site for most of Caroline’s seabirds. The taller the trees, the greater the bird diversity they harbor: scrub contained 4 species (36%) and forest, 9 (82%). Sooty Terns nest in tight colonies in its shade, its canopies support large populations of Red-footed Boobies and Great Frigatebirds (Pt. II), and its branches are favored by White Terns (Figs. 32, 35, 36). Tournefortia leaves provide nesting material for noddies.

Cordia Forest (1.39 ha) Fig. 22, Pl. 26

General Distribution

Cordia does not form "the main native woodland" on Caroline Atoll, as implied by Clapp & Sibley (1971a) and stated by Stoddart & Gibbs (1975, p. 104). It occupies far less area than Tournefortia or Pisonia (Table 9). Cordia is generally mixed with other emergents: monotypic Cordia forest covers only 1.39 ha, while Tournefortia or Pisonia containing substantial amounts of Cordia total 25.89 ha. En toto, this is less than 10% of Caroline’s woodlands, and Cordia is usually subdominant. These "mixed" forests of Cordia mixed with Pisonia or Tournefortia (rarely all 3), occasionally with a Morinda understory, are the closest equivalent to Mixed Broadleaf Forests of other coral islands. This widespread Pacific plant community (Fosberg 1953, 1976; Wiens 1962) is conspicuous by its absence on Caroline. We treat Cordia forest as a separate plant community because of its increasing rarity on Pacific atolls, which makes Caroline’s groves an increasingly important resource in need of conservation. Cordia forest occurs primarily on Nake, Windward, Crescent, North Pig, Pig, Danger, Shark, and the Southern Leeward Islets.
History

Bennett (1840) recorded "two species of Tournefortia" on Caroline, possibly referring to Tournefortia and Cordia. There are no other 19th-century records. From Cordia's present distribution we can infer that it was formerly more extensive on South and Nake. Scattered trees within and bordering the Cocos plantations suggest that its history is similar to the species on Flint, which was "in 1872...covered with a forest of 'Tou' trees Cordia subcordata" (Maude ca. 1942). Both Flint and Caroline were worked simultaneously by the same companies for guano (1872-1890) and copra (into the 1930s). Pisonia and Cordia forests were felled to make room for coconuts. From Flint, several hundred Cordia logs were exported to San Francisco for furniture and panelling. The last logs were exported in 1896, 6 years after the guano supplies were depleted, but coconuts were still being planted (Young ca. 1922), and some large Cordia trees were still present in the southern 20% of the island still covered with virgin forest (E. Campbell 1908, Kepler, in prep.). Today, Flint's recovering forests contain much Cordia (A. Kepler 1990b), unlike Caroline, where Cordia is rare in similar habitats. Some of Flint's present windward Cordia trees may be those "few tiny, struggling...trees...recently planted" (St. John & Fosberg 1937).

Abundance and Distribution

Cordia seeds are dispersed by ocean currents and can germinate after 40 days in sea water (Guppy 1906). On Caroline this species develops both as an understory shrub and forest emergent (to 15 m high). It typically occupies the woodland periphery, occurring in small circular or linear groves, or mixing with Tournefortia and/or Pisonia (Table 5). Cordia may form tall, straight-trunked trees (Pl. 26) or sprawl like Hibiscus tiliaceus. In dry rubble sites it may become chlorotic or semideciduous. The tallest groves are on Pig (Pl. 26), where 6 trees averaged 12.6 m tall, 115 cm circumference at 1.5 m (cbh), and 99.8 cm base circumference. Lush Cordia groves occur in sheltered parts of the upper lagoon on Long Island (Tr. 10).

Flowering times are unpredictable. Two flowers were seen in September 1988. In November 1989, flowers were abundant, extending through March, yet in November 1990 not one flower was observed (pers. obs., Anne Falconer and AKK).

Seabird Use

Black and Brown Noddies, frigatebirds, and White Terns nest in Cordia wherever it is a forest component. Great Frigatebirds and Red-footed Boobies favor roosting in the lush, lagoonside forest of Cordia and Pisonia near the south end of Long Island.
General Distribution

Although *Pisonia grandis* was previously recorded as "present" (Trelease 1884, Clapp & Sibley 1971a), the quality and extent of its forests has not been recognized. Some stands are prime representatives of a major ecosystem that was formerly far more widespread in the Pacific.

Common throughout the atoll, *Pisonia* occurs on 29 motus, covering 22% of the woodlands. Well developed groves, 10-21 m tall and up to 359 cm circumference at 1.5 m, are present on 23 of these (Table 11). Although present on motus less than one hectare in size (Table 5), it typically occupies interior forests (schematic profile, Fig. 35), with individual trees or groves contributing from 5% to 100% of the canopy. In general, Caroline's windward motus support the lushest forests: the maximum height of windward *Pisonia* forests is 21 m, of leeward forests, 15 m.

Mature *Pisonia* forests are monocultures of grandeur. The trees bear one to several stout boles of irregular shape, whose rotting cavities often harbor large coconut crabs or miniponds alive with mosquito larvae. Their scraggly branches occasionally bend over and reroot. It is dark and humid, but open except for exposed roots and scattered broken branches. Few seedlings occur. Polynesian rats scurry underfoot.

In September 1988 we saw no flowers or fruit. Anne Falconer reported flowers on Motu Ana-Ana in August 1990. *Pisonia* was beginning to bloom on Vostok in March 1990 (A. Kepler, in prep.).

An Historical Perspective

Some of Caroline's most mature *Pisonia* groves (to 21 m tall, 660 cm circumference at 1.5 m, multiple trunks) appear to be virgin, (Pl. 43) but are most likely only 60-70 years old. Overall dimensions of the trees, the low species diversity, and general character of the plant community compare favorably to virgin groves on Vostok (Table 12; A. Kepler 1990c, d).

Despite the maturity of many groves, especially those to windward, planting records from 1916-22 indicate that *Cocos* was planted throughout not only South, but also on Nake, Long, and all the major Windward Islet's (Young ca. 1922). Given the standard planting density of 73 m²/palm (Young ca. 1922), we calculated the approximate area on each islet given over to *Cocos* plantations, based on the number of coconuts planted times the area required for each tree. We then compared this to the usable areas based on today’s forest cover (Table 13). On the 9 Windward Islets, collectively, 36.36 ha were planted in *Cocos*, fully 92%
Figure 33. Maximum heights of *Pönöa* forests in relation to width of the motus. Stars represent forests with 90-100% canopy cover; dots represent forest or scrub with less than 90% cover.

Figure 34. Maximum canopy heights of *Pönöa* forests in relation to motu area. Stars represent forests with 90-100% canopy cover; dots represent forest or scrub with less than 90% cover.
Figure 35. Schematic profile through Long Island, Transect 0. Although Long Island has been formed in the recent past by a merger of 5 smaller islets, this section of the islet is very mature, containing natural herb mats, *Tournefortia* scrub and forest, and tall *Pisonia* forest. Seven species of seabirds breed. Vertical height is exaggerated.
Table 11. Distribution of well-developed (≥10 m height) *Pisonia* forests on the motus of Caroline Atoll. Motus and transects are arranged according to the decreasing height of their *Pisonia* groves. Capitals indicate those motus whose forests were felled for *Cocos* plantations from 1916-20.

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIG</td>
<td>21*</td>
<td>3.36</td>
<td>7.21</td>
</tr>
<tr>
<td>NAKE, Transect 4</td>
<td>20*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>Booby</td>
<td>20*</td>
<td>0.12</td>
<td>0.84</td>
</tr>
<tr>
<td>NORTH PIG</td>
<td>20*</td>
<td>1.83</td>
<td>5.44</td>
</tr>
<tr>
<td>NORTH BROTHERS</td>
<td>18*</td>
<td>0.43</td>
<td>1.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAKE, Transect 3 (central)</td>
<td>15*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>LONG, Transect 0</td>
<td>15*</td>
<td>15.00</td>
<td>75.98</td>
</tr>
<tr>
<td>BROTHERS</td>
<td>15*</td>
<td>0.37</td>
<td>4.31</td>
</tr>
<tr>
<td>Ana-Ana</td>
<td>15*</td>
<td>0.93</td>
<td>2.16</td>
</tr>
<tr>
<td>Danger</td>
<td>15*</td>
<td>0.39</td>
<td>2.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAKE, Transect 2</td>
<td>14*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>Bird</td>
<td>14*</td>
<td>1.70</td>
<td>4.05</td>
</tr>
<tr>
<td>WINDWARD, Transect 2</td>
<td>14*</td>
<td>2.97</td>
<td>11.42</td>
</tr>
<tr>
<td>Raurau</td>
<td>14*</td>
<td>1.07</td>
<td>3.48</td>
</tr>
<tr>
<td>CRESCENT</td>
<td>13*</td>
<td>0.51</td>
<td>3.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannikiba, Transect 1</td>
<td>12*</td>
<td>1.13</td>
<td>21.49</td>
</tr>
<tr>
<td>Shark</td>
<td>12*</td>
<td>2.60</td>
<td>7.98</td>
</tr>
<tr>
<td>NAKE, Transect 3 (west)</td>
<td>12*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>LONG, Transect 12</td>
<td>12*</td>
<td>15.00</td>
<td>75.98</td>
</tr>
<tr>
<td>Pisonia</td>
<td>11*</td>
<td>0.86</td>
<td>2.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matawa</td>
<td>11</td>
<td>0.07</td>
<td>1.71</td>
</tr>
<tr>
<td>Nautonga</td>
<td>11*</td>
<td>0.02</td>
<td>0.34</td>
</tr>
<tr>
<td>NAKE, Transect 3 (southwest)</td>
<td>11*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>Kimoa</td>
<td>11*</td>
<td>0.59</td>
<td>1.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald</td>
<td>11*</td>
<td>3.20</td>
<td>8.34</td>
</tr>
<tr>
<td>Eitei</td>
<td>11*</td>
<td>0.38</td>
<td>1.42</td>
</tr>
<tr>
<td>LONG, Transect 8</td>
<td>10*</td>
<td>15.00</td>
<td>75.98</td>
</tr>
<tr>
<td>LONG, Transect 8</td>
<td>10</td>
<td>15.00</td>
<td>75.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motu & Transect</th>
<th>Pisonia Height (m)</th>
<th>Area of Pisonia (ha)</th>
<th>Motu Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAKE, Transect 1</td>
<td>10*</td>
<td>20.79</td>
<td>107.46</td>
</tr>
<tr>
<td>WINDWARD, Transect 1</td>
<td>10*</td>
<td>2.97</td>
<td>11.42</td>
</tr>
<tr>
<td>Blackfin</td>
<td>10*</td>
<td>0.41</td>
<td>2.52</td>
</tr>
<tr>
<td>NORTH ARUNDEL</td>
<td>10*</td>
<td>0.18</td>
<td>0.91</td>
</tr>
</tbody>
</table>

1 *Tournefortia* or *Cordia* may be present, but sub-dominant to *Pisonia*.
*90-100% canopy cover.
*50-80% canopy cover.
Table 12. Area and Dimensions of *Pisonia grandis* on Vostok, Flint, and 5 islets of Caroline Atoll. Comparative data are from A. Kepler (1990b,c,d).

<table>
<thead>
<tr>
<th>Island/Islet</th>
<th>Area of Pisonia (ha)</th>
<th>No. trees or main trunks</th>
<th>Mean Height (m)</th>
<th>Range of Heights (m)</th>
<th>Mean cbh (m)</th>
<th>Range of cbh (m)</th>
<th>Mean base (m)</th>
<th>Range of base circumferences (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAROLINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Pig</td>
<td>1.83</td>
<td>25</td>
<td>19</td>
<td>11-21</td>
<td>221</td>
<td>110-359</td>
<td>261</td>
<td>205-470</td>
</tr>
<tr>
<td>Brothers</td>
<td>0.37</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>140</td>
<td>50-219</td>
<td>243</td>
<td>154-340</td>
</tr>
<tr>
<td>Pig</td>
<td>3.36</td>
<td>5</td>
<td>16</td>
<td>12-17</td>
<td>338</td>
<td>290-660</td>
<td>282</td>
<td>230-333</td>
</tr>
<tr>
<td>North Brothers</td>
<td>0.43</td>
<td>3</td>
<td>18</td>
<td>18</td>
<td>314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td>15.00</td>
<td>3</td>
<td>15</td>
<td>15</td>
<td>414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for above islets at Caroline</td>
<td>20.99</td>
<td>46</td>
<td>18</td>
<td>11-21</td>
<td>213</td>
<td>50-660</td>
<td>293</td>
<td>154-500</td>
</tr>
<tr>
<td>VOSTOK</td>
<td>13.5</td>
<td>58</td>
<td>18</td>
<td>10-25</td>
<td>218</td>
<td>67-510</td>
<td>598</td>
<td>100-1000</td>
</tr>
<tr>
<td>FLINT</td>
<td></td>
<td>approx. 4</td>
<td>17</td>
<td>8-30</td>
<td>160</td>
<td>60-200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 cbh = circumference at 1.5 m.
2 Base = base circumference at 0.3 m.
Table 13. Number of trees and areas planted in Cocos on Caroline's islets during the major planting era (1916-1920), also showing remnant Cocos data for 1990. Note the remarkable recovery of indigenous forests on all islets except South.

<table>
<thead>
<tr>
<th>Islet</th>
<th>Area</th>
<th>Tournefortia</th>
<th>Pisonia</th>
<th>Other</th>
<th>Cocos</th>
<th>Total</th>
<th>1916-20</th>
<th>Approx. Area Planted (ha)</th>
<th>% Cocos 1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>104.41</td>
<td>4.20</td>
<td>0</td>
<td>1.1</td>
<td>80.00</td>
<td>86.10</td>
<td>13,006</td>
<td>94.94</td>
<td>77%</td>
</tr>
<tr>
<td>Nake</td>
<td>107.46</td>
<td>30.65</td>
<td>20.8</td>
<td>9.41</td>
<td>5.75</td>
<td>66.61</td>
<td>10,544</td>
<td>76.97</td>
<td>6%</td>
</tr>
<tr>
<td>Long</td>
<td>75.98</td>
<td>32.20</td>
<td>15.0</td>
<td>-</td>
<td>2.40</td>
<td>49.60</td>
<td>1,343</td>
<td>9.80</td>
<td>3%</td>
</tr>
<tr>
<td>Tridacna (A1)</td>
<td>9.08</td>
<td>7.97</td>
<td>0</td>
<td>0.18</td>
<td>8.15</td>
<td></td>
<td>910</td>
<td>6.64</td>
<td>0%</td>
</tr>
<tr>
<td>Arundel</td>
<td>7.34</td>
<td>4.36</td>
<td>0.95</td>
<td>-</td>
<td>0.31</td>
<td>5.21</td>
<td>646</td>
<td>4.71</td>
<td>0%</td>
</tr>
<tr>
<td>N. Arundel (A2)</td>
<td>0.91</td>
<td>0.33</td>
<td>0.19</td>
<td>-</td>
<td>few</td>
<td>0.52</td>
<td>69</td>
<td>0.50</td>
<td>0%</td>
</tr>
<tr>
<td>Brothers</td>
<td>4.31</td>
<td>2.00</td>
<td>0.37</td>
<td>-</td>
<td>0.01</td>
<td>2.38</td>
<td>315</td>
<td>2.30</td>
<td>2%</td>
</tr>
<tr>
<td>N. Brothers (A3)</td>
<td>1.71</td>
<td>0.68</td>
<td>0.43</td>
<td>-</td>
<td>few</td>
<td>1.11</td>
<td>180</td>
<td>1.31</td>
<td>0%</td>
</tr>
<tr>
<td>Pig</td>
<td>7.25</td>
<td>1.61</td>
<td>3.36</td>
<td>-</td>
<td>0.03</td>
<td>5.00</td>
<td>538</td>
<td>3.93</td>
<td>0.4%</td>
</tr>
<tr>
<td>N. Pig (A4)</td>
<td>5.44</td>
<td>1.31</td>
<td>1.84</td>
<td>-</td>
<td>0</td>
<td>3.15</td>
<td>402</td>
<td>2.93</td>
<td>0%</td>
</tr>
<tr>
<td>Crescent (A5)</td>
<td>3.10</td>
<td>1.56</td>
<td>0.51</td>
<td>-</td>
<td>0</td>
<td>2.07</td>
<td>228</td>
<td>1.66</td>
<td>0%</td>
</tr>
<tr>
<td>Windward (A6)</td>
<td>11.42</td>
<td>5.70</td>
<td>2.97</td>
<td>-</td>
<td>0</td>
<td>8.67</td>
<td>1,299</td>
<td>9.48</td>
<td>0%</td>
</tr>
</tbody>
</table>

1"Usable area" does not include unvegetated rubble or natural herb mats.
2Based on Caroline's planting densities of 28 x 28 sq ft (Young ca. 1922).
3The "A" series of islet names are from Young (ca. 1922).
of all usable ground; in several cases the amount calculated for Cocos by Young exceeded our estimates of potentially usable ground. Thus, Cocos was planted so intensively on the Windward Islets that virtually all Pisonia and most Tournefortia woodlands were felled.

Two remarkable points emerge from Table 13: 1) scarcely any Cocos remains today on the 9 Windward Islets; not one palm exists on 7 motus (Figs. 43, 44, 47, 48), and 2) the recovery of indigenous plant communities, Stages I through V (Sect. F) on the windward side has been rapid and, at least on Brothers Islet (Fig. 46), reasonably complete with regard to ecological succession and species diversity of plants and seabirds. Today the Windward Islets have the lushest and tallest plant communities, with a higher species diversity than the leeward islets (Table 3), which have evidently experienced far less human disturbance.

This differential disturbance on the windward and leeward sides of the atoll explains enigmas such as 20 m tall Pisonia forest on the leeward Booby Islet (0.84 ha), taller than most of the windward forests; the absence of Pisonia on windward Tridacna Islet (9.08 ha), which, being close to South Island, probably supported Cocos which was managed longer than the more distant windward islets; and the patchy distribution of Pisonia in the interior of several islets (e.g. Windward, Arundel). This last point also applies to Mannikiba (21.49 ha), the largest leeward islet. According to Young (ca. 1922), 6,000 seed sets were brought from Flint to Caroline in 1920 and kept on Mannikiba. This "nursery stock" was used to replant "misses" on other islets, due mostly to destruction by coconut crabs and poor planting. Today, Mannikiba's total acreage of Pisonia (Fig. 53) is very small and fragmented relative to the islet's size: 1.13 ha, 5% of the total land area. Compare this with Bird Islet (Fig. 55) which, as far as we know, has never been disturbed: 1.70 ha Pisonia, 42% of the islet's land area.

On both Caroline and Flint there is much variation in the quality of the regenerated Pisonia forests (Table 12). Some trees bear enormous, partly rotted boles, black algae smothering the bark, multiple trunks, and few or no understory herbs. Other trees are tall, straight-trunked, with characteristic whitish bark, and bear no rotted holes in their bases. These observations suggest that when their indigenous forests were felled, only minimal cutting was done, and many Pisonias were able to regenerate quickly by sprouting from rooted stumps and fallen branches. This speculation is supported by the fact that some of Vostok's Pisonia trees regenerated similarly. Maude (1953, p. 96) states that "there is room for 8,000 palms on Vostok, but only 100 have been planted and most of these have been choked in the luxuriant 'buka' (Pisonia grandis) forest: no attempt having been made to exploit the island since the initial planting."

Pisonia, a soft, pulpy wood, has a well-known ability to sprout or send up suckers from dismembered branches or fallen trunks (Fosberg 1953), and it has been noted that older trees are virtually indestructible, fire being the only effective means of clearing forests...
The senior author has photographed leaf sprouts from partly burned twigs as small as 1 m long and 5 to 6 cm in diameter.

Since the existing Cocos plantations on South and southwest Nake contain few Pisonias, it seems that forest clearing was more thorough on the atoll's larger islets than on the smaller ones, which today manifest scant traces of their former history. Fortunately for Caroline, its coconut plantations were plagued by a number of problems, which resulted in their double abandonment: coconut crabs, seabirds, rats, Ipomoea vines, and an unknown disease (see under Coconut Woodlands, this section).

A footnote in Young (ca. 1922, p. 15) states that "the larger portion of the 30,000 trees planted were either badly planted or smitten with some disease as in 1927 it was reported by Mr. Bunckley that most of them had perished." In 1929 only 13,215 trees were left, and more were being planted. Considering the distribution of both palms and natural forests today, it appears that plantations continued on South and Nake and were abandoned on the smaller islets, allowing for a better recovery than might be expected had the Cocos grown to maturity. Tridacna (close to South) and Mannikiba (a nursery) were the most intensely managed of the smaller islets, as their Pisonia today is meagre compared to their overall areas.

Once a Cocos plantation has been well established and subsequently abandoned, Pisonia regrowth is more difficult. This is characteristic of many tropical islands. For example, on Cousin Island (Seychelles Islands, Indian Ocean), an ICBP wildlife preserve since 1968, Pisonia is currently reestablishing within a deteriorating Cocos plantation. Phillips & Phillips (1990, p. 37) envisioned "centuries rather than decades before something like a natural ecosystem develops." We predict a similar time frame for Caroline's South Island, sooner for Flint. Forest recovery on islands elsewhere has evidently not been studied in detail (Fosberg, pers. comm.).

Annual Growth Rates

Data on Pisonia grandis growth rates is very limited. A 7-year study on Kabelle Island, Rongelap Atoll, Marshall Islands, disclosed mean diameter growth rates of 1.32 and 0.39 cm/yr at 2 sites (Gessel & Walker 1992). On Cousin Island, vegetation changes, including Pisonia and Cocos, have been monitored since 1974, but no growth rates are yet available (Phillips 1984, Phillips & Phillips 1990).

Because of this paucity of data on Pisonia, and because its forests have diminished significantly this century, we present the following data in the hopes that it might inspire more research.

One point is clear: on all 3 of the Southern Line Islands Pisonia grandis has recovered fast from disturbance (except for total forest elimination), reaching close to its maximum height and ecological maturity in 70 years or less. Mature Pisonia, under optimal conditions
of soil, temperature and rainfall, may attain 35 m, as on Fanning and Washington (Garnett 1983 and pers. comm.). However, in the Southern Line Islands, canopies of similarly virgin *Pisonia* on Vostok rarely exceed 25-30 m tall (A. Kepler 1990c), and only 16-18 m on the Great Barrier Reef (Walker 1991).

Caroline's prime groves, 21 m tall, with circumferences to 660 cm, and bearing multiple trunks and root suckers, we now know date back only to the 1920s. The largest trees, 21 m high and 660 cm cbh, appear to have averaged annual growth rates of 0.32 m in height and 3.4 cm in diameter.

Further evidence of fast growth rates is provided from Flint. In 1934 only one small *Pisonia* and a few tiny, struggling *Cordia*, recently planted, were recorded (St. John & Fosberg 1937). Virtually the entire island (324 ha) was a *Cocos* plantation. In 1990 *Pisonia*, quite common on the windward side, attained maximum heights of 30 m, with base circumferences and at 1.5 m (cbh) of 1,000 cm and 200 cm, respectively (Table 12). These compare favorably with 2 trees of similar heights and cbh to 510 cm on Vostok and a large *Pisonia*, presumably virgin, measured on Atafu Island (Tokelaus) by the U.S. Exploring Expedition in 1840, which was more than 600 cm in base circumference and about 12 m tall (Wilkes 1845, Vol. V, p. 9). Furthermore, pure indigenous mixed broadleaf forests (*Pisonia, Cordia, Guettarda*), to 25 m tall, covered 57 ha, 23% of Flint's vegetated area (Kepler, in prep.), with a further 65 ha (26% of the woodlands) in mixed forests containing less than 50% *Cocos*. Thus, *Pisonias* have established themselves since the plantation was abandoned in the late 1930s. The largest trees, 30 m high and 200 cm cbh, now indicate a mean annual increment of 0.6 m height and 1.32 cm diameter over the past 50 years. A faster growth in height than on Caroline is likely due to Flint's higher rainfall and greater relative humidity due to the presence of a more successful coconut plantation inland: Caroline's annual output of copra was 15 tons, compared to 230 tons for Flint (Young ca. 1922, Maude 1953).

Species Diversity in *Pisonia* Forests

Caroline's motus harbor every stage in the development of a *Pisonia* forest, from stately monotypic groves to a single tree. The plant communities between these extremes harbor the greatest species diversity and most luxuriant growth on the atoll. The following species are present (Table 2):

Trees: *Morinda citrifolia, Cordia subcordata, Cocos nucifera, Pandanus tectorius, Pisonia grandis;*

Shrubs: *Tournefortia argentea; and*

Herbs: *Boerhavia repens, Portulaca lutea, Laportea ruderalis, Lepturus repens, Achyranthes canescens, Phymatosorus scolopendria, Ipomoea macrantha.*
The number of species within *Pisonia* forests ranges from one to 14 (Table 14). As *Pisonia* becomes more dominant, their trees are taller (21 m), and species diversity is less (Table 14). Here the average number of species is 3.4. Species diversity is also very low at the other extreme of *Pisonia* development: in one young motu (Azure), only a single 6-m-tall *Pisonia* tree is present (x = 4.0 species). The smallest islet on which we found *Pisonia*, Azure is only 0.20 ha in area and 77 m wide (Fig. 55, Pl. 51); more than half of it is rubble. The width of its scrub is only 38 meters. Along a transect within the majestic *Pisonia* grove (100% canopy cover) on Brothers (Fig. 46), we found no other plant species, an extreme case of the barrenness of *Pisonia* understory. This grove, 13 m tall and extending 42 m from east to west, was sharply delineated from the 6-m-high *Tournefortia* forests on both sides and provides a striking example of complete ecological succession since its *Cocos* plantation days of the 1920s.

The highest species diversity occurred with mixed co-dominants (*Tournefortia, Cordia*) and *Pisonia* coverage 25-50% (Fig. 34, Table 14). Here, the average number of species was 6.2 (range 3-10). Regardless of the area or width of the motu on which they occurred, these mixed stands (x = 7 m tall) were always shorter than pure *Pisonia* forest.

Ecology

On Caroline, most plant species establish early in the evolution of individual motus, increasing in abundance and stature while the land area is quite small. *Pisonia* typifies this pattern: single trees occur on 2 motus whose areas are only 0.2 ha (Table 6), suggesting that *Pisonia* is partly salt-tolerant, at least in its early growth stages. In general, however, motus less than 0.7 ha on Caroline have little *Pisonia* (Table 6). It is difficult to imagine a freshwater lens on Motu Nautonga (1 ha), where an 11-m-tall *Pisonia* forest is found (Table 11). Further evidence for the salt-tolerant nature of *Pisonia* comes from Vostok, where a *Pisonia* forest, the sole woodland, extends to the edge of the shoreline rubble and herb mat. The trees, tightly pruned by wind and salt, have no buffer of coastal scrub. During storms, seawater reaches Vostok's interior forest, yet this 24-ha island supports one of the largest and tallest (25-m-high) groves in the Pacific (Clapp & Sibley 1971b, Fosberg 1977 and pers. obs.).

Many *Pisonia* trees were heavily infested with scale insects (Coccidae) and Neuropteran larvae (*Chrysopa* sp.), identified by Dr. Scott Miller (Bishop Museum, Honolulu, Hawaii). This appears to be a natural phenomenon, as they were also abundant on the virgin *Pisonia* forests on Vostok and also on secondary *Pisonias* at Flint.

Relationships Between *Pisonia* Forest Height and Motu Dimensions

Contrary to expectations, the tallest, most mature forests did not all occur on the largest motus (Table 11). The 3 prime forests (90-100% canopy cover) were on Nake (total land area 107.46 ha), Pig (7.21 ha),
Table 14. Species diversity in *Pisonia* forests of decreasing maturity, Caroline Atoll. Groves are arranged according to the degree of coverage of their constituent *Pisonia* trees. Where *Pisonia* is present, even in low percentages, it is always the tallest tree. Note that there is an inverse relationship between the purity of the *Pisonia* forest and its species diversity.

<table>
<thead>
<tr>
<th>Canopy Cover</th>
<th>Av. Canopy Hgt. (m)</th>
<th>Av. No. Sp. (incl. Pisonia)</th>
<th>Numbers of Species/Transect</th>
<th>No. Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Trees</td>
<td>Shrubs</td>
<td>Herbs</td>
</tr>
<tr>
<td>100% (Pisonia only)</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100% (codominant present)</td>
<td>15</td>
<td>3.4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>90 - 95%</td>
<td>10</td>
<td>5.2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>50 - 90%</td>
<td>10</td>
<td>6.2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>25 - 50%</td>
<td>7</td>
<td>6.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td><25%1</td>
<td>9</td>
<td>5.6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Single Pisonia tree only</td>
<td>6</td>
<td>4.0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1South Island not included, as its *Pisonia* is too rare.
and Booby (0.84 ha). Trees on Booby measure less in girth than those on Nakie and Pig, but their height (20 m) is impressive. Evidently, Booby was never exploited for guano or planted in Cocos. Fine forests occur on other small, undisturbed motus; for example, *Pisonia* grew to 14 m on Raurau (3.48 ha) and to 11 m on Kimoa (1.80 ha).

A positive correlation exists between *Pisonia* height and island width (Fig. 33). Motus appear to reach a minimum width of 90 m before closed canopies of 13 m develop, and canopy height increases to 21 m as motu width enlarges to 200 m (Pig, topmost star in Fig. 33). Further increases in motu width did not result in taller trees. However, even on motus with sufficient width, *Pisonia* did not develop unless other environmental conditions were suitable. For example, on Long, *Pisonia* only occurred in the centers of its former islets, not in the scrubby areas where coalescence is more recent. Tridacna and Mannikiba, both ideal for *Pisonia*, have not yet recovered fully from their Cocos plantations.

Pisonia-Seabird Relationships

Seabirds are an integral part of *Pisonia* ecology. Its sticky fruits adhere to the feathers of, and are thus dispersed by, seabirds such as terns, boobies, and frigatebirds; thus, its early appearance on small motus is not surprising.

On Caroline, 6 species of seabirds nest in its branches, dropping considerable amounts of guano to the ground below. Black Noddies, amassing in dense colonies, nest almost exclusively in *Pisonia*, along with Brown Noddies, White Terns, Great and Lesser Frigatebirds, and Red-footed Boobies. Pig Islet, with 7.25 ha of excellent *Pisonia* forest, supported a dense colony of nearly 2,000 pairs of Black Noddies (Pt. II). Bristle-thighed Curlews feed on the ground beneath its open understory, and the Long-tailed Cuckoo forages within its canopy.

Seabirds may be so much a part of *Pisonia* ecology that a debate exists as to whether *Pisonia* actually requires guano for successful germination and establishment of seedlings (Shaw 1952, Fosberg 1953, Wiens 1962). Very high phosphate and nitrogen levels are associated with mature *Pisonia*, and concurrently the development of *Pisonia* forest results in greatly modified soils that perpetuate its existence (Wiens 1962, Spicer & Newbery 1979). The formation of a highly acid raw humus on the surface of the ground, sometimes in association with phosphatic hardpan, has also been documented on several atolls by Fosberg (1953, 1956, no date; Stoddart & Scoffin 1983), including Vostok (AKK and John Phillips, pers. obs.). We have no information on phosphatic hardpan in Caroline's *Pisonia* forests. For further discussion, see Section D, Substrata.
Remnant *Pisonia* Forests in the Pacific

Though naturally and widely distributed throughout Indo-Pacific islands (excluding Hawaii), *Pisonia grandis* forests have been subjected to great destruction and are now rare. Pure *Pisonia* forest was formerly the most widespread indigenous forest on Pacific atolls, and may have formerly covered the greatest area of any tree species in the Pacific (Wiens 1962, Fosberg 1976). Shaw (1952), summarizing its distribution, stated that it only occurs on remote, generally uninhabited islands ranging from the western Indian Ocean to the eastern Pacific, including Malaysia. However, more recent studies, particularly by Fosberg, indicate that because its habitat occupies, and is in part responsible for, the most fertile areas of inhabited islands, its formerly extensive forests have been largely replaced by coconuts. Though *Pisonia*’s soft wood is of little use to either atoll inhabitants or to the timber industry, its soils were rich sources of phosphate fertilizer and were thus greatly disturbed during the guano mining era. *Pisonia* is highly adapted for growth on coralline substrates, also having developed unique morphological and physiological characteristics associated with seabird colonies and mycorrhizal fungi (Walker 1991). Caroline, with 62.73 ha in *Pisonia* forest (36.94 ha in monotypic groves) holds some of the finest representatives of this ecosystem in the Pacific, even though much of it is not virgin.

One of the prime Pacific *Pisonia* stands (13.5 ha on Vostok) was partly burned in 1977 (Fosberg 1977). The Royal New Zealand Air Force found it smoldering 3 months later (Fosberg 1977, pers. comm.). In a March 1990 visit to Vostok, we found that approximately 1.5 ha were completely cleared (A. Kepler 1990c) and a further unknown amount of land was affected. Cays of the southern Great Barrier Reef have recently been found to harbor ca. 160 ha of uncut *Pisonia* forest. The largest stand (94 ha) is on Northwest Island (Walker 1991). Other fine groves exist on Palmyra and Washington (Northern Line Group), Rose Atoll (American Samoa), Bikar, Taongi, and Jabwelo (Marshall Islands), and Fanna (Southwest Palau Islands). Flint (Southern Line Group); Christmas (Northern Line Group); Nikumaroro (Phoenix Group); Jemo and Ujæe (Marshall Islands); and Aitutaki, Penrhyn, Suwarrow, and Manihiki (Cook Islands) have relatively small stands. Not all are healthy. For example, groves on Bikar, Jabwelo, and Palmyra were recently devastated by typhoons (Flint et al. 1992, IUCN 1992) and that on Taongi is unhealthy (Thomas et al. 1989).

Coconut Woodlands (96.14 ha)
Figs. 14, 36; Pls. 17, 22, 23, 27-29, 32, 34, 37, 39, 40, 44

General Distribution

Cocos, although present on 15 motus and known to be planted intensively on at least 13, covers significant areas only on the 2 largest islets, South and Nake (Table 13). Individual trees and small
Figure 36. Schematic profile through South Island, where 77% of the land surface is covered with Cocos forests, primarily in a dying state. Vertical height is exaggerated.
groves elsewhere are drift-derived or remnants of plantings made from 1916 to 1920.

The following species occur in habitats containing Cocos (Table 2):

Trees: *Pisonia grandis*, *Morinda citrifolia*, *Pandanus tectorius*, *Cordia subcordata*, *Cocos nucifera*, *Thespesia populnea*, *Hibiscus tiliaceus*;

Shrubs: *Tournefortia argentea*, *Ximenia americana*; and

The distribution of Cocos (Fig. 14) in order of decreasing abundance is as follows: SOUTH: Forests old and neglected. Living palms line the lagoon, currently shading out strip of native scrub. NAAKE: Southern forests (50-80% Cocos) healthier, younger, with more native trees and *Pandanus* than on South; grove of about 50 palms on northeast. LONG: Range from <1% cover (Tr. C) to dense fringe adjacent to lagoon. EMERALD: Northeast and west-central patches. MANNIKIBA: Main grove, northeast: 40 palms, 20 m high, another patch in south center. ANA-ANA: House site, northeast point. BIRD, BLACKFIN, BROTHERS, NAUTONGA, NORTH BROTHERS, PIG, PISONIA, RAURAU, SHARK: Few trees each, primarily in *Tournefortia*. LONE PALM: One tree, central forests.

History

A relatively small coconut grove was planted on South Island prior to the 16th century by Tuamotuan settlers (Emory 1947, Maude 1968). In 1606 de Quiros noted "plenty of palms" and "many cocoa-nuts" (Markham 1904). Since then, every visitor has recorded them since they grew, and still grow, adjacent to the boat "landing." A smaller grove evidently also existed in the south-southwest portion of South Island (Lucett 1851). Palms were also periodically planted--and destroyed--"by whalers and other chance visitors to the island" (Maude ca. 1938).

Until Arundel's arrival in 1885, Cocos was basically confined to this single grove in the northwest sector of South (Maude ca. 1942). In 1885, land clearing began, and from then till 1929 nearly 38,000 palms were planted, 29,480 between 1916 and 1920 and another 7,000 young trees after 1927 to replace thousands that had perished (Young ca. 1922). Arundel's initial license gave him the exclusive rights to occupy Caroline and Flint, planting coconuts and other trees for 21 years, in return for an annual rental of 50 pounds sterling (Maude ca. 1942). In 1929 13,215 trees remained, after which no one has counted them. Our field work and scrutiny of aerial photographs indicate that far fewer exist today.
Caroline's plantations produced copra periodically from 1873 to 1934, but never profitably. They suffered greatly from the atoll's abandonment from 1901-1916. Dying and poorly planted palms presented continual setbacks (Young ca. 1922); in 1878 a hurricane wrought great destruction (N.I.D. 1943), and although no record exists of the effects of the 1906 hurricane on Caroline, waters reaching well inland on Flint threw warehouses off their foundations and flooded all buildings within the settlement (Campbell 1908). In addition, plantation managers lamented their poor productivity due to choking "by undergrowth and Pohue Vine, destruction of inflorescences by great numbers of seabirds which roosted in the tops and broke off the flowers as they appeared," disease, and ruination of nuts by Polynesian rats and coconut crabs. As a result of this, the laborers slaughtered many crabs, and "greatly reduced the numbers of sea birds, who migrated to unoccupied islets." The rat problem was never resolved and appears to be the major reason for the eventual abandonment of plantations on both Caroline and Flint. Their enormous numbers and voracious eating habits greatly reduced both the crops of potentially healthy nuts as well as the volume of dried copra. In 1920, 4,600 were trapped on South Island, and hundreds more were killed by small terriers introduced specifically to control them (Young ca. 1922). Maude (pers. comm.) recalls that one terrier still survived in the 1940s. Rats still abound, especially within coconut groves and Pisonia forests. Another serious problem was due to coconut crabs digging up recently planted nuts and pinching off young shoots. After the palms had attained one year's growth this was no longer a problem (Young ca. 1922).

Before abandonment (1902 to 1916, and after 1934), Caroline's plantations were owned by several companies whose average annual copra output was approximately 14 tons. From 1934 to the 70s copra was harvested sporadically by small parties from Tahiti (Garnett 1983), but within the last 2 decades it stopped altogether.

Despite the relatively fertile soils of South Island, the problems in the plantations hampered the establishment of permanent settlements on Caroline. In the 1930s Maude estimated that the atoll could support 400 Gilbertese, increasing to over 1000 "when the island has been fully planted" (Maude ca. 1938). Colonists were never established though, since the failure of the plantations was never cured (Maude 1953), leaving Caroline "one of the least spoiled islands in the Pacific" (Stoddart 1976). However, as plantation information in Young's (ca. 1922) unpublished "Memoranda" indicates, Caroline is not as pristine as it appears, but the rapid recovery of most of its windward forests is remarkable (see Pisonia Forests, this section).

Said to be *Tuufetta* (= *Triumfetta*) procumbens, most likely a misidentification of *Ipomoea macrantha*.
Distribution and Abundance

We recognize 4 subdivisions of the coconut woodlands: Cocos Plantations, Dying Cocos-Ipomoea Plantation, Scattered Groves on Small Motus, and Mixed Forest with Cocos.

1) Cocos Plantations (34.07 ha)

Superannuated palm forests dominate South Island and southwestern Nake. Although the planting of Cocos on South eliminated most of its original habitats, Nake escaped with less damage: Cocos covers 77% of the area on South but only 5% of Nake (11% including mixed forests). The 60 to 100-year-old trees form tall, closed canopy woodlands (Pl. 23) 21-25 m high, the customary maximum height recorded for old plantations (Fosberg 1953). Figure 51 shows the distribution and abundance of plant species along a transect running centrally through the island, while Figure 36 depicts a schematic profile of the same swath.

Pure coconut plantations harbor relatively few species: up to 7 trees, zero to 2 shrubs, and 5-11 herbs. The understory layers are almost exclusively indigenous, an unusual feature. However, skirting the edge of the lagoon, tall palms overhang the water, crowding native plants; Suriana and Tournefortia were less abundant in 1988 (Pl. 28) than in 1965 (Pl. 40).

2) Dying Cocos-Ipomoea Plantation (53.92 ha)

Mature plantations characteristically become overgrown with shrubs and vines (Fosberg 1953, 1956). Ipomoea macrantha, the sole vine on Caroline, forms tangled, impenetrable thickets. Indigenous, nonparasitic, and widely dispersed by ocean currents, it forms a very minor component of Caroline's natural habitats, but grows rampantly in disturbed areas. Vine-covered coconut woodlands cover two-thirds of South Island's interior (Fig. 50). This moribund forest is bordered by a belt of living palms, which in turn are sheltered by a narrow rim of indigenous vegetation (Figs. 36, 51).

While traversing the South Island transects, the authors stomped over intertwining thickets up to 3 m high (Pl. 8) and crawled through tightly-knit masses of vines descending from the crowns of old palms, Pisonia, and Morinda bushes, until this too, proved impenetrable. In sunny clearings dotted with dead or disintegrating palms, Ipomoea, Boerhavia, and Phymatosorus proliferated luxuriantly. Choking of the palms by Ipomoea, one of the prime reasons for the twice-abandonment of the copra enterprises, continues to destroy the coconuts, encouraging natural ecological succession to begin anew.

3) Scattered Groves on Small Motus (0.82 ha)

Drift-derived palms were observed as long ago as 1834 (Bennett 1840). In 1916, when planting operations were commenced after a break of 14 years, about 40 trees grew beyond the plantations (Maude ca. 1942). Today, small Cocos groves, up to 50 palms, drift-derived and
plantation remnants, generally close to the shoreline (Pls. 28, 29), occur on 11 motus.

4) Mixed Forest with Cocos (6.24 ha)

This forest type is a simplified version of more complex and varied mixed forests that occur on most inhabited atolls. Composed of anthropogenic and indigenous elements, it contains a high proportion of Cocos (50-80%) mingled with variable proportions of Tournefortia, Pisonia and Pandanus. This forest type occurs primarily in southern Nake (Fig. 14), but also on Emerald, Shark, and southwest Long, where it mixes with Cordia and Tournefortia.

House Site: A clearing on Motu Ana-Ana, approximately 40 m x 70 m, contains a few Cocos, a vegetable garden and thatched former living quarters (Pl. 51).

Seabird Use

Cocos-dominated habitats were ornithologically the most depauperate on Caroline: only Brown Noddies and White Terns breed. The noddies nested high within the frond and inflorescence bases, whereas the White Terns preferred lower sites, occasionally atop an arching frond. The absence of other species suggests that anthropogenic Cocos forests seriously inhibit seabird use and may continue to do so for decades until they are replaced by native vegetation.

Absent Plant Communities

Caroline’s impoverished flora and relatively simple physiography and geology has resulted in a limited variety of ecosystems. The atoll is thus notable not only for its Pisonia forests, extensive monotypic stands of Tournefortia, and Cordia groves, but also for the absence of several ecosystems that are generally considered typical of Pacific atolls:

1) Sesuvium Flats;

2) Pemphis, Scaevola, and Sida Scrub (2 Scaevola plants are present, and the only 2 Sida records are from 1884 and 1990); and

3) Mixed broadleaf forests including Barringtonia, Calophyllum, Guettarda, Hernandia, and Neisosperma.

4) Plant associations (except Cocos) typical of native cultures on atolls: breadfruit groves (Artocarpus altilis), taro pits (Cyrtosperma chamiissonis, Colocasia esculenta, Xanthosoma sagittifolia), cultivated ornamentals (Hibiscus rosa-sinensis, Plumeria spp., etc.), or weedy grasslands/wastelands (Paspalum, Sporobolus, Wedelia, Vigna, etc.). Even widespread introduced strand
species such as *Terminalia catappa* and *Casuarina equisetifolia* are absent.

In addition, there are no mangroves, peat bogs, marshes, ponds, salt flats, or other habitats associated with fresh or brackish water. Poorly represented are:

1) *Lepturus* Grassland. Although *Lepturus* is present in coastal herb mats, and occasionally in patches within the forest understory, it does not form a separate plant community. However, it may once have covered the extensive clearings on South Island (Pl. 2, 3).

2) Mixed Forest. Though 6.24 ha of Mixed Forest (with *Cocos*) occurs (primarily on Nake), it is of such minor importance to Caroline’s overall vegetation that it is treated as a subsection of Coconut Woodlands.

H. DESCRIPTION AND ECOLOGY OF THE MOTUS

These islet accounts synthesize the history, physiography, vegetation patterns, ecology, seabird colonies, miscellaneous biota, and the effects of human activity (if any) on Caroline’s 39 motus (Fig. 2). Mapping is based on the coast-to-coast transects, perimeter surveys, complete surveys (smaller motus), color transparencies, and aerial photographs.

All motus are detrital reef islets representing many evolutionary stages from barely emerged coral rubble to large islets with relatively fertile "soils" supporting lush vegetation. There is one tiny old reef platform in its final stages of erosion.

We discuss and map them in geographic order beginning in the north with Nake and progressing down the windward reef through Long and the 13 Windward Islets to South Island. Beginning anew in the north, we move south through 7 South Nake Islets, 11 Central Leeward Islets, and finally the 5 Southern Leeward Islets.

Because of the variety of islet shapes, "long" or "length" refers to the longest dimension lying parallel to the outer reef edge (normally north-south) and "wide" or "width" to the longest dimension perpendicular to the outer reef edge (normally east-west). South Island, the only exception, is considered to lie adjacent to the southern reef edge, so its "length" is measured east-west. Seabird numbers are from Part II, Table 1. For convenience in locating particular islets, the order is as follows:
History: Nake’s large size and underground water lens, coupled with topography and soils more varied than elsewhere on Caroline, attracted Polynesian settlers. Because early European visitors stayed primarily on South Island, there is only a single reference to Cocos prior to the late 19th century (1 tree seen in 1825 by Paulding 1831).

The far northwest of Nake (also North Island in Young ca. 1922) houses the only true archaeological site on Caroline—a large marae (Figs. 3, 37; Pl. 36). Discovered during the guano era, the site is marked as "graves" on Arundel’s map. Arundel, who was living on the atoll when the marae was discovered, describes it thus: "On the northwest end of Caroline are some curious old native remains, whether places of burial or of sacrifice I cannot determine. I opened one of these, but could find no indication whatever to guide me in a decision" (Arundel 1890). AKK, R. Falconer, and G. Wragg located, measured, and photographed this marae in 1990. The entire courtyard was approximately 18 m long by 14 m wide. All 10 peripheral stones and the central one were easily identifiable from the 1883 plan (Fig. 3), although a few had fallen over or broken due to encroaching vegetation. The lower wall, partly destroyed by Arundel, had not been reconstructed. It is probable
Figure 37. Nake Island: vegetation and physiography.
that this marae had not been seen since the 1880s; though discussed by Emory (1947), he never visited Caroline personally.

Northwest Nake is particularly suitable for a place of worship and sacrifice: it fits most of the environmental criteria indispensable to ancient Tuamotuan religious ritual (Emory 1947). First, flat ground was necessary, preferably lying at right angles to, or parallel to, the lagoon. Second, it was important to have the wind blowing across the marae to waft away the smells of sacrificed animals. Third, ceremonial items included branches of the Pisonia tree, leaves of Cocos (for leaf charms/"rosaries"), and the aerial roots of Pandanus. Fourth, feathers from "black terns" (Black Noddy), frigatebirds, and Red-tailed Tropicbirds were also necessary for rituals. Rather than a smooth substrate, the early Polynesians would have had to be content with leveled coral rubble and distance from the lagoon. The only organism not living near the marae today is the tropicbird; however, their elongated tail feathers could have been plucked from adults nesting on nearby motus.

Since marae are sacred places, there is possibly a significance to the location of the main "courtyard" close to the atoll's northern tip. It is well known that the northern extremities of islands were auspicious places for all Polynesians; in such places, they believed, disem bodied spirits were whisked to the netherworld.

In 1938 a cistern was built in southwest Nake, which is still visible (see Sect. D, Hydrology). We failed to find evidence of occupation, but in September 1974 there was "a small, barely-furnished thatched hut," a stack of approximately 3 tons of copra on a raised platform, and a "three fathom canoe of Polynesian construction" (Ward 1974).

Physiography: Largest in area, Nake is the northernmost motu, separated from Long by a 40-m channel (Pl. 17). With maximum dimensions 2,000 m long and 685 m wide, it is basically rectangular with rounded corners and a peninsula-like extension in the southeast.

Nake lies north of the lagoon, having a southern, dry "bay" (Sandy Inlet), in which silt, sand, and fine coral debris are being actively deposited (Pl. 22). This hard, flat expanse of silty and sandy sediments is 145 m wide at its mouth, extending 200 m north into the main islet. Its 3.50 ha provide a favorite feeding location for shorebirds, especially Bristle-thighed Curlews. If Arundel’s chart (Fig. 4) is correct, Sandy Inlet has increased its land area during the last century.

On the reef flats off the west side are extensive remnants of jagged upraised reef of unknown age (Pl. 11) and occasional beachrock. The exposed beaches and reef flats at Nake’s north point are especially broad, characteristic of reef flats at the exposed corners of islands. Comparisons of the northern sweep of rubble on recent aerial photos with Arundel’s map indicate that much coral debris, curved shingle ridges (Pl. 16), has been added since 1883. This area, the northernmost tip of
the atoll, is subjected to heavy wind, wave and swell action. It is possible that particular ridges can be attributed to individual storms as has been documented for some other atolls (Stoddart & Steers 1977). In 1990, the deep, fine coral rubble mixed with sand east of the marae yielded 3 old turtle nests. Overall, only 6% of the land area was unvegetated. However, sparsely vegetated expanses of hardpan occupied the south-central sector (immediately inland of the coast within a belt of Tournefortia forest), and pure sand at least to 0.5 m deep bordered Sandy Inlet.

Nake’s windward coast, complete with a peaked beach crest and discontinuous beachrock, is 30 m wide in the north, narrowing to 3 m in the south. Offshore, submerged reef flats form a sandy moat.

In the distant past, Nake consisted of 2 separate motus: aerial photos (Frontispiece) reveal an oblique, ancient channel about two-thirds of the way down the islet which is now well vegetated centrally but scrubby peripherally.

Vegetation: Before the major clearing for coconut plantations, Nake’s native forests were "80 to 100 feet high" (Arundel 1875). Today there are 16 plant species (5 trees, 1 shrub, 10 herbs), 62% of Caroline’s flora. It is the lushest motu, with woodlands (82.39 ha) about 80% native and 20% Cocos (Pl. 37). Although in 1916 there were about 260 palms, and the entire island was evidently planted with 10,544 palms in 1918-1919 (Young ca. 1922, Table 13), substantial tracts of each major vegetation type occur today. Its interior is rich in Pisonia, with the largest acreage (20.79 ha) and some of the tallest trees (20 m high) and largest trunks on the atoll (Pl. 43, Table 11). In addition, Cordia is well-represented: 2 major groves of Cordia-Tournefortia forest occupy 11.8 ha, 2% of Nake’s area. Extensive pioneer herb mats, flanked on their inner sides by Tournefortia scrub, occur in the north and east. The remaining Cocos, essentially in the southern quarter, comprise Caroline’s second largest coconut grove.

Birds: Nake, with 80% of Caroline’s breeding seabird species, shows a direct correlation between islet size and bird species diversity. Nine species of seabirds breed, all with larger populations (pairs) than previously reported (Clapp & Sibley 1971a): Masked Booby (105), Brown Booby (1), Red-footed Booby (496), Great Frigatebird (522), Lesser Frigatebird (56), Brown Noddy (390), Black Noddy (814), Sooty Tern (nesting in 1989; Anne Falconer, pers. comm.), and White Tern (1,094).

2) LONG ISLAND (75.98 ha) Figs. 30, 35, 38-41; Pls. 9, 17, 19, 27, 32, 47, 54

Third largest in area, this longest of motus covers nearly one-third of the atoll’s windward side. In the north it is separated from Nake by a narrow channel; from its southern tip a chain of smaller motus extends south along the windward reef.
Figure 38. Long Island: vegetation and physiography.
Figure 39. Long Island: north-south transect showing division into former islets, floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights. Vertical height is exaggerated. The exact locations of the formerly more extensive Cocos plantations are unknown.
Figure 40. Long Island: east-west cross-section through Transect C, a former inter-islet channel, showing floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights. Vertical height is exaggerated.

Figure 41. Long Island: east-west cross-section through Transect B, which passes through mature interior Pinus forest of largest of Lang's coalesced nolds. Data includes floristic composition, relative abundance of plant species, degree of species overlap, and canopy heights. Vertical height is exaggerated. Note the absence of low vegetation on the leeward shore.
Physiography and History: Long, 4,226 m long and 330 m wide, is somewhat snake-shaped, with an enlarged northern "head" and attenuated "tail." From a distance its vegetation appears as a series of humps. Long has experienced a fairly complex geological history, noted by the Solar Eclipse Party: "On some of the islands there are spaces void of vegetation, extending from lagoon to beach, which indicate the existence at a former time of a water separation" (Holden & Qualtrough 1884).

At present, Long is composed of 5 distinct former motus separated by sparsely vegetated channels of coarse sand and coral gravel. Aerial photographs also reveal further, older subdivisions (see below). Coalescence and fracturing of the original motus probably occurred repeatedly. Since erosion proceeds faster on an atoll’s windward reefs, providing coral fragments, coralline algae, and pulverized molluscs, it is no surprise that the first series of Caroline’s motus to fuse were those facing this rich source of parent material.

Long’s coarse rubble beaches (Pl. 19) are a mirror image of those on Nake: they widen progressively southward. The swath of unvegetated rubble above high tide line in the upper two-thirds of Long averages 8 m wide, while in the lower third it is 40 m wide. Unvegetated coral debris accounts for 10% of the island’s area (Fig. 30). Beachrock, flanking the windward shoreline for most of its length, is more abundant than elsewhere (Pl. 54).

Long’s lagoon flank is edged with submerged sand and silt, and is one of the most sheltered parts of Caroline. Sand and rubble deposition off the south point has formed a lagoon islet (Bo’sun Bird), which could, in the future, coalesce with Long’s south point to form a hook.

An uncommon substrate on Caroline, upraised reef forms a low rampart (generally <1 m high) paralleling the ridge crest inside the vegetation for much of the lower quarter of Long. Although we camped in this area and conducted 4 transects through this upraised reef, we found no plant species that indicated the presence of feo, such as can be found in the Tuamotus (Fosberg, pers. comm.).

In 1990 G. Wragg found some scattered large stones, similar to those of the Nake marae, located centrally 100 m north of the southern tip of Long, confirming the report of the remains of a smaller marae on Long Island (Holden & Qualtrough 1884). Wragg noted that the marae was small, measuring approximately 3 m wide by 8-10 m long. Its orientation appeared to be northeast-southwest. The wall on one end was evidently smashed by storm waves. Only 2 of the peripheral upright stones were standing, of similar size to those on Nake. The platform was in reasonable condition, with a huge Pisonia tree growing through it. Some rock slabs were large (2 x 2 m). The entire marae was situated within a Pisonia grove, with nearby Cocos. We do not know if this coconut grove (1.6 ha) was present before 1,343 palms (20% of the islet’s area) were planted in 1918-19 (Young ca. 1922). The sheltered location and a Pisonia-Cocos forest, which suggests an old clearing, further indicate prior occupation.
In 1990, Wragg also uncovered an RNZAF survey marker just inland of Long's southernmost tip.

Vegetation: There are 15 plant species (4 trees, 2 shrubs, 9 herbs), on Long, 56% of the total flora. Long's variety of habitats, vegetation heights, substrata, and birds make it the most diverse islet on Caroline. Only 3% of its area remains in Cocos. All the atoll's seabirds have bred here. Its ecology is best understood with reference to Figures 35 and 39-41.

Within the basic pattern of 5 coalesced motus, it may be seen that:

1) From north to south (measured from the midpoint of each former channel) the motus, of divergent size and shape, are approximately 320, 620, 700, 1,840, and 100 m long.

2) Each former motu, crowned by *Pisonia* forest, contains concentric rings of decreasing fertility around its core and is morphologically similar to motus surrounded by water, except that the coarse coral gravel along the former perimeter is less marked. More specifically, beach sands and gravel extend for 200-300 m north and south of the old channels, after which they increasingly accumulate coral rubble, humus, and guano.

3) *Tournefortia* dominates, interspersed with 4 patches of taller *Pisonia* forest and scattered clumps of *Cocos* and *Cordia*. Interrupted herb mats parallel the windward coast and often extend across the island along former interislet channels (Pl. 32). Vegetation height varies from 2 cm to 15 m.

4) Plant species diversity is highest in *Tournefortia-Pisonia* and lowest in *Pisonia* forests.

5) Long's tallest, most mature *Pisonia* groves (up to 100% *Pisonia*) occur on the largest of the former islets. The *Pisonia* forest near the south end (Tr. 10), although healthy, is only 12 m tall. This may be due to its impoverished upraised pitted reef substrate barely covered with "soil." Since it lies adjacent to Long's most luxuriant *Cocos* grove, its land could well have been cleared in 1918-19, with the *Pisonia* forest taking longer than elsewhere to recuperate. Because tern guano increases soil fertility, contributing to *Pisonia* growth, it is of interest that neither Black nor Brown Noddies nested here.

6) Deep dips in Figure 39 (lower graph) correspond to east-west corridors formed from old channels. Vegetation in these relatively infertile, sandy flats is low, similar to that on small developing motus (i.e. native herbs with scattered *Tournefortia* <2 m high). One sandy channel (Tr. C, Pl. 32) supported sparse *Suriana*. During the February 1990 cyclone, all vegetation was either uprooted, washed away, or smothered with fresh sand and coral gravel along Transects A and C (Pl. 33). Storm erosion was particularly marked within the channel that almost bisects the island (Tr. A).
7) Secondary dips mark even older interislet channels ("ancient channels"), visible on aerial photographs (Frontispiece) but barely recognizable in the field. They are overgrown with Tournefortia and/or Pisonia.

8) Sharp dips within established forests or herb mats denote relatively recent channels gouged out by storms ("recent storm cuts"). These were also altered during the winter 1990 storm.

Figures 40 and 41 illustrate some differences between the windward and leeward coasts. Transect C (Fig. 40) crosses the north end of Long through an old interislet channel now filled with sand and rubble. Its low profile reflects the simple habitat harboring halophytic herbs and Tournefortia shrubs less than 2 m high. Although the shrubs are scattered, the lagoon half of the transect passes through slightly higher ground, which encourages denser Tournefortia. This transverse section is similar to that of a formative motu such as Fishball (Fig. 56). This exposed, scrubby swath, 300 m wide, harbors Red-footed Boobies, Great Frigatebirds, and a discrete population of Masked Boobies. Approximately 127,000 pairs of Sooty Terns nested in a similar sandy channel 740 m to the south (Tr. A) in 1988.

Transect 8 (Fig. 41) crossed the islet nearer the southern tip (Fig. 8). This profile departs significantly from the usual parabolic cross-section seen on most of the small motus and which exists further north on Long Island. From east (windward) to west, there is first a wide expanse of coarse, unvegetated rubble, followed by rubble dotted with herbs, then Tournefortia scrub increasing to 9 m high. Further inland, a forest of 10-m-high Tournefortia, Pisonia and Cordia continues westward to the lagoon. This leeward margin of Long, extending southward nearly to its tip, is the only location on Caroline where tall, indigenous vegetation overhangs and shelters the lagoon. No herb mat is present.

In summary, Long contains examples of all major plant communities, as well as 2 minor ecosystems, Pisonia-Cordia (3.2 ha) and Cocos-Cordia (0.82 ha). Its woodlands total 49.60 ha. Coconut crabs inhabit all areas containing Cocos and Pisonia; our rough population estimate is 200.

Birds: In 1988 Long supported 9 (10 in 1965) species of breeding seabirds, as follows (pairs): Red-tailed Tropicbird (5), Masked Booby (69), Brown Booby (12), Red-footed Booby (659), Great Frigatebird (808), Sooty Tern (179,800), Brown Noddy (207), Black Noddy (986), and White Tern (751). From 1988 through 1990, Sooty Terns occupied 19 large colony sites (Fig. 11, Pt. II).

Comments: Polynesian rats were abundant, especially in Cocos and Pisonia habitats. It was often possible to see 3 or 4 simultaneously while conducting daily surveys, and 20 or more around camp. At night, their numbers increased substantially. Azure-tailed skinks (Emoia cyanura) were noted.
WINDWARD ISLETS

This chain of 13 islets occupies the southern half of Caroline's east coast. All rest on the same reef flat, separated by channels varying in width and depth. They can be waded with care at low tides, but most harbor black-tipped reef sharks: up to 4 were visible in the shallows within 50 m of an observer. Several motus have altered shape since 1883, including Brothers, which has incorporated a small cay into its present confines.

The motus range in size from Noddy Rock (0.02 ha) to Windward (11.42 ha). They support every major vegetation type from simple herb mats to Pisonia forests, 21 m tall. Because of their constant exposure to trade winds, the seaward vegetation is wind- and salt-shorn. Though appearing primarily untouched, all of the Windward Islets were planted with Cocos (Table 13) from 1916-20 (Young ca. 1922). However, these incipient plantations experienced difficulty and appear to have been abandoned within a few years, and their vegetation recovered remarkably (see Sect. G).

Flanking the lagoon of the southern motus (Brothers through Tridacna), and extending westward, are reefs densely studded with Tridacna clams, which add to Caroline's outstanding natural assets (Pl. 25; Pt. II, Sect. G).

3) BO'SUN BIRD ISLET (0.86 ha) Figs. 29, 42

We named this motu for its Red-tailed Tropicbirds, commonly called Bo'sun birds. The sizeable population is the largest on Caroline. In addition, our 1988 records constituted the first known breeding of this species on the atoll.

Physiography: Bo'sun Bird Islet, 165 m west of Long's southern tip, is the only motu lying within Caroline's lagoon. It shares the same reef as Long, however, and is not a true "lagoon motu."

Amoeboid in shape, Bo'sun Bird is greatly affected by the tidal waters that spread across the shallow reef flats and gush through the channels separating Long and Windward. Because it sits near the inner edge of a wide windward reef flat, the layering of sediments around it is complex and transitory; our observations indicate that more rubble was deposited on the islet's western edge since the aerial photos were taken in 1985. Its western shoreline rises gradually to a high water mark, and slight changes in water level greatly change its overall size and shape. At high tide its perimeter is ovoid with a long westerly extension. The "head" is approximately 70 m wide and 115 m long, while the "nose" is 45 m long and 15 m wide.

Vegetation and Birds: Bo'sun Bird Islet, composed of coral rubble and sand, supports only natural herb mats (Heliotropium, Portulaca, Lepturus) and Tournefortia scrub (to 4 m tall). These 2 simple plant communities cover 35% and 55% of the land area, respectively. For its
Figure 42. Vegetation and physiography of Windward Islet no. 1: Bo'sun Bird Islet. Scale is larger than on the vegetation maps of other islets.
size, the motu is sparsely vegetated, with only 4 plant species (1 shrub, 3 herbs), 15% of Caroline's total flora. There are no introductions.

Bo'sun Bird's most notable attributes are its 4 species of breeding seabirds: Red-tailed Tropicbird (47 pairs in 1988, 130 pairs in 1990), Sooty Tern (8,400 pairs), Brown Noddy (10 pairs), and White Tern (6 pairs).

4) **WINDWARD ISLET** (11.42 ha)
Figs. 29, 43

We named this "Windward" because it is the first major, and largest, Windward Islet.

Physiography: Broadly crescentic in shape, 508 m long by 287 m wide, it parallels the reef's longitudinal axis and is set close to the lagoon. Its seaward beach is quite narrow (3 m wide); there is no lagoon beach.

Vegetation: Windward has 11 species of plants (3 trees, 1 shrub, 7 herbs), 42% of the total flora. A windward crescent of halophytic herbs borders a zone of *Tournefortia* scrub, which mixes quite densely with *Pisonia* and *Cordia* over most of the interior in a bilobed pattern. These latter forests, reaching 14 m high in the south and 9 m in the north, total 8.67 ha. This unusual distribution of central forests undoubtedly reflects *Pisonia*'s recovery from 100% land clearing for *Cocos*—1,299 palms—in 1920 (Young ca. 1922, Table 13). It is remarkable that not one *Cocos* remains as a legacy of this disturbance. The east-west profile of Windward, similar to that of Transect 8, Long Island (Fig. 41), is typical of most motus, except that lagoon-facing herb flats are almost nonexistent. *Scaevola taccada* var. *taccada*, a new plant record for the atoll, was only found on this motu, although *S. t. var. tuamotensis* was found on South Island in 1990.

Birds: Five species of breeding birds were present, all in appreciable numbers (pairs): Red-footed Booby (163), Great Frigatebird (207), Brown Noddy (20), Black Noddy (28), and White Tern (134).

Comments: In May 1990, AKK noted a possible motu midway between Windward and Crescent Islets during midtide. It appeared an upraised reef platform like Noddy Rock, but because of extensive shallow reticulate reefs in this area, its presence at high tide has not yet been confirmed.

5) **CRESCENT ISLET** (3.10 ha)
Figs. 29, 43

We named this islet for its cupped shape.

Physiography: Crescent Islet is 190 m long by 225 m wide. It is almost entirely composed of coral rubble, with a little humus in the interior. The seaward beach is variable (up to 50 m wide), the lagoon beach, insignificant.
Figure 43. Vegetation and physiography of Windward Islets nos. 2, 3 and 4: Windward and Crescent Islets, and Motu Atibu ("Coral Rubble Islet"). Atibu appears to have been severely damaged during the February 1990 storm.
Vegetation: There are 10 species (3 trees, 1 shrub, 6 herbs), 39% of Caroline’s flora. No introduced plants occur. Plant diversity is poorer than on Windward, a reflection of small size, poor soils, and scant herb mats. However, woodlands cover two-thirds of its area, and the central stand of *Pisonia* and *Cordia* is 87 m wide and up to 13 m high. Crescent was heavily planted (80% of total area, 228 palms) in Cocos in 1920 (Table 13), but today none remain.

Birds: Crescent Islet was used by the following numbers of breeding pairs: Red-footed Booby (28), Great Frigatebird (5), Brown Noddy (36), Black Noddy (60), and White Tern (8).

6) **MOTU ATIBU** ("Coral Rubble Islet") (0.02 ha)

Motu Atibu was Caroline’s smallest and least vegetated islet. Third in the windward chain, it measured 13 x 18 m. We named it for its basic rubble character. Vegetation covered only 2% of the land surface and consisted of a few *Tournefortia* shrubs (<1 m high) encircled by narrow swaths of low herbs and rubble. Its 3 plant species (1 shrub, 2 herbs)--12% of Caroline’s flora--were among the most meager on the atoll. Atibu’s profile was similar to that of Fishball (Fig. 56). There were no breeding birds.

Comments: Since a February 1990 storm, Atibu has apparently disappeared, having been reduced to a thin strip of coral gravel below high tide level.

7) **NORTH PIG ISLET** (5.44 ha)

We named the fourth windward islet "North Pig" for its location immediately north of Pig Islet.

Physiography: Classically crescentic, North Pig is 350 m long and 230 m wide. Though approximately half of Pig’s area and less wooded overall, North Pig has a similar distribution of sediments (including sand on the lee side), vegetation, and breeding birds. Profiles of the 2 motus are nearly identical (Fig. 45).

Vegetation: There are 11 plant species (3 trees, 1 shrub, 7 herbs), 42% of Caroline’s flora. No introduced plants are present. Proceeding south along the windward islets, lagoon-side herb mats develop and islet cross-sections assume a more perfect symmetry--low at the edges and forming a hump in the middle.

North Pig’s 3 vegetation zones are predictably symmetrical: a peripheral band of herbs (more extensive on the "horns"), curved belts of *Tournefortia*, and a spacious central forest of mixed *Pisonia*, *Cordia*, and *Tournefortia*. The latter (to 20 m tall) covers more than one-half the islet’s width and one-third its area, and includes fine *Cordia* groves (Fig. 44). This excellent forest is surprising because 402 *Cocos* palms were planted on 93% of North Pig’s usable land in 1920 (Young ca.
Figure 44. Vegetation and physiography of Windward Islets nos. 5 through 9: North Pig, Pig, Skull, North Brothers, and Brothers Islets. Note the reefs extending westward into the lagoon.
1922, Table 13). Measurements from 25 Pisonia trees (main trunks) averaged 19 m in height, 221 cm cbh and 261 cm in base circumference (Table 12).

Birds: Five species of seabirds bred: Red-footed Booby (31 pairs), Great Frigatebird (17 pairs), Brown Noddy (76 pairs), Black Noddy (3,199 pairs), and White Tern (110 pairs). The largest colony of Black Noddies on Caroline nested in the tall Pisonias.

Comments: Rats and coconut crabs were common.

8) PIG ISLET (7.21 ha) Figs. 29, 44; Pls. 26, 41, 50, 55

Number 5 down the chain, Pig was named prior to 1883. Domestic pigs were introduced to Caroline in 1828 by Captain Stavers but evidently died out before 1834. Reintroduced in 1848 with the first recorded settlers, it is not known how long they lasted. One would expect that they were only on South Island, but the statement that "about one-third the distance up the lagoon a canvas hut exists on one of the smaller islets on the eastern side of the lagoon" (Holden & Qualtrough 1884) suggests that perhaps domestic animals also inhabited Pig. Though this is weak evidence, there must have been some reason for this curious name. Today no pig devastation is evident anywhere on the atoll.

Physiography: Bean-shaped, Pig is 330 m long and 255 m across. It is separated from North Pig by a channel 60 m wide.

Vegetation: The islet has 11 plant species (4 trees, 1 shrub, 6 herbs), 42% of Caroline's flora. Cocos, the only introduction, is rare (0.03 ha). In 1920, 538 palms were planted (Young ca. 1922), which covered approximately 79% of Pig's usable area (Table 13).

Pig's vegetation profile (Fig. 45) is classic: a wide, windward herb mat, bordered by Tournefortia and Cordia, which, in turn, grades rapidly into an outstanding Pisonia forest (to 21 m tall, 3.36 ha), one of Caroline's best groves. Measurements from 5 trees, mostly multiple-trunked, averaged 16 m in height, 338 cm in circumference (at 1.5 m), and 282 cm in base circumference (Table 12). This Pisonia also occupies the largest proportion (46%) of any islet area. It is striking that such quality forests could regenerate in about 65 years (see Sect. G). In the Cordia forest (Pl. 26), also the finest on Caroline, 6 trees averaged 12.6 m in height, 116 cm in circumference (at 1.5 m), and 99.8 cm base circumference. On the lee side of Pig, Tournefortia extends directly to the lagoon shore.

Birds: Five species of seabirds bred: Red-footed Booby (14 pairs), Great Frigatebird (118 pairs), Brown Noddy (82 pairs), Black Noddy (1,928 pairs), and White Tern (164 pairs).
Figure 45. Pig Islet: east-west cross-section through center of islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights. Vertical height is exaggerated. Pig's profile is especially symmetrical. It is remarkable that this islet was totally felled for coconuts in 1920.
Comments: Rats and coconut crabs were common. In 1990 a grayish gecko (possibly mourning gecko, *Lepidodactylus lugubris*) was seen by A. Garnett.

9) **SKULL ISLET** (0.02 ha)
Figs. 27, 44; Pls. 46, 49

Sixth in the windward chain, we named Skull Islet after finding the skull, tail feather, and eggshell of a Red-tailed Tropicbird, the first evidence that this species bred on the atoll. A low shelf of coral rubble and sand, barely above high tide mark, this motu is barren except for a small herb mat under 5 *Tournefortia* bushes (1 m high) on the lagoon side. Only 2% of the surface area is vegetated. There are 3 plant species (1 shrub, 2 herbs), 11% of the atoll’s flora. Although appearing young, the motu is marked on Arundel’s chart (Fig. 4). After February 1990, several large storm blocks rested in the channel close to Skull Islet.

In 1988 there were no birds. However, in March 1990, a colony of 150 Brown Noddies was in a prelaying phase, accompanied by 6 Sooty Terns, a Brown Booby and a Wandering Tattler.

10) **NORTH BROTHERS ISLET** (1.71 ha)
Figs. 29, 44; Pl. 55

The seventh windward motu, we named this islet North Brothers because of its location directly north of the named motu, Brothers.

Physiography: North Brothers is shaped like an oval that curves lagoonward toward Brothers, 40 m away. The concave shorelines and lack of herb mats on the opposite shorelines of these 2 islets suggest that they might have been formerly connected. Composed primarily of rubbly substrates, with slightly better soils centrally, it is 95 m long and 250 m wide.

Vegetation: Plant species number 10 (3 trees, 1 shrub, 6 herbs), 39% of Caroline’s flora. A few Cocos trees are present, remains of the 180 planted in 1920 (Young ca. 1922), which covered 100% of all available land on the islet (Table 13). Plant communities on North Brothers are simple: *Tournefortia* (more open in the west) rises to an excellent *Pisonia* forest, 80 m wide and 18 m tall, on the east end. Average measurements from 3 *Pisonia* trees were: height 18 m, base circumference 314 cm, and number of trunks, 2.3 (Table 12).

Birds: Five species of seabirds bred on the islet in 1988 (pairs): Red-footed Booby (25), Great Frigatebird (9), Brown Noddy (23), Black Noddy (40, plus hundreds of old nests), and White Tern (69). In September 1989, Sooty Terns nested on the windward beach (Anne Falconer, pers. comm.), and in May 1990, a prebreeding swirl of thousands of Sooty Terns swarmed above Brothers and North Brothers.

Comments: Gecko eggs were seen on *Pisonia* trunks in 1990.
11) BROTHERS ISLET (4.31 ha) Figs. 29, 44, 46; Pls. 29, 55

The eighth windward motu, Brothers Islet was named last century after Captain Brothers, who managed a stock-raising venture on Caroline. In 1873 his rights to the atoll passed into the hands of John Arundel.

Physiography: Crescentic in shape, with longish horns extending toward the lagoon, Brothers Islet lies about two-thirds of the way down Caroline's windward reef. It is 198 m long x 178 m wide through the center. A Tridacna reef extends westward almost completely across the lagoon.

An interesting aspect of Brothers' structure is that Arundel's chart (Fig. 4) indicates a tiny, separate motu off the southwest point. Our survey and the 1986 aerial photos show that this motu is now joined to Brothers Islet. Its former identity is marked by a small patch of Tournefortia, around which the recently deposited sand and rubble is sparsely dotted with native herbs.

Vegetation: There are 11 plant species (4 trees, 2 shrubs, 5 herbs), 42% of Caroline's flora. Cocos, along the leeward shore, is the only introduced plant. Three distinct plant communities are present: peripheral herb mats (including leeward Portulaca with Suriana), Tournefortia scrub and forest (to 6 m high) bordered with Cordia, and a central Pisonia forest. Larger trees had up to 15 trunks and multiple root suckers. Measurements of 10 trees (main trunks) averaged 15 m in height, 140 cm in circumference (at 1.5 m), and 243 cm base circumference. Distances to nearest neighbor for 10 trees averaged 4.2 meters. As on its neighbor islets, the Pisonia forest on Brothers is striking, especially since it has matured to a closed-canopy monotypic stand devoid of any subcanopy species (Fig. 46), evidently in about 65 years. In 1920, Brothers Islet was planted with 315 Cocos palms, which covered approximately 97% of the usable land area (Table 13).

Birds: Four species of seabirds bred: Red-footed Booby (25 pairs), Brown Noddy (8 pairs), Black Noddy (15 pairs), and White Tern (50 pairs). In May 1990, large numbers of Sooty Terns swirled over Brothers and North Brothers.

Comments: Many mature Pisonia trees contained capacious cavities in their boles that housed large coconut crabs. In March 1990, several of these holes had feathered skeletons of Sooty Terns (and possibly also Brown Noddies) outside their entrances, along with freshly-snipped Pisonia branches (see Pt. II, Sect. F).

12) NODDY ROCK (0.02 ha) Figs. 27, 47; Pl. 18

We named this ninth motu in the Windward Islets for its only known breeding seabird, the Brown Noddy. In September 1988, at least 80 pairs were incubating their eggs on the Portulaca mat that covers its central lee section.
Figure 46. Brothers Islet: east-west cross-section through center of islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights. Vertical height is exaggerated. Note the central monotypic stand of *Pisonia* forest. This islet's forests were totally felled in 1920.
Figure 47. Vegetation and physiography of Windward Islets nos. 10 through 12: Noddy Rock, North Arundel, and Arundel. See text for explanation of the relatively small amount of *Pisonia* cover (Sect. H).
Noddy Rock, an eroded limestone plateau of unknown age, is 26 m wide by 9 m long and 0.5 m above high water. It is windswept and salty, with waves generally splashing over its eastern edge. During storms it is completely awash (Anne Falconer, pers. comm.). Only 3 species of plants (11% of Caroline’s flora) grow here, thinly covering the western (leeward) third of the island in the following proportion: 75% Portulaca, 20% Lepturus, and 5% Tournefortia.

13) NORTH ARUNDEL (0.91 ha) Discussed below
14) ARUNDEL (7.34 ha) Figs. 29, 32, 47; Pls. 14, 56

Arundel Islet was named last century in honor of John T. Arundel. A British trader and guano digger, Arundel was one of the leading figures in the Pacific phosphate industry, directing guano and coconut planting operations on Caroline and other islands from 1873 to 1897. His most valuable contributions, however, were his excellent surveys and maps of several central Pacific islands, including Caroline (Fig. 4). The islet immediately to its north, Arundel’s "cap," we named North Arundel.

Physiography: Arundel is crescentic, with wedge-shaped North Arundel lying across a short channel immediately to its north. North Arundel is 80 m long x 130 m wide, while Arundel is 375 m long x 210 m wide. They are composed almost exclusively of coarse coral rubble, flanked on their inner edges by Acropora-Tridacna reefs. Arundel’s lagoonward "horns" have evidently added more sand and rubble since 1883 (Figs. 4, 47).

Vegetation: There are 11 plant species (3 trees, 1 shrub, 7 herbs) on Arundel, 42% of Caroline’s total. There are no introductions. North Arundel also has 11 (4 trees, 1 shrub, 6 herbs), 42% of Caroline’s flora, including one introduction, Cocos.

The vegetation on the motus, along with Tridacna to the south, consists of extensive herb mats, low scrub and small interior forests (Fig. 32), slightly less lush than the more northerly windward motus. Their woodlands are primarily Tournefortia, with thin belts of Cordia and central Pisonia groves (a bilobed pattern on Arundel). Morinda is unusually common on Arundel, and Achyranthes abundant on North Arundel. Pisonia occupies only 13% of the land area on Arundel, compared to 46% on Pig. Their poor soils are a possible legacy of the guano era.

Both motus were heavily planted with Cocos in 1919-20 (69 and 646 palms, respectively). All usable land was cleared (Table 13). Despite today’s paucity of Cocos, the relatively scant Pisonia, compared to motus further north, suggests that their plantations were more successful and maintained more frequently.

Birds: Five species of seabirds bred on Arundel: Red-footed Booby (37 pairs), Great Frigatebird (on territory, September 1988; breeding confirmed, early 1989 by Anne Falconer), Brown Noddy (11 pairs), Black Noddy (249 pairs), and White Tern (227 pairs). In May 1990, thousands of Sooty Terns swarmed both motus.
15) **TRIDACNA ISLET** (9.08 ha)

 The 13th and southernmost motu in the windward chain was named by the present authors and Boris Sirenko for its outstanding coral reef densely studded with giant clams (*Tridacna maxima*).

Physiography: Somewhat crescentic, measuring 446 m long and 250 m wide, Tridacna is one of the largest motus on Caroline. Its terrain is heavily littered with coral rubble, having a sandy strip above the beach crest on the windward edge.

Vegetation: There are 13 plant species (2 trees, 2 shrubs, 9 herbs), 50% of the atoll’s flora. For its size, Tridacna’s vegetation is surprisingly lacking in tall forests, a legacy of the 910 Cocos palms planted on 82% of its available land area (Table 13). Vegetation patterns follow the usual concentric zonation: peripheral herb mats border a discontinuous belt of *Suriana* (windward side), while the large central mass is dominated by scrubby *Tournefortia-Morinda* woodlands, which cover 88% of the islet’s area, yet only attain 7 m in height. In cross-section (Fig. 49), the short woodlands are particularly noticeable. Compare the present lack of *Cordia*, paucity of *Pisonia*, and richness of herbs, both in species numbers and abundance, with Pig (Fig. 45) and Brothers (Fig. 46). Although there are no introduced plants, thick patches of *Lepturus* also reflect past forest clearing.

Birds: Four species of seabirds were nesting in 1988: Red-footed Booby (111 pairs), Brown Noddy (11 pairs), Black Noddy (249 pairs), and White Tern (227 pairs). Tridacna is periodically a major breeding area for Sooty Terns. Clapp & Sibley (1971a) found 4 main colonies totalling 250,000 birds, and large numbers nested along the windward beach in August 1989 (Anne Falconer, pers. comm.). Nests were located under shrubs, or in open areas bordering them, and were evidently preyed upon by coconut crabs.

16) **SOUTH ISLAND** (104.41 ha)

 History: The history of South Island (called Rimapoto in Young ca. 1922) is essentially the history of Caroline, for most information about the atoll prior to 1965 is from here. It is the second largest islet, and the staging area for trips up-lagoon as it lies adjacent to both the "boat landing" and "blind passage."

 South Island was inhabited in prehistory by Tuamotuans, who planted the first small coconut grove on its northwest point. The first Europeans to land, in 1606, found coconuts, fish, lobsters, and seabirds in abundance. They dug for fresh water in vain. Two hundred years later, in the decade after a cyclone in 1825, pigs, sweet potatoes, arrowroot, and South Sea chestnut were introduced. However, "the unfriendly character of the soil, and the number of land crabs that infest it, gave us but little hope of the experiment succeeding"
Figure 48. Vegetation and physiography of Windward Islet no. 13: Tridacna Islet. The best quality *Acropora-Tridacna* reefs extend clear across the lagoon from this motu. See Section H for explanation of unusual forest cover.
Figure 49. Tridacna Islet: east-west cross-section through lower center of motu. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights. Vertical height is exaggerated. Note the absence of well-developed interior forests, unusual for a motu of this size (see Sect. H).
Figure 50. South Island: vegetation and physiography. Note the accepted landing route across its leeward reef flats.
Bennett 1840). The pigs soon expired. The arrowroot, tenacious and adapted to island environments, still exists today (unless later immigrants brought it). Of the others, plus many other later food plants and ornamentals, no traces exist (Table 1). Tropical heat, droughts, storms, excessive shade from Cocos, poor germination, poor soils, terrestrial crabs, and lack of care all undoubtedly contributed to their demise.

The first recorded settlement on Caroline, and first for the Line Islands was in 1846, on the northwest point. These settlers, as well as subsequent ones, eked out a spartan living by raising stock, drying fish and copra, and digging for guano. Their managers built "proper" dwellings, so when U.S., British, and French astronomers arrived to observe the solar eclipse in May 1883, South Island was quite "civilized," far more than it is today. Three houses and 2 sheds "were in good repair," and a variety of "anchors, chains, spars, and pieces of the woodwork of vessels" littered its reefs (Holden & Qualtrough 1884). Large grassy clearings adjacent to the lagoon accommodated several European-style houses (Pls. 2-6). The astronomers' account of South, illustrated with pen-and-ink drawings (Pls. 2-7), is the only record of buildings on Caroline, apart from mention of the manager’s house, reported in 1936 by the "H.M.S." Wellington to be "in excellent condition and spotlessly clean" (Maude ca. 1938), and a copra shed (Clapp & Sibley 1971a). Arundel took photographs, including the marae on Nake, which we have not examined.

Today, the houses, sheds, brick piers (constructed in 1883 for telescopes and observatory frames), signboard, flagpole, marble slab with inscription "U.S. Eclipse Party, 1883, May 6," and all but one of the introduced plants have disappeared. In 3 trips we found no traces of the copra shed, nor have the Falconers, after repeated visits over 2 years. All that remains of the formerly extensive open areas are 2 small palm-shaded clearings, in 1988 used by the U.S. and Soviet scientists for a base camp and work area. In 1987, the Falconers lived in one clearing, and in 1990, fishermen expanded the other by burning an area 35 x 22 m, then erecting a tin shack, cookhouse, and fishtrap, all destroyed in a summer 1990 storm.

Our "civilization list" probably covered all that could be seen on South Island without digging: a 26-foot wrecked sloop (AK 6691 J.), complete with trail to a "Robinson Crusoe-type" campsite strewn with remnants of radio and navigational equipment, sail, cans, clothing, etc. (southeast coast); assorted flotsam and jetsam (whisky bottles, Japanese fishballs, plastic debris, etc.); a large rubber ship fender; a bench mark from the 1985 RNZAF survey team; a recently renovated concrete cistern (by the landing); and an old wooden canoe lying on its side just like de Quiros found in 1606.

Arundel’s memorabilia (photos, letters, diaries, a microfilm, etc.) are in the Rare Book Collection, National Library and Pacific Manuscripts Bureau, Research School of Pacific Studies, Australian National University, Canberra, A.C.T., Australia.
We assume that all the Polynesians, ancient and recent (Tuamotuans, Tahitians, Niueans as far as is known), lived in native thatched huts similar to the ones on Ana-Ana today. Fashioned from coconut palms and pandanus trees, they disappear quickly when abandoned. The largest number of inhabitants recorded for Caroline (probably all on South Island) was "two managers and 52 laborers" in 1873 (The Commercial Advertiser 1873).

The history of South Island’s coconut plantations from 1885-1901, and from 1916-1929, is discussed under Coconut Woodlands (Sect. G).

Physiography: South Island forms the base of the thinly crescentic isosceles triangle whose limits define the atoll. Its own shape is that of an irregular parallelogram 858 m wide x 1,254 m long at its longest points (Fig. 50). The north coast, a curved bay, forms the lower boundary of the lagoon. This palm-lined shore, along with the adjacent northwest peninsula, has been the most trodden by man, one of the most picturesque spots on the atoll (Pls. 23, 39).

The reef flats surrounding the outer 3 sides of South are the widest on the atoll, averaging 231 m, 578 m, and 363 m on the east, south and west, respectively. The windward and leeward reefs immediately to its north are 530 m wide. To leeward is the small boat "landing," on a conglomerate platform (Pl. 20), and to windward, the "blind passage," a non-functional hoa (Pl. 72).

Vegetation: There are 23 plant species (7 trees, 3 shrubs, 13 herbs), 89% of the atoll’s flora. Cocos dominates South Island, occupying 77% of its area. The superannuated closed-canopy plantations (21 m tall) that border its coastlines give no indication of the vast overgrown, dying groves that occupy 80 ha, two-thirds of its interior (Fig. 50; Pls. 8, 34). Here, 3 species of herbs (Boerhavia repens, Portulaca lutea, Phymatosorus scolopendria) have proliferated unnaturally to form dense carpets, and the vine (Ipomoea macrantha) climbs in tangled, strangling masses to the tops of the highest palms.

The natural communities that prevail on other motus are only minor components on South (Fig. 50): herb mats (13% of the total area), Coastal Scrub with Suriana (1%), and Tournefortia Scrub (4%). Conspicuously absent are prime scrublands and forests of Tournefortia, Pisonia, and Cordia, which undoubtedly once swept in a lush expanse from shore to shore, stratified and zoned as on other motus, and which were "80 to 100 feet high" before extensive cleaning began (Arundel 1875). Canopy heights of the plantations are uniform (21 m), and the outer fringe of indigenous scrub (Tournefortia, Cordia, Suriana) and herbs (Heliotropium, Portulaca) occupy a small proportion of the island’s width (Figs. 36, 51). Note the abrupt transition of canopy heights as they drop to the level of coastal scrub on both sides of the plantation. Pandanus, too, is less extensive than formerly: Bennett (1840) called it "somewhat numerous." During our survey, we observed only one small Pandanus grove and a few scattered trees. Bennett also noted that the island was "covered with verdure," with "trees attaining the height of twenty feet." However, 9 or 10 years previous to Bennett’s visit a
Figure 51. South Island: distribution and abundance of plant species along Transect 2, which runs at an angle of 60° from the lagoon to the south shore through the western center of the islet. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights. Vertical height is exaggerated. Horizontal scale is half that of the profiles from smaller motus.
violent storm had whipped over the atoll. By the early 1870s, trees were approximately 30 m high again (Arundel 1875). Remnant Tournefortia and Pisonia are illustrated in drawings of South Island’s lagoon shore in 1883 (Pls. 4, 5).

Apart from the coastal buffer zone, little native forest remains. Other sizable trees (Pisonia, Cordia), up to 17 m tall, are rare, but Morinda, tolerant to both sun and shade, is still quite common. Though we have not been able to trace any records to Caroline, it is possible that shiploads of Cordia logs were exported to San Francisco on guano ships, as was the case on Flint, worked simultaneously by Arundel’s company (Young ca. 1922).

A final noteworthy aspect of South Island is that, despite its history of sporadic occupation and extensive forest felling for coconut plantations, only one exotic (a tiny patch of Phyllanthus amarus) and no vegetable or garden ornamentals (excluding Polynesian introductions) have survived. The 19th century gardens, once drenched in sunshine, have long been buried beneath the deep shade of palm groves (compare Pls. 2, 3 and 23). In addition, rare hurricanes, periodic storms, droughts, irregular rainfall, nutrient-poor soils, rats, land crabs, and the harsh salty environment must have contributed to the eradication of alien species except traditional native food and medicinal plants, which are specifically adapted for atoll environments. Studies on other atolls, even those near high islands (Stoddart & Gibbs 1975, Stoddart & Fosberg 1972), have demonstrated also that many exotics do not survive, despite the proximity to source areas containing garden ornamentals and weed plants. On our last 2 visits (March, May 1990), however, we discovered a weed not previously reported (Kyllinga brevifolia) near the Phyllanthus, a consequence of recent clearing around the cistern. This area was an extension of the Falconers’ vegetable garden on Motu Ana-Ana. Kyllinga is listed as a temporary species (Table 1).

Birds: Only 2 species of birds bred on South in September 1988, a reflection of its paucity of natural habitats: Brown Noddy (163 pairs) and White Tern (381 pairs). Bristle-thighed Curlews are very common, gathering in small flocks on the rubbly shores (Pt. II). They also forage in the open Ipomoea-Cocos forest, perching on dead coconut stumps 6-10 m high, then flying down to feed in the thick herb mats.

Terrestrial Crabs: Caroline’s highest population of coconut crabs, having many huge individuals decades old, occupies the open Cocos forests (Pls. 21, 53). A crude minimum estimate for South Island is 500 mature individuals. We also found a fist-sized blue hermit crab within

8 We are unsure of the status of Hibiscus tiliaceus, Thespesia populnea or Ximenia americana. Although indigenous to the area, a recent analysis of the vegetation of Flint Island (Kepler, in prep.) indicates that these species were most likely introduced to both islands in the late 19th century.

9 Since March 1990, these have become much reduced due to killing and preserving in formalin for curios.
a *Turbo argyrostomus* shell, possibly *Coenobita brevimanus* (Yaldwyn & Wodzicki 1979; E. Reese, pers. comm.). As elsewhere on the atoll, land crabs such as the reddish-purple *Cardisoma* sp. and scarlet hermit crabs, *Coenobita perlatus* (in *T. argyrostomus* shells) were abundant (Pl. 38). *Geograpsus* sp., closer to the shore, was less common.

Rats: Polynesian rats were abundant, constantly afoot in broad daylight, and at night flashlight beams often revealed a half dozen at a time.

SOUTH NAKE ISLETS

This chain of 7 islets extends 1,500 m south from Nake on the west side. They range in size from 0.64 ha (Kota) to 7.36 ha (Pandanus). All are well-wooded and support every natural plant community. Proceeding south, the overall plant cover thins somewhat, but not to the dryness and openness of the Central Leeward Islets. The herb mats are more extensive than on the windward islets, especially to seaward. Aboriginal introductions (*Cocos*, *Pandanus*) are sparse. We have found no historical records indicating human disturbance to these islets, thus their vegetation, with the possible exception of Pandanus Islet, is evidently natural. The 2 scrawny *Cocos* are probably drift-derived.

On the Solar Eclipse Party's map of Caroline (Fig. 5), only the top 2 islets of this group are drawn. The South Nake Islets constitute the only cluster of motus that show appreciable differences between Arundel's chart (Fig. 4) and the 1985 aerial photos: most were shown as smaller, and with slightly different shapes, by Arundel. The interior vegetation on these motus includes mature forests of *Tournefortia*, *Pisonia*, and *Pandanus*, so it is unlikely that these differences reflect changes to the center of the motus. However, since the islets now appear larger, accretions of coral rubble and sand that may have occurred in the past 105 years, and are now barren or covered only with herb mats, could account for most of the differences (see Coral Islet discussion).

Although we have no actual records of Sooty Tern colonies on this chain of islets, in May 1990 AKK observed pre-breeding swirls over Lone Palm, Kota, and Mouakena (Pt. II, Fig. II).

17) **PANDANUS ISLET** (7.36 ha) Figs. 29, 52; Pl. 58

This motu was named by the present authors for its coastal *Pandanus* grove, probably a drift-derived offshoot from a parent colony on Nake.

Physiography: Pandanus Islet, first in the chain, is irregularly oval, 400 m long and 258 m across. It is nearly twice the size shown on Arundel's map (ca. 3.4 ha). It occupies a sheltered spot at the apex of the lagoon. Sand, actively filling in the adjacent lagoon, is an important substrate component on Pandanus, extending one-third of the
Figure 52. Vegetation and physiography of the 7 South Nake Islets: Pandanus, Danger, Booby, Coral, and Lone Palm Islets, Motu Kota ("Red-footed Booby Islet"), and Motu Mouakena ("Masked Booby Islet").
way across the islet. Although tidal reef flats are absent on the lagoon edge, they average 75 m wide on the seaward side, producing a fairly high proportion of rubble compared to the total land surface (32%).

Vegetation: Plant species total 10 (3 trees, 1 shrub, 6 herbs), 39% of Caroline's flora. Cocos is absent, despite the motu's close proximity to Nake. Pandanus Islet has 4 basic vegetation zones: natural herb mats, *Tournefortia* Scrub (with Pandanus), *Tournefortia-Pisonia* Forest, and pure *Pisonia*. Woodlands cover 62% of its area. The widest pioneer mats (13 m) of any leeward motu occupy its east edge and though sparsely vegetated (20% *Heliotropium*, 5% *Lepturus*, 5% *Portulaca*) reflect active growth toward the lagoon. Proceeding west across the island, *Tournefortia* scrub (2 m high), with pockets of pure *Pandanus* (10 m high), merges into *Tournefortia-Pisonia* Forest (to 14 m high), whose bimodal distribution suggests that the islet was once divided. The seaward coast supports open *Tournefortia* (5 m high), beneath which herbs eventually thin out onto the extensive reef flats.

Birds: Five species of seabirds breed: Masked Booby (2 pairs), Red-footed Booby (32 pairs), Great Frigatebird (26 pairs), Brown Noddy (26 pairs), and White Tern (52 pairs).

Comments: Skinks and rats were observed, along with the ubiquitous *Coenobita* and *Cardisoma* land crabs.

18) **DANGER ISLET** (2.71 ha)
Figs. 29, 52; Pl. 59

We named Danger Islet to commemorate the deep, shark-infested channel to its north, a barrier that aborted our first attempt to survey the South Nake Islets.

Physiography: Danger, of rounded shape, is approximately 150 m long and 215 m wide. It is composed almost entirely of coral rubble; interior humus is scant. Its reef-channel flats are 21 m (north) and 14 m (south) wide. The east and west beaches, narrow and wide respectively, are typical of all the leeward motus.

Vegetation: Danger has 10 plant species (3 trees, 1 shrub, 6 herbs), 39% of the total flora. There are no introductions. The vegetation is concentrically zoned: herb mats, *Tournefortia* scrub and forest, central *Pisonia*, and *Cordia* in the southwest. The herb mats are wide, extending 22 m and 15 m on the north and south shores, respectively.

Birds: Four species of nesting seabirds were present in 1988: Red-footed Booby (139 pairs), Great Frigatebird (26 pairs), Brown Noddy (26 pairs), and White Tern (52 pairs).
19) **BOOBY ISLET** (0.84 ha) \hspace{1cm} Figs. 29, 52; Pl. 60

We named this motu, third in the chain, for its 2 species of boobies, the common Red-footed and rarer Masked Booby.

Physiography: Booby, shaped like a teardrop, is 70 m long and 125 m wide. Its coral rubble flats extend 10 m and 30 m on the north and south sides, respectively.

Vegetation: Despite its small size, the most notable feature of Booby is its *Pisonia* forest, 20 m tall and undoubtedly virgin. It occupies the exact center of the islet in a circle about 40 m in diameter. Surrounding this is *Tournefortia* scrub (to 8 m tall), thinning out to peripheral bands of coral rubble. Although less than one hectare in size, Booby Islet’s woodlands occupy two-thirds of this area. Booby Islet has 9 species of plants (2 trees, 1 shrub, 6 herbs), 35% of Caroline’s flora, and no introductions.

Birds: Five species of seabirds breed: Masked Booby (7 pairs), Red-footed Booby (52 pairs), Brown Noddy (2 pairs), Black Noddy (1 pair), and White Tern (6 pairs).

20) **CORAL ISLET** (1.70 ha) \hspace{1cm} Figs. 29, 52; Pl. 60

Fourth from the north, Coral Islet was named for its reef-derived coralline substrate.

Physiography: Arrowhead-shaped, Coral is approximately 130 m long by 200 m wide, more than 3 times the size mapped by Arundel (Fig. 4). Most of its area is barely higher than the surrounding inter-islet channels. The shallow reef flats between Coral and its 2 southern motus are only several centimeters deep at low tide; all 3 may be destined to unite. Unless closely inspected, they appear to have already merged, a fact which, together with Bryan’s incorrect map (Fig. 6), helps account for the widely differing number of motus attributed to Caroline.

Vegetation: There are 9 species of plants (2 trees, 1 shrub, 6 herbs), 35% of Caroline’s flora, and no introductions are present. Plant communities comprise a small *Pisonia* forest (0.13 ha), which is surrounded by the predominant *Tournefortia*, in turn fringed with a narrow band of native herbs. "Soils" are extremely coarse.

Birds: Five species of seabirds bred in 1988: Masked Booby (1 pair), Red-footed Booby (28 pairs), Great Frigatebird (2 pairs), Brown Noddy (6 pairs), and White Tern (15 pairs).

21) **LONE PALM ISLET** (1.99 ha) \hspace{1cm} Figs. 29, 52; Pls. 60-61

We named Lone Palm, fifth in the chain, for its single coconut palm which towers, flag-like, above a dense mound of *Tournefortia*.
Physiography: Similar to Kota (to its south), Lone Palm is sausage-shaped, 97 m long and 240 m wide, and 4 times the size mapped by Arundel. Although composed almost entirely of coral rubble, some sand borders the lagoon. Following a pattern prevalent on all leeward motus, its lagoon beach is 2 m wide, while the seaward beach is 17 meters.

Vegetation: Eleven species of plants are present (3 trees, 1 shrub, 7 herbs), 42% of Caroline's flora. Plant communities are simple: a wide band of herb mats and open Tournefortia flanks an oval of Tournefortia forest (to 10 m tall). A line of Pisonia trees, with a lone Cocos surmounting the scrub, identifies this islet from lagoon or ocean.

Birds: Three species of seabirds bred in 1988: Masked Booby (2 pairs), Red-footed Booby (48 pairs), and White Tern (9 pairs). In May 1990, we saw a large pre-breeding swarm of Sooty Terns.

22) MOTU KOTA "Red-footed Booby Islet" (0.64 ha) Figs. 28, 52; Pls. 60

We named this motu for its high density of Red-footed Boobies (kota in Gilbertese).

Physiography: Sixth in line south of Nake, sausage-shaped Motu Kota is 50 m long and 175 m wide. At low tide it is almost connected to Motu Mouakena. Both surveys indicate that coral rubble, the islet's predominant substrate, had further accumulated on its south side since the 1985 aerial photos, and also since 1988.

Vegetation: Though barely wooded, Kota has 11 species of plants (3 trees, 1 shrub, 7 herbs), 42% of Caroline's flora. One introduced species is present, one tattered Cocos. Plant communities include: peripheral herb mats and a central Tournefortia scrub (to 10 m tall), with a few Pisonias.

Birds: Three species of seabirds bred in 1988: Brown Booby (1 pair), Red-footed Booby (12 pairs), and White Tern (3 pairs). In May 1990, a single Masked Booby was on territory, and Sooty Terns swirled overhead.

23) MOTU MOUAKENA "Masked Booby Islet" (1.00 ha) Figs. 29, 52; Pls. 15, 62

This islet was named for its nesting Masked Boobies, a relatively uncommon seabird on Caroline.

Physiography: Somewhat U-shaped, Motu Mouakena is seventh, and southernmost, in the South Nake chain of islets. Both sides of the "U" were, in the recent past, separate islets. By joining on the west, a narrow, V-shaped inlet was created on the lagoon side. Motu Mouakena, 100 m long and 160 m wide, is extremely rubbly and infertile; much rubble was reorganized during the February 1990 storm. Seventeen meters to its south lies a newly emerging shoal of sand and gravel (Pl. 15),
perhaps destined to be Caroline's fortieth motu. Since the above storm, rubble has further accumulated on this shoal, its adjacent reef flats, and in the channel separating it from Mouakena. It already supports one Tournefortia shrub, 2 dozen Heliotropium plants, and scant Lepturus and Portulaca.

Vegetation: Mouakena has 8 species (1 tree, 1 shrub, 6 herbs), 31% of Caroline's flora, with no introductions. It is thinly vegetated with open Tournefortia scrub (to 9 m tall, 25% cover), a few small Pisonia, and sparse herb mats.

Birds: This motu supports less vegetation and fewer birds than its overall area implies, since 38% of the land consists of unshaded, coarse coral rubble (Fig. 29b). Although unproductive botanically, this provides ideal nesting grounds for Masked Boobies, one of its 2 species of 1988 breeding seabirds: Masked Booby (3 pairs) and Red-footed Booby (8 pairs). In May 1990, we also saw one Great Frigatebird nest with eggs and a swirl of Sooty Terns.

CENTRAL LEEWARD ISLETS

This chain of 11 motus occupies the central west side of Caroline. All are separated by channels, wadable only at low tide but prowled by belligerent sharks. Approximately 1,600 m south of Motu Mouakena lies a sandy shoal (0.5 m high, 7 m wide, 4 m long), close to the lagoon edge of the reef flats and connected only by a thin thread of rubble to Motu Mannikiba to its south.

The islets range in size from Mannikiba (28.50 ha), the most northerly, to Fishball (0.46 ha), the most southerly. All support good seabird populations. Although most are well-wooded, they are nonetheless the least lush motus on Caroline. Historical records are meagre: much of Mannikiba's forest was felled to make room for a Cocos seedling "nursery" (Young ca. 1922). The bulk of "40 trees on other islets," in Young's plantation totals, were most likely from Shark and Emerald. The rest of this group is evidently pristine; Bird Islet is particularly notable.

In common with all western motus on Caroline, the lagoonside beaches are narrow and leeward reef flats wide. The latter exhibit a greater variety of substrata than the former, including older raised reefs and beachrock. Periodically, thousands of nesting Sooty Terns occupy their open spaces (Clapp & Sibley 1971a; AKK, pers. obs.; Anne Falconer, pers. comm.).

24) MOTU MANNIKIBA "Seabird Islet" (21.49 ha) Figs. 29, 53; Pls. 63-65

We named this motu for its teeming seabirds, mannikiba in Gilbertese.
Figure 53. Vegetation and physiography of Central Leeward Islet no. 1: Motu Mannikiba ("Seabird Islet").
Physiography: Largest and most northerly of the Central Leeward Islets, Mannikiba is somewhat rectangular with rounded corners. Its reef flats, supporting an incipient islet, stretch 2.0 km north to the South Nake Islets.

Mannikiba’s maximum dimensions are 700 m long and 375 m wide. On the lagoon side, the scrub skirts high water, but when the tide drops, a strip of blinding white sandy coral lines the lagoon. To seaward, upraised reef, beachrock, and successive layers of rubble stretch in a wide swath (40 m) toward the outer reef, 130 m distant. The primary inland substratum is coral rubble with hardpan in the northeast.

Vegetation: Mannikiba, the fourth largest motu, harbors 13 plant species: (4 trees, 2 shrubs, 7 herbs), 50% of Caroline’s flora. The only introduction is Cocos, occupying 0.1% of the land area. The single, sterile Ximenia americana is indigenous, but may have grown from a seed derived from the other patch of this species on South.

Mannikiba’s vegetation, denser toward the north end, is clearly zoned: herb mats, Tournefortia scrub and forest, and scattered Pisonia groves. The few clumps of peripheral Cocos are probably not drift-derived, but the remnants of 6,000 "seed sets" brought from Flint Island in June 1920. These were stored on Mannikiba and "used to replant misses on other islets" (Young ca. 1922).

Pisonia, though present, occupies only 5% of the land area, a small percentage for such a large islet. This suggests that large areas of the interior forests were felled to accommodate the coconut "sets." This is also confirmed by the presence of several old cut stumps (Cordia?) in the interior, undoubtedly a legacy of S. R. Maxwell and Co., Ltd., who erected huts around 1920 (Young ca. 1922). Although nothing more is known of Mannikiba’s history, collection of guano from its numerous seabirds may account for further past disturbance.

Transect 1 (north-central sector, Pl. 64) passed through the heart of a fine interior forest, while Transect 2 (south-central sector) passed through scrub and herb mats which may represent part of the former Cocos "nursery." Profiles through these 2 cross-island transects resemble those from Brothers (Fig. 46) and an old interisland channel on Long (Fig. 40), respectively.

The low, peripheral herb mats (absent from the lagoon side) are composed of 30% Heliotropium, 20% Boerhavia, 15% Tournefortia, and less than 1% of Portulaca and Laportea. They are best represented in the southern sector. The Tournefortia forest, 6 m high on both sides, is thick, having 95% canopy coverage. The Pisonia forests, though fragmented (12 m high, 100% canopy cover), contain Morinda, Boerhavia, Achyrarthes, Laportea, and Phymatosorus, but none cover more than 10% of the ground area.

Seabirds: Six species are known to breed: Red-footed Booby (184 pairs), Great Frigatebird (287 pairs), Brown Noddy (161 pairs), Black Noddy (176 pairs), and White Tern (195 pairs). No Sooty Terns nested on
this islet in 1988, but Clapp & Sibley (1971a) estimated 2,500 pairs in
1965, and the Falconers reported large colonies on Mannikiba, Blackfin
and Matawa in July - August 1990.

Comments: Coconut crabs live in the Cocos grove. Azure-tailed and
snake-eyed skinks (Cryptoblepharus poecilopleurus), as well as a gecko,
were noted in 1990 (DHE, G. Wragg, pers. obs.).

25) BLACKFIN ISLET (2.62 ha) Figs. 29, 54; Pls. 29

We named this motu, second in the Central Leeward chain, for 2
shark attacks (near misses) within its northern channel.

Physiography: Blackfin, shaped like conjoined ovals, is 140 m long and
190 m across. Coral rubble covers 30% of its surface; all beaches and
upper reef flats are of variable widths, due in part to the fact that it
has recently incorporated a smaller, circular motu into its northern
confines.

Vegetation: Blackfin Islet has 9 species of plants (3 trees, 1 shrub, 5
herbs), 35% of Caroline's flora. The only introduction, Cocos, is rare.
Four plant communities were present. Herb mats are well represented,
especially around the newly incorporated islet. The Tournefortia scrub,
21 m wide in the east, is short (to 2 m), but approaches the stature of
a forest (to 6 m) in the west. The central forests of Cordia and
Pisonia (0.41 ha) are 9 m high.

Birds: Three species of seabirds bred in 1988: Great Frigatebird (4
pairs), Brown Noddy (37 pairs), and White Tern (11 pairs). In May 1990,
one Red-footed Booby sat tight on a nest, while 2 months later large
numbers of Sooty Terns began laying.

26) MOTU MATAWA "White Tern Islet" (1.71 ha) Figs. 29, 54;
Pl. 3 (Pt. II)

On arriving at this motu, the authors were greeted by 15 White
Terns, matawa in Gilbertese.

Physiography: Of oval shape, Motu Matawa is third from the north in the
Central Leeward chain. It is 105 m long and 190 m wide. The entire
motu is composed of coral rubble of varying grades, whose unvegetated
portion comprises one-fourth or more of the land area. Its lagoon beach
is 2.5 m wide, while the seaward beach (sparsely vegetated) is 6 m wide.

Vegetation: Matawa has 10 species of plants (4 trees, 2 shrubs, 4
herbs), 39% of Caroline's flora. There are no introductions.
Vegetation is less lush and more open as one progresses south on the
leeward side. Tournefortia (to 7 m) covers half the islet, surrounding
an east-central Pisonia-Cordia forest (to 8 m).
Figure 54. Vegetation and physiography of the Central Leeward Islets nos. 2 through 4: Blackfin Islet, Motu Matawa ("Fairy Tern Islet"), and Emerald Isle.
Birds: In 1988 four species of seabirds bred: Red-footed Booby (5 pairs), Great Frigatebird (1 pair), Brown Noddy (3 pairs), and White Tern (13 pairs). Most conspicuous were White Terns, with 9 pairs breeding on the 30-m-wide transect swath. One dark morph Reef Heron fished in the shallows. In summer 1990, Sooty Terns also bred.

27) EMERALD ISLE (8.34 ha) Figs. 29, 54; Pls. 24, 66, 67

Fifth down the chain, we named Emerald for the richly colored, translucent lagoon waters that fringe its shorelines.

Physiography: Crescentic Emerald, 330 m long and 240 m wide has lagoonside reefs, patch reefs, and coral knolls irregularly patterned with sandy channels.

Vegetation: Emerald Isle has 12 species of plants (5 trees, 1 shrub, 6 herbs), 46% of Caroline's flora. The only introduction is Cocos. Four plant communities, with a fairly high species diversity, are present: the herb mats, covering one-fourth of its land area, are composed almost exclusively of Heliotropium (35% cover) with scattered low Tournefortia (30% cover). The Tournefortia attains a maximum height of 8 m and, for variety, is mixed about equally with Pandanus over most of its seaward width (144 m).

The interior forest (to 11 m tall) is also mixed, with Pandanus, Tournefortia, Pisonia, and a little Cordia (Pl. 66). This 3.20 ha mixed forest, as on Shark, suggests that Pandanus may be both native and Polynesian-introduced, although we do not have specimens to verify this. Cocos is present as 2 small groves, complete with coconut crab sign (mounds of shredded fibers, Pl. 53), beside the east and midwest shores. We have been unable to trace the history of Emerald's forests; the Cocos and fragmented Pisonia suggest past disturbance.

Birds: Six species of breeding seabirds were present: Red-tailed Tropicbird (1 pair), Red-footed Booby (3 pairs), Great Frigatebird (230 pairs), Brown Noddy (7 pairs), Black Noddy (150 pairs), and White Tern (83 pairs).

Although we did not locate any Red-tailed Tropicbird nests, 2 adults circled steadily overhead. Two Reef Herons (1 dark morph, 1 light) foraged in the inshore reef shallows.

28) SHARK ISLET (7.98 ha) Figs. 29, 55; Pls. 28, 68

We named this islet to commemorate a particularly pugnacious shark charged shoreward and leaped to the beach toward our feet.

Physiography: Stoutly crescentic, Shark Islet is 280 m long and 310 m wide in the center. The sandy lagoon beach and rubbly seaward beach are each 3 m wide. The former is Caroline's prime stretch of sand, overlain by numerous pink granules, possibly due to Foraminifera tests, as in
Figure 55. Vegetation and physiography of the Central Leeward Islets nos. 5 through 11: Shark and Scarlet Crab Islets, Motu Nautonga ("Sea Cucumber Islet"), Azure Isle, Reef-flat, Bird and Fishball Islets.
common in the Tuamotus (Stoddart & Steers 1977). Beyond high water the
seaward reef flats extend for 280 m.

Vegetation: There are 12 species of plants (5 trees, 1 shrub, 6 herbs),
46% of the atoll’s flora. One introduction, Cocos, forms 3 clumps along
the lagoon beach (1% of the islet’s area). Shark’s rings of vegetation
approximate the islet’s outline. Herb mats dot the fine sand
lagoonward, while to seaward they grow in coarse rubble. The
Tournefortia (to 7 m tall) eventually gives way to a 12-m-high Pisonia
forest studded with Cordia and Pandanus. Centrally this mixed forest is
unnaturally open, suggesting past disturbance.

Birds: Four species of seabirds bred in 1988: Great Frigatebird (118
pairs), Brown Noddy (37 pairs), Black Noddy (125 pairs), and White Tern
(44 pairs). Red-footed Boobies were nesting in 1990. The notable
colonies of Great Frigatebirds and Black Noddies are due in part to the
extensive Pisonia forest, covering one-half of the islet.

29) SCARLET CRAB ISLET (0.46 ha) Figs. 28, 55

This motu was named by the authors in honor of Coenobita perlatus,
the scarlet, fist-sized hermit crab that is abundant both here and on
the entire atoll.

Physiography: Scarlet Crab, sixth in the chain and only 40 m long by
125 m wide, is a young oval motu. It skirts the southern shore of
Shark, from which it is separated by a channel 16 m wide. Because its
eastern end points into the lagoon, there is no true lagoon beach.
Together with the next 3 islets, Scarlet Crab’s seaward reef flats
(480 m) are the most extensive on Caroline’s lee side.

Vegetation: Vegetative cover is slight: less than 1% area coverage of
Heliotropium and Laportea, interspersed with 10 small Tournefortia (to
1.5 m). Its species count is 6 (1 shrub, 5 herbs), 23% of Caroline’s
flora. There are no introductions.

Birds: Although during storms this motu is undoubtedly awash, 2 species
of seabirds were breeding in 1988: Brown Noddy (1 pair, on ground) and
White Tern (2 pairs, in low scrub).

30) MOTU NAUTONGA "Sea Cucumber Islet" (0.34 ha) Figs. 28, 55

We named this motu for the Gilbertese word for the black sea
cucumbers or "beche-de-mer" (Ludwigothuria sp.) that are strewn
ubiquitously within the lagoon shallows (Pl. 10).

Physiography: Semicircular in shape, Nautonga is seventh in the Central
Leeward chain, measuring 70 m long and 80 m wide. Situated close to the
lagoon, it is one of 3 small motus that barely protrude above the reef
flats. Nautonga’s perimeter beaches are all narrow (2 m), while its
seaward reef flats are wide (495 m).
Vegetation: There are 9 indigenous species (3 trees, 1 shrub, 5 herbs), 35% of the atoll's flora. Though small, Nautonga's vegetation is concentrically zoned, comprising herb mats (10-14 m wide) and a central forest of Tournefortia and Pisonia (84 m wide), to 10 m tall.

Birds: Five species of seabirds bred in 1988: Red-footed Booby (11 pairs), Great Frigatebird (2 pairs), Brown Noddy (7 pairs), Black Noddy (32 pairs), and White Tern (10 pairs). Lesser Frigatebirds appeared to be preparing to nest in May 1990. One pair of Blue-gray Noddies, flying south, was seen in May 1990.

31) Azure Isle (0.20 ha) Figs. 28, 55; Pl. 51

We named this small, wedge-shaped motu for the striking colors of its nearby lagoon.

Physiography: Eighth from the north, this small, elongated triangle of land is 30 m long and 66 m wide. Its seaward reef flats are wide (512 m), while the adjacent channels are narrow and shallow.

Vegetation: Azure has only 7 species (1 tree, 1 shrub, 5 herbs), 27% of Caroline's flora. A young motu, Azure is a superb example of an early stage of biological succession. Its plant cover consists of a single mound of Tournefortia scrub crowned by a single Pisonia tree (6 m tall), growing only one meter above sea level. Only 45% of the motu is vegetated; the rest, primarily to seaward, is coarse rubble. Azure Isle illustrates the minimum width of vegetation (38 m) in which Pisonia develops on Caroline.

Birds: This motu illustrates the speed at which seabirds will utilize newly available habitats. Within its dozen or so Tournefortia shrubs (to 4 m tall), 3 species of seabirds nest: Red-footed Booby (7 pairs), Great Frigatebird (2 pairs), and White Tern (2 pairs). A pair of Blue-gray Noddies were seen in May 1990.

32) Reef-flat Islet (0.09 ha) Figs. 27, 55

We named this young motu for its primary characteristic: reef flats. Ninth in the Central Leeward chain, this curved strip of coarse rubble lies parallel to the channels that surround and spawned it. It measures about 20 m long and 60 m wide. Three species of plants (1 shrub, 2 herbs), 12% of Caroline’s flora, cover less than one-fourth of its area and are distributed so sparsely that not one bird was present.

33) Bird Isle (4.05 ha) Figs. 29, 55

This is one of the motus named on Arundel’s chart (Fig. 4), probably because of numerous Black Noddies and/or Sooty Terns.
Physiography: Bird is ovoid, measuring 230 m long by 200 m wide. It sits close to the inner edge of the lagoon reef, whereas 400 m of seaward reef flats stretch westward.

Vegetation: There are 12 species of plants (4 trees, 2 shrubs, 6 herbs), 46% of Caroline's flora. A small Cocos grove is the only introduction. It is well-wooded, with very narrow herb mats (6% of total area). Tournefortia (to 8 m) and Pisonia (to 14 m) each cover 42% of its surface; the rest is rubble. The Pisonia forest is of good quality (90-95% canopy cover), having scattered Morinda, Boerhavia, and Achyranthes as an understory. One large clump of Suriana (14 x 14 m, 2.5 m high) grows centrally (A. Garnett, pers. comm.). Bird Islet shows very few signs of past disturbance, having prime plant communities, rich in breeding seabirds.

Birds: Five species of seabirds nested in 1988: Red-footed Booby (29 pairs), Great Frigatebird (6 pairs), Brown Noddy (42 pairs), Black Noddy (329 pairs), and White Tern (48 pairs). In June 1990, many thousands of Sooty Terns covered the ground and swirled in the air, day and night. We...
Achyranthes canescens
Boerhavia repens
Heliotropium anomalum
La portea ruderalis
Lepturus repens
Morinda citrifolia
Portulaca lutea
Tournefortia argentea

Figure 56. Fishball Islet (no. 11, Central Leewards): east-west cross-section through the center of this young motu, which exhibits early stages of geological and biological evolution. Data includes floristic composition, relative abundance of plant species, degree of species overlap and canopy heights. Vertical height is exaggerated.
found no eggs, but laying occurred in June here and on adjacent Bird Islet (Anne Falconer, pers. comm.).

SOUTHERN LEEWARD ISLETS

Pls. 14, 69

This chain of 5 small motus lies along the southwestern edge of the lagoon. All are built upon piles of rubble about 3 m high, oriented east-west, and separated by shallow, narrow channels. From 1.51 to 3.67 ha in size, their topography, vegetation, and breeding seabirds are similar. Although situated on the leeward side of the atoll, the Southern Leeward Islets exhibit some windward characteristics; they lie opposite and slightly north of a wide break in the windward reef which allows trade winds to sweep, uninterrupted, across the lagoon. This promotes their 60-80% cover of scrub or forest. Ana-Ana, the southernmost, was periodically occupied from 1987-1991 by the Falconer family.

Of particular botanical interest are the interior forests, composed of Pisonia mixed with more Cordia than elsewhere on the atoll. Pure Cordia groves (mostly too small to map accurately) typically occupy the forest peripheries.

Their history (previous to 1987) is unknown; all appear to harbor virgin plant communities mingled with occasional drift-derived Cocos or Pandanus.

35) MOTU RAURAУ "Blue-Gray Noddy Islet" (3.48 ha)

Pls. 14, 67

Northernmost of the Southern Leeward Islets, we named this motu for the Blue-gray Noddies (rauraу in Gilbertese) observed there.

Physiography: Raurau is ovoid, with a small lagoonside bay, and maximum dimensions of 180 m long and 231 m wide. It has the most expansive rubble of all the Southern Leeward Islets. This coarse coral clinker extends, apron-like, around the islet, widest (40 m) closest to the lagoon, and narrower (10 m) to seaward. The seaward reef flats extend 446 m to the ocean.

Vegetation: The number of plant species is 10 (5 trees, 1 shrub, 4 herbs), 39% of the atoll’s flora. Raurau’s 2 plant communities are simple: a very scant herb mat is sprinkled with Tournefortia, which rises to 6-m-high scrub all around the islet. Laportea forms a narrow band at the interface between coral rubble and scrub. Centrally a Pisonia forest (to 13 m), dotted with Cordia on the periphery, harbors much Morinda in the understory, including the tallest Morinda (13 m) seen on the atoll. A handful of drift-derived Cocos and Pandanus, the only introductions, dot the scrub.
Figure 57. Vegetation and physiography of the 5 Southern Leeward Islets: Motus Raurau ("Blue-gray Noddy Islet"), Eitei ("Frigatebird Islet"), Pisonia Islet, Kimoa ("Rat Islet"), and Ana-Ana ("Anne's Islet").
Birds: No seabirds were found on transect, but a perimeter walk in 1988 revealed 4 species breeding in the leeward *Tournefortia*: Red-footed Booby (10 pairs), Great Frigatebird (31 pairs), Brown Noddy (1 pair), and White Tern (2 pairs). This islet, for its size, is particularly rich in frigatebirds.

Comments: Polynesian rats are present.

36) MOTU EITEI "Frigatebird Islet" (1.41 ha)
Figs. 29, 57;
Pls. 14, 69

Second in line from the north, we named this motu for its nesting Great Frigatebirds, *eitei* in Gilbertese.

Physiography: Motu Eitei is rounded, 105 m long and 280 m wide. Lying perpendicular to the reef axis, it touches the lagoon edge on its inner side. To seaward, the reef flats are 644 m wide.

Vegetation: There are 8 species of plants (3 trees, 1 shrub, 4 herbs), 31% of the atoll's flora, with no introductions. Eitei is carpeted with 3 plant communities in the usual concentric arrangement. However, there is a slight difference in the species composition of the herb mats: on transect, the southern mat (2 m wide) consisted solely of *Portulaca*, while the north side contained a 3-m swath of *Heliotropium*, *Laportea*, and scattered *Suriana*. Inside the mat is a ring of *Tournefortia* scrub (to 5 m) and a central *Pisonia-Cordia* forest (to 11 m). *Laportea* is particularly abundant, while *Portulaca*, normally confined to the edges, abounds in small openings within the interior woodlands.

Birds: Four species of seabirds bred on Motu Eitei in 1988: Red-footed Booby (17 pairs), Great Frigatebird (14 pairs), Brown Noddy (6 pairs), and White Tern (18 pairs). The atoll's first Blue-gray Noddy nest was found in 1990 (Pt. II).

37) PISONIA ISLET (2.45 ha)
Figs. 29, 57; Pls. 14, 69

We named this motu for its fine *Pisonia* forest.

Physiography: Pisonia, third in the chain from the north, is almost circular, and lies closely appressed to its neighbor islets. Its maximum dimensions are 140 m long and 220 m wide. Like Raurau, it possesses a wide "apron" of coral rubble and sparse herbs on the lagoon side. Its seaward reef flats are 300 m wide.

Vegetation: The number of plant species is 15 (5 trees, 2 shrubs, 8 herbs), 58% of the atoll's flora. The only introduction is *Cocos* (few, scattered, north and south shores). Well-wooded, Pisonia harbors the customary 3 plant communities: the herb mat is almost pure *Heliotropium*, dotted with *Suriana*. One specimen of *Lepidium bidentatum* was found in 1990. The *Tournefortia* scrub and forest, covering half of
the motu’s length and width, grows to 9 m, while the Pisonia-Cordia forest, covering 0.86 ha (35% of the islet’s area), reached 10 meters.

Birds: Despite the fine Pisonia forest, no Black or Brown Noddies nested. Only 3 species of seabirds bred in 1988: Red-footed Booby (26 pairs), Great Frigatebird (14 pairs), and White Tern (10 pairs). Best represented were Red-footed Boobies; a perimeter count yielded 18 tended nests, all in Tournefortia scrub. A Long-tailed Cuckoo was heard in the interior.

Comments: Rats were common: 6 were noted on a mid-morning transect survey.

38) MOTU KIMOA "Rat Islet" (1.80 ha) Figs. 29, 57; Pls. 14, 69, 70

Fourth from the north, we named this motu for Caroline’s single mammalian inhabitant, the Polynesian rat, kimoa in Gilbertese.

Physiography: Kimoa, smallest of the Southern Leeward Islets and shaped like a flared teardrop, is squeezed between its neighbor motus. Its maximum dimensions are 92 m long and 218 m wide, almost 4 times the size mapped by Arundel (Fig. 4). The southeast rubble and herb mats are wide. The distance to the outer reef edge is 307 meters. Of special note is the emergent Tridacna-Acropora reef which stretches completely across the lagoon to Tridacna Islet. This reef is 15-20 m wide (Fig. 48; Pls. 25, 57) and 1,023 m long, which, together with an equal length in blind diverticulae, totals over 2 kilometers. The Tridacna clams aggregate in densities up to 80 sq m (Sirenko & Koltun, in press).

Vegetation: Kimoa has 11 species of plants (3 trees, 2 shrubs, 6 herbs), 42% of Caroline’s flora. There are no introductions. Though small and narrow, Kimoa is well-vegetated. Its herb mats are composed of Heliotropium on the south side and Portulaca (plus Suriana) on the north. The interior Tournefortia-Pisonia-Cordia forests (to 11 m) cover nearly half the islet’s area.

Birds: Four species of seabirds bred in 1988: Red-footed Booby (21 pairs), Great Frigatebird (3 pairs), Black Noddy (2 pairs), and White Tern (7 pairs). Red-footed Booby nests occupied perimeter sites.

39) MOTU ANA-ANA "Anne’s Islet" (2.16 ha) Figs. 29, 57; Pls. 7a, 14, 52, 69, 71

This motu includes a small settlement with 3 thatched huts (cooking, eating, sleeping), a water tank, chicken coop, and garden. It was occupied from 1987-1991 by Anne and Ron Falconer, 2 small children, chickens, Muscovy ducks, and a dog. A wooden sign marked "Ana-Ana" indicated that the islet had been named.
It is interesting to compare Plates 7a and 71, identical profiles of Ana-Ana 105 years apart.

Physiography: Ana-Ana is the southernmost motu in the Southern Leeward Islets, 120 m long by 222 m wide at its widest point. Approximately 3 m high, it is roughly oval, with a hooked point and curved bay facing the lagoon. This point is actively growing as more and more rubble is deposited by the large flow of water passing through the channel (430 m wide) that separates Ana-Ana and South Island. This channel contains abundant clams that amass into an extensive *Acropora-Tridacna* reef stretching approximately 900 m across the lagoon to Tridacna Islet. The outer reef flats measured 281 meters.

Vegetation: Ana-Ana has 15 species of plants (5 trees, 2 shrubs, 8 herbs), 58% of Caroline's flora. Introductions include *Cocos*, vegetables, a few orna mamentals and, as yet, no weedy exotics. Ana-Ana's vegetation is typical of the other Southern Leeward Islets except for the settlement. Narrow trails from the southern channel lead to a neat clearing, approximately 40 m x 70 m, the only inhabited portion of the atoll. We advised the Falconers against introducing alien plants with spreading seeds and requested them to destroy all introductions when vacating the island permanently.

Ana-Ana has sparse herbaceous mats: *Suriana*, *Heliotropium*, *Portulaca*, *Laportea*, and *Lepturus*. The *Tournefortia* strand includes *Cocos*, *Cordia*, and *Pandanus*. Quality *Pisonia* forest, 15 m high, covers 43% of the islet's area.

Birds: No breeding seabirds were found on any of the 3 visits to Caroline. However, the Falconers found a few White Terns and one Great Frigatebird nesting in the perimeter scrub, as well as groups of Brown Noddies sitting on the beach. Long-tailed Cuckoos were seen around the huts in March, April, and May 1990. It is to be hoped that seabirds return now that the motu is again uninhabited.

Comments: Rats and large cockroaches are abundant. Despite the tidy site, 12 rats occupied a pile of coconut debris, while others scurried amongst the forest litter. The Falconers trapped over 1,300 rats one 2-year period. Several pale geckos with a few spots and largish heads were seen in and around the huts (probably mourning geckos).

I. CONCLUSION

Lushly wooded Caroline Atoll, with the majority of its 39 islets (399 ha of land) either in near-pristine condition or having recovered remarkably from past disturbance, is one of the least spoiled atolls in the Pacific. Uninhabited, it harbors plant ecosystems and breeding seabirds (Pt. II) of national and international importance. Its marine and terrestrial ecosystems are prime outdoor ecological laboratories for research on geological processes including ground water, sea level changes, the dynamics of motu formation, fish poisoning, and numerous facets of ecology including plant succession and *Pisonia* growth rates.
Caroline boasts prime coral reefs thickly studded with *Tridacna* clams, substantial numbers of coconut crabs, breeding sites for green turtles, wintering grounds for shorebirds including the rare Bristle-thighed Curlew, ancient Tuamotuan *marae*, and a crystalline, unpolluted lagoon. The variety, abundance, and quality of its flora and fauna qualify it for status as an officially recognized international preserve (Pt. II, Sect. G). Efforts toward its conservation have thus far been unsuccessful: in 1992 it was leased to a private French businessman who is currently fishing the reefs for commercial profit, as well as disturbing seabird, turtle and coconut crab populations.

J. LITERATURE CITED

Campbell, W. W. 1908. Unpublished letter from the Director of the Lick Observatory and leader of the U.S. Solar Eclipse Expedition to

Ellsworth, S. G., ed. 1990. The journals of Addison Pratt: being a
narrative of Yankee whaling in the Eighteen Twenties, a Mormon
mission to the Society Islands..., in the Eighteen Forties and

Emory, K. P. 1947. Tuamotuan religious structures and ceremonies.

Findlay, A. G. 1884. Directory for the navigation of the South Pacific

B. P. Bishop Mus. Special Publ. 30:19.

____. 1954. Soils of the northern Marshall atolls, with special

____. 1956. Military geography of the northern Marshalls, prepared
under the direction of the Chief of Engineers, U.S. Army, and the

Tenth Pacific Science Congress, Honolulu, Hawaii, 1961. Bishop

Bull. 219:4-5.

____. In prep. Ecological studies of Vostok Island, Republic of Kiribati.

____. In prep. Flint Island, South-central Pacific Ocean: its history and biota.

RNZAF. 1986. Aerial photographs of Caroline Island (Gilberts), No. 6569, taken by the Royal New Zealand Air Force, Aerial Plan No. 1036 9d-h, Dept. of Survey and Land Information, Wellington, New Zealand.

Reef Information for Navigators

We include this section because no accurate hydrological chart exists, and the Pacific Islands Pilot (Hydrographer of the Navy 1982) section for Caroline is incomplete. Arundel's 1883 map (Admiralty Chart No. 979, Fig. 4) is still used today.

Caroline is visible "from aloft" at about 23 km (Ward 1974). It has neither a deep pass, nor navigable channels into the lagoon, nor a ship anchorage beyond the reef. In 1873 a set of moorings was placed off the west coast of South Island for the convenience of guano ships, approximately "a mile north of the south-west point, in about 60 fathoms of water and some distance from the shore" (Arundel 1875). These are long gone, although small boats can still anchor within the close lee of South Island during normal trade winds. Today's ships, however, must drift well offshore after approaching the atoll from the west (Pl. 12).

Of special note is a possible extension of the perimeter reef south and southwest of Caroline. Arundel's map notes: "Reef reported to extend four cables from southeast point." This information probably originated in Findlay's South Pacific Directory, quoted by Holden (1884). Evidently the windward reef of South Island extends approximately 1.7 km from its southeast point. From here "this reef sends out two branches to a distance of 2.5 km, one toward the southeast, the other toward the southwest and is consequently dangerous to approach at night." Arundel's map does not include this bifurcation which, according to Findlay (1884), extends at least across the width of South Island. He also states that "a landing (not always safe) may be effected on the north side of the southwest bifurcation, described above." No trace of these submerged reefs is evident on the RNZAF aerial photos.

The "boat entrance" (Figs. 4, 50), a narrow nick in the outer leeward reef, marked by the stock and ring of an anchor and immediately to the west of South Island's northwest point, is not necessarily the easiest route to the lagoon. Landing is possible across the steep-to reef at many locations along the leeward reef; opposite the southern end of Ana-Ana is good.

Landing adjacent to the anchor is fairly straightforward in calm seas, especially when one becomes familiar with the crooked notch which narrowly pierces the outer reef. After negotiating a powerful backwash, one's boat is swept onto the shallow reef flats--liberally laced with chunks of jagged reef--which is exposed at low tide and barely covered at high tide. A swift current passes west out of the lagoon between South Island and Ana-Ana, sweeping over the reef at the notch. Only small craft with virtually no draft can effect the 500-m journey to South Island. Because the shallows are unchanneled and not navigable even at high tide, skiffs must be carefully hauled through the water to a sheltered landing spot adjacent to South's northwest point (Pl. 12).
An alternative landing method used by yachts in calm weather is via the "blind passage" (Sect. D, Fig. 50), between northeast South and Tridacna Islet. Despite the fact that the inner one-third of this narrow diverticulum is calm, the outer two-thirds are rough most of the time. Its channel leading to and from the open sea is particularly turbulent and should not be attempted without land-based assistance, and only at first light.

Landing is also possible across the reef flats off leeward Nake, but there is no boat passage into the lagoon. Ward (1974) states that at high water, light draught boats can land over the reef opposite the middle of the western side of South Island. This would be the only cross-reef landing which does not involve walking a boat across the uneven reef flats.
B. Rainfall, 1989-1990

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Mean Monthly Rainfall (mm)</th>
<th>Mean Number of Rain Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan '89 '90</td>
<td>71.1</td>
<td>7</td>
</tr>
<tr>
<td>Feb '89 '90</td>
<td>160.0</td>
<td>14</td>
</tr>
<tr>
<td>Mar '89 '90</td>
<td>259.1</td>
<td>20</td>
</tr>
<tr>
<td>Apr '89 '90</td>
<td>190.5</td>
<td>16</td>
</tr>
<tr>
<td>May '89 '90</td>
<td>66.0</td>
<td>10</td>
</tr>
<tr>
<td>Jun '89 '90</td>
<td>48.3</td>
<td>11</td>
</tr>
<tr>
<td>Jul '89 '90</td>
<td>45.7</td>
<td>12</td>
</tr>
<tr>
<td>Aug '89 '90</td>
<td>35.6</td>
<td>12<sup>a</sup></td>
</tr>
<tr>
<td>Sep '89 '90</td>
<td>50.8</td>
<td>3<sup>b</sup></td>
</tr>
<tr>
<td>Oct '89 '90</td>
<td>73.7</td>
<td>11<sup>c</sup></td>
</tr>
<tr>
<td>Nov '89 '90</td>
<td>78.7</td>
<td>7</td>
</tr>
<tr>
<td>Dec '89 '90</td>
<td>162.6</td>
<td>11</td>
</tr>
<tr>
<td>Annual '89 '90</td>
<td>1,242.1</td>
<td>134</td>
</tr>
</tbody>
</table>

Source: Ron Falconer, Caroline Atoll (pers. comm.).

^aBased on 16 days' data.
^bBased on 9 days' data.
^cBased on 18 days' data.
Plate 1. A 1988 dawn view of Caroline as seen from its leeward seas, very similar to that seen by the atoll's Western "discoverer," de Quiros, in 1606. Left to right: Motu Ana-Ana, Tridacna Islet, South Island. Open reef area in the foreground is the 1883 chart's "boat entrance."

Plate 2. A clearing on South Island from which the Solar Eclipse Party made their observations in 1883. Today the area is covered with dense Cocos forest (from Holden & Qualtrough 1884).
Plate 3. One of the 3 European-style houses that have ever been built on Caroline, drawn in 1883 (ibid.).

Plate 4. An artist's very free rendering of Caroline in 1883 (from Holden & Qualtrough 1884).
Plate 5. Map of the "settlement" on South Island, as drawn by the Solar Eclipse Party (ibid.).

Plate 6. Two lagoon views a century ago along the north coast of South Island (from Holden & Qualtrough 1884). Compare these drawings with Plate 23.
Plate 7a. Motu Ana-Ana, unnamed in 1883 (Holden & Qualtrough 1884) but appearing virtually identical then, as to today (Pl. 71).

Plate 7b. A large Tournefortia tree along South Island's lagoon edge, 1883.

Plate 8. CBK in Ipomoea macrantha thicket, dying Cocos-Ipomoea forest, South Island.
Plate 9. "Rat City" base camp, southwest Long Island.

Plate 10. Black-tipped reef shark (*Carcharhinus melanopterus*), numerous and aggressive in Caroline's lagoon. Note the abundant sea cucumbers (*Ludwigothuria* sp.).
Plate 11. Laterally continuous, upraised older reefs of unknown age, southwest Nake. Note the wide reef flats.

Plate 12. Floating a small boat across the southwest reef flats in calm weather from the "boat entrance" to the "landing" on South Island. Note the wide reef flats. The Akademik Korolev drifts offshore.
Plate 13. Beach crest, sandy rubble, seaward moat and narrow reef flats off southeast Nake Island.

Plate 14. Extensive lagoon reef flats south of Arundel Islet on the windward side. Note the 5 Southern Leeward Islets in the distance.
Plate 15. An incipient motu, barely connected to Motu Mouakena's southern shore. See also Plate 62.

Plate 16. Successive ridges of coral rubble deposited by past storms, northeast Nake Island.
Plate 17. Channel between the 2 northern islets, Long and Nake. Note the mixed forest with *Cocos* and *Pandanus*, and filled-in upper lagoon.

Plate 18. Noddy Rock (0.02 ha), an emergent reef platform of unknown age along the windward reef flats. A northward view. Islet is completely awash during storms.
Plate 19. Windward beach, Long Island, showing wide rubble flats inland of the beach crest, rimmed by oceanic flotsam and jetsam.

Plate 20. Conglomerate platform, northwest point, South Island. Russian vessel Akademik Korolev drifts offshore and a lone Suriana maritima dots the blinding coral beach.
Plate 21. A large coconut crab (*Birgus latro*) shelters in a subterranean cavity in the feo. Some males were among the largest ever measured.

Plate 22. Sandy Inlet, a filled-in portion of the lagoon, extends its fishhook-shaped mudflat 300 m northward into Nake's landmass. Here grow the healthiest and most productive Cocos on Caroline. Note the Bristle-thighed Curlews in the foreground.
Plate 23. South Island's pure *Cocos* plantation, looking west along the lagoon. This extensive grove has now obliterated all traces of the former "settlement" (Pls. 2-6). Note the dead *Tournefortia* bush, killed by excessive shade.

Plate 24. Crystalline lagoon waters adjacent to Emerald Isle (Central Leeward Islets) are studded with submerged reefs and sandy channels.
Plate 25. A highly productive cross-lagoon reef of Acropora spp. corals and Tridacna maxima clam shells joins Tridacna Islet with Motu Kimoa. Sirenko & Koltun (in press) estimate 300,000 living Tridacna/km.
Plate 26. *Cordia* Forest (to 12.6 m tall), Pig Islet.
Plate 27. Sand, silt, rubble and hardpan mingle on the upper reaches of Long Island adjacent to the lagoon.

Plate 28. Caroline's sandiest beach flanks the lagoon shore of Shark Islet.
Plate 29. Sheltered bay, Brothers Islet. Raurau Islet lies across the lagoon. Note the sparse herb mat and silty shallow waters.

Plate 30. Narrow lagoon beach lined with *Tournefortia* scrub, Blackfin Islet (Central Leewards).
Plate 31. Recent sand additions to South Island's northeast point, partly covered with excellent natural herb mats and healthy *Suriana* scrub (right).

Plate 32. An old inter-islet channel (Tr. C, Long Island) filling in with herbs, *Tournefortia* scrub and *Cocos* in 1988, but smothered with fresh sand during the February storm of 1990 (see Pl. 33). Note the nesting Masked Boobies in middle right. A westerly view toward the lagoon.
Plate 33. The same area as Pl. 32, March 1990, 2 weeks after the severe cyclonic weather. The herb mats had been smothered with sand, and a large percentage of Tournefortias were partly uprooted and defoliated. An easterly view, toward the windward ocean.

Plate 34. A clearing within the dying Cocos-Ipomoea forest, interior South Island. Note the prolific mats of Boerhavia, Phymatosorus and Ipomoea.
Plate 35. *Pandanus* forest, south Nake.
Plate 36. The north end wall of the ancient Tuamotuan marae, northwest Nake.

Plate 37. Mixed forest with Cocos, southwest Nake Island.
Plate 38. Orange, scarlet and green phalanges of Pandanus rest on a clump of Portulaca. The ubiquitous Coenobita perlatus forage on their stringy flesh.

Plate 40. Inner edge of lagoon, South Island, 1965, taken from approximately the same location as Plate 39. Note the greater extent of sand and *Suriana* coverage above high water than today, due to less encroachment and shading by the palms.

Plate 41. Heavy understory of *Achyrantes canescens*, *Boerhavia repens* and *Phymatosorus scolopendria* in a clearing adjacent to *Pisonia* forest, Pig Islet.
Plate 42. *Boerhavia* fruits on feathers and bill of a Great Frigatebird.

Plate 43. Inside a mature *Pisonia grandis* forest, interior Nake Island. Note the barren, dark aspect, virtually devoid of undergrowth except root suckers. Appearing virgin, this quality stand is possibly only 60-70 years old.
Plate 44. Fringe of *Suríana*, northeast point, South Island.
Plate 45. Well-developed natural herb mat, primarily *Heliotropium anomalum* and *Lepturus repens*. Scattered *Tournefortia* forms a "savannah." Here sandy soils support a lush *Heliotropium* cover, northeast point, South Island.

Plate 46. Detail of *Heliotropium anomalum*, Skull Islet, with remains of the first evidence of tropicbirds on Caroline.
Plate 47. *Tournefortia* scrub, fringed by a natural herb mat, and
occupied by a colony of Sooty Terns. An old inter-islet channel,
northern Long Island. Note the nesting Red-footed Boobies.
Plate 48. *Tournefortia-Morinda* forest, with nesting Brown Noddies, interior Tridacna Islet. This is secondary growth, as this motu was heavily planted with coconuts in the 1920s.
Plate 49. Skull Islet (0.02 ha), with Brown Noddy terns, looking east to the windward reef.

Plate 50. Mature *Pisonia grandis* canopy with incubating Black Noddies and a White Tern, Pig Islet. With a canopy height of 21 m, this was one of the most majestic interior forests on the atoll, although it is only approximately 65 years old.
Plate 51. Azure Isle (Central Leewards)--an example of a motu containing a single *Pisonia* tree. Note the narrow, but still shark-patrolled, inter-islet channel. View east from Motu Nautonga, with Brothers Islet in the distance.

Plate 52. Caroline's sole clearing, with now-abandoned Tahitian-style huts, Motu Ana-Ana.
Plate 53. Piles of fibrous shavings—coconut crab sign.

Plate 54. Beachrock at the lower, windward tip of Long Island, typically found at low water.
Plate 55. Windward Islets nos. 5-9 (left to right): North Pig, Pig, Skull (not visible), North Brothers and Brothers.

Plate 56. Arundel Islet (foreground), looking south-southwest across Tridacna Islet to South Island. Distant Motu Ana-Ana lies on the right.
Plate 57. Detail, *Tridacna maxima* reefs, lagoon side of *Tridacna* Islet. This dense aggregation of giant clams amassed up to 80 per square meter.

Plate 58. View of Pandanus Islet (center) west down the channel separating Nake (right) and Long (left) Islands.
Plate 59. Danger Islet (South Nake no. 2), looking due west across the shallow upper lagoon from Long Island.

Plate 60. South Nake Islets nos. 3-6 (right to left): Booby, Coral, Lone Palm, and Kota. Westerly view across the shallow upper lagoon from Long Island.
Plate 61. Lone Palm Islet (South Nake no. 5): a southerly view from the shallow tidal flats of Coral Islet.

Plate 62. Motu Mouakena (South Nake no. 7), with connected cay. A westerly view from the upper lagoon. Compare with Plate 15.
Plate 63. North end, Motu Mannikiba "Seabird Islet" (Central Leewards no. 1) showing mounds of *Pisonia* and a closer Cocos grove. Note the circular patch reef at right.

Plate 64. Motu Mannikiba, looking east along Transect 1. Natural herb mats on coral rubble give way to *Tournefortia*, then a distant patch of *Pisonia*. The extensive interior forests of this motu were felled 70 years ago to support a well-maintained coconut nursery. Forest recovery has been much slower than on islets where the *Cocos* was not managed as intensively.
Plate 65. Motu Mannikiba, looking east along Transect 2. Low *Tournefortia* scrub covers a coarse rubbly substrate, probably a former inter-islet channel.
Plate 66. Mixed *Pandanus*-*Tournefortia* forest, interior Emerald Isle.
Plate 67. Emerald Isle, looking west across the open lagoonside scrub and hardpan to a densely vegetated interior.

Plate 68. Shark Islet (Central Leewards no. 5): view across patch reefs to a sandy beach.

Plate 70. View of Motu Kimoa ("Rat Islet") from Pisonia Islet. Its central forest, typical of the Southern Leewards, is a mixture of Pisonia and Cordia.
Plate 71. Motu Ana-Ana ("Anne's Islet"): a view with giant ray, from the shallows of the lagoon's southern end adjacent to South Island. Note the similarity to Plate 7, dating from 1883.

Plate 72. The "blind passage" (non-functional hoa), looking west from its inner end across the shallow reef flats to the lower lagoon.